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Introduction: Vietnam still faces a high burden of infectious diseases compared
with developed countries, and improving its health and sanitation environment is
essential for addressing both infectious and non-communicable diseases. Chest
radiography is key for early detection of cardiopulmonary diseases. Artificial
Intelligence (Al) research on detecting cardiopulmonary diseases from chest
radiographs has advanced; however, no Al development studies have used
Vietnamese data, despite its high burden of both disease types, for early
detection. Therefore, we aimed to develop an Al model to classify normal and
abnormal images using a Viethamese chest radiograph dataset.

Methods: We retrospectively analyzed 12,827 normal and 4,644 abnormal
cases from two Vietnamese institutions. Features were derived from principal
component analysis and extracted using Vision Transformer and
EfficientnetV2. We performed binary classification of normal and abnormal
images using Light Gradient Boosting Machine with 5-fold cross-validation.
Results: The model achieved an Fl-score of 0.668, sensitivity of 0.596,
specificity of 0.931, accuracy of 0.842, and AUC of 0.897. Subgroup
evaluation revealed high accuracy in both infectious and hon-communicable
cases, as well as in urgent cases.

Conclusion: We developed an Al system that classifies normal and abnormal
chest radiographs with high clinical accuracy using Vietnamese data.

KEYWORDS

chest radiographs, artificial intelligence, vision transformer, infectious diseases,
cardiopulmonary diseases

1 Introduction

In recent years, Vietnam has seen an increase in deaths due to non-communicable
diseases. However, compared with developed countries, the burden of infectious
diseases remains high, highlighting the need to improve health and sanitation from the
perspective of both infectious and non-communicable diseases (1). In 2021, ischemic
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heart disease, COVID-19, chronic obstructive pulmonary disease,
lung cancer, and tuberculosis were among the top 10 causes of
death in Vietnam, with cardiopulmonary diseases accounting for
half of all deaths, indicating that early detection of these
conditions is a critical public health priority (2). This issue
extends across Asia; in Southeast Asia, East Asia, and Oceania,
ischemic heart disease, chronic obstructive pulmonary disease,
and tracheal, bronchial, and lung cancer ranked as the second to
fourth leading causes of death in 2021 (2).

Chest radiographs are the most frequently performed initial
with
symptoms, because of their wide availability, cost-effectiveness,

imaging examination for patients cardiopulmonary
ability to detect a broad range of conditions, and low radiation
dose (3). For example, in prevalence surveys across 33 African
30%-79%  of with

microbiologically confirmed tuberculosis were asymptomatic and

and Asian  countries, individuals
detected only through chest radiography (4-6). Given this, early
detection of cardiopulmonary diseases via chest radiographs,
regardless of whether they are infectious or non-communicable,
could enable earlier intervention and improve patient outcomes.
In Southeast and South Asia, including Vietnam, many health
centers lack advanced imaging equipment such as computed
tomography, making chest radiography the only available
imaging modality. Therefore, chest radiography is particularly
important in such regions.

Given the importance of chest radiographs in early diagnosis,
artificial intelligence (AI) research to detect cardiopulmonary
diseases from these images has been actively conducted (7-24).
However, most studies have focused on AI models for specific
diseases, such as cardiac disease (7), pneumothorax (8), lung
cancer (9, 10), tuberculosis (11-14), pneumonia (15), COVID-19
(16), and pneumoconiosis (17). Annalise.ai, for instance, can
detect 127 clinical findings from chest radiographs but does not
provide disease diagnoses (24). Some studies have developed AI
to classify chest radiographs as normal or abnormal rather than
identifying specific diseases (25-30). However, these often lack
sufficient representation of infectious or cardiovascular diseases
(25-28) or use datasets with more abnormal than normal cases,
creating imbalanced distributions that do not reflect real-world
clinical reality (29, 30). To date, no Al-development studies have
been conducted using Vietnamese data, despite the country’s
unique dual burden of infectious and non-communicable
diseases, for the early detection of cardiopulmonary abnormalities.

Therefore, this study aimed to develop an AI model to classify
normal and abnormal chest radiographs using a dataset of
Vietnamese patient images with a high representation of both
infectious and non-communicable diseases.

2 Materials and methods

2.1 Study design

Chest radiographs were collected retrospectively from two
Vietnamese institutions: Medic Medical Center and
MEDICEN Co., Ltd., both located in Ho Chi Minh City,
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Vietnam. The study was conducted in accordance with the
Declaration of Helsinki and approved by the Institutional
Review Board of Niigata University of Health and Welfare
(approval number: 19648-250819). This manuscript adheres
to the Standards for Reporting of Diagnostic Accuracy Studies
guidelines (31).

2.2 Dataset

Data were collected at Medic Medical Center from individuals
aged 18 years and older between January 1 and December 31,
2024. MEDICEN Co., Ltd. collected data from the same age
group during two periods—July 2 to October 11, 2021, and May
6 to August 19, 2024. In this study, data were collected using an
opt-out procedure. Patients were provided easy access to
explanatory materials and given the opportunity to decline
participation. A total of 18,280 cases with linked imaging and
clinical information were included. Personal identifiers such as
patient name, age, and sex were removed. Personal information
within the images were obscured using black-box masking.
Based on clinical annotations, cases were categorized as normal,
abnormal, or uncertain. These determinations were made by
two radiologists with 35 and 8years of experience, based on
diagnostic imaging reports generated in routine practice. Only
frontal chest radiographs were included in the final dataset.
Figure 1 illustrates the eligibility criteria for the datasets used in
this study. In the normal category, 754 cases were excluded
owing to lateral chest radiographs, one case had images of non-
thoracic body parts, and 12 cases had technical errors. In the
abnormal category, seven with  technical

cases €rrors

were excluded.

2.3 Pre-processing

The chest radiographs were converted from DICOM images to
PNG format. Pixel values were linearly scaled and normalized to
8-bit depth such that the top 1% of intensities were set to 255
and the bottom 7% to 100, adjustments made while subjectively
evaluating the contrast of the pre-processing images to account
for contrast changes caused by black-box masking. Image sizes
were resized to 224 x 224 pixels using padding and resizing
aspect with
MONOCHROMEI1 photometric interpretation, pixel inversion

while  preserving ratio. ~ For  images

was applied.

2.4 Model development

A schematic diagram of the model used in this study is shown
in Figure 2. A pretrained Vision Transformer (ViT) model
[vit_small_patch8_224. dino (32, 33)] from the PyTorch Image
Models (timm) library (34) was used to extract 384 features
from the These
dimensionally compressed using principal component analysis

pre-processed  images. features  were
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Eligible participants
(n=18,280)
{ 1 I
Abnormal Normal Uncertain
(n=4,651) (n=13,594) (n=35)
Lateral (n=754)
Technical error (n=7) Other positioning (n=1)
Technical error (n=12)
Final Abnormal Final Normal
(n=4,644) (n=12,827)
FIGURE 1
Flow diagram of the eligibility criteria for the dataset used in this study (n = total cases).
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Normal
Convolutional Image P = -
i Embedding LightGBM
Neural Network (1980 Dim) i (n Dim.) —— |
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Binary Classification
> Embedding
C 5 —
A (n Dim.)
FIGURE 2
A schematic diagram of the model used in this study. PCA, Principal Component Analysis; LightGBM, Light Gradient Boosting Machine.

(ViT features). Similarly, a pre-trained convolutional neural
network model [tf_efficientnetv2_m.in21k_ft_inlk (35, 36)], also
from timm library (34), was used to extract 1,280 features,
which were dimensionally compressed via principal component
analysis (convolutional neural network features). Additionally,
principal component analysis was directly applied to the pre-
processed images to extract raw image features. The numbers of
dimensional compression and the image features were varied at
4, 8, 16, 32, 64, 128, and 256.

Cases were randomly divided into five folds. Using 5-fold
cross-validation, models were trained and hyperparameters
tuned. Using ViT, convolutional neural network, and image
features from principal component analysis as inputs, Optuna
(37) (version 4.3.0) was used to optimize the parameters for the
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two classifications (normal or abnormal) using a Light Gradient
Boosting Machine. The parameter with the highest F1-score for
positive (abnormal) cases was adopted. Optimized Light
Gradient Boosting Machine parameters included setting the data
number and depth for the tree model, feature selection method,
learning rate, and L1/2 regularization. Training was set for up to
5,000 iterations with early stopping after 10 rounds. A total of
2,000 parameter trials were performed. Feature importance was
assessed using the “split” type, which counts how often a feature
is used in splits across the model. All computations were
performed on a machine equipped with an 11th Gen Intel(R)
Core™ i9-11900K CPU, 64 GB RAM, and an NVIDIA GeForce
RTX 3090 GPU, using Python (v3.11.5) and the PyTorch
framework (version 2.1.0).
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2.5 Evaluation methods

The metrics used to evaluate the performance of the binary

classification (normal vs. abnormal) were the Fl-score,
sensitivity, specificity, accuracy, and area under the curve
(AUC). These were also evaluated at fixed sensitivity levels of
0.95 and 0.90 and at specificity levels of 0.95 and 0.90. All chest
radiographs labeled as abnormal were analyzed for the presence
of each of 18 predefined diseases, and the true positive fraction
was calculated. The 18 conditions included: atelectasis, chronic
obstructive pulmonary disease, infectious pulmonary disease,
interstitial pathology, lung tumors, pleural effusion, pneumonia,
emphysema, tuberculosis,

pneumothorax, pulmonary

cardiovascular disease, bronchiectasis, mediastinal tumor,
fracture, skeletal muscle abnormalities, flail chest, old scar, and
other. In further subgroup analysis the true positive fraction was
evaluated based on the number of lesions identified by

physicians, and the types of diseases in a single image.

3 Results

The final dataset comprised 12,827 normal and 4,644
abnormal cases. The detailed case distribution is presented in
Table 1. The total number of diagnosed diseases exceeded the
number of abnormal cases, reflecting the presence of multiple
diseases per image. Additional details on the dates of chest
radiographic examinations and the x-ray systems used are
provided in Supplementary File SI.

TABLE 1 Case distribution in the dataset by institution (Medic Medical
Center, Medic; MEDICEN. Co. Ltd., Medicen) (n = total cases).

Institution
Medic All
Truth All 14,550 2,921 17,471
Normal 10,719 2,108 12,827
Abnormal 3,831 813 4,644
Diseases | All 4,355 950 5,305
Tuberculosis 422 65 487
Pneumonia 58 422 480
Interstitial pathology 1 155 156
Pleural effusion 86 24 110
Lung tumors 16 12 28
Chronic obstructive pulmonary 20 5 25
disease
Infectious pulmonary disease 0 24 24
Atelectasis 6 12 18
Bronchiectasis 1 5 6
Pneumothorax 2 3 5
Pulmonary emphysema 0 2 2
Cardiovascular disease 3,134 52 3,186
Fracture 311 15 326
Old scar 162 69 231
Other 123 76 199
Mediastinal tumor 9 4 13
Abnormalities of skeletal muscles 0 5 5
Flail chest 4 0 4
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The highest classification was achieved when the number of
principal component analysis dimensions was set to 256,
yielding an Fl-score of 0.668 (95% CI: 0.656-0.681), sensitivity
of 0.596 (95% CI: 0.582-0.610), specificity of 0.931 (95% CI:
0.927-0.936), accuracy of 0.842 (95% CI: 0.837-0.848), and AUC
of 0.897 (95% CI: 0.892-0.902). Results of the 5-fold cross-
validation, along with performance at fixed sensitivity (0.90 and
0.95) and specificity (0.90 and 0.95), are shown in Table 2.

Table 3 presents the true positive fraction for each of the 18
diseases in the abnormal cases, corresponding to the conditions
shown in Table 2; five-fold cross-validation, fixed sensitivity
(0.90 and 0.95), and fixed specificity (0.90 and 0.95). Table 4
shows the true positive fraction stratified by the number of
lesions identified by physicians, and the types of diseases in a
single image.

4 Discussion

Using a dataset of Vietnamese chest radiographs with a high
representation of both infectious and non-communicable
diseases, we developed an AI model to classify normal and
abnormal cases, achieving an Fl-score of 0.668, sensitivity of
0.596, specificity of 0.931, accuracy of 0.842, and AUC of 0.897.
Nguyen et al. developed an AI system trained on non-
Vietnamese data and reported an Fl-score of 0.653 and accuracy
of 0.796 when evaluated on Vietnamese datasets (38). Our
model demonstrated higher performance, suggesting strong
potential for clinical application in Vietnam. Furthermore, when
compared with previous studies from India (South Asia), a
different region from Vietnam but with a similar disease
spectrum, Nabulsi etal. developed an AI system trained on
Indian data and reported a sensitivity of 0.63, specificity of 0.91,
and AUC of 0.87 on Indian test sets (27). Govindarajan etal.
evaluated the commercially available AI algorithm qXR (Qure.ai
Technologies, Mumbai, India) using Indian data and reported a
sensitivity of 0.879, specificity of 0.829, and AUC of 0.871 (39).
In our study, the AUC was 0.897; sensitivity was 0.691 at a fixed
specificity of 0.900, and specificity was 0.719 at a fixed
sensitivity of 0.900. These results are comparable to, or exceed,
those reported in AI development studies and commercial AI
systems evaluated in the South Asian region. The Fl-score of
0.668 in this study also surpasses the average F1-score of 0.387
achieved by four radiologists in a pneumonia detection task
using randomly selected chest radiographs from Chestx-rayl4
dataset (40). Furthermore, in the binary classification of normal
versus abnormal radiographs (486 normal, 529 abnormal), our
model’s performance was comparable with that of five non-
radiologists (sensitivity, 0.699; specificity, 0.901; AUC, 0.814),
although it was inferior to that of board-certified radiologists
and thoracic radiologists (26).

The high accuracy for infectious diseases (true positive
fraction of 0.917 for infectious pulmonary disease and 0.885 for
pneumonia, at specificity of 0.90) makes the system valuable in
Vietnam, where infectious diseases are common. For non-
communicable diseases, the model achieved high accuracy for
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TABLE 2 Results of 5-fold cross-validation and fixed sensitivity (0.95 and 0.90) and specificity (0.95 and 0.90).

Fl-score Sensitivity Specificity Accuracy AUC
0.596 (2,770/4,644) 0.931 (11,948/12,827) 0.842 (14,718/17,471) 0.897
Fold 1 0.657 0.588 (546/929) 0.927 (2,379/2,566) 0.837 (2,925/3,495) 0.895
Fold 2 0.682 0.612 (569/929) 0.933 (2,394/2,565) 0.848 (2,963/3,494) 0.902
Fold 3 0.662 0.591 (549/929) 0.929 (2,384/2,565) 0.839 (2,933/3,494) 0.894
Fold 4 0.676 0.598 (556/929) 0.938 (2,406/2,565) 0.848 (2,962/3,494) 0.901
Fold 5 0.663 0.593 (550/928) 0.929 (2,385/2,566) 0.840 (2,935/3,494) 0.895
Sensitivity 0.95 0.626 0.950 (4,413/4,644) 0.607 (7,781/12,827) 0.698 (12,194/17,471) -
Sensitivity 0.90 0.673 0.900 (4,179/4,644) 0.719 (9,223/12,827) 0.767 (13,402/17,471) -
Specificity 0.90 0.702 0.691 (3,208/4,644) 0.900 (11,545/12,827) 0.844 (14,753/17,471) -
Specificity 0.95 0.623 0.515 (2,392/4,644) 0.950 (12,186/12,827) 0.834 (14,578/17,471) -

AUC, Area under the curve.

TABLE 3 True positive fraction for each of the 18 diseases in abnormal cases.

Category Diseases Number of = 5-fold cross- | Sensitivity Sensitivity Specificity Specificity
diseases validation 0.90 0.95
Pulmonary Tuberculosis 487 0.419 0.875 0.801 0.542 0.343
diseases Pneumonia 480 0.804 0.985 0.977 0.885 0.752
Interstitial pathology 156 0.891 1.000 0.994 0.923 0.846
Pleural effusion 110 0.500 0.927 0.827 0.591 0.473
Lung tumors 28 0.500 0.964 0.893 0.571 0.357
Chronic obstructive 25 0.560 0.960 0.840 0.760 0.440
pulmonary disease
Infectious pulmonary 24 0.917 0.958 0.958 0.917 0.833
disease
Atelectasis 18 0.944 1.000 1.000 0.944 0.889
Bronchiectasis 6 0.833 1.000 1.000 1.000 0.833
Pneumothorax 5 0.800 1.000 1.000 0.800 0.800
Pulmonary emphysema 2 0.500 1.000 1.000 0.500 0.500
Non-pulmonary | Cardiovascular disease 3,186 0.616 0.975 0.927 0.712 0.532
diseases Fracture 326 0.567 0.923 0.880 0.675 0.466
Old scar 231 0.563 0.913 0.866 0.649 0.459
Other 199 0.397 0.799 0.714 0.487 0.347
Mediastinal tumor 13 0.538 1.000 0.923 0.769 0.462
Abnormalities of the 5 0.600 0.600 0.600 0.600 0.600
skeletal muscles
Flail chest 4 0.250 1.000 0.750 0.750 0.250

conditions with broad radiographic manifestations, such as

TABLE 4 True positive fraction by the number of lesions identified by

physicians, and the types of diseases in a single image. interstitial pathology, pneumothorax, and atelectasis (true

e positive fraction: 0.923, 0.800, and 0.944, respectively, at
Stratification | Number of ~ Number of True o . .

cases true positives positive specificity of 0.90). High accuracy for urgent diseases such as

fraction pneumothorax (true positive fraction 0.800) and mediastinal

Number of | 1 3,505 1,982 0.565 tumor (true positive fraction 0.769) at specificity of 0.90 further

lesions 2 843 576 0.683 enhances its clinical utility.

3 197 138 0701 Regarding the false-negative cases for cardiovascular disease,

4 56 4 0.732 which accounted for the greatest number of cases and for

Z ?j 12 2:;?2 pneumothorax, an urgent condition, we found that the lung

; h 5 0.500 fields were symmetrically delineated and closely resembled those

3 2 2 1.000 of normal cases. Because these cases are very easy to

13 1 1 1.000 misinterpret with the naked eye, distinguishing normal from

Type of 1 4,036 2,351 0.583 abnormal is difficult and may result in false negatives. Al

diseases 2 561 384 0.684 showed a tendency toward higher true positive fraction with

3 43 31 0.721 increasing number and diversity. This capability could help

4 4 4 1.000 prioritize complex or critical cases, offering high clinical value.
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This research is based on the premise that the technology will
eventually be incorporated into workflow as a triage tool, for
example, in chest-radiograph screening. In computer-aided
diagnosis (CAD) research, we refer to this as computer-aided
triage (CADt), which directs patients with possible abnormal
lesions to immediate physician interpretation. Consequently,
chest radiographs obtained during screening are fed to the Al
system immediately after acquisition. When an abnormality is
detected, the physician’s diagnosis and intervention can be
prioritized right away. In CADt, it is important to select cases
that have a high probability of requiring priority over routine
readings. Our system can forward 90 % of prevalent cases for
priority review while preserving a high true-positive fraction for
each disease and achieving a very high negative predictive value
of 0.952 (sensitivity = 0.900). Therefore, we believe it has strong
potential ~for effective clinical use, although further
improvements in sensitivity are needed.

Southeast Asia faces a significant shortage of medical
personnel, often associated with long working hours and low
wages. This challenge has been exacerbated by the COVID-19
pandemic. In many cases, patients experience long wait times or
receive no consultation because of a shortage of medical staff,
particularly in rural areas. Vietnam faces this same issue.
Despite rapid economic growth, the country must urgently
address its healthcare workforce shortage; as life expectancy
rises, the aging population expands and demand for medical
services increase (41, 42). The AI system developed in this
study, trained on Vietnamese data, demonstrated high accuracy
for triaging infectious and urgent diseases and for identifying
cases with multiple pathologies. Its diagnostic performance,
which was comparable to that of non-radiology physicians,
suggests its potential to significantly improve the workflow of
medical staff, even if it does not yet match the accuracy of
radiologists. Therefore, this system could be a valuable tool not
only in Vietnam but also in other Southeast Asian countries,
such as the Philippines and Cambodia (I, 42), which face
similar disease patterns and shortages of medical personnel.
This is expected to enhance healthcare delivery in the region.

We developed an AI model to classify images as normal or
abnormal, with subsequent analysis of its true positive fraction
for 18 specific abnormalities. Disease-specific analyses were
conducted to develop a system for triaging infectious and urgent
diseases using chest radiography. In this study, we focused on
the importance of analyzing data on infectious and urgent
diseases rather than on the findings. However, accuracy was
moderate for typical infectious diseases, such as tuberculosis,
and diseases with localized manifestations, such as lung tumors.
As data collection expands, improving the model’s performance
across all disease types will be an important goal for
future development.

Chest radiographs and clinical information used in this study
were obtained from two institutions in Vietnam. To implement
this system in clinical practice, the AI model must be optimized,
and a multicenter prospective study involving additional
imaging institutions  should

systems, populations, and

be conducted.
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In conclusion, we developed an AI model capable of
with
performance comparable with that of non-radiologist physicians,

classifying normal and abnormal chest radiographs
using a Vietnamese dataset rich in both infectious and non-
communicable diseases. This system has the potential to
improve the prognosis of patients in Vietnam, where there is a
shortage of medical staff, by enabling the early detection of
cardiopulmonary diseases

regardless of whether they are

infectious or non-communicable, thereby allowing for

timely intervention.
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