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Introduction: Vietnam still faces a high burden of infectious diseases compared 

with developed countries, and improving its health and sanitation environment is 

essential for addressing both infectious and non-communicable diseases. Chest 

radiography is key for early detection of cardiopulmonary diseases. Artificial 

Intelligence (AI) research on detecting cardiopulmonary diseases from chest 

radiographs has advanced; however, no AI development studies have used 

Vietnamese data, despite its high burden of both disease types, for early 

detection. Therefore, we aimed to develop an AI model to classify normal and 

abnormal images using a Vietnamese chest radiograph dataset.

Methods: We retrospectively analyzed 12,827 normal and 4,644 abnormal 

cases from two Vietnamese institutions. Features were derived from principal 

component analysis and extracted using Vision Transformer and 

EfficientnetV2. We performed binary classification of normal and abnormal 

images using Light Gradient Boosting Machine with 5-fold cross-validation.

Results: The model achieved an F1-score of 0.668, sensitivity of 0.596, 

specificity of 0.931, accuracy of 0.842, and AUC of 0.897. Subgroup 

evaluation revealed high accuracy in both infectious and non-communicable 

cases, as well as in urgent cases.

Conclusion: We developed an AI system that classifies normal and abnormal 

chest radiographs with high clinical accuracy using Vietnamese data.

KEYWORDS

chest radiographs, artificial intelligence, vision transformer, infectious diseases, 

cardiopulmonary diseases

1 Introduction

In recent years, Vietnam has seen an increase in deaths due to non-communicable 

diseases. However, compared with developed countries, the burden of infectious 

diseases remains high, highlighting the need to improve health and sanitation from the 

perspective of both infectious and non-communicable diseases (1). In 2021, ischemic 
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heart disease, COVID-19, chronic obstructive pulmonary disease, 

lung cancer, and tuberculosis were among the top 10 causes of 

death in Vietnam, with cardiopulmonary diseases accounting for 

half of all deaths, indicating that early detection of these 

conditions is a critical public health priority (2). This issue 

extends across Asia; in Southeast Asia, East Asia, and Oceania, 

ischemic heart disease, chronic obstructive pulmonary disease, 

and tracheal, bronchial, and lung cancer ranked as the second to 

fourth leading causes of death in 2021 (2).

Chest radiographs are the most frequently performed initial 

imaging examination for patients with cardiopulmonary 

symptoms, because of their wide availability, cost-effectiveness, 

ability to detect a broad range of conditions, and low radiation 

dose (3). For example, in prevalence surveys across 33 African 

and Asian countries, 30%–79% of individuals with 

microbiologically confirmed tuberculosis were asymptomatic and 

detected only through chest radiography (4–6). Given this, early 

detection of cardiopulmonary diseases via chest radiographs, 

regardless of whether they are infectious or non-communicable, 

could enable earlier intervention and improve patient outcomes. 

In Southeast and South Asia, including Vietnam, many health 

centers lack advanced imaging equipment such as computed 

tomography, making chest radiography the only available 

imaging modality. Therefore, chest radiography is particularly 

important in such regions.

Given the importance of chest radiographs in early diagnosis, 

artificial intelligence (AI) research to detect cardiopulmonary 

diseases from these images has been actively conducted (7–24). 

However, most studies have focused on AI models for specific 

diseases, such as cardiac disease (7), pneumothorax (8), lung 

cancer (9, 10), tuberculosis (11–14), pneumonia (15), COVID-19 

(16), and pneumoconiosis (17). Annalise.ai, for instance, can 

detect 127 clinical findings from chest radiographs but does not 

provide disease diagnoses (24). Some studies have developed AI 

to classify chest radiographs as normal or abnormal rather than 

identifying specific diseases (25–30). However, these often lack 

sufficient representation of infectious or cardiovascular diseases 

(25–28) or use datasets with more abnormal than normal cases, 

creating imbalanced distributions that do not re9ect real-world 

clinical reality (29, 30). To date, no AI-development studies have 

been conducted using Vietnamese data, despite the country’s 

unique dual burden of infectious and non-communicable 

diseases, for the early detection of cardiopulmonary abnormalities.

Therefore, this study aimed to develop an AI model to classify 

normal and abnormal chest radiographs using a dataset of 

Vietnamese patient images with a high representation of both 

infectious and non-communicable diseases.

2 Materials and methods

2.1 Study design

Chest radiographs were collected retrospectively from two 

Vietnamese institutions: Medic Medical Center and 

MEDICEN Co., Ltd., both located in Ho Chi Minh City, 

Vietnam. The study was conducted in accordance with the 

Declaration of Helsinki and approved by the Institutional 

Review Board of Niigata University of Health and Welfare 

(approval number: 19648-250819). This manuscript adheres 

to the Standards for Reporting of Diagnostic Accuracy Studies 

guidelines (31).

2.2 Dataset

Data were collected at Medic Medical Center from individuals 

aged 18 years and older between January 1 and December 31, 

2024. MEDICEN Co., Ltd. collected data from the same age 

group during two periods—July 2 to October 11, 2021, and May 

6 to August 19, 2024. In this study, data were collected using an 

opt-out procedure. Patients were provided easy access to 

explanatory materials and given the opportunity to decline 

participation. A total of 18,280 cases with linked imaging and 

clinical information were included. Personal identifiers such as 

patient name, age, and sex were removed. Personal information 

within the images were obscured using black-box masking. 

Based on clinical annotations, cases were categorized as normal, 

abnormal, or uncertain. These determinations were made by 

two radiologists with 35 and 8 years of experience, based on 

diagnostic imaging reports generated in routine practice. Only 

frontal chest radiographs were included in the final dataset. 

Figure 1 illustrates the eligibility criteria for the datasets used in 

this study. In the normal category, 754 cases were excluded 

owing to lateral chest radiographs, one case had images of non- 

thoracic body parts, and 12 cases had technical errors. In the 

abnormal category, seven cases with technical errors 

were excluded.

2.3 Pre-processing

The chest radiographs were converted from DICOM images to 

PNG format. Pixel values were linearly scaled and normalized to 

8-bit depth such that the top 1% of intensities were set to 255 

and the bottom 7% to 100, adjustments made while subjectively 

evaluating the contrast of the pre-processing images to account 

for contrast changes caused by black-box masking. Image sizes 

were resized to 224 × 224 pixels using padding and resizing 

while preserving aspect ratio. For images with 

MONOCHROME1 photometric interpretation, pixel inversion 

was applied.

2.4 Model development

A schematic diagram of the model used in this study is shown 

in Figure 2. A pretrained Vision Transformer (ViT) model 

[vit_small_patch8_224. dino (32, 33)] from the PyTorch Image 

Models (timm) library (34) was used to extract 384 features 

from the pre-processed images. These features were 

dimensionally compressed using principal component analysis 
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(ViT features). Similarly, a pre-trained convolutional neural 

network model [tf_efficientnetv2_m.in21k_ft_in1k (35, 36)], also 

from timm library (34), was used to extract 1,280 features, 

which were dimensionally compressed via principal component 

analysis (convolutional neural network features). Additionally, 

principal component analysis was directly applied to the pre- 

processed images to extract raw image features. The numbers of 

dimensional compression and the image features were varied at 

4, 8, 16, 32, 64, 128, and 256.

Cases were randomly divided into five folds. Using 5-fold 

cross-validation, models were trained and hyperparameters 

tuned. Using ViT, convolutional neural network, and image 

features from principal component analysis as inputs, Optuna 

(37) (version 4.3.0) was used to optimize the parameters for the 

two classifications (normal or abnormal) using a Light Gradient 

Boosting Machine. The parameter with the highest F1-score for 

positive (abnormal) cases was adopted. Optimized Light 

Gradient Boosting Machine parameters included setting the data 

number and depth for the tree model, feature selection method, 

learning rate, and L1/2 regularization. Training was set for up to 

5,000 iterations with early stopping after 10 rounds. A total of 

2,000 parameter trials were performed. Feature importance was 

assessed using the “split” type, which counts how often a feature 

is used in splits across the model. All computations were 

performed on a machine equipped with an 11th Gen Intel(R) 

CoreTM i9-11900K CPU, 64 GB RAM, and an NVIDIA GeForce 

RTX 3090 GPU, using Python (v3.11.5) and the PyTorch 

framework (version 2.1.0).

FIGURE 1 

Flow diagram of the eligibility criteria for the dataset used in this study (n = total cases).

FIGURE 2 

A schematic diagram of the model used in this study. PCA, Principal Component Analysis; LightGBM, Light Gradient Boosting Machine.
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2.5 Evaluation methods

The metrics used to evaluate the performance of the binary 

classification (normal vs. abnormal) were the F1-score, 

sensitivity, specificity, accuracy, and area under the curve 

(AUC). These were also evaluated at fixed sensitivity levels of 

0.95 and 0.90 and at specificity levels of 0.95 and 0.90. All chest 

radiographs labeled as abnormal were analyzed for the presence 

of each of 18 predefined diseases, and the true positive fraction 

was calculated. The 18 conditions included: atelectasis, chronic 

obstructive pulmonary disease, infectious pulmonary disease, 

interstitial pathology, lung tumors, pleural effusion, pneumonia, 

pneumothorax, pulmonary emphysema, tuberculosis, 

cardiovascular disease, bronchiectasis, mediastinal tumor, 

fracture, skeletal muscle abnormalities, 9ail chest, old scar, and 

other. In further subgroup analysis the true positive fraction was 

evaluated based on the number of lesions identified by 

physicians, and the types of diseases in a single image.

3 Results

The final dataset comprised 12,827 normal and 4,644 

abnormal cases. The detailed case distribution is presented in 

Table 1. The total number of diagnosed diseases exceeded the 

number of abnormal cases, re9ecting the presence of multiple 

diseases per image. Additional details on the dates of chest 

radiographic examinations and the x-ray systems used are 

provided in Supplementary File S1.

The highest classification was achieved when the number of 

principal component analysis dimensions was set to 256, 

yielding an F1-score of 0.668 (95% CI: 0.656–0.681), sensitivity 

of 0.596 (95% CI: 0.582–0.610), specificity of 0.931 (95% CI: 

0.927–0.936), accuracy of 0.842 (95% CI: 0.837–0.848), and AUC 

of 0.897 (95% CI: 0.892–0.902). Results of the 5-fold cross- 

validation, along with performance at fixed sensitivity (0.90 and 

0.95) and specificity (0.90 and 0.95), are shown in Table 2.

Table 3 presents the true positive fraction for each of the 18 

diseases in the abnormal cases, corresponding to the conditions 

shown in Table 2; five-fold cross-validation, fixed sensitivity 

(0.90 and 0.95), and fixed specificity (0.90 and 0.95). Table 4

shows the true positive fraction stratified by the number of 

lesions identified by physicians, and the types of diseases in a 

single image.

4 Discussion

Using a dataset of Vietnamese chest radiographs with a high 

representation of both infectious and non-communicable 

diseases, we developed an AI model to classify normal and 

abnormal cases, achieving an F1-score of 0.668, sensitivity of 

0.596, specificity of 0.931, accuracy of 0.842, and AUC of 0.897. 

Nguyen et al. developed an AI system trained on non- 

Vietnamese data and reported an F1-score of 0.653 and accuracy 

of 0.796 when evaluated on Vietnamese datasets (38). Our 

model demonstrated higher performance, suggesting strong 

potential for clinical application in Vietnam. Furthermore, when 

compared with previous studies from India (South Asia), a 

different region from Vietnam but with a similar disease 

spectrum, Nabulsi et al. developed an AI system trained on 

Indian data and reported a sensitivity of 0.63, specificity of 0.91, 

and AUC of 0.87 on Indian test sets (27). Govindarajan et al. 

evaluated the commercially available AI algorithm qXR (Qure.ai 

Technologies, Mumbai, India) using Indian data and reported a 

sensitivity of 0.879, specificity of 0.829, and AUC of 0.871 (39). 

In our study, the AUC was 0.897; sensitivity was 0.691 at a fixed 

specificity of 0.900, and specificity was 0.719 at a fixed 

sensitivity of 0.900. These results are comparable to, or exceed, 

those reported in AI development studies and commercial AI 

systems evaluated in the South Asian region. The F1-score of 

0.668 in this study also surpasses the average F1-score of 0.387 

achieved by four radiologists in a pneumonia detection task 

using randomly selected chest radiographs from Chestx-ray14 

dataset (40). Furthermore, in the binary classification of normal 

versus abnormal radiographs (486 normal, 529 abnormal), our 

model’s performance was comparable with that of five non- 

radiologists (sensitivity, 0.699; specificity, 0.901; AUC, 0.814), 

although it was inferior to that of board-certified radiologists 

and thoracic radiologists (26).

The high accuracy for infectious diseases (true positive 

fraction of 0.917 for infectious pulmonary disease and 0.885 for 

pneumonia, at specificity of 0.90) makes the system valuable in 

Vietnam, where infectious diseases are common. For non- 

communicable diseases, the model achieved high accuracy for 

TABLE 1 Case distribution in the dataset by institution (Medic Medical 
Center, Medic; MEDICEN. Co. Ltd., Medicen) (n = total cases).

Institution

Medic Medicen All

Truth All 14,550 2,921 17,471

Normal 10,719 2,108 12,827

Abnormal 3,831 813 4,644

Diseases All 4,355 950 5,305

Tuberculosis 422 65 487

Pneumonia 58 422 480

Interstitial pathology 1 155 156

Pleural effusion 86 24 110

Lung tumors 16 12 28

Chronic obstructive pulmonary 

disease

20 5 25

Infectious pulmonary disease 0 24 24

Atelectasis 6 12 18

Bronchiectasis 1 5 6

Pneumothorax 2 3 5

Pulmonary emphysema 0 2 2

Cardiovascular disease 3,134 52 3,186

Fracture 311 15 326

Old scar 162 69 231

Other 123 76 199

Mediastinal tumor 9 4 13

Abnormalities of skeletal muscles 0 5 5

Flail chest 4 0 4
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conditions with broad radiographic manifestations, such as 

interstitial pathology, pneumothorax, and atelectasis (true 

positive fraction: 0.923, 0.800, and 0.944, respectively, at 

specificity of 0.90). High accuracy for urgent diseases such as 

pneumothorax (true positive fraction 0.800) and mediastinal 

tumor (true positive fraction 0.769) at specificity of 0.90 further 

enhances its clinical utility.

Regarding the false-negative cases for cardiovascular disease, 

which accounted for the greatest number of cases and for 

pneumothorax, an urgent condition, we found that the lung 

fields were symmetrically delineated and closely resembled those 

of normal cases. Because these cases are very easy to 

misinterpret with the naked eye, distinguishing normal from 

abnormal is difficult and may result in false negatives. AI 

showed a tendency toward higher true positive fraction with 

increasing number and diversity. This capability could help 

prioritize complex or critical cases, offering high clinical value. 

TABLE 2 Results of 5-fold cross-validation and fixed sensitivity (0.95 and 0.90) and specificity (0.95 and 0.90).

All F1-score Sensitivity Specificity Accuracy AUC

0.668 0.596 (2,770/4,644) 0.931 (11,948/12,827) 0.842 (14,718/17,471) 0.897

Fold 1 0.657 0.588 (546/929) 0.927 (2,379/2,566) 0.837 (2,925/3,495) 0.895

Fold 2 0.682 0.612 (569/929) 0.933 (2,394/2,565) 0.848 (2,963/3,494) 0.902

Fold 3 0.662 0.591 (549/929) 0.929 (2,384/2,565) 0.839 (2,933/3,494) 0.894

Fold 4 0.676 0.598 (556/929) 0.938 (2,406/2,565) 0.848 (2,962/3,494) 0.901

Fold 5 0.663 0.593 (550/928) 0.929 (2,385/2,566) 0.840 (2,935/3,494) 0.895

Sensitivity 0.95 0.626 0.950 (4,413/4,644) 0.607 (7,781/12,827) 0.698 (12,194/17,471) –

Sensitivity 0.90 0.673 0.900 (4,179/4,644) 0.719 (9,223/12,827) 0.767 (13,402/17,471) –

Specificity 0.90 0.702 0.691 (3,208/4,644) 0.900 (11,545/12,827) 0.844 (14,753/17,471) –

Specificity 0.95 0.623 0.515 (2,392/4,644) 0.950 (12,186/12,827) 0.834 (14,578/17,471) –

AUC, Area under the curve.

TABLE 3 True positive fraction for each of the 18 diseases in abnormal cases.

Category Diseases Number of 
diseases

5-fold cross- 
validation

Sensitivity 
0.95

Sensitivity 
0.90

Specificity 
0.90

Specificity 
0.95

Pulmonary 

diseases

Tuberculosis 487 0.419 0.875 0.801 0.542 0.343

Pneumonia 480 0.804 0.985 0.977 0.885 0.752

Interstitial pathology 156 0.891 1.000 0.994 0.923 0.846

Pleural effusion 110 0.500 0.927 0.827 0.591 0.473

Lung tumors 28 0.500 0.964 0.893 0.571 0.357

Chronic obstructive 

pulmonary disease

25 0.560 0.960 0.840 0.760 0.440

Infectious pulmonary 

disease

24 0.917 0.958 0.958 0.917 0.833

Atelectasis 18 0.944 1.000 1.000 0.944 0.889

Bronchiectasis 6 0.833 1.000 1.000 1.000 0.833

Pneumothorax 5 0.800 1.000 1.000 0.800 0.800

Pulmonary emphysema 2 0.500 1.000 1.000 0.500 0.500

Non-pulmonary 

diseases

Cardiovascular disease 3,186 0.616 0.975 0.927 0.712 0.532

Fracture 326 0.567 0.923 0.880 0.675 0.466

Old scar 231 0.563 0.913 0.866 0.649 0.459

Other 199 0.397 0.799 0.714 0.487 0.347

Mediastinal tumor 13 0.538 1.000 0.923 0.769 0.462

Abnormalities of the 

skeletal muscles

5 0.600 0.600 0.600 0.600 0.600

Flail chest 4 0.250 1.000 0.750 0.750 0.250

TABLE 4 True positive fraction by the number of lesions identified by 
physicians, and the types of diseases in a single image.

Stratification Number of 
cases

Number of 
true positives

True 
positive 
fraction

Number of 

lesions

1 3,505 1,982 0.565

2 843 576 0.683

3 197 138 0.701

4 56 41 0.732

5 24 18 0.750

6 12 10 0.833

7 4 2 0.500

8 2 2 1.000

13 1 1 1.000

Type of 

diseases

1 4,036 2,351 0.583

2 561 384 0.684

3 43 31 0.721

4 4 4 1.000
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This research is based on the premise that the technology will 

eventually be incorporated into work9ow as a triage tool, for 

example, in chest-radiograph screening. In computer-aided 

diagnosis (CAD) research, we refer to this as computer-aided 

triage (CADt), which directs patients with possible abnormal 

lesions to immediate physician interpretation. Consequently, 

chest radiographs obtained during screening are fed to the AI 

system immediately after acquisition. When an abnormality is 

detected, the physician’s diagnosis and intervention can be 

prioritized right away. In CADt, it is important to select cases 

that have a high probability of requiring priority over routine 

readings. Our system can forward 90 % of prevalent cases for 

priority review while preserving a high true-positive fraction for 

each disease and achieving a very high negative predictive value 

of 0.952 (sensitivity = 0.900). Therefore, we believe it has strong 

potential for effective clinical use, although further 

improvements in sensitivity are needed.

Southeast Asia faces a significant shortage of medical 

personnel, often associated with long working hours and low 

wages. This challenge has been exacerbated by the COVID-19 

pandemic. In many cases, patients experience long wait times or 

receive no consultation because of a shortage of medical staff, 

particularly in rural areas. Vietnam faces this same issue. 

Despite rapid economic growth, the country must urgently 

address its healthcare workforce shortage; as life expectancy 

rises, the aging population expands and demand for medical 

services increase (41, 42). The AI system developed in this 

study, trained on Vietnamese data, demonstrated high accuracy 

for triaging infectious and urgent diseases and for identifying 

cases with multiple pathologies. Its diagnostic performance, 

which was comparable to that of non-radiology physicians, 

suggests its potential to significantly improve the work9ow of 

medical staff, even if it does not yet match the accuracy of 

radiologists. Therefore, this system could be a valuable tool not 

only in Vietnam but also in other Southeast Asian countries, 

such as the Philippines and Cambodia (1, 42), which face 

similar disease patterns and shortages of medical personnel. 

This is expected to enhance healthcare delivery in the region.

We developed an AI model to classify images as normal or 

abnormal, with subsequent analysis of its true positive fraction 

for 18 specific abnormalities. Disease-specific analyses were 

conducted to develop a system for triaging infectious and urgent 

diseases using chest radiography. In this study, we focused on 

the importance of analyzing data on infectious and urgent 

diseases rather than on the findings. However, accuracy was 

moderate for typical infectious diseases, such as tuberculosis, 

and diseases with localized manifestations, such as lung tumors. 

As data collection expands, improving the model’s performance 

across all disease types will be an important goal for 

future development.

Chest radiographs and clinical information used in this study 

were obtained from two institutions in Vietnam. To implement 

this system in clinical practice, the AI model must be optimized, 

and a multicenter prospective study involving additional 

imaging systems, populations, and institutions should 

be conducted.

In conclusion, we developed an AI model capable of 

classifying normal and abnormal chest radiographs with 

performance comparable with that of non-radiologist physicians, 

using a Vietnamese dataset rich in both infectious and non- 

communicable diseases. This system has the potential to 

improve the prognosis of patients in Vietnam, where there is a 

shortage of medical staff, by enabling the early detection of 

cardiopulmonary diseases regardless of whether they are 

infectious or non-communicable, thereby allowing for 

timely intervention.
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