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Purpose: This study evaluates the impact of high-resolution T2-weighted 

imaging (T2HR) combined with deep learning image reconstruction (DLR) on 

image quality, lesion delineation, and extraprostatic extension (EPE) 

assessment in prostate multiparametric MRI (mpMRI).

Materials and methods: This retrospective study included 69 patients who 

underwent mpMRI of the prostate on a 3 T scanner with DLR between April 

2023 and March 2024. Routine mpMRI protocols adhering to the Prostate 

Imaging Reporting and Data System (PI-RADS) v2.1 were used, including an 

additional T2HR sequence [2 mm slice thickness, 4:31 min vs. 4:12 min for 

standard T2 (T2S)]. The image datasets were evaluated by two radiologists 

using a Likert scale ranging from 1 to 5, with 5 being the best for sharpness, 

lesion contours, motion artifacts, prostate border delineation, overall image 

quality, and diagnostic confidence. PI-RADS scoring and EPE suspicion were 

analyzed. The statistical methods used included the Wilcoxon signed-rank 

test and Cohen’s kappa for inter-reader agreement.

Results: T2HR significantly improved lesion contours (medians of 5 vs. 4, 

p < 0.001), prostate border delineation (medians of 5 vs. 4, p < 0.001), and 

overall image quality (medians of 5 vs. 4, p < 0.001) compared to T2S. 

However, motion artifacts were significantly worse in T2HR. Substantial inter- 

reader agreement was observed in the PI-RADS scoring. EPE detection 

marginally increased with T2HR, though histopathological validation was limited.

Conclusion: T2HR imaging with DLR enhances image quality, lesion delineation, 

and diagnostic confidence without significantly prolonged acquisition time. It 

shows potential for improving EPE assessment in prostate cancer but requires 

further validation in larger studies.
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Introduction

Multiparametric magnetic resonance imaging (mpMRI) of the 

prostate is a key modality for the accurate detection and 

management of clinically significant prostate cancer (1). Given 

that prostate cancer is one of the most common solid cancers in 

men, the importance of mpMRI continues to grow (1–4). To 

ensure high diagnostic quality, the Prostate Imaging Reporting 

and Data System (PI-RADS) was established (5). The latest 

version, PI-RADS version 2.1, was published in 2019 (6). The 

guidelines recommend acquiring T2-weighted turbo spin-echo 

(T2w TSE) images with a slice thickness of at least 3 mm, 

together with key sequences such as diffusion-weighted imaging 

(DWI) and dynamic contrast-enhanced (DCE) imaging. This 

protocol provides sufficient insight into prostate pathologies.

However, detecting extraprostatic extension (EPE) can be 

challenging on MRI (7). Higher morphological resolution could 

potentially improve the diagnostic quality of prostate MRI (8, 9). 

The major drawback of higher resolution, however, is the 

increase in acquisition time (TA). mpMRI is already a lengthy 

examination due to the multiple sequences required. In 

addition, the predominantly elderly patient population 

undergoing prostate MRI often finds it hard to stay motionless 

for extended durations. The success of mpMRI in detecting 

prostate cancer has also led to an increasing demand for these 

examinations. This issue is further exacerbated by the aging 

population in Western countries, where a higher prevalence of 

prostate cancer is expected due to demographic changes.

To enhance the spatial resolution of T2-weighted imaging 

without further prolonging the TA, acceleration techniques are 

needed. These include conventional methods such as parallel 

imaging (PI) and compressed sensing (CS) (10, 11). However, 

the most powerful method currently available to compensate for 

the signal-to-noise ratio loss is deep learning image 

reconstruction (DLR) (12). Several studies have shown that DLR 

enables TA reduction without compromising image quality and, 

in some cases, even improving it (13, 14). This applies not only 

to genitourinary (GU) imaging but also to imaging of the chest, 

abdomen, and musculoskeletal system (13–19).

The aim of this study was to investigate the impact of high- 

resolution T2-weighted prostate imaging combined with DLR on 

image quality, lesion contours, assessment of EPE, and prostate 

border delineation, without a significant increase in TA.

Materials and methods

Study design

This monocentric, retrospective study was approved by the 

institutional review board with waiver of informed consent. All 

the study’s procedures were in line with the Declaration of 

Helsinki of 1964 and its later amendments.

All consecutive patients who underwent an mpMRI of the 

prostate due to suspicion of prostate cancer, staging of known 

prostate cancer, or active surveillance between April 2023 and 

March 2024 were included. The inclusion criteria were 

examination on a 3 T MRI scanner (Siemens MAGNETOM 

VidaFit; Siemens Healthcare, Erlangen, Germany) with 

commercially available DLR software installed (Deep Resolve; 

Siemens Healthcare, Erlangen, Germany). Exclusion criteria 

were examination on an inappropriate scanner, incomplete 

imaging studies, and post-prostatectomy status.

MRI acquisition parameters

The patients were examined in the supine position using a 

setup of an 18-channel body coil and 12 elements of a 

32-channel spine coil. All the patients underwent our routine 

protocol, which adheres to the PI-RADS v. 2.1 and included the 

following sequences: standard T2w TSE imaging (T2S) in three 

planes (3 mm slice thickness), T1-weighted (T1w)-TSE axial 

imaging precontrast (3 mm slice thickness), DCE imaging 

[golden angle radial sparse parallel (GRASP) sequence, 3 mm 

slice thickness], DWI (b = 0 s/mm2, b = 1,000 s/mm2), and a 

T1w postcontrast radial gradient echo sequence (StarVIBE, 

3 mm slice thickness). In addition, an axial T2w TSE sequence 

combined with DLR, with a slice thickness of 2 mm, was 

acquired (T2HR) in all cases after the standard T2 sequences. 

The TA of the standard 3-mm T2w imaging was 4:12 min as 

compared to 4:31 min for the 2-mm T2HR combined with DLR. 

The detailed acquisition parameters of the T2w imaging are 

displayed in Table 1.

Deep learning image reconstruction 
technique

The principle of the applied DLR has been described in a 

previous study (14). In brief, we employed an unrolled variational 

network for MRI reconstruction that alternates trainable data- 

consistency steps with convolutional image-regularization blocks, 

conceptually extending compressed sensing by learning the 

regularizer from the data (20). The network ingests undersampled 

k-space data, coil sensitivity maps estimated from reference lines, 

and a normalization field for intensity homogenization, using 

TABLE 1 MRI acquisition parameters of the T2S and deep learning- 
reconstructed T2HR.

Parameter T2S T2HR

TR (ms) 8,930 5,950

TE (ms) 81 104

Concatenations 1 2

Average 3 2

Voxel size (mm) 0.5 × 0.5 × 3 0.3 × 0.3 × 2

Field of view (mm) 200 200

Slice thickness (mm) 3 2

Parallel imaging factor 3 4

Acquisition time (min:s) 4:12 4:31

T2S, standard T2-weighted imaging; T2HR, high-resolution T2-weighted imaging; TR, 

repetition time; TE, echo time.
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conventional parallel imaging sampling patterns for acceleration. 

The reconstruction was explicitly designed to enhance the signal- 

to-noise ratio without altering the image contrast; consequently, 

the effects of the acquisition parameters (echo time, repetition 

time, and echo-train length) are identical to those of 

conventional reconstructions.

Supervised training was performed on approximately 10,000 

turbo spin-echo slices acquired from volunteers on clinical 1.5 and 

3 T systems (MAGNETOM, Siemens Healthcare, Erlangen, 

Germany) across multiple body regions (head, pelvis, and knee) 

and image contrasts. Training inputs were generated via 

retrospective fourfold undersampling with 75% phase resolution, 

and the loss combined an L1 term with a multiscale structural 

similarity (SSIM) component. The model was implemented in 

PyTorch, trained on a GPU system with 32 GB of memory, and 

then converted for deployment within a scanner-integrated 

inference framework. In routine use, the average per-slice inference 

time is approximately 3 s on the CPU and 0.5 s on the GPU.

Image evaluation

All the imaging datasets (mpMRI with and without T2HR) 

were evaluated by two board-certified radiologists who both had 

a focus on GU imaging, with 6 and 10 years of experience, 

respectively. These evaluations were conducted independently, in 

a random order, and using a dedicated workstation (Centricity 

PACS RA 1000; GE Healthcare, IL, USA). Both readers were 

blinded to clinical data and histopathology. The datasets were 

evaluated in the following categories using a Likert scale ranging 

from 1 to 5, with 5 being the best: noise, sharpness, lesion 

contours, motion artifacts, prostate border delineation, overall 

image quality, and diagnostic confidence. The evaluation criteria 

were as follows: sharpness/lesion contours/prostate border 

delineation: 1–completely blurred, 2–hardly detectable imaging 

details, 3–slight blurring, 4–well-defined imaging details, and 5– 

excellent sharpness; noise: 1–very high level of noise, 2–elevated 

level of noise, 3–medium level of noise, 4–minimal level of 

noise, and 5–no noise; motion artifacts: 1–very pronounced 

motion artifacts, 2–pronounced motion artifacts, 3–intermediate 

motion artifacts, 4–minimal motion artifacts, and 5–no motion 

artifacts: overall image quality: 1–non-diagnostic, 2–severely 

hampered image quality, 3–intermediate quality, 4–good quality, 

and 5–excellent quality; diagnostic confidence: 1–non-diagnostic, 

repetition of examination recommended, 2–severely impaired 

image quality, repetition of examination recommended, 3– 

intermediate confidence, 4–good confidence, and 5–excellent 

confidence. Furthermore, PI-RADS scoring and suspicion of 

EPE were assessed. The sensitivity and specificity were 

calculated based on biopsy-confirmed cases. Clinically significant 

prostate cancer was defined as a Gleason score greater than 

6. A PI-RADS score ≥3 was considered indicative of clinically 

significant cancer. Accordingly, lesions with a Gleason score of 

6 and a PI-RADS score of 1 or 2 were classified as true 

negatives, whereas lesions with a Gleason score of 6 and a PI- 

RADS score of 3 were considered false positives. In cases with 

significantly different PI-RADS scoring between the readers (<3 

vs. ≥3), a consensus reading was performed.

Statistical analysis

Commercially available statistical software was used for the 

analyses (SPSS Statistics Version 29, IBM, Armonk, NY, USA). 

Parametric variables are displayed using mean ± standard 

deviation (SD). Non-parametric variables are displayed using 

median and interquartile range (IQR) in parentheses. The 

Wilcoxon signed-rank test for paired data was conducted for the 

ordinal-scaled variables and non-normally distributed variables. 

Cohen’s kappa was used to analyze the inter-reader agreement 

regarding the PI-RADS scoring and image quality. Furthermore, 

the intraclass coefficient (ICC) was calculated to analyze image 

quality. P-values below 0.05 were regarded as significant.

Results

Patients’ characteristics

In total, 69 patients constituted the final study cohort 

(Figure 1). The mean patient age was 69 ± 7 years. In total, 51 

patients underwent mpMRI due to suspicion of prostate cancer. 

Of these, 28 patients underwent a biopsy afterward, which 

revealed benign results in 10 cases. Finally, 11 patients 

underwent mpMRI for local staging of known prostatic cancer, 

and seven patients due to active surveillance. Further 

characteristics are shown in Table 2.

Image quality

Inter-reader agreement was substantial between readers 1 and 

2 (Cohen’s kappa 0.632). The ICC between the readers was 0.706. 

For better readability, only the results of reader 1 are displayed in 

the following sections. All the results are shown in Table 3.

The sharpness of the prostate was evaluated to be significantly 

superior in T2HR compared to T2S, with medians of 5 (4–5) vs. 4 

(4–4) (p < 0.001). The contours of the lesion were also rated 

superior, with a median of 5 (4 -5) in T2HR vs. a median of 4 (4–4) 

(p < 0.001). The delineation of the prostate border was also rated to 

be improved in T2HR [median of 5 (4–5)] as compared to T2S 

[median of 4 (4–5); p < 0.001]. However, the extent of the motion 

artifacts was evaluated to be worse in T2HR compared to T2S, with 

medians of 5 (4–5) vs. 5 (5–5) (p = 0.009). Please see Table 3 for 

the full details. Figures 2–4 show examples of both sequences.

PI-RADS scoring and assessment of 
extraprostatic extension

The inter-reader agreement values for the PI-RADS scoring 

were 0.837 for T2S and 0.857 for T2HR; thus, there was no 
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significant intra-reader discrepancy in the PI-RADS scoring. 

Table 4 shows the details of the PI-RADS assessment. There was 

a significant discrepancy between the readers in two cases (PI- 

RADS 2 vs. PI-RADS 3). After consensus readings, both cases 

were assessed to have a PI-RADS 2. In total, 29 patients 

underwent a biopsy after the MRI scan, with benign results in 

10 cases. In three of these benign cases, a PI-RADS score of 4 

was given by both readers and, in one case, a PI-RADS score of 

3 was given by both. Moreover, 19 biopsies revealed prostatic 

cancers, of which 17 cases had been previously suspected by 

both readers with PI-RADS scores of 4 or 5. One case of 

carcinoma was assessed to have a PI-RADS score of 2 by both 

readers (after consensus reading; Gleason score of 6). 

Furthermore, the sensitivity and specificity of the 29 biopsy 

cases were evaluated. Sensitivity and specificity were 100% and 

46%, respectively, for T2S and T2HR. Extraprostatic extension 

was suspected by reader 1 in 14 cases in T2S and in 16 cases in 

T2HR, and reader 2 suspected EPE in 13 cases in T2S and in 15 

cases in T2HR. Histopathological correlation was only available 

in eight cases, with a prostatectomy revealing EPE in three 

cases. In one of these cases, EPE was suspected by both readers 

in T2S and T2HR. In the second case, EPE was only suspected in 

T2HR by both readers, and in the third case, no suspicion of 

EPE was raised by either reader.

FIGURE 1 

Flowchart of the study. In total, 303 patients were referred to an MRI scan of the prostate within 12 months, with 210 patients excluded due to 

examination on scanners without deep learning technology. Of the remaining 93 patients, 11 were excluded due to incomplete examinations. 

The final study cohort of 69 patients was the result of the exclusion of another 13 patients with post-prostatectomy status.

TABLE 2 Patients’ characteristics.

Characteristic Value

Patient characteristics

Number of patients 69

Mean age (years) 69 ± 7

Indication for MRI

Suspicion of prostate cancer 51

Local staging of known prostate cancer 11

Active surveillance 7

Biopsy results

Biopsies after MRI 29

Benign 10

Prostate cancer 19

Gleason grading

Gleason 6 3

Gleason 7a 7

Gleason 7b 4

Gleason 8 3

Gleason 9 2

Prostatectomy results

Prostatectomies 7

T-stage

T2b 1

T2c 3

T3a 3
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Discussion

This study investigated the impact of T2HR prostate imaging 

combined with DLR on image quality, lesion contours, prostate 

border delineation, and EPE assessment. Our findings indicate 

that T2HR improves overall image quality and may enhance the 

detection of EPE, a critical factor in determining appropriate 

therapeutic strategies for prostate cancer.

The assessment of EPE is of utmost importance for patient 

management and therapeutic decisions (21, 22). In particular, 

the detection of EPE of transition zone cancer is very 

challenging, with higher missed detection rates compared to 

peripheral zone cancers (21). The presence of EPE is an 

established predictor of worse outcomes in prostate cancer 

patients (23). However, the sensitivity of mpMRI is limited 

regarding an exact assessment of EPE (7). Our study suggests 

that T2HR imaging, by improving prostate border delineation, 

could offer a potential solution to these limitations, enhancing 

the sensitivity of EPE detection. However, this hypothesis 

requires validation in larger studies, as only eight patients in our 

cohort underwent a prostatectomy, limiting our ability to 

confirm the findings through histopathological correlation. 

Future studies should address this gap by including a greater 

number of prostatectomy cases, with MRI performed as close to 

surgery as possible to ensure an accurate comparison between 

the imaging and surgical results. A possible study concept would 

be to perform an mpMRI in all patients who are scheduled for a 

prostatectomy. Ideally, all prostatectomy specimens should 

undergo a complete histopathological evaluation.

Beyond its potential for improving EPE detection, T2HR 

demonstrated clear benefits in overall image quality, lesion 

clarity, and radiologist confidence. High diagnostic confidence is 

essential not only for detecting clinically significant cancers but 

also for minimizing the overdiagnosis of non-significant cancers. 

This could lead to more precise patient management, reducing 

unnecessary treatments and their associated side effects. Beyond 

higher reader confidence, T2HR improved lesion contours and 

prostate border delineation, which can aid biopsy planning 

TABLE 3 Image quality in standard T2-weighted imaging (T2S) and deep learning-reconstructed high-resolution T2-weighted imaging (T2HR).

Characteristic Reader 1 Reader 2

T2S T2HR p-value T2S T2HR p-value

Sharpness 4 (4–4) 5 (4–5) <0.001 4 (4–5) 4 (4–5) 0.001

Noise 5 (4–5) 5 (4–5) 0.02 5 (4–5) 5 (5–5) <0.001

Lesion contours 4 (4–4) 5 (4–5) <0.001 4 (4–5) 5 (4–5) <0.001

Motion artifacts 5 (5–5) 5 (4–5) 0.009 5 (5–5) 4 (4–5) <0.001

Prostate border delineation 4 (4–5) 5 (4–5) <0.001 4 (4–5) 5 (4–5) <0.001

Overall image quality 4 (4–5) 5 (4–5) <0.001 4 (4–5) 5 (4–5) <0.001

Diagnostic confidence 5 (4–5) 5 (5–5) 0.005 5 (4–5) 5 (5–5) 0.005

Statistically significant superior values printed in bold.

FIGURE 2 

Imaging of a 73-year-old man with suspicion of prostate cancer. T2S on the left-hand side and deep learning-reconstructed T2HR on the right-hand 

side. T2HR demonstrates a sharper depiction of the anatomical details and improved delineation of the transition and peripheral zones. The mpMRI 

was rated as PI-RADS 2 by both readers. (1) Transition zone of the prostate; (2) Peripheral zone of the prostate; (3) Rectum.

Gassenmaier et al.                                                                                                                                                    10.3389/fradi.2025.1695043 

Frontiers in Radiology 05 frontiersin.org



(more precise target definition) and local staging/surgical strategy. 

However, the slightly longer TA of T2HR led to increased motion 

artifacts, particularly because the sequence was performed after 

standard T2 and diffusion-weighted imaging. Apart from the 

sequence order, the higher extent of motion artifacts could also 

be due to the lower number of signal averages.

This study also underscores the evolving role of 

individualized, patient-centered imaging approaches in 

radiology. With DLR, it is possible to achieve high-resolution 

imaging without significantly increasing the TA, making it a 

valuable tool for patients who can remain still for extended 

periods. For patients with limited compliance, shorter sequences 

with standard resolution combined with DLR could be a better 

option to maintain diagnostic quality while minimizing motion 

artifacts. Furthermore, using these ultra-fast sequences, repeat 

scans due to insufficient image quality may be avoided, leading 

FIGURE 4 

Imaging of a 71-year-old man with suspicion of prostate cancer. T2S on the left-hand side and deep learning-reconstructed T2HR on the right-hand 

side. The seminal vesicles are much sharper and have improved contrast in T2HR. No suspicious lesion was found by either reader (PI-RADS 2). (1) 

bladder; (2) transition zone of the prostate; (3) seminal vesicles; (4) rectum.

FIGURE 3 

Imaging of a 78-year-old man with suspicion of prostate cancer. T2S on the left-hand side and deep learning-reconstructed T2HR on the right-hand 

side. T2HR demonstrated improved delineation of the suspicious area (arrow). Both readers rated this case in both sequences as PI-RADS 5 with 

extraprostatic extension. The lesion size was 23 mm and the length of the capsule contact was approximately 16 mm.
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to improved workNow. This Nexibility in imaging protocols 

supports the broader goal of personalized medicine, ensuring 

that each patient receives the most appropriate diagnostic 

strategy based on their unique needs.

Our findings are in line with existing studies on the benefits of 

DLR across a range of MRI applications, including 

musculoskeletal, abdominal, and thoracic imaging, which mainly 

focused on TA reduction (19, 24–29). This article also supports 

previous studies that demonstrated the advantages of DLR in 

prostate imaging (29–31). In comparison to previous studies, 

this study also evaluated, apart from image quality metrics, the 

presence of EPE, using histopathology as the reference standard 

(14, 15). The ability of DLR to substantially reduce TA without 

sacrificing image quality—in some cases, even enhancing it—is a 

significant advancement. While PI and CS have long been used 

to accelerate MRI, the extent of time reduction without loss of 

image quality achieved with DLR is unmatched (12). This makes 

DLR a crucial innovation in addressing the growing demand for 

MRI, particularly in settings where scanner availability is limited 

and patient volumes are increasing.

The main limitation of this study is the small number of 

patients who underwent a prostatectomy, strongly restricting the 

ability to fully assess EPE using histopathology. A statistically 

significant difference may be revealed when using larger sample 

sizes. Therefore, larger studies are necessary to further 

investigate this matter. In addition, DLR was only applied to 

T2HR imaging in axial orientation due to TA considerations. 

Furthermore, DLR for DWI was not available for our scanner 

during the study period. Future studies should explore the 

benefits of incorporating DLR into other sequences, such as 

standard-resolution T2 and DWI, to further enhance overall 

image quality and diagnostic accuracy across the entire mpMRI 

protocol. Another limitation is the large number of patients who 

were excluded from this study due to examination on an 

inappropriate scanner, which may represent a selection bias. As 

only one scanner was included in this study, the findings 

demonstrated limited generalizability to other scanners and 

vendors. Furthermore, the study cohort was heterogeneous due 

to the inclusion of those with different indications for MRI, 

namely, staging, active surveillance, and suspicion of cancer. 

Sensitivity and specificity were only calculated on a small subset, 

with histopathology as the reference standard.

In conclusion, our study demonstrates the positive effect of 

high-resolution T2-weighted imaging with DLR on image 

quality, lesion contours, and diagnostic confidence. The 

potential for enhancing EPE detection using T2HR combined 

with DLR is promising; however, further investigations with 

larger patient cohorts in future studies to confirm this 

hypothesis are warranted. The adjustment of the scanning 

protocol using high-resolution and standard-resolution 

sequences based on the patient’s need represents a significant 

advancement in personalized medicine in radiology.
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