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High-resolution deep learning-
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imaging for the improvement of
image quality and extraprostatic
extension assessment in
prostate MRI
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Purpose: This study evaluates the impact of high-resolution T2-weighted
imaging (T2hr) combined with deep learning image reconstruction (DLR) on
image quality, lesion delineation, and extraprostatic extension (EPE)
assessment in prostate multiparametric MRI (mpMRI).

Materials and methods: This retrospective study included 69 patients who
underwent mpMRI of the prostate on a 3T scanner with DLR between April
2023 and March 2024. Routine mpMRI protocols adhering to the Prostate
Imaging Reporting and Data System (PI-RADS) v2.1 were used, including an
additional T24gr sequence [2 mm slice thickness, 4:31 min vs. 4:12 min for
standard T2 (T2s)]. The image datasets were evaluated by two radiologists
using a Likert scale ranging from 1 to 5, with 5 being the best for sharpness,
lesion contours, motion artifacts, prostate border delineation, overall image
quality, and diagnostic confidence. PI-RADS scoring and EPE suspicion were
analyzed. The statistical methods used included the Wilcoxon signed-rank
test and Cohen'’s kappa for inter-reader agreement.

Results: T2,z significantly improved lesion contours (medians of 5 vs. 4,
p <0.001), prostate border delineation (medians of 5 vs. 4, p<0.001), and
overall image quality (medians of 5 vs. 4, p<0.001) compared to T2s.
However, motion artifacts were significantly worse in T2yg. Substantial inter-
reader agreement was observed in the PI-RADS scoring. EPE detection
marginally increased with T2, though histopathological validation was limited.
Conclusion: T2,k imaging with DLR enhances image quality, lesion delineation,
and diagnostic confidence without significantly prolonged acquisition time. It
shows potential for improving EPE assessment in prostate cancer but requires
further validation in larger studies.
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Introduction

Multiparametric magnetic resonance imaging (mpMRI) of the
prostate is a key modality for the accurate detection and
management of clinically significant prostate cancer (1). Given
that prostate cancer is one of the most common solid cancers in
men, the importance of mpMRI continues to grow (1-4). To
ensure high diagnostic quality, the Prostate Imaging Reporting
and Data System (PI-RADS) was established (5). The latest
version, PI-RADS version 2.1, was published in 2019 (6). The
guidelines recommend acquiring T2-weighted turbo spin-echo
(T2w TSE) images with a slice thickness of at least 3 mm,
together with key sequences such as diffusion-weighted imaging
(DWI) and dynamic contrast-enhanced (DCE) imaging. This
protocol provides sufficient insight into prostate pathologies.

However, detecting extraprostatic extension (EPE) can be
challenging on MRI (7). Higher morphological resolution could
potentially improve the diagnostic quality of prostate MRI (8, 9).
The major drawback of higher resolution, however, is the
increase in acquisition time (TA). mpMRI is already a lengthy
examination due to the multiple sequences required. In
addition, the population
undergoing prostate MRI often finds it hard to stay motionless

predominantly elderly patient
for extended durations. The success of mpMRI in detecting
prostate cancer has also led to an increasing demand for these
examinations. This issue is further exacerbated by the aging
population in Western countries, where a higher prevalence of
prostate cancer is expected due to demographic changes.

To enhance the spatial resolution of T2-weighted imaging
without further prolonging the TA, acceleration techniques are
needed. These include conventional methods such as parallel
imaging (PI) and compressed sensing (CS) (10, 11). However,
the most powerful method currently available to compensate for
the signal-to-noise ratio loss is deep learning image
reconstruction (DLR) (12). Several studies have shown that DLR
enables TA reduction without compromising image quality and,
in some cases, even improving it (13, 14). This applies not only
to genitourinary (GU) imaging but also to imaging of the chest,
abdomen, and musculoskeletal system (13-19).

The aim of this study was to investigate the impact of high-
resolution T2-weighted prostate imaging combined with DLR on
image quality, lesion contours, assessment of EPE, and prostate
border delineation, without a significant increase in TA.

Materials and methods

Study design

This monocentric, retrospective study was approved by the
institutional review board with waiver of informed consent. All
the study’s procedures were in line with the Declaration of
Helsinki of 1964 and its later amendments.

All consecutive patients who underwent an mpMRI of the
prostate due to suspicion of prostate cancer, staging of known
prostate cancer, or active surveillance between April 2023 and
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March 2024 were included. The inclusion criteria were
examination on a 3T MRI scanner (Siemens MAGNETOM
Vida®t, Healthcare, with
commercially available DLR software installed (Deep Resolve;

Siemens Erlangen, Germany)
Siemens Healthcare, Erlangen, Germany). Exclusion criteria
were examination on an inappropriate scanner, incomplete

imaging studies, and post-prostatectomy status.

MRI acquisition parameters

The patients were examined in the supine position using a
setup of an 18-channel body coil and 12 elements of a
32-channel spine coil. All the patients underwent our routine
protocol, which adheres to the PI-RADS v. 2.1 and included the
following sequences: standard T2w TSE imaging (T2s) in three
planes (3 mm slice thickness), T1-weighted (T1w)-TSE axial
imaging precontrast (3 mm slice thickness), DCE imaging
[golden angle radial sparse parallel (GRASP) sequence, 3 mm
slice thickness], DWI (b:OS/mmz, b=1,000 s/mmz), and a
Tlw postcontrast radial gradient echo sequence (StarVIBE,
3 mm slice thickness). In addition, an axial T2w TSE sequence
combined with DLR, with a slice thickness of 2 mm, was
acquired (T2gyg) in all cases after the standard T2 sequences.
The TA of the standard 3-mm T2w imaging was 4:12 min as
compared to 4:31 min for the 2-mm T2yr combined with DLR.
The detailed acquisition parameters of the T2w imaging are
displayed in Table 1.

Deep learning image reconstruction
technique

The principle of the applied DLR has been described in a
previous study (14). In brief, we employed an unrolled variational
network for MRI reconstruction that alternates trainable data-
consistency steps with convolutional image-regularization blocks,
conceptually extending compressed sensing by learning the
regularizer from the data (20). The network ingests undersampled
k-space data, coil sensitivity maps estimated from reference lines,
and a normalization field for intensity homogenization, using

TABLE 1 MRI acquisition parameters of the T25 and deep learning-
reconstructed T2r.

Paramerer T2 T2

TR (ms) 8,930 5,950
TE (ms) 81 104
Concatenations 1 2
Average 3 2
Voxel size (mm) 0.5x0.5x%x3 0.3x0.3x2
Field of view (mm) 200 200
Slice thickness (mm) 3 2
Parallel imaging factor 3 4
Acquisition time (min:s) 4:12 4:31

T2, standard T2-weighted imaging; T2yg, high-resolution T2-weighted imaging; TR,
repetition time; TE, echo time.
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conventional parallel imaging sampling patterns for acceleration.
The reconstruction was explicitly designed to enhance the signal-
to-noise ratio without altering the image contrast; consequently,
the effects of the acquisition parameters (echo time, repetition
time, and echo-train length) are identical to those of
conventional reconstructions.

Supervised training was performed on approximately 10,000
turbo spin-echo slices acquired from volunteers on clinical 1.5 and
(MAGNETOM, Siemens Healthcare,

Germany) across multiple body regions (head, pelvis, and knee)

3T systems Erlangen,

and image contrasts. Training inputs were generated via
retrospective fourfold undersampling with 75% phase resolution,
and the loss combined an L1 term with a multiscale structural
similarity (SSIM) component. The model was implemented in
PyTorch, trained on a GPU system with 32 GB of memory, and
then converted for deployment within a scanner-integrated
inference framework. In routine use, the average per-slice inference
time is approximately 3 s on the CPU and 0.5 s on the GPU.

Image evaluation

All the imaging datasets (mpMRI with and without T2yR)
were evaluated by two board-certified radiologists who both had
a focus on GU imaging, with 6 and 10 years of experience,
respectively. These evaluations were conducted independently, in
a random order, and using a dedicated workstation (Centricity
PACS RA 1000; GE Healthcare, IL, USA). Both readers were
blinded to clinical data and histopathology. The datasets were
evaluated in the following categories using a Likert scale ranging
from 1 to 5, with 5 being the best: noise, sharpness, lesion
contours, motion artifacts, prostate border delineation, overall
image quality, and diagnostic confidence. The evaluation criteria
were as follows: sharpness/lesion contours/prostate border
delineation: 1-completely blurred, 2-hardly detectable imaging
details, 3-slight blurring, 4-well-defined imaging details, and 5-
excellent sharpness; noise: 1-very high level of noise, 2-elevated
level of noise, 3-medium level of noise, 4-minimal level of
noise, and 5-no noise; motion artifacts: 1-very pronounced
motion artifacts, 2-pronounced motion artifacts, 3-intermediate
motion artifacts, 4-minimal motion artifacts, and 5-no motion
artifacts: overall image quality: 1-non-diagnostic, 2-severely
hampered image quality, 3-intermediate quality, 4-good quality,
and 5-excellent quality; diagnostic confidence: 1-non-diagnostic,
repetition of examination recommended, 2-severely impaired
image quality, repetition of examination recommended, 3-
intermediate confidence, 4-good confidence, and 5-excellent
confidence. Furthermore, PI-RADS scoring and suspicion of
EPE were assessed. The
calculated based on biopsy-confirmed cases. Clinically significant

sensitivity and specificity were
prostate cancer was defined as a Gleason score greater than
6. A PI-RADS score >3 was considered indicative of clinically
significant cancer. Accordingly, lesions with a Gleason score of
6 and a PI-RADS score of 1 or 2 were classified as true
negatives, whereas lesions with a Gleason score of 6 and a PI-
RADS score of 3 were considered false positives. In cases with
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significantly different PI-RADS scoring between the readers (<3
vs. >3), a consensus reading was performed.

Statistical analysis

Commercially available statistical software was used for the
analyses (SPSS Statistics Version 29, IBM, Armonk, NY, USA).
Parametric variables are displayed using mean * standard
deviation (SD). Non-parametric variables are displayed using
median and interquartile range (IQR) in parentheses. The
Wilcoxon signed-rank test for paired data was conducted for the
ordinal-scaled variables and non-normally distributed variables.
Cohen’s kappa was used to analyze the inter-reader agreement
regarding the PI-RADS scoring and image quality. Furthermore,
the intraclass coefficient (ICC) was calculated to analyze image

quality. P-values below 0.05 were regarded as significant.

Results
Patients’ characteristics

In total, 69 patients constituted the final study cohort
(Figure 1). The mean patient age was 69 + 7 years. In total, 51
patients underwent mpMRI due to suspicion of prostate cancer.
Of these, 28 patients underwent a biopsy afterward, which
revealed benign results in 10 cases. Finally, 11 patients
underwent mpMRI for local staging of known prostatic cancer,
active surveillance. Further

and seven patients due to

characteristics are shown in Table 2.

Image quality

Inter-reader agreement was substantial between readers 1 and
2 (Cohen’s kappa 0.632). The ICC between the readers was 0.706.
For better readability, only the results of reader 1 are displayed in
the following sections. All the results are shown in Table 3.

The sharpness of the prostate was evaluated to be significantly
superior in T2y compared to T2g with medians of 5 (4-5) vs. 4
(4-4) (p<0.001). The contours of the lesion were also rated
superior, with a median of 5 (4 -5) in T2y vs. a median of 4 (4-4)
(p <0.001). The delineation of the prostate border was also rated to
be improved in T2gg [median of 5 (4-5)] as compared to T2g
[median of 4 (4-5); p <0.001]. However, the extent of the motion
artifacts was evaluated to be worse in T2y compared to T2g, with
medians of 5 (4-5) vs. 5 (5-5) (p=0.009). Please see Table 3 for
the full details. Figures 2-4 show examples of both sequences.

PI-RADS scoring and assessment of
extraprostatic extension

The inter-reader agreement values for the PI-RADS scoring
were 0.837 for T2g and 0.857 for T2yg; thus, there was no
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FIGURE 1

210 patients on

303 patients excluded scanners without deep

learning technology

11 patients with

93 patients excluded » incomplete
examinations

82 patients excluded 13 patients status post
prostatectomy

Final study cohort of 69
patients

Flowchart of the study. In total, 303 patients were referred to an MRI scan of the prostate within 12 months, with 210 patients excluded due to
examination on scanners without deep learning technology. Of the remaining 93 patients, 11 were excluded due to incomplete examinations.
The final study cohort of 69 patients was the result of the exclusion of another 13 patients with post-prostatectomy status.

TABLE 2 Patients’ characteristics.

Characteristi

Patient characteristics

Number of patients 69

Mean age (years) 69+7
Indication for MRI

Suspicion of prostate cancer 51

Local staging of known prostate cancer 11

Active surveillance 7
Biopsy results

Biopsies after MRI 29

Benign 10

Prostate cancer 19
Gleason grading

Gleason 6 3

Gleason 7a 7

Gleason 7b 4

Gleason 8 3

Gleason 9 2
Prostatectomy results

Prostatectomies 7
T-stage

T2b 1

T2c 3

T3a 3

Frontiers in Radiology

significant intra-reader discrepancy in the PI-RADS scoring.
Table 4 shows the details of the PI-RADS assessment. There was
a significant discrepancy between the readers in two cases (PI-
RADS 2 vs. PI-RADS 3). After consensus readings, both cases
were assessed to have a PI-RADS 2. In total, 29 patients
underwent a biopsy after the MRI scan, with benign results in
10 cases. In three of these benign cases, a PI-RADS score of 4
was given by both readers and, in one case, a PI-RADS score of
3 was given by both. Moreover, 19 biopsies revealed prostatic
cancers, of which 17 cases had been previously suspected by
both readers with PI-RADS scores of 4 or 5. One case of
carcinoma was assessed to have a PI-RADS score of 2 by both
(after of 6).
Furthermore, the sensitivity and specificity of the 29 biopsy

readers consensus reading; Gleason score
cases were evaluated. Sensitivity and specificity were 100% and
46%, respectively, for T2s and T2pg. Extraprostatic extension
was suspected by reader 1 in 14 cases in T2 and in 16 cases in
T2yg, and reader 2 suspected EPE in 13 cases in T2g and in 15
cases in T2yp. Histopathological correlation was only available
in eight cases, with a prostatectomy revealing EPE in three
cases. In one of these cases, EPE was suspected by both readers
in T2g and T2yg. In the second case, EPE was only suspected in
T2ur by both readers, and in the third case, no suspicion of

EPE was raised by either reader.
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TABLE 3 Image quality in standard T2-weighted imaging (T2s) and deep learning-reconstructed high-resolution T2-weighted imaging (T2yR).

Reader 1

Characteristic

Sharpness 4 (4-4) 5 (4-5)
Noise 5 (4-5) 5 (4-5)
Lesion contours 4 (4-4) 5 (4-5)
Motion artifacts 5 (5-5) 5 (4-5)
Prostate border delineation 4 (4-5) 5 (4-5)
Overall image quality 4 (4-5) 5 (4-5)
Diagnostic confidence 5 (4-5) 5 (5-5)

Statistically significant superior values printed in bold.

Reader 2

<0.001 4 (4-5) 4 (4-5) 0.001
0.02 5 (4-5) 5 (5-5) <0.001
<0.001 4 (4-5) 5 (4-5) <0.001
0.009 5 (5-5) 4 (4-5) <0.001
<0.001 4 (4-5) 5 (4-5) <0.001
<0.001 4 (4-5) 5 (4-5) <0.001
0.005 5 (4-5) 5 (5-5) 0.005

FIGURE 2

Imaging of a 73-year-old man with suspicion of prostate cancer. T2s on the left-hand side and deep learning-reconstructed T2y on the right-hand
side. T2yr demonstrates a sharper depiction of the anatomical details and improved delineation of the transition and peripheral zones. The mpMRI
was rated as PI-RADS 2 by both readers. (1) Transition zone of the prostate; (2) Peripheral zone of the prostate; (3) Rectum.

Discussion

This study investigated the impact of T2y prostate imaging
combined with DLR on image quality, lesion contours, prostate
border delineation, and EPE assessment. Our findings indicate
that T2y improves overall image quality and may enhance the
detection of EPE, a critical factor in determining appropriate
therapeutic strategies for prostate cancer.

The assessment of EPE is of utmost importance for patient
management and therapeutic decisions (21, 22). In particular,
the detection of EPE of transition zone cancer is very
challenging, with higher missed detection rates compared to
peripheral zone cancers (21). The presence of EPE is an
established predictor of worse outcomes in prostate cancer
patients (23). However, the sensitivity of mpMRI is limited
regarding an exact assessment of EPE (7). Our study suggests
that T2y imaging, by improving prostate border delineation,
could offer a potential solution to these limitations, enhancing
the sensitivity of EPE detection. However, this hypothesis

Frontiers in Radiology

requires validation in larger studies, as only eight patients in our
cohort underwent a prostatectomy, limiting our ability to
confirm the findings through histopathological correlation.
Future studies should address this gap by including a greater
number of prostatectomy cases, with MRI performed as close to
surgery as possible to ensure an accurate comparison between
the imaging and surgical results. A possible study concept would
be to perform an mpMRI in all patients who are scheduled for a
prostatectomy. Ideally, all prostatectomy specimens should
undergo a complete histopathological evaluation.

Beyond its potential for improving EPE detection, T2yg
demonstrated clear benefits in overall image quality, lesion
clarity, and radiologist confidence. High diagnostic confidence is
essential not only for detecting clinically significant cancers but
also for minimizing the overdiagnosis of non-significant cancers.
This could lead to more precise patient management, reducing
unnecessary treatments and their associated side effects. Beyond
higher reader confidence, T2y improved lesion contours and
prostate border delineation, which can aid biopsy planning
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FIGURE 3

Imaging of a 78-year-old man with suspicion of prostate cancer. T2s on the left-hand side and deep learning-reconstructed T2,z on the right-hand
side. T2r demonstrated improved delineation of the suspicious area (arrow). Both readers rated this case in both sequences as PI-RADS 5 with
extraprostatic extension. The lesion size was 23 mm and the length of the capsule contact was approximately 16 mm.

FIGURE 4

Imaging of a 71-year-old man with suspicion of prostate cancer. T2s on the left-hand side and deep learning-reconstructed T2y on the right-hand
side. The seminal vesicles are much sharper and have improved contrast in T2,;r. No suspicious lesion was found by either reader (PI-RADS 2). (1)
bladder; (2) transition zone of the prostate; (3) seminal vesicles; (4) rectum.

(more precise target definition) and local staging/surgical strategy.
However, the slightly longer TA of T2yg led to increased motion
artifacts, particularly because the sequence was performed after
standard T2 and diffusion-weighted imaging. Apart from the
sequence order, the higher extent of motion artifacts could also
be due to the lower number of signal averages.

This study also
individualized,

underscores the evolving role of

patient-centered  imaging approaches in

Frontiers in Radiology

radiology. With DLR, it is possible to achieve high-resolution
imaging without significantly increasing the TA, making it a
valuable tool for patients who can remain still for extended
periods. For patients with limited compliance, shorter sequences
with standard resolution combined with DLR could be a better
option to maintain diagnostic quality while minimizing motion
artifacts. Furthermore, using these ultra-fast sequences, repeat
scans due to insufficient image quality may be avoided, leading
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TABLE 4 PI-RADS scoring.

Reader 1 Reader 2

Nelo] (]

PI-RADS 2 24 24 26 26
PI-RADS 3 8 8 6 6
PI-RADS 4 21 22 21 21
PI-RADS 5 16 15 16 16

to improved workflow. This flexibility in imaging protocols
supports the broader goal of personalized medicine, ensuring
that each patient receives the most appropriate diagnostic
strategy based on their unique needs.

Our findings are in line with existing studies on the benefits of
DLR of MRI
musculoskeletal, abdominal, and thoracic imaging, which mainly

across a range applications, including
focused on TA reduction (19, 24-29). This article also supports
previous studies that demonstrated the advantages of DLR in
prostate imaging (29-31). In comparison to previous studies,
this study also evaluated, apart from image quality metrics, the
presence of EPE, using histopathology as the reference standard
(14, 15). The ability of DLR to substantially reduce TA without
sacrificing image quality—in some cases, even enhancing it—is a
significant advancement. While PI and CS have long been used
to accelerate MRI, the extent of time reduction without loss of
image quality achieved with DLR is unmatched (12). This makes
DLR a crucial innovation in addressing the growing demand for
MR, particularly in settings where scanner availability is limited
and patient volumes are increasing.

The main limitation of this study is the small number of
patients who underwent a prostatectomy, strongly restricting the
ability to fully assess EPE using histopathology. A statistically
significant difference may be revealed when using larger sample
sizes. Therefore, larger studies are necessary to further
investigate this matter. In addition, DLR was only applied to
T2yr imaging in axial orientation due to TA considerations.
Furthermore, DLR for DWI was not available for our scanner
during the study period. Future studies should explore the
benefits of incorporating DLR into other sequences, such as
standard-resolution T2 and DWI, to further enhance overall
image quality and diagnostic accuracy across the entire mpMRI
protocol. Another limitation is the large number of patients who
were excluded from this study due to examination on an
inappropriate scanner, which may represent a selection bias. As
only one scanner was included in this study, the findings
demonstrated limited generalizability to other scanners and
vendors. Furthermore, the study cohort was heterogeneous due
to the inclusion of those with different indications for MRI,
namely, staging, active surveillance, and suspicion of cancer.
Sensitivity and specificity were only calculated on a small subset,
with histopathology as the reference standard.

In conclusion, our study demonstrates the positive effect of
high-resolution T2-weighted imaging with DLR on image
quality, The

potential for enhancing EPE detection using T2yr combined

lesion contours, and diagnostic confidence.
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with DLR is promising; however, further investigations with
larger patient cohorts in future studies to confirm this
hypothesis are warranted. The adjustment of the scanning
protocol  using  high-resolution and standard-resolution
sequences based on the patient’s need represents a significant

advancement in personalized medicine in radiology.
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