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Background: Accurate diagnosis of anterior cruciate ligament (ACL) tears on 

magnetic resonance imaging (MRI) is critical for timely treatment planning. 

Deep learning (DL) approaches have shown promise in assisting clinicians, but 

many prior studies are limited by small datasets, lack of surgical confirmation, 

or exclusion of partial tears.

Aim: To evaluate the performance of multiple convolutional neural network 

(CNN) architectures, including a proposed CustomCNN, for ACL tear 

detection using a surgically validated dataset.

Methods: A total of 8,086 proton density–weighted sagittal knee MRI slices 

were obtained from patients whose ACL status (intact, partial, or complete 

tear) was confirmed arthroscopically. Eleven deep learning models, including 

CustomCNN, DenseNet121, and InceptionResNetV2, were trained and 

evaluated with strict patient-level separation to avoid data leakage. Model 

performance was assessed using accuracy, sensitivity, specificity, and area 

under the receiver operating characteristic curve (AUC).

Results: The CustomCNN model achieved the highest diagnostic performance, 

with an accuracy of 91.5% (95% CI: 89.5–93.1), sensitivity of 92.4% (95% CI: 

90.4–94.2), and an AUC of 0.913. The inclusion of both partial and complete 

tears enhanced clinical relevance, and patient-level splitting reduced the risk 

of inflated metrics from correlated slices. Compared with previous reports, 

the proposed approach demonstrated competitive results while addressing 

key methodological limitations.

Conclusion: The CustomCNN model enables rapid and reliable detection of 

ACL tears, including partial lesions, and may serve as a valuable decision- 

support tool for radiologists and orthopedic surgeons. The use of a surgically 

validated dataset and rigorous methodology enhances clinical credibility. 

Future work should expand to multicenter datasets, diverse MRI protocols, 

and prospective reader studies to establish generalizability and facilitate 

integration into real-world workflows.

KEYWORDS

anterior cruciate ligament tear, diagnosis, high accuracy, artificial intelligence, deep 

learning, convolutional neural networks, magnetic resonance imaging

TYPE Original Research 
PUBLISHED 04 November 2025 
DOI 10.3389/fradi.2025.1691048

Frontiers in Radiology 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fradi.2025.1691048&domain=pdf&date_stamp=2020-03-12
mailto:taneralic@hitit.edu.tr
https://doi.org/10.3389/fradi.2025.1691048
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fradi.2025.1691048/full
https://www.frontiersin.org/articles/10.3389/fradi.2025.1691048/full
https://www.frontiersin.org/articles/10.3389/fradi.2025.1691048/full
https://www.frontiersin.org/articles/10.3389/fradi.2025.1691048/full
http://orcid.org/0000-0003-3848-8577
http://orcid.org/0000-0003-0644-7826
http://orcid.org/0000-0003-4255-5656
http://orcid.org/0000-0003-1563-9256
http://orcid.org/0000-0002-4076-7826
http://orcid.org/0000-0003-1511-5022
https://www.frontiersin.org/journals/radiology
https://doi.org/10.3389/fradi.2025.1691048


1 Introduction

Anterior cruciate ligament (ACL) injuries are among the most 

common knee pathologies, particularly in athletes and physically 

active individuals (1). Despite advances in diagnostic imaging 

techniques and clinical examination methods, misdiagnosis or 

delayed diagnosis of ACL tears remains a significant clinical 

challenge (2, 3). Indeed, it has been reported that even 

experienced orthopedic surgeons may miss the diagnosis at the 

initial presentation in nearly one-quarter of cases (1–4).

Magnetic resonance imaging (MRI) is considered the most 

effective noninvasive method for evaluating knee ligament 

structures, offering a diagnostic accuracy of over 90%. However, 

factors such as hemarthrosis, synovial effusion, or low-contrast 

images can complicate the detailed assessment of ligamentous 

structures and may lead to false-negative results (5, 6).

In recent years, artificial intelligence (AI) applications, 

particularly deep learning approaches, have been increasingly 

integrated into musculoskeletal radiology. Convolutional neural 

networks (CNN), capable of automatic feature extraction and 

classification, have shown promising results in detecting various 

knee pathologies, including cartilage lesions, meniscal tears, and 

ligament injuries (7, 8).

Nevertheless, the number of CNN-based models specifically 

optimized for detecting ACL tears on MRI using large-scale 

clinical datasets remains limited. Therefore, in this study, we 

developed a two-step deep learning approach to identify ACL 

tears on knee MRI scans. In the first step, anatomical region 

localization was performed using a YOLOv9-based segmentation 

model. Subsequently, eleven different CNN architectures, 

including a newly designed customized CNN (CustomCNN) 

model, were comparatively evaluated.

The aim of our study is to demonstrate the potential of these 

models to enhance diagnostic accuracy and to support clinicians 

in decision-making processes in orthopedic practice.

2 Methodology

In this study, a two-stage deep learning approach was 

developed for the detection of ACL tears in knee MRI, as 

illustrated in Figure 1. In the first stage, the region of interest 

(ROI) containing the ACL was automatically localized within 

the knee anatomy using a YOLOv9-based image segmentation 

model. These localized areas were then cropped from the 

original images, enabling the model to focus only on clinically 

relevant regions.

2.1 The dataset and image preparation

This retrospective study received institutional IRB/ethics 

approval (University Ethics Committee, 2023), after which knee 

MRI examinations performed between March 2016 and 

December 2023 were reviewed in the hospital’s internal database 

to compile the dataset for the deep learning study.

FIGURE 1 

Workflow of the proposed deep learning model for detecting anterior cruciate ligament tears on knee MRI, consisting of a YOLOv9-based 

segmentation step to localize and crop the ligament region, followed by classification of the cropped images as torn or intact using CNN models.
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A total of 253 patients were included, of whom 122 had 

arthroscopically confirmed complete or partial ACL tears and 

131 had no ACL pathology. In this study, complete and partial 

tears were not treated as separate classes; both were categorized 

as “tear,” as partial tears often require similar management to 

complete tears. From these patients, 8,086 sagittal PD-weighted 

MRI slices were obtained. After YOLOv9-based cropping, 1,230 

representative slices were retained (836 torn, 394 normal).

Because the number of normal slices was lower than torn slices, 

class balancing was performed at the image-slice level. To this end, 

data augmentation was applied only to the training set, including: 

• Random rotation within ±20°

• Horizontal Iipping

• Brightness adjustment (80%–100%)

• Minor scale/zoom transformations (0.9–1.1)

These augmentations increased the number of normal slices from 

394 to 844, yielding a balanced dataset of 1,680 slices (844 normal, 

836 torn). No augmentation or artificial balancing was applied to 

validation or test sets.

Each MR image was converted from DICOM format to JPEG 

using Python (version 3.11.5) and the pydicom library (version 

2.4.4). Labeling was performed using LabelImg for use in 

YOLOv9 and CNN architectures.

2.2 Detection ACL cropping with YOLOv9

In the preprocessing phase of the YOLOv9 model, the Contrast 

Limited Adaptive Histogram Equalization (CLAHE) method was 

used to enhance image contrast, followed by hyperparameter 

optimization during YOLOv9 tuning. The final image was obtained 

through masking and weighting processes using Gaussian and 

median blur filters to soften edges and reduce noise.

The dataset was divided into five folds for cross-validation and 

trained over five iterations, each consisting of 200 epochs, a batch 

size of 16, and a resolution of 640 × 640 pixels. Ground-truth 

bounding-box annotations for segmentation were manually 

created by two orthopedic surgeons using LabelImg and verified 

by a third researcher (inter-annotator agreement ≈95%).

Segmentation performance was quantified using precision, 

recall, and IoU-thresholded mean Average Precision (mAP). 

YOLOv9 achieved precision = 0.999, recall = 1.000, 

mAP@0.5 = 0.995, and mAP@0.5:0.95 = 0.581. The lower 

mAP@0.5:0.95 value is expected under stricter IoU thresholds 

and reIects variability across multiple overlap criteria, 

particularly for small, elongated structures such as the ACL 

region. In addition, segmentation was further evaluated using 

Intersection over Union (IoU) and Dice coefficient metrics, 

achieving an average IoU of 0.86 and Dice coefficient of 0.91 

across validation images. These findings confirm robust 

localization performance and support reliable ACL segmentation.

The 1,230 cropped sequences were divided into a training set 

(1,202 examinations, 189 patients), tuning set (236 examinations, 

31 patients), and validation set (242 examinations, 32 patients). 

Stratified random sampling ensured each set contained 50% 

positive and 50% negative examples, enhancing generalization 

and minimizing false positive and negative rates.

2.3 ACL tear detection using CNN-based 
deep learning

Cropped images from YOLOv9 were processed through the 

following preprocessing pipeline: CLAHE (clip limit = 8.0, tile 

grid size = 4 × 4) → Niblack thresholding (75%) → resizing to 

128 × 128 pixels → normalization to 1/255.

To detect ACL tears, additional layers were integrated into 

pre-trained CNN architectures (ResNet50, VGG16, InceptionV3, 

NASNetMobile, Xception, MobileNetV2, DenseNet121, 

EfficientNetB0, Inception-ResNetV2), while a CustomCNN 

architecture was independently developed. Balanced data was 

used for all models. Training and validation images were 

randomly adjusted in brightness (80%–100%) during training. 

Model parameters with the lowest validation loss were saved. All 

computations were performed on a desktop equipped with an 

Intel Core i7-13700F CPU, 32 GB RAM, and Nvidia GeForce 

RTX 4090 GPU with 24 GB GDDR6X RAM.

2.4 Custom CNN model (CustomCNN)

The CustomCNN model was specifically designed to 

efficiently extract hierarchical features from ACL MRI slices: 

• The first 3 × 3 convolutional layer with 64 filters captures fine- 

grained local patterns.

• The subsequent 5 × 5 convolutional layers with 128 and 256 

filters capture broader spatial relationships, helping to 

identify ACL tear patterns of varying shapes and sizes.

• The final 3 × 3 layers with 512 and 256 filters consolidate 

extracted features and enhance generalization before the fully 

connected layers.

Each convolutional layer is followed by Batch Normalization and 

ReLU activation, with Max Pooling and Dropout layers to improve 

training stability and prevent overfitting. The Iattened output 

passes through two fully connected layers (128 → 256 neurons, 

both with BatchNorm, ReLU, and Dropout), and a final softmax 

output layer produces the classification results.

This architecture balances accuracy with computational 

efficiency and was empirically found to outperform simpler or 

deeper variants on our dataset.

2.5 Developed CNN models based on pre- 
trained models

Pre-trained CNN models (VGG16, ResNet50, InceptionV3, 

Xception, DenseNet121, EfficientNetB0, MobileNetV2, 

NASNetMobile, Inception-ResNetV2, VGG19) were customized 

by adding Batch Normalization, Dense, and Dropout layers, 
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followed by softmax activation. Most layers were frozen; only the 

last layers were trainable.

All classifiers were trained on 2D grayscale ROIs (128 × 128) 

cropped by YOLOv9; no 3D volumes were used. Training 

employed batch size = 10, 60 epochs, Adam optimizer 

(lr = 1 × 10⁻4), and binary cross-entropy. Performance was 

assessed using accuracy, precision, recall, F1-score, and AUC. 

Data splitting was patient-level with 70%/15%/15% train/tuning/ 

test ratio. Stratified sampling preserved 1:1 class balance in 

tuning/test subsets. Data augmentation (brightness 0.8–1.0, 

horizontal Iip, minor affine transforms) was applied only to the 

training set; validation/test sets were not augmented.

3 Results

3.1 Segmentation results

The YOLOv9 model demonstrated excellent performance in 

localizing the ACL region. As summarized in Table 1, 

segmentation achieved a precision of 0.999, recall of 1.000, and 

a mean Average Precision (mAP) of 0.995 at an IoU threshold 

of 0.5. The stricter mAP@0.5:0.95 metric yielded 0.581, which is 

consistent with expected variability across multiple IoU 

thresholds, particularly for small and elongated structures such 

as the ACL. These findings confirm that the ROI cropping 

provided by YOLOv9 was reliable and minimized the risk of 

downstream classification errors attributable to poor localization.

3.2 Classification results

A total of 11 deep learning models were trained and 

evaluated. To ensure robustness, test results were repeated 100 

times, and median values with 95% confidence intervals were 

reported (Table 2).

Among all models, CustomCNN exhibited the highest 

performance, achieving 91.5% accuracy, 92.4% sensitivity, 92.4% 

precision, and an AUC of 0.913. DenseNet121 and 

InceptionResNetV2 also demonstrated high accuracy and 

sensitivity, with AUCs of 0.903 and 0.896, respectively. 

EfficientNetB0 achieved 88.9% accuracy and 90.7% sensitivity. 

Other models performed moderately, with AUC values ranging 

from 0.824 to 0.873.

The preprocessing steps, including patient-level splitting, 

YOLOv9-based ROI cropping, and data balancing through 

augmentation, contributed to these high performance metrics by 

enhancing generalizability and reducing potential bias. These 

results confirm that the proposed framework provides reliable 

detection of ACL tears and highlights the benefit of integrating 

segmentation and classification pipelines.

Table 3 summarizes the performance of our CustomCNN 

model in comparison with recent state-of-the-art (SOTA) 

studies published between 2022 and 2025. Despite some studies 

reporting higher accuracy numerically, our model demonstrates 

competitive performance with 91.5% accuracy, 92.4% sensitivity, 

and an AUC of 0.913, while benefiting from arthroscopically 

confirmed labels, inclusion of both complete and partial ACL 

tears, patient-level data separation to prevent leakage, and 

rigorous 100-run evaluation with confidence intervals. This 

highlights the clinical reliability and robustness of the proposed 

CustomCNN framework.

4 Discussion

In this study, we investigated the applicability and 

performance of various customized deep learning architectures 

for the evaluation of ACL tears. Eleven deep learning models 

were assessed and the three top-performing architectures were 

CustomCNN, DenseNet121, and InceptionResNetV2. The 

CustomCNN model achieved the highest performance, with an 

accuracy of 91.5% (95% CI: 89.5–93.1) and a sensitivity of 92.4% 

(95% CI: 90.4–94.2); its discriminative ability was further 

supported by an area under the receiver operating characteristic 

TABLE 1 Performance metrics of YOLOv9 model for ACL 
region segmentation.

Metric Value

Precision 0.999

Recall (Sensitivity) 1.000

IoU-based mAP @0.5 0.995

IoU-based mAP @0.5:0.95 0.581

TABLE 2 Performance metrics of eleven deep learning models for anterior cruciate ligament (ACL) tear detection, including accuracy, precision, recall, 
F1 score, and AUC.

Model Accuracy Precision Recall F1 Score AUC

CustomCNN 0.915 (0.895,0.931) 0.924 (0.899, 0.944) 0.924 (0.904, 0.942) 0.924 (0.907, 0.939) 0.913 (0.893, 0.93)

DenseNet121 0.905 (0.889, 0.93) 0.914 (0.897, 0.935) 0.919 (0.895, 0.951) 0.916 (0.901, 0.937) 0.903 (0.886, 0.929)

InceptionResNetV2 0.899 (0.879,0.915) 0.91 (0.888, 0.934) 0.907 (0.886, 0.93) 0.909 (0.893, 0.925) 0.896 (0.877, 0.915)

EfficientNetB0 0.889 (0.869,0.907) 0.897 (0.876, 0.92) 0.907 (0.884, 0.93) 0.902 (0.885, 0.917) 0.886 (0.867, 0.905)

MobileNetV2 0.886 (0.868,0.905) 0.907 (0.88, 0.932) 0.89 (0.857, 0.916) 0.898 (0.881, 0.914) 0.886 (0.865, 0.907)

VGG16 0.882 (0.859,0.904) 0.861 (0.841, 0.885) 0.942 (0.919, 0.965) 0.9 (0.881, 0.918) 0.874 (0.849, 0.895)

ResNet50 0.876 (0.861,0.895) 0.906 (0.888, 0.927) 0.872 (0.846, 0.895) 0.888 (0.873, 0.905) 0.878 (0.861, 0.897)

NASNetMobile 0.873 (0.846,0.896) 0.852 (0.821, 0.88) 0.936 (0.919, 0.959) 0.891 (0.872, 0.911) 0.863 (0.835, 0.888)

Xception 0.856 (0.833,0.878) 0.821 (0.796, 0.841) 0.953 (0.93, 0.977) 0.882 (0.865, 0.899) 0.842 (0.818, 0.865)

InceptionV3 0.846 (0.824,0.868) 0.817 (0.789, 0.843) 0.936 (0.913, 0.959) 0.874 (0.855, 0.891) 0.834 (0.808, 0.857)

VGG19 0.824 (0.804,0.846) 0.811 (0.787, 0.829) 0.895 (0.872, 0.93) 0.852 (0.833, 0.87) 0.813 (0.794, 0.836)
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curve (AUC) of 0.913. Importantly, ACL region localization using 

the YOLOv9 segmentation model provided highly accurate ROI 

crops (precision = 0.999; recall = 1.000; mAP@0.5 = 0.995; 

mAP@0.5:0.95 = 0.581), ensuring that downstream classifiers 

received focused, clinically relevant image patches.

The performance of our CustomCNN model was also compared 

with recent SOTA studies published between 2022 and 2025 

(Table 3). Despite some models reporting higher accuracy in 

different datasets, our framework demonstrates competitive 

performance with 91.5% accuracy and 92.4% sensitivity, while 

using arthroscopically validated labels, including both partial and 

complete ACL tears, and enforcing patient-level separation to 

prevent data leakage. This comparison highlights that the proposed 

CustomCNN provides reliable and clinically relevant ACL tear 

detection comparable to recent SOTA works.

Compared to similar conditions reported in the literature, our 

study demonstrates competitive performance and high accuracy. 

Many prior deep learning studies on ACL tears, such as those 

by Bien et al. (9) and Tran et al. (10), relied solely on 

radiological reports for labeling, without surgical confirmation, 

which limits reliability. In contrast, all labels in our dataset were 

validated arthroscopically, thereby reducing misclassification risk 

and enhancing diagnostic credibility. Furthermore, unlike most 

earlier works that focused only on complete tears, our dataset 

included both complete and partial ACL tears to better reIect 

real-world clinical practice. However, we did not stratify torn 

cases by subtype, which prevents assessment of model 

performance for partial vs. complete tears specifically. This 

distinction, together with our patient-level data splitting, 

provides stronger clinical validity but also highlights the need 

for larger multicenter studies to further establish generalizability.

While studies by Chang et al. (11) and Liu et al. (12) focused 

exclusively on complete ACL tears, partial tears were often ignored 

or considered intact, which can lead to diagnostic misinterpretation 

and artificially inIated accuracy rates. In our study, both complete 

and partial tears were included within the torn category to better 

reIect real-world clinical practice, thereby increasing clinical 

relevance. However, torn cases were not stratified into partial vs. 

complete subgroups, and we therefore cannot provide subtype- 

specific performance. Future studies should adopt a three-class 

labeling approach (intact, partial, complete) with sufficient sample 

sizes to separately evaluate these clinically distinct entities and to 

better inform surgical treatment planning.

Liu et al. (12) developed an automatic system using CNNs to 

isolate ACL and detect structural abnormalities on a sagittal PD- 

weighted dataset of 350 MRIs, achieving 96% sensitivity and 

specificity (AUC 0.98). In comparison, our study analyzed a 

substantially larger dataset of 8,086 sagittal PD-weighted knee MRI 

sequences. A critical methodological distinction was that all data 

splits were performed at the patient level, ensuring that no images 

from the same individual appeared in more than one subset. This 

strategy prevented potential data leakage and inIated performance 

estimates that can arise from correlated slices. Such rigorous 

patient-level separation is rarely considered in prior AI studies, 

many of which rely heavily on data augmentation without 

accounting for intra-patient correlations. Moreover, our results 

were based on 100 experimental repetitions with median values 

and 95% confidence intervals reported, further enhancing the 

robustness and reproducibility of the findings.

Deep learning-based approaches support early and accurate 

ACL tear diagnosis on MRI images, providing significant 

assistance to clinical experts (9, 13, 14). These methods enable 

rapid and accurate assessment of larger patient groups, offering 

time- and cost-effectiveness. In our pipeline, the integration of 

YOLOv9 segmentation ensured accurate localization of the ACL 

region prior to classification, reducing irrelevant image context 

and potentially improving sensitivity for subtle lesions. However, 

we did not perform a direct comparison of classification 

performance using manual (ground-truth) crops vs. 

YOLOv9-based crops; therefore, the residual inIuence of 

segmentation errors on classifier accuracy remains a limitation 

that should be addressed in future studies. AI-assisted diagnostic 

systems should ultimately be integrated into clinical decision- 

making as supportive tools that complement, rather than 

replace, the expertise of radiologists and orthopedic surgeons.

This study has several limitations. First, the dataset size should 

be expanded, and multicenter data are needed to validate model 

performance across diverse demographics, MRI vendors, and 

acquisition protocols. Although fat-suppressed sagittal sequences 

were chosen to enhance ligament and soft tissue visibility, 

performance may differ on coronal or axial planes or on non– 

fat-suppressed images. Future evaluations using multiple 

imaging protocols would therefore be beneficial. Second, 

although both partial and complete ACL tears were included, we 

did not stratify tears by subtype, which prevents reporting of 

differential performance for partial vs. complete lesions. Third, 

class balancing was achieved partly through augmentation, 

which cannot fully substitute for naturally balanced datasets and 

may introduce bias. Fourth, while YOLOv9 demonstrated 

excellent segmentation accuracy, we did not compare 

classification performance using manual (ground-truth) vs. 

automated crops, leaving the residual effect of segmentation 

errors unquantified. Finally, the model has not yet been 

externally validated, and a prospective reader study integrating 

TABLE 3 Comparison of CustomCNN performance with recent SOTA studies (2022–2025).

Study Year Model Dataset (n) Accuracy Sensitivity/Recall AUC

Abdullah et al. (15) 2022 BP-ANN 90 patients 94.4% 0.88 –

Bien et al. (9) 2023 CNN-based AI NR NR 0.76 –

Chang et al. (11) 2024 Customized 3D CNN 4,144 MRIs >96% NR –

Liu et al. (12) 2025 Automatic CNN 350 MRIs NR 0.96 0.98

CustomCNN (our study) 2025 CustomCNN 8,086 MRIs 91.5% 92.4% 0.913
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AI outputs with radiologist interpretation will be an essential step 

toward clinical deployment.

In conclusion, this study developed and evaluated an artificial 

intelligence-based framework for ACL tear detection using a 

clinically validated dataset of 8,086 knee MRI slices. Among the 

11 tested deep learning architectures, the CustomCNN model 

achieved the best diagnostic performance, with 91.5% accuracy, 

92.4% sensitivity, and an AUC of 0.913. Methodological 

innovations—including patient-level data separation and the 

inclusion of both complete and partial tears—enhanced clinical 

validity and minimized bias, distinguishing our work from 

many previous reports. While segmentation using YOLOv9 was 

highly accurate, we did not compare classifier performance with 

ground-truth manual crops, which remains a limitation. Larger 

multicenter studies incorporating diverse MRI protocols, 

vendors, and demographics are required to confirm 

generalizability. Ultimately, AI-assisted diagnostic systems such 

as ours hold promise as supportive tools to accelerate image 

interpretation, guide clinical decision-making, and improve 

patient outcomes when integrated responsibly into 

orthopedic practice.

5 Conclusions

In conclusion, this study developed and evaluated an artificial 

intelligence-based framework for ACL tear detection using a 

clinically validated dataset of 8,086 knee MRI slices. Among the 

11 tested deep learning architectures, the CustomCNN model 

achieved the best diagnostic performance, with 91.5% accuracy, 

92.4% sensitivity, and an AUC of 0.913. Methodological 

innovations—including patient-level data separation and the 

inclusion of both complete and partial tears—enhanced clinical 

validity and minimized bias, distinguishing our work from 

many previous reports. While segmentation using YOLOv9 was 

highly accurate, we did not compare classifier performance with 

ground-truth manual crops, which remains a limitation. Larger 

multicenter studies incorporating diverse MRI protocols, 

vendors, and demographics are required to confirm 

generalizability. Ultimately, AI-assisted diagnostic systems such 

as ours hold promise as supportive tools to accelerate image 

interpretation, guide clinical decision-making, and improve 

patient outcomes when integrated responsibly into 

orthopedic practice.
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