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Background: Accurate diagnosis of anterior cruciate ligament (ACL) tears on
magnetic resonance imaging (MRI) is critical for timely treatment planning.
Deep learning (DL) approaches have shown promise in assisting clinicians, but
many prior studies are limited by small datasets, lack of surgical confirmation,
or exclusion of partial tears.

Aim: To evaluate the performance of multiple convolutional neural network
(CNN) architectures, including a proposed CustomCNN, for ACL tear
detection using a surgically validated dataset.

Methods: A total of 8,086 proton density—weighted sagittal knee MRI slices
were obtained from patients whose ACL status (intact, partial, or complete
tear) was confirmed arthroscopically. Eleven deep learning models, including
CustomCNN, DenseNetl21, and InceptionResNetV2, were trained and
evaluated with strict patient-level separation to avoid data leakage. Model
performance was assessed using accuracy, sensitivity, specificity, and area
under the receiver operating characteristic curve (AUC).

Results: The CustomCNN model achieved the highest diagnostic performance,
with an accuracy of 91.5% (95% Cl: 89.5-93.1), sensitivity of 92.4% (95% ClI:
90.4-94.2), and an AUC of 0.913. The inclusion of both partial and complete
tears enhanced clinical relevance, and patient-level splitting reduced the risk
of inflated metrics from correlated slices. Compared with previous reports,
the proposed approach demonstrated competitive results while addressing
key methodological limitations.

Conclusion: The CustomCNN model enables rapid and reliable detection of
ACL tears, including partial lesions, and may serve as a valuable decision-
support tool for radiologists and orthopedic surgeons. The use of a surgically
validated dataset and rigorous methodology enhances clinical credibility.
Future work should expand to multicenter datasets, diverse MRI protocols,
and prospective reader studies to establish generalizability and facilitate
integration into real-world workflows.
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1 Introduction

Anterior cruciate ligament (ACL) injuries are among the most
common knee pathologies, particularly in athletes and physically
active individuals (1). Despite advances in diagnostic imaging
techniques and clinical examination methods, misdiagnosis or
delayed diagnosis of ACL tears remains a significant clinical
challenge (2, 3). Indeed, it has been reported that even
experienced orthopedic surgeons may miss the diagnosis at the
initial presentation in nearly one-quarter of cases (1-4).

Magnetic resonance imaging (MRI) is considered the most
effective noninvasive method for evaluating knee ligament
structures, offering a diagnostic accuracy of over 90%. However,
factors such as hemarthrosis, synovial effusion, or low-contrast
images can complicate the detailed assessment of ligamentous
structures and may lead to false-negative results (5, 6).

In recent vyears, artificial intelligence (AI) applications,
particularly deep learning approaches, have been increasingly
integrated into musculoskeletal radiology. Convolutional neural
networks (CNN), capable of automatic feature extraction and
classification, have shown promising results in detecting various
knee pathologies, including cartilage lesions, meniscal tears, and
ligament injuries (7, 8).

Nevertheless, the number of CNN-based models specifically
optimized for detecting ACL tears on MRI using large-scale
clinical datasets remains limited. Therefore, in this study, we
developed a two-step deep learning approach to identify ACL
tears on knee MRI scans. In the first step, anatomical region
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localization was performed using a YOLOv9-based segmentation
CNN
including a newly designed customized CNN (CustomCNN)

model. Subsequently, eleven different architectures,
model, were comparatively evaluated.

The aim of our study is to demonstrate the potential of these
models to enhance diagnostic accuracy and to support clinicians

in decision-making processes in orthopedic practice.

2 Methodology

In this study, a two-stage deep learning approach was
developed for the detection of ACL tears in knee MRI, as
illustrated in Figure 1. In the first stage, the region of interest
(ROI) containing the ACL was automatically localized within
the knee anatomy using a YOLOv9-based image segmentation
model. These localized areas were then cropped from the
original images, enabling the model to focus only on clinically
relevant regions.

2.1 The dataset and image preparation

This retrospective study received institutional IRB/ethics
approval (University Ethics Committee, 2023), after which knee
MRI
December 2023 were reviewed in the hospital’s internal database

examinations performed between March 2016 and

to compile the dataset for the deep learning study.
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A total of 253 patients were included, of whom 122 had
arthroscopically confirmed complete or partial ACL tears and
131 had no ACL pathology. In this study, complete and partial
tears were not treated as separate classes; both were categorized
as “tear,” as partial tears often require similar management to
complete tears. From these patients, 8,086 sagittal PD-weighted
MRI slices were obtained. After YOLOv9-based cropping, 1,230
representative slices were retained (836 torn, 394 normal).

Because the number of normal slices was lower than torn slices,
class balancing was performed at the image-slice level. To this end,
data augmentation was applied only to the training set, including:

« Random rotation within +20°

« Horizontal flipping

o Brightness adjustment (80%-100%)

e Minor scale/zoom transformations (0.9-1.1)

These augmentations increased the number of normal slices from
394 to 844, yielding a balanced dataset of 1,680 slices (844 normal,
836 torn). No augmentation or artificial balancing was applied to
validation or test sets.

Each MR image was converted from DICOM format to JPEG
using Python (version 3.11.5) and the pydicom library (version
2.4.4). Labeling was performed using Labellmg for use in
YOLOV9 and CNN architectures.

2.2 Detection ACL cropping with YOLOV9

In the preprocessing phase of the YOLOv9 model, the Contrast
Limited Adaptive Histogram Equalization (CLAHE) method was
used to enhance image contrast, followed by hyperparameter
optimization during YOLOV9 tuning. The final image was obtained
through masking and weighting processes using Gaussian and
median blur filters to soften edges and reduce noise.

The dataset was divided into five folds for cross-validation and
trained over five iterations, each consisting of 200 epochs, a batch
size of 16, and a resolution of 640 x 640 pixels. Ground-truth
bounding-box annotations for segmentation were manually
created by two orthopedic surgeons using Labellmg and verified
by a third researcher (inter-annotator agreement ~95%).

Segmentation performance was quantified using precision,
recall, and IoU-thresholded mean Average Precision (mAP).
YOLOV9 achieved precision = 0.999, recall = 1.000,
mAP@0.5=0.995, and mAP@0.5:0.95=0.581. The
mAP@0.5:0.95 value is expected under stricter IoU thresholds
and reflects

lower

variability across multiple overlap criteria,
particularly for small, elongated structures such as the ACL
region. In addition, segmentation was further evaluated using
Intersection over Union (IoU) and Dice coefficient metrics,
achieving an average IoU of 0.86 and Dice coefficient of 0.91
These

localization performance and support reliable ACL segmentation.

across validation images. findings confirm robust

The 1,230 cropped sequences were divided into a training set
(1,202 examinations, 189 patients), tuning set (236 examinations,
31 patients), and validation set (242 examinations, 32 patients).

Stratified random sampling ensured each set contained 50%
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positive and 50% negative examples, enhancing generalization
and minimizing false positive and negative rates.

2.3 ACL tear detection using CNN-based
deep learning

Cropped images from YOLOV9 were processed through the
following preprocessing pipeline: CLAHE (clip limit= 8.0, tile
grid size=4x4) — Niblack thresholding (75%) — resizing to
128 x 128 pixels — normalization to 1/255.

To detect ACL tears, additional layers were integrated into
pre-trained CNN architectures (ResNet50, VGG16, InceptionV3,
NASNetMobile,  Xception, = MobileNetV2,  DenseNetl21,
EfficientNetB0, Inception-ResNetV2), a CustomCNN
architecture was independently developed. Balanced data was

while

used for all models. Training and validation images were
randomly adjusted in brightness (80%-100%) during training.
Model parameters with the lowest validation loss were saved. All
computations were performed on a desktop equipped with an
Intel Core i7-13700F CPU, 32 GB RAM, and Nvidia GeForce
RTX 4090 GPU with 24 GB GDDR6X RAM.

2.4 Custom CNN model (CustomCNN)

The CustomCNN model was specifically designed to
efficiently extract hierarchical features from ACL MRI slices:

o The first 3 x 3 convolutional layer with 64 filters captures fine-
grained local patterns.

o The subsequent 5x 5 convolutional layers with 128 and 256
filters capture broader spatial relationships, helping to
identify ACL tear patterns of varying shapes and sizes.

o The final 3x3 layers with 512 and 256 filters consolidate
extracted features and enhance generalization before the fully
connected layers.

Each convolutional layer is followed by Batch Normalization and
ReLU activation, with Max Pooling and Dropout layers to improve
training stability and prevent overfitting. The flattened output
passes through two fully connected layers (128 — 256 neurons,
both with BatchNorm, ReLU, and Dropout), and a final softmax
output layer produces the classification results.

This architecture balances accuracy with computational
efficiency and was empirically found to outperform simpler or
deeper variants on our dataset.

2.5 Developed CNN models based on pre-
trained models

Pre-trained CNN models (VGG16, ResNet50, InceptionV3,
Xception,  DenseNet121,  EfficientNetBO, = MobileNetV2,
NASNetMobile, Inception-ResNetV2, VGG19) were customized
by adding Batch Normalization, Dense, and Dropout layers,
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followed by softmax activation. Most layers were frozen; only the
last layers were trainable.

All classifiers were trained on 2D grayscale ROIs (128 x 128)
cropped by YOLOV9; no 3D volumes were used. Training
size=10, 60 epochs,
(Ir=1x107*), and binary cross-entropy. Performance was

employed batch Adam optimizer
assessed using accuracy, precision, recall, Fl-score, and AUC.
Data splitting was patient-level with 70%/15%/15% train/tuning/
test ratio. Stratified sampling preserved 1:1 class balance in
tuning/test subsets. Data augmentation (brightness 0.8-1.0,
horizontal flip, minor affine transforms) was applied only to the
training set; validation/test sets were not augmented.

3 Results
3.1 Segmentation results

The YOLOvV9 model demonstrated excellent performance in
localizing the ACL region. As summarized in Table 1,
segmentation achieved a precision of 0.999, recall of 1.000, and
a mean Average Precision (mAP) of 0.995 at an IoU threshold
of 0.5. The stricter mAP@0.5:0.95 metric yielded 0.581, which is
with ToU
thresholds, particularly for small and elongated structures such
as the ACL. These findings confirm that the ROI cropping
provided by YOLOV9 was reliable and minimized the risk of

consistent expected variability across multiple

downstream classification errors attributable to poor localization.

3.2 Classification results

A total of 11 deep learning models were trained and
evaluated. To ensure robustness, test results were repeated 100

TABLE 1 Performance
region segmentation.

Metric Value

metrics of YOLOv9 model for ACL

Precision 0.999
Recall (Sensitivity) 1.000
IoU-based mAP @0.5 0.995
ToU-based mAP @0.5:0.95 0.581

10.3389/fradi.2025.1691048

times, and median values with 95% confidence intervals were
reported (Table 2).

Among all models, CustomCNN exhibited the highest
performance, achieving 91.5% accuracy, 92.4% sensitivity, 92.4%
AUC of 0913. DenseNetl2l
InceptionResNetV2 also demonstrated high accuracy and
with AUCs of 0.903 and 0.896, respectively.
EfficientNetBO achieved 88.9% accuracy and 90.7% sensitivity.
Other models performed moderately, with AUC values ranging
from 0.824 to 0.873.

The preprocessing steps, including patient-level splitting,
YOLOv9-based ROI cropping, and data balancing through
augmentation, contributed to these high performance metrics by

precision, and an and

sensitivity,

enhancing generalizability and reducing potential bias. These
results confirm that the proposed framework provides reliable
detection of ACL tears and highlights the benefit of integrating
segmentation and classification pipelines.

Table 3 summarizes the performance of our CustomCNN
model in comparison with recent state-of-the-art (SOTA)
studies published between 2022 and 2025. Despite some studies
reporting higher accuracy numerically, our model demonstrates
competitive performance with 91.5% accuracy, 92.4% sensitivity,
and an AUC of 0.913, while benefiting from arthroscopically
confirmed labels, inclusion of both complete and partial ACL
tears, patient-level data separation to prevent leakage, and
rigorous 100-run evaluation with confidence intervals. This
highlights the clinical reliability and robustness of the proposed
CustomCNN framework.

4 Discussion

In this study, we
performance of various customized deep learning architectures

investigated the applicability and

for the evaluation of ACL tears. Eleven deep learning models
were assessed and the three top-performing architectures were
CustomCNN, DenseNetl21, InceptionResNetV2. The
CustomCNN model achieved the highest performance, with an
accuracy of 91.5% (95% CI: 89.5-93.1) and a sensitivity of 92.4%
(95% CIL: 90.4-94.2); its discriminative ability was further
supported by an area under the receiver operating characteristic

and

TABLE 2 Performance metrics of eleven deep learning models for anterior cruciate ligament (ACL) tear detection, including accuracy, precision, recall,

F1 score, and AUC.

Model Accuracy Precision Recall F1 Score AUC

CustomCNN 0.915 (0.895,0.931) 0.924 (0.899, 0.944) 0.924 (0.904, 0.942) 0.924 (0.907, 0.939) 0.913 (0.893, 0.93)
DenseNet121 0.905 (0.889, 0.93) 0.914 (0.897, 0.935) 0.919 (0.895, 0.951) 0.916 (0.901, 0.937) 0.903 (0.886, 0.929)
InceptionResNetV2 0.899 (0.879,0.915) 0.91 (0.888, 0.934) 0.907 (0.886, 0.93) 0.909 (0.893, 0.925) 0.896 (0.877, 0.915)
EfficientNetB0O 0.889 (0.869,0.907) 0.897 (0.876, 0.92) 0.907 (0.884, 0.93) 0.902 (0.885, 0.917) 0.886 (0.867, 0.905)
MobileNetV2 0.886 (0.868,0.905) 0.907 (0.88, 0.932) 0.89 (0.857, 0.916) 0.898 (0.881, 0.914) 0.886 (0.865, 0.907)
VGG16 0.882 (0.859,0.904) 0.861 (0.841, 0.885) 0.942 (0.919, 0.965) 0.9 (0.881, 0.918) 0.874 (0.849, 0.895)
ResNet50 0.876 (0.861,0.895) 0.906 (0.888, 0.927) 0.872 (0.846, 0.895) 0.888 (0.873, 0.905) 0.878 (0.861, 0.897)
NASNetMobile 0.873 (0.846,0.896) 0.852 (0.821, 0.88) 0.936 (0.919, 0.959) 0.891 (0.872, 0.911) 0.863 (0.835, 0.888)
Xception 0.856 (0.833,0.878) 0.821 (0.796, 0.841) 0.953 (0.93, 0.977) 0.882 (0.865, 0.899) 0.842 (0.818, 0.865)
InceptionV3 0.846 (0.824,0.868) 0.817 (0.789, 0.843) 0.936 (0.913, 0.959) 0.874 (0.855, 0.891) 0.834 (0.808, 0.857)
VGG19 0.824 (0.804,0.846) 0.811 (0.787, 0.829) 0.895 (0.872, 0.93) 0.852 (0.833, 0.87) 0.813 (0.794, 0.836)
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TABLE 3 Comparison of CustomCNN performance with recent SOTA studies (2022-2025).

Study _____Year  Model ___Dataset(n) __Accuracy __Sensivity/Recall _ _AUC

Abdullah et al. (15) 2022 BP-ANN 90 patients 94.4% 0.88

Bien et al. (9) 2023 CNN-based Al NR NR 0.76 -
Chang et al. (11) 2024 Customized 3D CNN 4,144 MRIs >96% NR -
Liu et al. (12) 2025 Automatic CNN 350 MRIs NR 0.96 0.98
CustomCNN (our study) 2025 CustomCNN 8,086 MRIs 91.5% 92.4% 0.913

curve (AUC) of 0.913. Importantly, ACL region localization using
the YOLOV9 segmentation model provided highly accurate ROI
recall =1.000; mAP@0.5=0.995;
ensuring that downstream classifiers

crops  (precision = 0.999;
mAP@0.5:0.95 = 0.581),
received focused, clinically relevant image patches.

The performance of our CustomCNN model was also compared
with recent SOTA studies published between 2022 and 2025
(Table 3). Despite some models reporting higher accuracy in
different
performance with 91.5% accuracy and 92.4% sensitivity, while

datasets, our framework demonstrates competitive
using arthroscopically validated labels, including both partial and
complete ACL tears, and enforcing patient-level separation to
prevent data leakage. This comparison highlights that the proposed
CustomCNN  provides reliable and clinically relevant ACL tear
detection comparable to recent SOTA works.

Compared to similar conditions reported in the literature, our
study demonstrates competitive performance and high accuracy.
Many prior deep learning studies on ACL tears, such as those
by Bien et al. (9) and Tran et al. (10),
radiological reports for labeling, without surgical confirmation,

relied solely on

which limits reliability. In contrast, all labels in our dataset were
validated arthroscopically, thereby reducing misclassification risk
and enhancing diagnostic credibility. Furthermore, unlike most
earlier works that focused only on complete tears, our dataset
included both complete and partial ACL tears to better reflect
real-world clinical practice. However, we did not stratify torn
cases by assessment of model

subtype, which prevents

performance for partial vs. complete tears specifically. This
distinction, together with our patient-level data splitting,
provides stronger clinical validity but also highlights the need
for larger multicenter studies to further establish generalizability.

While studies by Chang et al. (11) and Liu et al. (12) focused
exclusively on complete ACL tears, partial tears were often ignored
or considered intact, which can lead to diagnostic misinterpretation
and artificially inflated accuracy rates. In our study, both complete
and partial tears were included within the torn category to better
reflect real-world clinical practice, thereby increasing clinical
relevance. However, torn cases were not stratified into partial vs.
complete subgroups, and we therefore cannot provide subtype-
specific performance. Future studies should adopt a three-class
labeling approach (intact, partial, complete) with sufficient sample
sizes to separately evaluate these clinically distinct entities and to
better inform surgical treatment planning.

Liu et al. (12) developed an automatic system using CNNs to
isolate ACL and detect structural abnormalities on a sagittal PD-
weighted dataset of 350 MRIs, achieving 96% sensitivity and
specificity (AUC 0.98). In comparison, our study analyzed a

Frontiers in Radiology

substantially larger dataset of 8,086 sagittal PD-weighted knee MRI
sequences. A critical methodological distinction was that all data
splits were performed at the patient level, ensuring that no images
from the same individual appeared in more than one subset. This
strategy prevented potential data leakage and inflated performance
estimates that can arise from correlated slices. Such rigorous
patient-level separation is rarely considered in prior Al studies,
many of which rely heavily on data augmentation without
accounting for intra-patient correlations. Moreover, our results
were based on 100 experimental repetitions with median values
and 95% confidence intervals reported, further enhancing the
robustness and reproducibility of the findings.

Deep learning-based approaches support early and accurate
ACL tear diagnosis on MRI images, providing significant
assistance to clinical experts (9, 13, 14). These methods enable
rapid and accurate assessment of larger patient groups, offering
time- and cost-effectiveness. In our pipeline, the integration of
YOLOV9 segmentation ensured accurate localization of the ACL
region prior to classification, reducing irrelevant image context
and potentially improving sensitivity for subtle lesions. However,
we did not perform a direct comparison of classification
performance using manual (ground-truth) crops vs.
YOLOvV9-based crops; therefore, the residual influence of
segmentation errors on classifier accuracy remains a limitation
that should be addressed in future studies. Al-assisted diagnostic
systems should ultimately be integrated into clinical decision-
making as supportive tools that complement, rather than
replace, the expertise of radiologists and orthopedic surgeons.

This study has several limitations. First, the dataset size should
be expanded, and multicenter data are needed to validate model
performance across diverse demographics, MRI vendors, and
acquisition protocols. Although fat-suppressed sagittal sequences
were chosen to enhance ligament and soft tissue visibility,
performance may differ on coronal or axial planes or on non-
evaluations

fat-suppressed Future

imaging protocols would therefore be beneficial. Second,

images. using multiple
although both partial and complete ACL tears were included, we
did not stratify tears by subtype, which prevents reporting of
differential performance for partial vs. complete lesions. Third,
class balancing was achieved partly through augmentation,
which cannot fully substitute for naturally balanced datasets and
Fourth, while YOLOv9 demonstrated
segmentation did not
classification performance using manual (ground-truth) vs.

may introduce bias.

excellent accuracy, we compare
automated crops, leaving the residual effect of segmentation
errors unquantified. Finally, the model has not yet been

externally validated, and a prospective reader study integrating
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Al outputs with radiologist interpretation will be an essential step
toward clinical deployment.

In conclusion, this study developed and evaluated an artificial
intelligence-based framework for ACL tear detection using a
clinically validated dataset of 8,086 knee MRI slices. Among the
11 tested deep learning architectures, the CustomCNN model
achieved the best diagnostic performance, with 91.5% accuracy,
92.4% sensitivity, and an AUC of 0.913. Methodological
innovations—including patient-level data separation and the
inclusion of both complete and partial tears—enhanced clinical
validity and minimized bias, distinguishing our work from
many previous reports. While segmentation using YOLOV9 was
highly accurate, we did not compare classifier performance with
ground-truth manual crops, which remains a limitation. Larger
MRI
required to

multicenter studies incorporating diverse protocols,

vendors, and demographics are confirm
generalizability. Ultimately, Al-assisted diagnostic systems such
as ours hold promise as supportive tools to accelerate image
interpretation, guide clinical decision-making, and improve
patient  outcomes  when

integrated  responsibly into

orthopedic practice.

5 Conclusions

In conclusion, this study developed and evaluated an artificial
intelligence-based framework for ACL tear detection using a
clinically validated dataset of 8,086 knee MRI slices. Among the
11 tested deep learning architectures, the CustomCNN model
achieved the best diagnostic performance, with 91.5% accuracy,
92.4% sensitivity, and an AUC of 0.913. Methodological
innovations—including patient-level data separation and the
inclusion of both complete and partial tears—enhanced clinical
validity and minimized bias, distinguishing our work from
many previous reports. While segmentation using YOLOV9 was
highly accurate, we did not compare classifier performance with
ground-truth manual crops, which remains a limitation. Larger
MRI
required to

multicenter studies incorporating diverse protocols,

vendors, and demographics are confirm
generalizability. Ultimately, Al-assisted diagnostic systems such
as ours hold promise as supportive tools to accelerate image
interpretation, guide clinical decision-making, and improve
patient  outcomes  when

integrated  responsibly  into

orthopedic practice.
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