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Breast cancer is the most common malignancy among women worldwide, and
imaging remains critical for early detection, diagnosis, and treatment planning.
Recent advances in artificial intelligence (Al), particularly self-supervised
learning (SSL) and transformer-based architectures, have opened new
opportunities for breast image analysis. SSL offers a label-efficient strategy
that reduces reliance on large annotated datasets, with evidence suggesting
that it can achieve strong performance. Transformer-based architectures,
such as Vision Transformers, capture long-range dependencies and global
contextual information, complementing the local feature sensitivity of
convolutional neural networks. This study provides a comprehensive overview
of recent developments in SSL and transformer models for breast lesion
segmentation, detection, and classification, highlighting representative studies
in each domain. It also discusses the advantages and current limitations of
these approaches and outlines future research priorities, emphasizing that
successful clinical translation depends on access to multi-institutional
datasets to ensure generalizability, rigorous external validation to confirm
real-world performance, and interpretable model designs to foster clinician
trust and enable safe, effective deployment in clinical practice.
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1 Introduction

Breast cancer is the most common malignancy among women worldwide and remains a
leading cause of cancer-related mortality (1). Early and accurate detection is essential for
guiding treatment decisions, improving clinical outcomes, and increasing patient survival
(2). Medical imaging modalities, including mammography, ultrasonography, and magnetic
resonance imaging (MRI), play critical roles in screening, diagnosis, and monitoring of
breast lesions.

Mammography is the established gold standard for population-based breast cancer
screening due to its cost-effectiveness and high spatial resolution, which enables early
detection of malignancy indicators such as microcalcifications and architectural
distortions (3). Its effectiveness is bolstered by standardized protocols and widespread
availability, supporting its central role in early detection programs globally. However,
mammography relies on low dose ionizing radiation, raising concerns about
cumulative exposure, and requires breast compression, which can cause patient
discomfort. More importantly, its sensitivity decreases significantly in women with
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dense breast tissue, where overlapping fibroglandular tissue can
obscure lesions and increase false-negative rates.

To address these limitations, breast ultrasonography is often
used as a complementary modality, especially in women with
dense breasts (4). Ultrasound offers real-time imaging without
ionizing radiation and effectively differentiates cystic from solid
lesions. However, its diagnostic accuracy is highly operator-
dependent, and variability in image quality can lead to
inconsistent interpretations.

MRI serves as an advanced adjunctive tool, particularly valuable
for high-risk populations and preoperative staging (5). It offers
superior soft-tissue contrast and enhanced sensitivity for detecting
invasive cancers, especially in dense breast tissue. Contrast-
enhanced MRI can also visualize angiogenic activity associated with
malignancy. Despite these advantages, broader clinical adoption
remains limited by high cost, limited accessibility, lengthy
examination times, and concerns regarding the safety of
gadolinium-based contrast agents.

Artificial intelligence (AI), particularly convolutional neural
networks (CNNs), has recently attracted significant attention in
breast imaging, lesion

with applications in segmentation,

classification, detection, and risk stratification (6-8). Encoder—
decoder architectures such as U-Net preserve fine-grained spatial
information through skip connections (9), while deep residual
networks (10) and densely connected networks (11) address
vanishing gradient issues, enabling more effective hierarchical
feature extraction. A key limitation of conventional supervised
CNNs, however, is their reliance on large annotated datasets, which
are costly to produce and often restricted by privacy regulations. To
address this challenge, self-supervised learning (SSL) has emerged
as a label-efficient strategy that can be applied across CNNs,
transformers, and hybrid architectures (12). SSL uses surrogate
tasks such as inpainting, context prediction, rotation, or contrastive
learning on unlabeled data to pretrain models on unlabeled data.
These pretrained models can then be fine-tuned on smaller labeled
datasets, achieving competitive downstream performance while
reducing annotation requirements.

Recently, Transformer-based models, particularly Vision
Transformers (ViTs), have been adapted for breast imaging to
overcome the limited receptive fields of CNNs (13). By employing
multi-head self-attention mechanisms, ViTs capture long-range
dependencies and global contextual information, which are
especially valuable for detecting diffuse lesions and subtle
architectural distortions. Although attention maps from ViTs can
highlight that
interpretability can also be achieved in CNNs through saliency-
based methods such as Grad-CAM and SHAP. Hybrid architectures

that integrate CNN backbones with transformer modules have

image regions influence predictions, similar

demonstrated synergistic performance, combining the local feature
sensitivity of convolutional layers with the global contextual
reasoning enabled by self-attention (14). This fusion represents a
promising direction for advancing Al-driven breast cancer imaging.

This study reviews recent advances in SSL and Transformer-
based approaches in breast imaging, addressing key tasks including
segmentation, detection, and classification across mammography,
ultrasound, and MRI. The study also addresses current challenges
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and limitations, including annotation scarcity, image heterogeneity,
and barriers to clinical implementation. The following research
questions are addressed:

1. How can SSL pretraining strategies be optimized to learn

robust and transferable feature representations from
unlabeled breast imaging datasets, thereby reducing reliance
on large-scale labeled data?

2. Which self-supervised pretext tasks most effectively enhance
downstream performance in breast imaging applications—
such as lesion detection, segmentation, and classification—
across diverse imaging modalities?

3. To what extent do ViTs and hybrid CNN-Transformer
architectures capture global contextual information in multi-
modal breast images, and how does this impact diagnostic
accuracy compared to purely convolutional models?

4. Can integrating SSL with Transformer-based architectures
mitigate modality-specific artifacts and improve cross-modal
data harmonization, thereby enabling more consistent and
reproducible Al-driven interpretations?

5. What practical and regulatory challenges must be addressed to
implement SSL-Transformer frameworks in routine clinical
workflows, particularly regarding model interpretability,

computational efficiency, and clinician adoption?

The remainder of this paper is organized as follows. Section 2 presents
the materials and methods applied in this study. Section 3 provides an
overview of foundational SSL, Transformer, and hybrid architectures.
Sections 4 through 6 present application-specific findings in
segmentation, detection, and classification, respectively. Section 7
discusses current limitations, clinical implications, and future
research directions. Finally, Section 8 concludes the review.

2 Materials and methods

This study offers a summary of key research that uses SSL and
transformer-based models in breast cancer imaging. Its goal is to
provide an overview of current methods, datasets, types of
supervision, reported results, as well as the main challenges
and limitations.

2.1 Eligibility criteria

Peer-reviewed studies were considered eligible if they applied
SSL or transformer-based architectures to breast cancer imaging
tasks, including classification, detection, or segmentation.

o Definition of SSL models: In this review, SSL refers to approaches
in which model representations are learned from unlabeled data
through pretext tasks (e.g., contrastive learning, masked image
modeling, clustering-based objectives, rotation prediction, or
inpainting) prior to fine-tuning on downstream diagnostic tasks.

o Supervised transformers: Supervised transformer models

were included only when directly relevant to breast
imaging tasks, to contextualize the broader adoption of

transformer architectures.
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o Exclusion criteria: Studies were excluded if they (i) employed
only conventional supervised convolutional neural networks
(CNNs) without SSL or transformer components, (ii) did not
report empirical results on breast imaging datasets, or (iii)
were reviews, editorials, or conference abstracts lacking
full data.

2.2 Information sources and search
strategy

A literature search was conducted in PubMed, Scopus, IEEE
Xplore, and Web of Science for English-language publications
published between January 2015 and June 2025. Boolean logic was
used to combine three conceptual domains: breast cancer
pathology, imaging modalities, and machine learning approaches.
The search strategy included terms such as (“breast cancer” OR
“breast tumor” OR “breast lesion”) AND (“mammography” OR
“ultrasound” OR “MRI”) AND (“self-supervised learning” OR
“SSL” OR “representation learning”) AND (“transformer” OR
“vision transformer” OR “ViT” OR “attention mechanism”).

2.3 Study selection

All retrieved records were imported into EndNote, and duplicates
were removed. Titles and abstracts were then screened for relevance,
followed by full-text review. As this is a narrative review, the screening
process was conducted by the author. In total, 761 records were
identified: 155 from PubMed, 249 from Scopus, 249 from IEEE
Xplore, and 108 from Web of Science. After duplicate removal and
relevance screening, 137 full-text articles were assessed, of which 85
met the inclusion criteria.

2.4 Data extraction and synthesis

Key study characteristics were extracted, including the
authors, year of publication, imaging modality, dataset size
and source, supervision regime, external validation status,
model type, downstream task (classification, detection, or
segmentation), and reported performance metrics (e.g., AUC,
Dice, sensitivity, specificity). Where available, comparisons with
baseline methods were also recorded. The data were synthesized
narratively and summarized in structured tables (Tables 1-3).
Missing information was indicated as “NR” (Not Reported).

3 Related work
3.1 Self-supervised learning frameworks

SSL has emerged as a transformative paradigm in machine

learning, enabling models to learn meaningful feature

representations from unlabeled data by exploiting intrinsic image
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(33).

approaches that rely heavily on manual annotation, SSL employs

patterns and structures Unlike traditional supervised
surrogate or “pretext” tasks—such as predicting missing image
regions, reconstructing corrupted inputs, or aligning multiple views
of the same sample—to guide models toward learning semantically
rich embeddings. By solving these tasks, SSL frameworks capture
hierarchical features that transfer effectively to diagnostic
applications, including classification, detection, and segmentation.
In medical imaging, SSL methodologies are commonly grouped
into three categories: contrastive, non-contrastive, and generative.
methods (e.g, SimCLR, MoCo)

learning by maximizing agreement between

Contrastive encourage
representation
differently augmented views of the same image while minimizing
similarity to unrelated samples, typically using an InfoNCE loss.
Non-contrastive approaches (e.g., BYOL, SimSiam) eliminate the

need for negative pairs by employing dual-network architectures

that align representations without momentum encoders.
Generative strategies, such as denoising autoencoders and
generative adversarial networks, aim to model the underlying data

These
approaches often improve robustness to noise and help handle class

distribution by reconstructing or synthesizing data.

imbalance, particularly for underrepresented lesion types.

In breast imaging, SSL-based models have been increasingly
adopted to address challenges such as limited data availability, high
annotation costs, and inter-observer variability. Contrastive
learning has demonstrated improvements in lesion classification for
mammography and ultrasound, enhancing generalization from
relatively small datasets. Non-contrastive pretraining on unlabeled
ultrasound data has produced robust feature encoders that require
minimal fine-tuning for downstream tasks. Generative SSL
techniques have been applied to tasks such as noise reduction and
synthetic oversampling, improving classifier performance for rare
lesion categories. Building on this foundation, Section 4 explores
how SSL has been applied in breast imaging across classification,
detection, and segmentation tasks.

3.2 Transformers

Transformers have revolutionized computer vision by

through
mechanisms (34). Unlike CNNs, which rely on local receptive

modeling long-range dependencies self-attention

fields and translation equivariance, transformers compute global

relationships among all input elements, enabling richer

contextual representation. In breast imaging, this capability is
identifying subtle
architectural distortions, and bilateral asymmetries.

particularly advantageous for lesions,

Vision Transformers (ViTs) adapt the original Transformer
architecture for image analysis by partitioning images into fixed-
size patches, linearly embedding them, and processing the resulting
sequence through stacked encoder layers (35). This design
facilitates global context modeling from early stages but lacks the
inductive biases of CNNs, such as locality and hierarchical feature
extraction. Consequently, ViTs typically require large annotated
datasets and significant computational resources—constraints that
are especially pronounced in medical imaging.
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To overcome these limitations, hierarchical variants such as the
Swin Transformer have been developed (36). Swin Transformers
divide images into non-overlapping windows and apply local self-
attention, using a shifted-window mechanism to enable cross-
window information flow. This approach reduces computational
cost and supports multi-scale feature learning, making it suitable
for high-resolution breast imaging tasks such as mass segmentation
and tissue classification. Not all Transformer models are self-
supervised. This review includes only architectures incorporating
SSL  pretraining—such as masked autoencoders, contrastive
learning, or generative modeling—while excluding purely
supervised variants to maintain scope consistency and avoid
conflating learning paradigms.

Transformer-based frameworks have shown strong performance
across breast imaging modalities. For instance, UNETR (37) and
TransUNet (38) integrate Transformer encoders into U-Net-style
segmentation frameworks, enabling precise lesion boundary
delineation in MRI and ultrasound. T-SVDNet (39) exploits
higher-order prototypical correlations for domain adaptation,
improving generalization across heterogeneous datasets. Although
attention maps can enhance model interpretability, comparable
visualization techniques such as SHAP and Grad-CAM remain
applicable to CNNs.

In summary, Transformer architectures offer powerful tools
for breast imaging analysis, particularly when combined with
SSL pretraining. Their capacity for global context modeling
complements the local feature sensitivity of CNNs, and hybrid
designs consistently outperform traditional architectures in
segmentation, classification, and detection tasks. Nevertheless,
challenges persist regarding data requirements, computational
efficiency, and clinical integration—issues addressed in
subsequent sections.

3.3 Hybrid models

Hybrid CNN-Transformer models are designed to leverage
the complementary strengths of CNNs and Transformer-based
architectures within a unified learning framework (36). They
exploit the inherent inductive biases of CNNs—like translation
equivariance and localized receptive fields—to efficiently extract
low-level, hierarchical features while keeping computational costs
low. Simultaneously, they incorporate the global context modeling
strengths of Transformers, which are critical for capturing long-
range dependencies and complex spatial relationships. This two-
stage approach creates a representational synergy: CNNs encode
fine-grained textures and structural patterns, while Transformers
integrate information across the entire image.

In typical hybrid architecture, the initial stage comprises a
deep CNN backbone that processes raw input images into
multi-scale feature maps (37). The early convolutional layers
capture local contrasts and edge features, which are particularly
important for detecting small or subtle lesions. This early
processing also reduces spatial resolution, helping to limit the
computational cost of applying self-attention to high-resolution
medical images. Once compressed, spatial regions are projected
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TABLE 3 SSL-based breast image detection.
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into fixed-dimensional token vectors, and positional embeddings
are added to preserve spatial relationships.

The second stage involves one or more Transformer encoder
blocks that process these tokenized representations. In each block,
multi-head self-attention captures pairwise dependencies between
tokens, enabling the model to prioritize features based on broader
contextual relevance. This is particularly advantageous in breast
imaging, where assessing bilateral symmetry and connecting distant
yet clinically related regions is often essential. Layer normalization
and feed-forward networks further refine these globally informed
features, which can then be reconstructed into spatial maps to
support downstream tasks such as segmentation, detection,
and classification.

The integration of CNN and Transformer components varies
across hybrid architectures. In sequential designs, CNNs first
extract features, which are then processed by Transformers for
global reasoning. This simplifies information flow but adds
overhead during tokenization of CNN outputs. In contrast,
dual-stream architectures process inputs simultaneously through
separate CNN and Transformer branches, merging outputs via
learned fusion mechanisms to reconcile local and global
representations. While this enhances representational diversity, it
also increases model complexity and training demands. A third
approach embeds lightweight attention modules within CNN
layers, expanding the receptive field without incurring the full
computational cost of dedicated Transformer modules. This
strikes a balance between efficiency and expressive power.

To further enhance performance in high-resolution breast
imaging, recent developments have introduced localized and
hierarchical attention mechanisms (38, 39). For instance, the
Swin Transformer uses a shifted window mechanism, restricting
self-attention to overlapping local regions (38).

This reduces attention complexity from quadratic to linear in
relation to token count, making it feasible for megapixel-scale
scans, such as digital mammography and MRI. Hierarchical
attention frameworks further align with radiologists’ workflows,
aggregating information from small regions of interest to form
a holistic view, mimicking a zoom-in/zoom-out interpretive
process (39). Moreover, spatially adaptive tokenization allocates
more tokens to diagnostically significant regions, directing
computational resources where they matter most, enhancing
both accuracy and efficiency.

4 Self-Supervised learning in breast
imaging

This section reviews the application of SSL frameworks to
breast imaging tasks, including segmentation, classification, and
detection. Figure 1 illustrates a representative SSL pipeline,
showing how unlabeled data are exploited during pretraining
and subsequently fine-tuned for specific diagnostic tasks. The
following subsections provide a summary of the included
studies, highlighting the employed model strategies, imaging
modalities, specific tasks, datasets, and performance results.

frontiersin.org



Wang

10.3389/fradi.2025.1684436

Frefening Fine-tuning Evaluation
v F
- . , .
Pretrained Evaluation Metrics
Encoder Classification AUC
Dice
. o Sensitivity
Specificity
» Detection
\ J
Large unlabeled
breast image - \
datasets
Segmentation 44—
Smaller ! )
labeled
datasets Fine-tune
FIGURE 1
Representative SSL pipeline for breast imaging.

4.1 SSL-based breast image segmentation

SSL has been increasingly applied to breast lesion segmentation
across mammography, ultrasound, and MRI, aiming to reduce
annotation burden while improving model robustness. Table 1
summarizes representative studies, including dataset characteristics,
supervision regimes, and reported performance.

Early work by Saidnassim et al. (15) introduced a BYOL-based
transformer for mammographic lesion segmentation. Using 1,227
mammograms from UMC Hospital (Kazakhstan), their SSL
pretraining improved validation accuracy by 16.7% and reduced
loss by 12.5% compared with supervised baselines, highlighting
the potential of contrastive SSL in dense breast tissue.

In ultrasound imaging, Mishra et al. (16) developed Closely
Related SSL (CR SSL), tailored to the low resolution and noise
inherent in breast ultrasound. On the BUS dataset, CR SSL
achieved Dice scores up to 82.1% and Jaccard indices above 80%,
representing 10%-20% improvements over supervised CNNs.
Similarly, Zhang et al. (17) combined SSL with transformer-based
(DIGN + APMN + STA-UNet),
improvements of 2%-4% and Hausdorff distance reductions of
30%-38% on the Mendeley and SIIT ultrasound datasets.

Semi-supervised approaches have also been explored. El Sayed
et al. (18) proposed CT Match, a dual-branch CNN-Transformer
framework enforcing cross-architectural consistency. On 780 in-

architectures reporting  Dice

house ultrasound images and 163 BUS images, CT Match achieved
Dice scores of 78.9% and 84.9%, respectively, outperforming
supervised baselines despite limited labeled data.
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In MRI, Meng et al. (19) introduced a dual-module SSL paradigm
combining global content perception with peritumoral context
restoration. Evaluated on 229 dynamic contrast-enhanced MRI
cases, the model achieved a Dice score of 87.8% and HD95 of
7.47 mm, surpassing multiple SSL and semi-supervised baselines.

Weakly supervised SSL has also demonstrated promise.
NguyenTat et al. (20) proposed QMaxViT-UNet+, a query-
guided transformer trained with scribble annotations. Despite
the absence of dense pixel-level labels, the model achieved a
Dice score of 69.4% on the BUSI dataset and 71%-89% on other
modalities, demonstrating strong label efficiency.

Collectively, these studies suggest that SSL can enhance
segmentation accuracy and label efficiency across imaging
modalities. However, the magnitude of benefit varies depending on
dataset, supervision regime, and evaluation protocol. Many studies
lacked external validation or standardized baselines, limiting direct
comparison. Future work should prioritize multi-institutional
datasets, consistent reporting of supervision regimes, and external
establish  the
segmentation methods.

validation to generalizability of SSL-based

4.2 SSL-based breast image classification
SSL has been increasingly applied to breast image classification
tasks, encompassing mammography, ultrasound, and multimodal

pipelines. By leveraging unlabeled or weakly labeled data, SSL
frameworks aim to reduce annotation costs while improving
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generalization across heterogeneous imaging cohorts. Table 2
provides an overview of representative studies, highlighting the
employed model strategies, imaging modalities, specific tasks,
datasets, and performance results.

Li et al. (21) introduced DSMT-Net, a dual self-supervised
multi-operator transformation framework that jointly leverages
endoscopic ultrasound (EUS) and breast ultrasound (BUS) for
lesion classification. Using 3,500 labeled and 8,000 unlabeled
EUS images (LEPset) alongside 780 BUSI images, DSMT-Net
achieved accuracies of 87.7% (EUS) and 89.2% (BUSI), with
balanced precision and recall. Compared with supervised CNN
baselines, SSL pretraining provided 5%-7% accuracy gains,
demonstrating robust cross-domain performance.

Hybrid approaches combining segmentation and classification
have also been explored. Xin et al. (22) proposed BCT-Net,
integrating  CNN and transformer modules with semantic
contrastive alignment. On the BUSI dataset (780 images across
three classes), the model achieved 86.1% precision and a Dice score
of 88.7%, outperforming CNN baselines. Similarly, Huang et al.
(23) developed Flip Learning, a weakly supervised SSL framework
combining multi-agent reinforcement learning with curriculum
learning. On 2D BUS and 3D ABUS datasets, Flip Learning
(BUS) and 75.5% (ABUS),
comparable to fully supervised methods despite using weaker

achieved Dice scores of 92.4%

labels, highlighting SSL’s label efficiency in volumetric imaging.

In mammography, Tardy et al. (24) demonstrated that self- and
weakly supervised autoencoders can achieve clinically relevant
performance for abnormality detection. On INBreast and a private
multi-vendor dataset, their model reached an AUC of 86%, a
region-level true positive rate of 93%, and a pixel-wise F1 score of
64% for malignant masses, underscoring SSL’s potential in multi-
vendor settings. Panambur et al. (25) extended this approach
with AGE, a DINO-based SSL framework with attention-guided
erasing. Across digital, contrast-enhanced, and scanned-film
mammography, AGE improved F1 scores by 0.4%-2% depending
on the task, representing incremental but consistent gains.

Transformer-based SSL has also been applied to BI-RADS
classification. Abdallah et al. (26, 27) introduced PatchCascade
ViT and CascadePLS ViT, achieving sensitivity and F1 scores of
approximately 85% on 4,368 mammograms, outperforming
CNN baselines in both breast density and cancer risk
categorization. These findings suggest that SSL-based ViTs can
capture global context in high-resolution mammograms more
effectively than conventional architectures.

Finally, multimodal SSL has been extended to cross-domain
classification. Zhang et al. (28) proposed a semi-supervised ViT
with
evaluated on BUSI ultrasound and BreakHis histopathology
datasets. The model achieved 95.3% accuracy on BUSI and
98.1% on BreakHis, representing 3%-5% gains over supervised

adaptive token sampling and consistency training,

baselines and demonstrating the transferability of SSL features
across imaging domains.

Collectively, these studies indicate that SSL can enhance
classification accuracy and label efficiency across modalities.
However, the magnitude of improvement varies, with some
methods yielding only marginal gains. Reporting gaps remain:
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external validation was inconsistently performed, and supervision
regimes were not always clearly defined. Future work should
prioritize multi-institutional datasets, standardized reporting of
baselines, and rigorous external validation to establish the clinical
utility of SSL-based classification methods.

4.3 SSL-based breast image detection

The scarcity of expertly annotated breast imaging datasets has
accelerated the adoption of SSL and weakly supervised learning
(WSL) approaches for detection tasks. By leveraging intrinsic image
structure and coarse supervision, these methods aim to reduce
dependence on dense voxel- or pixel-level labels while maintaining
Table 3

representative studies, including dataset characteristics, supervision

clinically acceptable performance. summarizes
regime, and reported performance.

The limited availability of expertly annotated breast imaging
datasets has driven the adoption of SSL and weakly supervised
learning (WSL) approaches for detection tasks. By leveraging
intrinsic image structure and coarse supervision, these methods
aim to reduce reliance on dense voxel- or pixel-level labels while
maintaining clinically acceptable performance. Table 3 provides
an overview of representative studies, highlighting the employed
model strategies, imaging modalities, specific tasks, datasets, and
performance results.

In automated breast ultrasound (ABUS), MohammadiNasab
et al. (29) proposed DATTR2U-Net, a double-attention recurrent
residual U-Net trained with multi-task SSL proxy tasks, including
rotation prediction and image reconstruction. On the TDSCABUS
dataset, the model achieved a recall of 79.6% with 5.67 false
positives per volume, representing an approximate 6% recall
improvement over fully supervised baselines, despite using only
10% of voxel-level labels. This demonstrates SSL’s potential to
approximate full supervision in complex 3D ultrasound applications.

In mammography, Tardy et al. (24) developed a two-channel
self-

abnormality detection and classification. Using INBreast and a

autoencoder integrating and weak supervision for
private multi-vendor dataset, the model achieved an AUC of
0.86, a region-level true positive rate of 93%, and a pixel-wise F1
score of 64% for malignant masses. Notably, multi-vendor data
improved model robustness, although external validation across
larger, more diverse cohorts remains limited.

Alsuhbani et al. (30) addressed dense breast tissue localization
using weakly supervised saliency mapping. Trained on 4,387
mammograms from the RSNA Breast Cancer Detection dataset,
their CNN-based model achieved an accuracy of 75.3% and a
Dice score of 75.4%. These results approached fully supervised
U-Net performance while requiring only ~15% of pixel-level
annotations, highlighting the label efficiency of weak supervision.

Changetal. (31) extended YOLOVS8 with bi-level routing attention
and bidirectional feature pyramid networks, incorporating SSL
pretraining with rotation and cutout augmentations. On contrast-
enhanced and standardized mammograms, the model achieved a
precision of 99.3%, recall of 85.0%, and F1 score of 91.6% at an IoU
threshold of 0.6. The high precision is clinically valuable for
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minimizing false positives, though sensitivity for subtle calcifications
remains an area for improvement.

In MRI, Chen et al. (32) applied self-supervised rotation
learning with a ResNet50 backbone to classify breast cancer vs.
healthy tissue. On the Kaggle Breast Cancer MRI dataset (1,480
images), the model achieved an AUC of 95.8%, accuracy of
92.5%, sensitivity of 95%, and specificity of 90%, outperforming
ImageNet-based transfer learning baselines. However, the
relatively small and homogeneous dataset limits generalizability.

Across these studies, several patterns emerge. Proxy tasks such
as rotation prediction and image reconstruction generally
outperform contrastive learning variants in breast imaging, as
they encourage the extraction of orientation-invariant and

features.
dual

ultrasound and bi-level routing attention for mammography—

anatomically meaningful Integration of attention

mechanisms—such as spatial-channel attention for
consistently improves detection and segmentation performance
by enhancing feature discrimination. The use of image-level
labels in weak supervision has enabled segmentation accuracy
within approximately 10%-15% of fully supervised methods
while  dramatically reducing annotation  requirements.
Importantly, these models have maintained clinically acceptable
false positive rates, which is essential for real-world deployment.

Despite these advances, several challenges remain. Most studies
have relied on retrospective datasets, which may not fully capture
the heterogeneity of clinical practice, including variations in
scanner hardware, acquisition protocols, and patient demographics.
Prospective clinical trials and external validation using multi-
institutional datasets are essential to ensure robustness and
generalizability. SSL proxy tasks may also struggle to capture rare
or subtle pathologies, suggesting that combining multiple SSL tasks
or integrating domain-specific priors could enhance sensitivity.
Model interpretability remains a key barrier, as transparent and
explainable outputs are necessary to secure clinician trust and
regulatory approval. Additionally, AI systems must integrate
seamlessly into existing imaging workflows to support, rather than
increase, radiologists’ cognitive workload.

Looking forward, several promising directions can be identified.
Multi-modal SSL approaches that jointly leverage ABUS,
and MRI could complementary

improving diagnostic accuracy. Federated SSL

mammography, capture
information,
frameworks provide a viable approach to train geographically
distributed datasets while preserving patient privacy, potentially
overcoming longstanding data-sharing restrictions. Advances in
architecture design, including transformer-based models and
refined contrastive learning variants, offer opportunities for richer
feature extraction. The creation of standardized benchmarks and
publicly available datasets specifically tailored to SSL and WSL in
breast imaging will be critical for enabling rigorous, reproducible
performance comparisons and accelerating methodological progress.

In summary, current evidence demonstrates that SSL and
WSL  methodologies can achieve diagnostic performance
comparable to fully supervised models across diverse breast
imaging modalities while substantially reducing annotation
burden. To realize their full clinical potential, the field must

prioritize external validation, enhance interpretability, conduct
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prospective trials, and ensure smooth workflow integration.
Through coordinated efforts in algorithm design, clinical
research, and systems integration, SSL-driven AI tools have the
potential to transform breast cancer screening, providing
scalable, cost-effective, and advanced diagnostic capabilities to a
wider global population.

5 Transformers in breast imaging

In recent years, Transformer-based models have seen rapid

adoption for breast lesion segmentation, detection, and
classification. Both pure Transformer architectures and hybrid
designs that integrate CNNs with self-attention mechanisms have
demonstrated considerable promise in medical image analysis.
Their primary advantage lies in the ability to capture fine-grained
local texture information alongside global contextual relationships,
a capability particularly relevant for breast imaging, where lesions
often exhibit complex and heterogeneous appearances. Across
mammography, ultrasound, and MRI, diagnostic interpretation
benefits from models that can represent both localized structural
patterns and broader anatomical context, enabling more accurate

lesion characterization and supporting clinical decision-making.

5.1 Transformer-based breast lesion
segmentation

Accurate segmentation of breast lesions is a fundamental
prerequisite  for effective computer-aided diagnosis and
individualized treatment planning. Segmentation is challenged by
anatomical variability, imaging artifacts, speckle or noise patterns,
and the scarcity of high-quality annotated datasets. While
traditional CNN architectures are effective at capturing local spatial
features, they are inherently limited in modeling long-range
dependencies. Transformer-based models have begun to address
these limitations by incorporating global self-attention mechanisms,
enabling the capture of contextual relationships across entire images
or volumes. Table 4 summarizes representative peer-reviewed
studies employing Transformer-based segmentation approaches
across mammography, MRI, and ultrasound, highlighting consistent
improvements over finely tuned CNN baselines.

In mammography, early integration of Transformers has
demonstrated substantial gains in delineating small and subtle
lesions that CNNs often struggle to segment accurately. Zhao et al.
(40) proposed Swin-SFTNet, which leverages the hierarchical Swin
Transformer architecture for micro-mass segmentation. The model
achieved Dice coefficient improvements of 3.10% on CBIS-DDSM
and 3.81% on INBreast, with a notable 3.13% gain in cross-dataset
testing when trained on CBIS-DDSM and evaluated on INBreast.
Liu et al. (41) introduced Transformer-based encoder-decoder
(TrEnD), optimized with mix-frame training, achieving Dice scores
exceeding 92% and IoU values above 85% across both CBIS-DDSM
and INBreast. These findings indicate that Transformer attention
mechanisms enhance the ability to balance local texture modeling
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TABLE 4 Transformer-based breast image segmentation studies.

10.3389/fradi.2025.1684436

Refs | Year Imaging Performance
modality
(40) 2022 | Swin-SFTNet Micro-mass Mammography | CBIS-DDSM, INbreast Dice Improvement: + 3.10% (CBIS-
segmentation DDSM), + 3.81%
(InBreast), + 3.13%
(CBIS—InBreast)
(41) 2023 | TrEnD (Transformer-based encoder- Breast mass Mammography | CBIS-DDSM (mix-frame), CBIS-DDSM: Dice: 92.20%, IoU:
decoder) segmentation INbreast (mix-frame) 85.81%;
INbreast: Dice: 91.83%; IoU 85.29%
(42) 2023 | TraBS Fibroglandular MRI 200 internal, 40 external Dice (Internal/External):
tissue 91.6% + 6.7%/86.4% * 8.1%, Surface
segmentation Distance (mm):0.548 +2.195/
0.584 + 0.413
(43) 2022 | RSTUnet-CR (Residual Swin Transformer | Tumor ABUS Proprietary ABUS: 84 480 Acc: 79.57%, Dice: 60.43%, mIoU:
U-Net with Consistency Regularization); | segmentation frames from 256 subjects (1: 19 | 51.83%, Recall: 68.96%, HD95:
Residual Swin Transformer encoder lesion/non-lesion ratio) 7.74 mm
blocks; Dual-decoder
(44) 2023 | DSTransUFRRN Lesion Ultrasound BUSI Dice: 83.42%
segmentation
(45) 2023 | HCTNet Lesion Ultrasound BUSI, BUS, Dataset B BUSI: Dice:82% Acc:96.94%,
segmentation Jaccard:71.84%, Recall:82.14%,
Precision: 83.24%;
BUS: Dice:84.13% Acc:98.49%,
Jaccard:73.83%, Recall:83.19%,
Precision: 88.5%;
Dataset B: Dice:97.23% Acc:97.41%,
Jaccard:94.63%, Recall:97.33%,
Precision: 97.14%;
(46) 2024 | ViT + UNet Breast Tumor Ultrasound BUSI Dice: 75.84%; IoU: 62.92%;
Segmentation Precision: 79.01%; Recall: 78.82%,
F1 score: 75.84%
(47) 2024 | Swin-Net (Swin-T + RLM + HFM) Breast tumor Ultrasound BUSI, BUS-B, BUS-O BUSIS: Dice: 81.8%, Precision:
segmentation 83.4%, Recall: 84.4%;
BUS-B: Dice: 83.7%, Precision:
85.6%, Recall: 86.3%;
BUS-O: Dice: 84%, Precision: 85.5%,
Recall: 85%
(48) 2023 | Faster Boundary-aware Transformer Breast lesion Ultrasound, MRI | BUSI: 647 benign/malignant BUSI + BUSB: Dice 75.02%; IoU
(FBAT): Boundary-wise Attention Block | segmentation ultrasound images (512 x 512); | 65.37% (200 epochs);
(BAB) in each transformer encoder layer, BUSB: public ultrasound test | BMRI: Dice 89.69%; IoU 82.75%
Reference-point-guided cross-attention in set; Private BMRI: 1 200 MRI | (200 epochs)
decoder for faster convergence images

with global anatomical structure, a capability particularly beneficial
for detecting minute or low-contrast lesions.

In MRI segmentation, the volumetric nature of the data and
that
Transformers are particularly well-suited to address. Schmidt et al.
(42) developed TraBS for fibroglandular tissue segmentation,

pronounced tissue heterogeneity create  challenges

reporting Dice scores of 91.6% +6.7% on internal datasets and
86.4% + 8.1% on external datasets, alongside sub-millimeter surface
distance errors (0.548 +£2.195 mm internally, 0.584 +0.413 mm
externally). These results demonstrate a high degree of robustness
to variability in acquisition protocols, underscoring the potential of
Transformer architectures for quantitative MRI analysis in diverse
clinical settings.

In ultrasound imaging, where speckle noise, operator
dependence, and heterogeneous acquisition protocols contribute
to substantial domain shifts, Transformer-based approaches have
been extensively explored in both pure and hybrid forms.
Zhuang et al. (43) introduced the residual Swin Transformer
U-Net  with (RSTUnet-CR),

consistency  regularization

Frontiers in Radiology

10

incorporating residual Swin Transformer encoder blocks with a
While
achieving a moderate Dice score of 60.43% on large-scale ABUS

dual-decoder for segmentation and reconstruction.
datasets, the model demonstrated strong lesion recall (68.96%)
and improved boundary preservation, attributes critical for
surgical planning. Wang et al. (44) presented DSTransUFRRN,
achieving a Dice score of 83.42% on the BUSI dataset. He et al.
(45)  developed HCTNet,

Transformer-CNN hybrid, which achieved exceptionally high

a hierarchical cross-attention
Dice scores across three ultrasound datasets, including 97.23%
on Dataset B, with balanced precision and recall above 97%.
Zhang et al. (46) combined ViT with U-Net, yielding precision
and recall values of approximately 79% each, though the Dice
score of 75.84% suggests further optimization is possible. Li
et al. (47) proposed Swin-Net, integrating relative location
modeling and hierarchical fusion modules, maintaining Dice
scores above 81% across multiple datasets.

Expanding into multimodal applications, Zhou et al. (48)
introduced the faster boundary-aware transformer (FBAT),
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which incorporates boundary-wise attention and reference-point-
guided cross-attention, applying it to both ultrasound and MRI.
This approach achieved a Dice score of 75.02% on ultrasound
datasets and 89.69% on MRI, while demonstrating accelerated
convergence compared with conventional Transformer baselines.

Comparative analysis across these studies reveals several
notable trends. Variants of the Swin Transformer architecture
dominate both mammography and ultrasound research, likely
due to their hierarchical token representation and robust multi-
scale feature extraction. MRI-based Transformer segmentation,
although less studied, shows strong generalization potential,
indicating that further research and larger-scale validation could
solidify their role in volumetric breast imaging. In ultrasound,
performance variability across datasets highlights the persistent
challenge of domain shifts, as models trained on curated or
internal datasets often experience substantial degradation when
evaluated externally. Nevertheless, Transformer-based models
consistently outperform CNN-only counterparts, demonstrating
their ability to integrate fine-grained spatial features with global
contextual cues, which is crucial for accurate lesion delineation.

Transformer-based segmentation has emerged as a promising
methodological direction in breast imaging, showing strong
performance across multiple modalities. Their inherent flexibility
supports both pure Transformer configurations and hybrid
architectures that combine the global contextual modeling of self-
attention with the fine-grained spatial sensitivity of convolutional
networks. Moreover, their adaptability to multimodal pipelines—
such as those integrating mammography, ultrasound, and
histopathology—suggests considerable potential for advancing
computer-aided diagnosis systems.

Future research priorities should include developing domain
adaptation techniques to mitigate performance variability across
institutions,  establishing  standardized = multi-institutional
benchmarks, and optimizing architectures to reduce computational
costs without compromising accuracy. Equally important is the
seamless integration of these models into clinical workflows to
ensure outputs support radiologists’ decision-making without
introducing additional complexity. Addressing these considerations
will be essential for translating Transformer-based approaches into
scalable, clinically impactful solutions for breast imaging.

5.2 Transformer-based breast lesion
detection

In recent years, ViTs and their hierarchical or cross-modal
extensions have seen growing adoption for breast lesion detection.
These models leverage self-attention mechanisms to capture both
fine-grained local features and long-range contextual relationships,
which are critical for identifying subtle lesions and complex tissue
patterns. Table 5 summarizes key Transformer-based studies in this
area, highlighting the diversity of architectural innovations and
performance results across different imaging modalities.

In mammography, early Transformer models explored multi-
view integration, leveraging the inherent symmetry and paired

imaging protocols in breast screening. Chen et al. (49)
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Multi-View Transformer  that

simultaneously processes craniocaudal and mediolateral oblique

introduced a Vision
views, using cross-attention to align anatomical correspondences
without explicit spatial registration. The model achieved an
AUC of 81.8% on a moderately sized in-house dataset,
performing comparably to CNN-based architectures such as
DenseNet and EfficientNet. Its ability to learn view-invariant
features without extensive preprocessing highlights a promising
direction for multi-view mammographic Al

Nguyen et al. (50) advanced this approach with TransReg, a
hybrid architecture combining a Swin Transformer backbone, a
cross-transformer registration module, and a Faster R-CNN
detection head. By the
contralateral breast, TransReg enables detection on difference

learning to spatially normalize
images rather than raw intensities, mirroring radiologists’
comparative reading strategies. The model achieved recalls of
83.3% on DDSM and 79.7% on VinDr-Mammo at a low false-
positive rate of 0.5 per image, outperforming both standard
Faster R-CNN and Transformer-free baselines by 4%-6%. This
work illustrates how Transformer-based attention mechanisms
can be tailored to capture anatomical context unique to breast
imaging, resulting in tangible gains in lesion localization.

The scalability of Transformer architecture was demonstrated by
Shen et al. (51), who introduced the multi-modal transformer
(MMT). Trained on 1.3 million screening exams, MMT integrates
full-field digital mammograms and matches ultrasound volumes
within a single model. It achieved an AUC of 94.3% for concurrent
cancer detection and 82.6% for five-year risk prediction,
outperforming ensemble CNN baselines by over five percentage
points. This study highlights two core strengths of Transformers:
their ability to integrate heterogeneous data modalities within a
unified framework and their favorable performance scaling
properties, where accuracy improves with increasing dataset size
when representational bottlenecks are avoided.

In parallel, Transformer adoption in breast ultrasound has
accelerated, driven by high frame rates, expanding public
datasets, and growing use in dense breast populations. Ayana
et al. (54) proposed BUViTNet, a ViT architecture pre-trained
on ImageNet, then fine-tuned on cancer-cell histology patches
before adaptation to ultrasound. This biologically inspired
pretraining strategy yielded AUCs of 100% on the Mendeley
dataset, 96.8% on BUSI, and 93.7%
outperforming standard CNNs by 3%-5% points. These results

on a mixed dataset,

demonstrate the potential of multi-stage transfer learning to

align general visual features with domain-specific tumor
morphology, even in low-data regimes.

Addressing the challenge of ROI dependency in ultrasound,
Mo et al. (55) developed HoVer-Trans, an anatomy-aware
architecture that processes full ultrasound frames using separate
horizontal and vertical self-attention streams. This directional
bias enhances sensitivity to spiculated and irregular mass
boundaries while suppressing false positives from acoustic
shadowing and other artifacts. HoVer-Trans achieved an AUC
of 88.1%, F1 score of 91.6%, and accuracy of 89.3% across three
independent Chinese cohorts, substantially outperforming CNN

counterparts in both sensitivity and precision.
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TABLE 5 Transformer-based breast lesion detection studies.

Refs vear  Model _ Task _ maging mociy

949 cases (470 malignant, 479 | AUC: 81.8%

10.3389/fradi.2025.1684436

benign/normal)
DDSM, VinDr-Mammo

DDSM, MIAS, INbreast,
VinDr-Mammo

RSNA dataset

Pre-training: COCO 2017 (18
000 images, 91 classes); Fine-
tuning: INBreast (410 images,
MLO and CC views)

INbreast

BUSI, Mendeley, Mixed

GDPH&SYSUCC, 2 others

BUS (780 images)
Axillary UE scans from early
breast cancer patients (N not

specified)

1.3 million exams

Recall @ 0.5 FP/image:
83.3% (DDSM), 79.7%
(VinDr-Mammo)
Acc:95.9%, AUC: 97.7%,
Recall: 94.9%, Precision:
97.1%

Acc: 81%; AUC: 87%

Best model (50 queries):
mAP; = 0.68, mAPs,:
o5 =0.41

Acc: 98.08%

AUC: 100% (Mendeley),
96.8% (BUSL), 93.7%
(Mixed)

AUC: 88.1%, Acc: 89.3%,
Sensitivity: 83.6%,
Precision:90.6%, Recall:
92.6%, F1: 91.6%

AUC: 92.1%, Acc: 94.49%

Junior radiologist AUC
improved from 0.807 to
0.883; inter-reader x 0.805-
0.895

AUC: 94.3% for cancer

(49) 2022 | Multi-View Vision Transformer Breast Cancer Mammography
Diagnosis
(50) 2023 | TransReg (Cross-Transformer + Swin- | Mass Detection | Mammography
T + Faster R-CNN) & Auto-
Registration
(51) 2024 | Transformer-Based Mammogram Breast cancer Mammography
Classifier detection
(binary)
(52) 2024 | Dual-View Cross Attention with Swin | Breast cancer Mammography
Transformer detection
(53) 2024 | Transferred-learning Deformable Breast mass Mammography
DETR with deformable attention detection
modules on ResNet-50 backbone;
decoder queries tuned (50, 75, 100,
125, 150)
(54) 2025 | Ensemble of Vision Transformer (Vit- | Breast tumor Mammography
L16) and CNN backbones (ResNet50, | detection
EfficientNetB1, ProDense block) with | (benign vs.
a stack-ensemble scheme malignant)
(55) 2022 | BUViTNet (Stage-wise ViT pre- Breast Lesion Ultrasound
trained on ImageNet + cancer cells) Detection
(56) 2022 | HoVer-Trans (Anatomy-aware ROI-Free Breast | Ultrasound
horizontal + vertical transformers) Cancer
Diagnosis
(57) 2024 | Progressive Fine-Tuned ViT Breast Lesion Ultrasound
Detection
(58) 2025 | DAMF-former (Dual-Modal Adaptive | Axillary lymph | Ultrasound elastography (B-
Mid-Term Fusion Transformer) node metastasis | mode + shear-wave elastography)
diagnosis
(59) 2023 | MMT (Multi-Modal Transformer) Cancer Mammography + Ultrasound
Detection &
5-Year Risk
Prediction
(60) 2025 | Frozen large-scale pretrained vision- | Multimodal Mammography & clinical EHR
language models as foundational breast cancer data
backbone, employing a frozen vision- | prediction

language encoder plus a lightweight
trainable classifier

Alruily et al. (56) demonstrated that Transformers can be
effective in data-constrained settings through progressive fine-
tuning. A vanilla ViT was first trained on natural images, then
adapted to a thyroid ultrasound corpus, and finally fine-tuned
on only 780 breast ultrasound images. Despite the limited
dataset, the model achieved an AUC of 92.1% and accuracy of
94.5%, validating the effectiveness of domain-adaptive transfer
learning in mitigating data scarcity and emphasizing the
importance of task-aware pretraining pipelines.

Collectively, these studies reveal several recurring design
principles underlying the success of Transformer-based breast
lesion  detection. Cross-view and cross-modal attention
mechanisms enhance performance by integrating complementary
information, whether across mammographic projections or
between imaging modalities. Hierarchical and directional attention
strategies, as in Swin Transformers and HoVer-Trans, enable
broader contextual awareness while preserving spatial resolution,

critical for detecting small, diffuse, or spiculated lesions. Multi-
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detection
AUC: 82.6% for 5-year risk

CBIS-DDSM; EMBED CBIS-DDSM: AUC

improved from 86.7% to
90.2%; test AUC from
0.80.3% to 83%;
EMBED: AUC improved
from 78% to 80.5%

stage pretraining approaches grounded in biologically or
anatomically relevant domains further improve robustness by
accelerating  convergence and enhancing  generalizability.
Compared with leading CNN architectures, Transformer models
consistently yield 3%-6% gains in key metrics such as AUC, recall,
and F1 score across diverse datasets, often without labor-intensive
preprocessing steps like manual ROI annotations or bilateral
registration, supporting greater automation and clinical applicability.

Despite these advances, several challenges remain. Many studies
rely on retrospective, single-center datasets, limiting generalizability
across scanners, populations, and clinical environments.
Prospective clinical validation through blinded reader studies, real-
world implementation trials, or integration into PACS/RIS
infrastructure is essential for regulatory approval and clinical
deployment. Model size and computational demands also pose
practical constraints. Large-scale Transformers, such as ViT-L and
Swin-B, perform well but may be impractical in low-resource or

time-sensitive settings. Future work should explore lightweight
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Transformer variants, hybrid CNN-Transformer architectures, and
model compression techniques for scalable adoption. Although
attention mechanisms offer a pathway to model interpretability,
few studies have systematically evaluated their transparency in
clinical workflows. Incorporating attention heatmaps, saliency
overlays, and formal explainability frameworks could foster
clinician trust and meet emerging regulatory expectations for
accountability and interpretability.

5.3 Transformer-based breast lesions
classification

Recent advances in Transformer-based architectures have led to
substantial improvements in breast lesion classification across
and MRIL These
particularly effective at capturing both local texture patterns and

mammography, ultrasound, models are
global contextual relationships, which are critical for distinguishing

benign from malignant lesions. By integrating information across

TABLE 6 Transformer-based breast lesion classification studies.

Refs Year Architecture

10.3389/fradi.2025.1684436

entire images or volumes, Transformers have the potential to
enhance early cancer detection, reduce unnecessary biopsies, and
streamline radiology workflows. Table 6 summarizes representative
studies in this domain, highlighting the diversity of network
designs, imaging modalities, and reported performance outcomes.
In mammography, hybrid CNN-Transformer frameworks have
demonstrated outstanding classification performance. Al-Tam et al.
(61) combined a residual CNN with a Transformer encoder,
achieving perfect binary classification accuracy (100%) and 95.8%
accuracy for multiclass tasks on the CBIS-DDSM and DDSM
datasets. Similarly, Al-Hejri et al. (62) employed an ensemble CNN
with a ViT encoder, reaching 98.58% (binary) and 97.87%
(multiclass) accuracy on INbreast, with slightly lower but still
competitive results on a private dataset. These findings underscore
the advantage of integrating CNN-based local feature extraction
with the Transformer’s global attention mechanism, enabling the
capture of both fine-grained details and broader contextual
patterns. For breast density classification, Tsai et al. (63) applied a
Swin Transformer, achieving 74.96% accuracy and highlighting the

Imaging Dataset(s) Performance

modality

(61) 2022 | Residual CNN + Transformer Encoder Binary & Multiclass Mammography CBIS-DDSM, DDSM Acc: 100% (Binary), 95.8%
Classification (Multiclass)
(62) 2023 | Ensemble CNN + Vision Transformer Binary & Multiclass | Mammography INbreast, Private Acc: 98.58% (Binary), 97.87%
Encoder (ViT) Classification annotated set (Multiclass); Private set: 97.16%
(Binary), 89.4% (Multiclass)
(63) 2024 | Swin Transformer Four-category Breast | Mammography Small curated set Acc: 74.96%
Density Classification
(BI-RADS)
(64) 2024 | LCVT-GR (Backbone + LCVTM + GRM) Benign & Malignant | Mammography Mini-DDSM, CMMD | Mini-DDSM: AUC-ROC: 85.85%,
Classification AUC-PR: 65.76%;
CMMD:AUC-ROC: 87.12%, AUC-
PR: 89.03%;
(65) 2025 | Dense-UMAF + DeiT (Dual-Track) Classification of Mammography CBIS-DDSM (Curated | Accuracy: 88.69%
Masses & Subset)
Microcalcifications
(66) 2025 | ViT-based Benign & Malignant | dynamic contrast- | DCE-MRI dataset Precision:80%, Recall:80%, F1
Classification enhanced MRI score: 80%, AUC: 80%

(67) 2022 | VGGA-VIiT: VGG attention vision Benign & Malignant | Ultrasound Two BUS datasets: Dataset A: acc: 88.71% + 1.55%,
transformer network combining a VGG- Classification Dataset A (cross- recall: 90.735 + 1.57%, specificity:
based CNN module (local feature extractor validation); Dataset B 85.58% * 3.35%, precision:
with SE block) and a ViT module (global (independent test) 90.77% + 1.98%,
relationship learner), ImageNet-pretrained F1:90.73% + 1.24%,

MCC:76.34% =+ 3.29%;

Dataset B: acc: 81.72% * 2.99%,
recall: 64.45% + 2.96%, specificity:
90.28%= 3.51%, precision:

77.08% + 7.21%,

F1:70.11% * 4.25%, MCC:57.64%+
6.88%.

(68) 2025 | Multimodal Sieve Transformer with ViT Benign & Malignant Ultrafast dynamic 240 patients; 987 MMST-V: AUROC 0.928 +0.027;
encoder (MMST-V); integrates UF-DCE Classification contrast-enhanced | lesions (280 benign, non-imaging only: AUROC
MRI volumes, lesion characteristics, and MRI + clinical 121 malignant, 586 0.900 + 0.045; imaging only:
clinical/geometrical data reports benign lymph nodes); 1 | AUROC 0.863 + 0.025

081 radiology reports

(69) 2024 | Three ImageNet-pretrained Vision Benign & Malignant | Mammography and | Mendeley Data AUC 1.0 +0 for both modalities,
Transformer transfer-learning architectures | Classification ultrasound mammogram dataset; | outperforming ViT from scratch
evaluated on mammograms (Mendeley Mendeley Data and CNN-based transfer learning
Data) and ultrasound (Mendeley Data & ultrasound dataset;

Kaggle), compared to ViT trained from Kaggle breast
scratch and CNN-based TL ultrasound dataset
Frontiers in Radiology 13 frontiersin.org
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persistent challenges posed by intra-class variability and limited
annotated data.

Specialized Transformer architectures have also shown promise.
Wu et al. (64) developed LCVT-GR, which incorporates local
channel-wise ViT modules with a gating refinement mechanism,
achieving AUCs of 85.85% on Mini-DDSM and 87.12% on
CMMD. Paavankumar et al. (65) proposed a dual-track Dense-
UMAF + DeiT
microcalcifications, reaching 88.69% accuracy on a curated CBIS-

pipeline  to  differentiate  masses  from
DDSM subset. Beyond mammography, Wang et al. (66) compared
multiple CNN and Transformer variants for dynamic contrast-
enhanced MRI, reporting consistent but moderate performance
(AUC =~

enhancement patterns in MRI present distinct feature-learning

across architectures 84%), suggesting that lesion
challenges compared with the structural cues in mammography.

In ultrasound imaging, Transformer integration has similarly
yielded advances. Qu et al. (67) developed VGGA-ViT, combining
a VGG-SE CNN for local feature extraction with a ViT for global
context modeling. On BUS Dataset A, the model achieved 88.71%
accuracy and an Fl-score of 90.73%, but performance dropped to
81.72% accuracy on an independent Dataset B, illustrating the
domain shift problem in ultrasound. Ayana et al. (69)
demonstrated that ImageNet-pretrained ViTs, when fine-tuned for
breast imaging, can achieve perfect AUC (100%) for both
mammography and ultrasound, outperforming CNN-based
transfer learning and ViTs trained from scratch. These results
emphasize the critical role of large-scale pretraining in overcoming
data scarcity and improving generalization.

Multimodal approaches represent a promising frontier. Lokaj
et al. (68) introduced MMST-V, which integrates ultrafast DCE-
MRI with clinical and geometrical data using a multimodal sieve
Transformer. This model achieved an AUC of 92.8% *2.7%,
outperforming single-modality imaging (86.3%) and non-
imaging inputs alone (90%). These findings highlight the
diagnostic value of fusing anatomical, functional, and clinical
data to generate richer, more comprehensive representations.

Collectively, the evidence indicates that hybrid CNN-
Transformer pipelines excel in mammography by effectively
combining local texture analysis with global spatial relationships,
while multimodal fusion approaches hold promise for MRI-based
diagnosis. Ultrasound classification remains highly susceptible to
domain shifts, emphasizing the need for robust domain adaptation
strategies. For clinical translation, future research should prioritize
validation on large, diverse, and prospective datasets, and focus on
integrating these models into radiology workflows in ways that

enhance decision-making without increasing cognitive load.

5.4 Transformer-based multi-task learning
in breast imaging

Recent advances in deep learning have markedly improved
breast cancer detection and diagnosis across multiple imaging
modalities, particularly mammography and ultrasound. These
developments hold substantial clinical significance, as early and
accurate identification of malignant lesions can meaningfully
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influence treatment strategies and patient outcomes. The studies
summarized below illustrate how Transformer-based models,
when combined with multi-task learning (MTL) frameworks, are
being applied to address persistent challenges in breast imaging.
In 2021, Aly et al. (70) introduced a hybrid model integrating
YOLO-v3 with ResNet and Inception-style Transformers for mass
detection and classification in mammography using the INbreast
dataset. Their method achieved a detection rate of 89.4%, a
precision of 94.2%, and classification accuracies of 91.0% with
ResNet and 95.5% with InceptionV3. By combining object
detection with deep feature extraction, this approach proved
particularly effective for high-resolution mammograms, where
precise localization and characterization of masses are critical.
Building on this foundation, Su et al. (71) employed YOLOv5L6
enhanced with a LOGO Transformer to perform both detection and
segmentation on the CBIS-DDSM and INbreast datasets. The model
achieved a true positive detection rate of 95.7% and a mean average
precision (mAP) of 65.0%. For segmentation, it reported an
F1-score of 74.5% and an intersection over union (IoU) of 64.0%.
This
Transformer-based models to simultaneously enhance spatial

dual-task framework demonstrates the potential of
localization and boundary delineation, enabling more accurate
lesion characterization in mammographic images.

In breast ultrasound, Rodriguez et al. (72) proposed a multi-task
learning framework with a shared encoder and separate classification
and segmentation heads. Four backbone architectures—VGG-16,
ResNet-50, Swin Transformer V2 Tiny, and VMamba Tiny—were
evaluated on a public BUS dataset. For segmentation, the USwin
backbone achieved the highest mean IoU (85.59%), closely
followed by VMamba (85.25%). For classification, VMamba
attained the highest AUC (96.96%), precision (88.57%), and lowest
false positive rate (4.4%), while ResNet Multi recorded the best true
positive rate (94.87%), accuracy (92.31%), and Fl-score (88.1%).
This study represents the first application of the VMamba
architecture to breast ultrasound and highlights the advantages of
multi-task learning, which can optimize complementary tasks
within a single model.

Despite these encouraging results, several challenges remain
before widespread clinical adoption is feasible. Most datasets
remain relatively small and lack diversity, limiting the
generalizability of trained models across populations, scanners,
and clinical settings. Transformer architectures often require
substantial computational resources, which can hinder real-time
Future

use, particularly in resource-limited environments.

research should focus on

employing
developing computationally efficient model designs to facilitate

improving domain adaptation,

advanced data augmentation strategies, and

scalable, real-world deployment.
6 Hybrid technologies in breast
Imaging

Recent advancements in breast imaging highlight the substantial

potential of combining SSL with Transformer architectures. These
hybrid models effectively address persistent challenges, including
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lesion variability, limited annotated data, and heterogeneous tissue
appearances, across modalities such as ultrasound, MRI, and
mammography. Table 7 provides a comprehensive overview of key
studies, summarizing architectures, imaging modalities, datasets,
tasks, and reported performance outcomes. This section reviews
these developments by task category, highlighting methodological
strengths, comparative results, and clinical implications.

6.1 Segmentation

In ultrasound segmentation, hybrid models such as CSwin-PNet
and HEAT-Net have demonstrated substantial improvements in Dice
scores across multiple datasets, including both high-quality and
lower-quality ultrasound images (Table 7) (73, 74). The integration
of multi-scale Transformer blocks within U-Net frameworks
enhances lesion boundary delineation, effectively addressing
challenges posed by lesion heterogeneity and noisy imaging
conditions. For volumetric data, Liu et al. (79) extended these
concepts to 3D segmentation of automated breast volume scans,
achieving respectable sensitivity but highlighting persistent
difficulties in boundary precision, with an HD95 of 23.2 mm.

These findings indicate that, despite the representational power of

Transformers, accurately capturing fine-grained 3D lesion
morphology remains a challenge.
In dynamic contrast-enhanced MRI, hybrid CNN-

Transformer models such as TR-IMUnet achieve exceptional
segmentation performance (80), illustrating the benefit of
combining local convolutional feature extraction with global
attention mechanisms. However, models addressing multi-task
segmentation and diagnosis, exemplified by PLHN (81), reveal
the complexity of jointly optimizing segmentation accuracy and
Notably, PLHN exhibits
diagnostic recall despite solid Dice scores, underscoring the

malignancy prediction. reduced
trade-offs inherent in multi-objective learning within breast MRI.

In mammography, Transformer-augmented U-Net architectures
such as HTU-Net consistently outperform pure CNN models on
benchmarks including CBIS-DDSM and INbreast, achieving Dice
scores above 92% and accuracies exceeding 95% (82). Nonetheless,
mammographic segmentation remains challenged by tissue overlap
and dense breast patterns, with some models demonstrating
reduced precision metrics (83). These limitations indicate that
further innovations in network architecture and data augmentation
strategies are needed to enhance spatial localization and fully
exploit the potential of hybrid approaches.

6.2 Classification

The classification of breast lesions has similarly benefited from
SSL-Transformer hybrid models, which use large unlabeled
datasets for pretraining and capitalize on Transformers’ capacity to
integrate global contextual information. In ultrasound, classifiers
such as PolyBreastVit and C-TUNet have demonstrated impressive
accuracies exceeding 95%, accompanied by high precision and
recall across benign, malignant, and normal classes (87, 89). These
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results indicate that multi-scale convolutional backbones combined
with Transformer layers can robustly discriminate complex tissue
patterns, even in heterogeneous imaging environments.

In mammography, pyramid Transformer architectures paired
with masked self-attention mechanisms have achieved near-
perfect benign vs. malignant classification (91). However, other
hybrid frameworks report more variable AUC scores, with some
as low as 80% (Table 7) (92). This variability highlights the
critical influence of data quality, preprocessing pipelines, and
the of
reproducibility and generalizability in classification tasks.

importance standardized benchmarks to ensure

While ultrasound classification approaches generally achieve high
sensitivity and specificity, MRI-based classification performance
remains relatively lower in some studies (97), suggesting that
further refinement is needed to capture subtle malignant signatures
within volumetric and functional imaging data. Incorporating
multimodal data fusion and interpretability mechanisms represents

a promising strategy to enhance accuracy and clinical applicability.

6.3 Detection

In breast lesion detection, hybrid SSL-Transformer models have
demonstrated strong performance across both mammography and
ultrasound modalities. For example, YOLOv4 combined with a ViT
backbone achieved high mean average precision on full-field digital
mammography and contrast-enhanced spectral mammography
datasets (101), performing comparably to leading CNN-based
detectors under similar evaluation conditions. In ultrasound,
hybrid detection models have shown precise lesion localization and
classification, with reported accuracies exceeding 97% (84). These
results indicate that integrating Transformer-based attention with
established detection backbones enhances spatial awareness and
reduces false positives, improving overall detection reliability.

Despite these advances, real-time clinical deployment remains
constrained by computational complexity and latency. The
development of lightweight Transformer blocks and optimized
attention mechanisms is essential to enable rapid inference without
compromising  accuracy, particularly in  resource-limited
environments. Additionally, the lack of standardized evaluation
protocols  across  diverse, multi-center  datasets limits
comprehensive assessment of model generalizability. Addressing
these challenges will be critical to translating hybrid SSL-

Transformer detection models into scalable, clinically viable tools.

6.4 Multi-task frameworks and prognostic
prediction

Hybrid SSL-Transformer models have also been extended to
multi-task frameworks that simultaneously address segmentation,
classification, and prognostic prediction. Models such as PLHN
demonstrate the feasibility of combining lesion delineation with
malignancy assessment, though diagnostic recall in some cases
(81).
approaches for predicting pathological complete response following

remains suboptimal In contrast, Transformer-based
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TABLE 7 Hybrid -based breast imaging studies.

Refs Year

(73)

2023

Model

CSwin-PNet (CNN + Swin Transformer
Pyramid Network)

Task

Breast Lesion Segmentation

Modality

Ultrasound

Dataset
Dataset] (High-quality
BUS images), Dataset2
(Lower-quality BUS
images)

10.3389/fradi.2025.1684436

Performance
Dice: 87.25% (Datasetl), 83.68%
(Dataset2),
IoU: 78.61% (Datasetl), 75.11%
(Dataset2)

74

2023

HEAT-Net

Segmentation

Ultrasound

BUSI, DDTI, TN3k,
CAMUS

Dice: 74.1% (BUSI), 82.7%
(DDTI), 89.5% (TN3k), 94%
(CAMUS)

(75)

2024

GED-Net

Segmentation

Ultrasound

DatasetB, DDTI,
OASBUD, BUSI

DatasetB: Acc:98.4%, IoU:68%,
Recall:0.78.3%, Dice:77.4%,
Precision:74.4%;

DDTI: Acc:94%, 10U:62.2%,
Recall:79.1%, Dice:74%,
Precision:73.1%;

OASBUD: Acc:96.7%,
10U:55.7%, Recall:72%,
Dice:67.9%, Precision:74.3%;
BUSIL: Acc:96.1%, 10U:69.4%,
Recall:80.1%, Dice:78.1%,
Precision:74.3%

2024

Human Learning Paradigm Network

Segmentation

Ultrasound

Local (600 images, 30
patients), BUSI, DatasetB

Best variant: 0.76% 1 Dice,
3.14 mm | HD vs. TransUNet
Public dataset: 0.42% 1 Dice,
5.13 mm | HD vs. TransUNet,
Training time | 31.25%

77

2024

BGRD-TransUNet

Segmentation

Ultrasound

BUSI, DatasetB

BUSI: DSC: 71.54%, IoU:
69.76%, Recall:74.27%,
Precision: 72.96%, Acc: 97.52%;
DatasetB: DSC: 75.27%, IoU:
64.92%, Recall: 91.41%,
Precision:69.15%, Acc: 97.38%;

2025

FET-UNet (CNN + Transformer)

Segmentation

Ultrasound

BUSI/UDIAT/BLUIL

Dice: 82.9% (BUSI), 88.9%
(UDIAT), 90.1% (BLUI)

2025

3D segmentation network (i.e., DST-C)

Segmentation

ABVS
Ultrasound

Private ABVS + TDSC-
ABUS 2023

Dice: 73.65%, IoU: 61.10%,
Sensitivity: 91.67%, HD:
23.23 mm

(80)

2022

TR-IMUnet (Transformer + Multi-scale
CNN)

Tumor Segmentation

DCE-MRI

Private dataset (clinical
cases)

Dice: 96.25%, IoU: 90.55%,
Sensitivity: 96.26%, PPV: 94.92%

81

2025

PLHN (Prototype Learning Guided
Hybrid Network)

Tumor
Segmentation + Diagnosis

DCE-MRI

Public & Private DCE-
MRI datasets

AUC: 66.6%, Acc: 63.8%,
Precision: 64.0%, Recall: 33.5%,
F1 Score: 41.3%, Dice: 85.6%

(82)

2025

Hybrid Transformer U-Net (HTU-Net)

Breast Mass Segmentation

Mammography

CBIS-DDSM & INbreast

CBIS-DDSM: Dice: 93.5%, IoU:
87.41%, Acc: 98.43%, Sensitivity:
94.01%, Specificity: 97.18%;
INbreast: Dice: 92.14%, IoU:
86.08%, Acc: 95.16%, Sensitivity:
93.89%, Specificity: 95.11%

(83)

2025

Hybrid CNN + Transformer: CNN
encoder (ResNet/EfficientNet) for local
features — transformer blocks for global
context — U-Net-style decoder for mask
refinement

Breast tumor segmentation

Mammography

INbreast

Acc: 89.40%, Dice: 76.50%,
mloU:73.%, HD95: 4.80 mm

(84)

2023

Dual-input CNN + GAP-guided
Attention Loss

Benign & Malignant
Classification

Ultrasound

BUSI & BUSC

BUSI: Acc: 98.1%, Precision:
98.3%, Recall: 98.2%, F1 Score:
98.2%;

BUSC: Acc: 97.9%, Precision:
97.5%, Recall: 98.1%, F1 Score:
97.8%

(28)

2023

HoVer-Transformer

ROI-Free Breast Cancer
Diagnosis

Ultrasound

GDPH & SYSUCC (2,405
images)

Acc: 89.3%, AUC: 92.4%,
Sensitivity: 92.6%, Specificity:
83.6%

(85)

2024

CNN + Multi-scale Transformer
(Ensemble)

Normal, Benign, Malignant
Classification

Ultrasound

BUSI

Acc: 98.70%, F1 Score: 98.72%

(86)

2024

Dynamic Pooling + Hybrid ViT-CNN

Benign & Malignant
Classification

Ultrasound

BUS sequences

Acc: 93.78%

87)

2024

PolyBreastVit: hybrid model combining
PolyNet (multi-scale CNN) for detailed

Three-way classification
(benign/malignant/normal)

Ultrasound

880 high-definition
ultrasound images from

Overall acc: 98%; benign
precision/recall: 98%/98%;
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TABLE 7 Continued

10.3389/fradi.2025.1684436

Refs | Year Model Task Modality Dataset Performance
local feature extraction and Vision 500 women (ages 25-75); | malignant precision/recall: 96%/
Transformer for global context three classes; extensive 96%; normal precision/recall:
preprocessing and 100%/100%; outperforms VGG-
augmentation 16, Inception V3, ResNet-50
across accuracy, precision, recall,
F1, AUC
(88) 12025 | CNN-Transformer + Segmentation Benign & Malignant Ultrasound Breast & Thyroid datasets | Dice: 83.62%, AUC: 95.36%;
Knowledge Classification
(89) 2025 | C-TUNet (CNN + Transformer) Benign & Malignant Ultrasound BUSI Acc: 96.7%, AUC: 97.1%, F1
Classification Score: 96.5%

(90) 2025 | CNN_VIT (Hybrid CNN + ViT) Benign & Malignant Ultrasound KAUH-BCUSD (6,159 Acc: 95.12%, Recall: 97.54%, F1
Classification images, 5,000 cases) Score: 95.24%

(28) | 2022 | Semi-supervised ViT + ATS Benign & Malignant Ultrasound & BUSI & BreakHis BUSI: Acc: 96.1%, AUC: 97.2%;
Classification Histopathology BreakHis: Acc: 95.8%, AUC

96.9%

(91) | 2024 | Pyramid Transformer (PTr) + SAM Benign & Malignant Mammography | INbreast Acc: 99.96%, AUC: 99.98%
Classification

(92) 2024 | HybridMammoNet: hybrid CNN-ViT Benign & Malignant Mammography | CBIS-DDSM AUC:80%; Fl-score: 65%
with cross-view transformer layer linking | Classification
ResNet18/VGG16 feature maps before
pooling

(93) | 2025 | Hybrid Transformer Benign & Malignant Mammography | 1,200 paired exams from | Acc: 90.80%, Sensitivity: 90.80%,

Classification 3 sites Precision: 90.80%, Specificity:
90.88%, F1 Score: 90.95%, AUC:
92.58%

(94) 12025 | Hybrid CNN + ViT framework (local Benign & Malignant Mammography | CLAHE-enhanced CNN + ViT: acc:90.1%;
feature extractor via CNN, global context | Classification mammograms from XceptionNet: acc:100% (likely
via Vision Transformer); compared with Kaggle (balanced benign/ | overfitting)

DenseNet, Inception, SE-ResNet, malignant)
XceptionNet
(95) 12023 | Dual-Input Transformer PCR Prediction (NAC Ultrasound 484 cases from two Acc: 93.9%, AUC: 96%, F1 Score:
Response) clinical centers 92.7%

(96) 2024 | EPTM (Efficient CNN + Vision Malignancy Prediction Ultrasound UDIAT BUS, Baheya AUC: 93.2% (UDIAT), 98%
Transformer + Choquet Integral Fusion) Hospital (Baheya)

97) 2023 | Feature extraction via SEResNeXt; Breast cancer detection MRI Breast MRI scans (dataset | Acc: 96%; F1 score: 61%
attention-based classification with Swin | (benign vs. malignant) size and source not
Transformer specified)

(98) 2024 | Swin Transformer + CNN Slice Selection + Tumor Ultrasound NTUH (807 patients) Slice Selection: Top-1 Acc:

Diagnosis 74.35%, Top-5 Acc: 97.27%;
Diagnosis: Acc: 79.85%,
Sensitivity: 80.13%, Specificity:
79.80%, AUC: 86.41%
(99) 12024 | Spatio-Temporal Memory Net Needle Tracking & Ultrasound Real-time biopsy video | Dice: 81.7%, IoU: 73.1%,
Segmentation (11 patients) Precision: 86.3%, Recall: 80.3%,
F1 score: 83.2%

(100) | 2024 | ACSNet (UNet-based with DSAModule, | Segmentation and Ultrasound Two publicly available Segmentation: Dice: 84.90%,
Gate Units, Channel Attention) Classification BUS datasets Jaccard: 78.62%, 95HD:

13.04 mm, ASD: 3.45 mm;
Classification: Acc: 94.44%,
Precision: 94.61%, Recall:
93.86%

(101) | 2024 | YOLOv4 backbone for mass detection Breast mass detection & CESM & FFDM | INbreast; Detection mAP: 98.69%
coupled with a ViT transformer for benign/malignant Mammography | CDD-CESM (INbreast), 81.52% (CE-CESM),
classification classification 71.65% (DM-CESM);

Classification Acc: 95.65%
(INbreast), 97.61% (CE-CESM),
80% (DM-CESM)

neoadjuvant chemotherapy have achieved high accuracy and AUC

(95), indicating that attention mechanisms can effectively capture

imaging biomarkers associated with treatment response.

Multi-task learning in breast imaging requires careful

architectural design to balance competing objectives and avoid

performance trade-offs. Additionally, the clinical interpretability
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of these complex models is essential for adoption. Incorporating

explainability techniques, such as attention rollout or Grad-

CAM, can provide insights into model decision-making and

help radiologists understand the rationale behind predictions,

thereby supporting trust and facilitating integration into

clinical workflows.
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6.5 Synthesis and future directions

The studies reviewed collectively demonstrate that SSL

pretraining accelerates model convergence and enhances

robustness across diverse breast imaging modalities, while
Transformer architectures contribute essential global context
modeling and multi-scale feature integration (Table 7). Despite
these advances, several research gaps remain. Standardized multi-
center, multi-modality benchmark datasets are limited, restricting
objective comparisons and impeding clinical translation.

Future research should focus on developing unified SSL
frameworks that are adaptable across imaging types and incorporate
domain adaptation strategies to mitigate cross-center variability. The
high computational demands of Transformer architectures also
highlight the need for efficient attention mechanisms to enable real-
time, point-of-care deployment. Equally important is the integration
of interpretability directly within model architectures, ensuring
that decision-making processes are transparent and fostering
clinician trust. Addressing these challenges through collaborative,
interdisciplinary efforts will be critical to realizing the full potential
of SSL-Transformer hybrid models in breast imaging, paving the
way for scalable, robust, and clinically actionable AI solutions.

7 Discussion
7.1 Key research findings

The recent evolution of AI in breast imaging has been
marked by a decisive shift toward SSL and Transformer-
based architectures, fundamentally reshaping approaches to
segmentation, classification, and detection tasks. The studies
reviewed consistently demonstrate SSL’s capacity to leverage large
quantities of unlabeled imaging data, reducing reliance on
extensive manual annotation while maintaining—or even
enhancing—performance in downstream tasks. This is particularly
valuable in breast imaging, where annotating small, heterogeneous
lesions is time-consuming and prone to inter-observer variability.

In segmentation, SSL approaches particularly those integrating
context restoration, contrastive pretraining, or pseudo-label
refinements show notable gains in delineating lesion boundaries in
challenging modalities such as ultrasound and MRI. Contrastive
learning methods effectively capture discriminative features with
relatively small labeled datasets, though they are sensitive to
augmentation strategies and may underperform in the presence of
high
reconstructing missing image regions and have demonstrated

imaging variability. Masked autoencoders excel at
strong performance in mammography; however, they typically
require larger unlabeled datasets and longer training times.
Generative SSL approaches, such as GAN- or diffusion-based
tasks,

representation learning, though their clinical realism and stability

pretext offer potential for data augmentation and

remain limited. Collectively, these findings suggest that the optimal

SSL strategy is likely modality- and dataset-dependent.
Classification tasks similarly benefit from SSL-pretrained

encoders, particularly when combined with domain-specific
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that real-world

variability. The effectiveness of SSL in classification depends

augmentation strategies replicate imaging
critically on aligning pretext task design with the distinct
imaging characteristics of each modality.

Transformer-based architectures have emerged as equally
transformative, providing powerful mechanisms to model global
dependencies and multi-scale contextual relationships. These
capabilities are vital for detecting microcalcifications, subtle
spiculations, and complex lesion morphologies. Evidence indicates
that ViTs

computationally intensive and less robust on small datasets. Swin

offer strong global feature modeling but are
Transformers, with hierarchical window-based attention, improve
scalability and efficiency, making them more suitable for high-
resolution breast imaging tasks. Hybrid CNN-Transformer models
strike a balance by leveraging CNNs for local texture extraction
while using Transformers for global reasoning, often achieving
competitive accuracy with reduced computational burden.
Clinically, hybrid models may represent the most practical
compromise, though prospective validation remains limited.
According to the reviewed literature, several converging trends
are apparent. Researchers are increasingly focused on reducing
annotation requirements through weak or scribble supervision,
enhancing model interpretability via attention visualization, and
incorporating multimodal data to overcome the limitations of
single-modality analysis. These innovations are progressively
with
including robustness across diverse patient populations and

aligning algorithmic performance clinical priorities,
imaging platforms, and the ability to deliver reproducible results

under varied acquisition conditions.

7.2 Challenges and limitations

SSL and Transformer-based architectures offer transformative
potential in breast imaging; however, several recurring challenges
currently impede their widespread clinical adoption. One of the
most significant hurdles is the substantial computational demand
of Transformer models. Their quadratic complexity relative to
input size necessitates extensive memory and processing power,
limiting real-time inference in clinical settings without access to
high-performance GPUs or advanced hardware. Techniques such
as sparse attention, token pruning, and hybrid CNN-Transformer
architectures offer pathways to reduce computational complexity,
yet these approaches require rigorous validation within clinical
workflows to ensure diagnostic accuracy is preserved, particularly
when deployed on standard hospital equipment.

The effectiveness of SSL critically depends on the design of
pretext tasks tailored to specific breast imaging modalities.
Inadequate task selection can produce suboptimal feature
representations that fail to capture clinically relevant patterns,
SSL
requires access to large, diverse unlabeled datasets, which are

undermining downstream performance. Furthermore,
often constrained by privacy regulations and institutional
barriers, limiting model robustness and generalizability.

Domain shifts arising from variability in imaging protocols,

scanner manufacturers, and patient demographics remain a
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formidable challenge. Many studies relied on relatively small,
single-center datasets without external validation, restricting
generalizability. Standardized federated learning frameworks
could address these issues by enabling collaborative model
training without compromising patient privacy. Concurrently,
the development of diverse, harmonized datasets reflecting real-
world variability, alongside rigorous external validation, is
essential to ensure fairness and minimize bias.

Interpretability While
Transformer attention maps can highlight influential regions, their

remains a persistent limitation.
clinical relevance is often ambiguous. CNN-based saliency methods,
such as Grad-CAM and SHAP, face similar challenges. The absence
of standardized visualization frameworks undermines clinician trust
and complicates regulatory approval, as agencies such as the FDA
and EMA require both explainability and demonstrable safety.

Reproducibility and clinical applicability are further constrained
by the predominance of retrospective, single-center studies.
Annotation quality was inconsistently reported, with some studies
relying on a single annotator or omitting details altogether. Only a
minority of studies provided open-source code or pretrained
models, restricting transparency and independent verification.
Evaluation metrics were often incompletely reported, with some
studies presenting only a single measure and omitting confidence
intervals or statistical comparisons. Prospective, multi-institutional
clinical trials embedding Al tools into real-world workflows remain
scarce, limiting insights into their impact on diagnostic efficiency,
clinician confidence, and patient outcomes.

Collectively, these limitations highlight the critical need for
coordinated data sharing, standardized evaluation metrics,
reproducibility practices, and multi-site prospective validation to
ensure that SSL and Transformer-based methods can transition
from promising research tools to clinically reliable systems.

7.3 Strategies for clinical translation and
integration

Successful clinical translation of AI models, including
Transformer architectures and SSL frameworks, requires more
than high technical performance. It demands careful alignment
with clinical workflows and the real-world needs of radiologists,
oncologists, and multidisciplinary healthcare teams. Al tools that
deliver actionable, interpretable outputs and integrate seamlessly
with Picture Archiving and Communication Systems (PACS)
and electronic health records have the highest potential for
adoption. Co-designing Al interfaces with clinicians is essential
to ensure these tools augment, rather than disrupt, diagnostic
workflows and align with established clinical reasoning patterns.

Interpretability is pivotal for building clinician trust and
facilitating regulatory approval. Recent strategies advocate
combining attention maps with uncertainty quantification and
counterfactual explanations to produce clinically meaningful
insights. These approaches require validation in breast cancer
imaging, emphasizing diagnostically relevant features such as
lesion morphology and tissue heterogeneity that resonate with

radiologists. Embedding explainable AI frameworks directly into
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user interfaces allows clinicians to verify AI suggestions,
mitigating both skepticism and overreliance.

Beyond interface design, minimizing workflow disruption and
optimizing computational efficiency to enable near real-time
inference are critical. Techniques such as edge computing,
hardware acceleration, and model compression can overcome
latency and resource constraints, facilitating deployment even in
resource-limited settings. Addressing interoperability challenges
posed by heterogeneous hospital IT systems and ensuring
compliance with data standards are also essential for scalable
integration. Ongoing clinician education and training in Al
capabilities and limitations further promote appropriate adoption.
Incorporating patient perspectives and addressing ethical concerns
—such as bias and informed consent—are increasingly recognized
as integral to successful integration.

Embedding AI models into prospective, multi-center clinical
trials is necessary to rigorously evaluate their impact on diagnostic
accuracy, workflow efficiency, clinician confidence, and patient
outcomes. Such evidence is foundational for informing regulatory
decisions and reimbursement policies. Establishing standardized
protocols for continuous monitoring, quality assurance, and post-
safety and
performance. Robust privacy and data governance frameworks are

deployment model updates ensures sustained
equally imperative. Federated learning and differential privacy offer
promising strategies for collaborative model training without
sharing raw patient data, effectively addressing ethical and legal
constraints. Successful clinical translation depends on integrating
these privacy-preserving approaches with strong cybersecurity
measures and transparent data stewardship, fostering trust among

clinicians and patients alike.

7.4 Future research directions

To fully realize the potential of Al in breast cancer imaging,
future research should strategically address challenges related to
computational efficiency, robustness, interpretability, and clinical
validation. Advanced model compression techniques, including
knowledge distillation, low-rank factorization, and pruning,
tailored specifically for medical imaging data, could reduce
computational demands while preserving diagnostic accuracy.
Further development of hybrid architectures that combine
CNNs’ proficiency in local feature extraction with transformers’
capacity for global context modeling represents a promising
avenue. Dynamic inference strategies, which adaptively allocate
computational resources based on image complexity, may
optimize efficiency in real-time clinical environments but
require validation in prospective workflows.

Robustness remains a critical barrier to clinical deployment.
Research should expand domain adaptation methods, including
adversarial training and contrastive learning, with rigorous
evaluation across diverse datasets that reflect broad imaging
protocols and patient demographics. Federated learning approaches
also require refinement to handle inter-institutional heterogeneity,
employing communication-efficient algorithms and personalized

model aggregation to maintain diagnostic reliability while
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safeguarding patient privacy. Building large, diverse, and harmonized
datasets with standardized acquisition and annotation protocols,
coupled with comprehensive external validation, will be essential to
mitigate domain shifts and reduce bias.

Interpretability may benefit from multi-layered frameworks
that link pixel-level explanations with higher-level clinical
feature representations, enhancing alignment with established
medical knowledge. Incorporating uncertainty quantification
alongside interpretability techniques could enable clinicians to
assess confidence in AI outputs, fostering more informed
decision-making. Expanding multi-modal integration beyond
imaging to include pathology, genomics, and clinical data may
yield richer, personalized diagnostic and prognostic insights,
better reflecting the complexity of breast cancer.

Large-scale, prospective, multi-center clinical trials are
urgently needed to evaluate not only diagnostic accuracy but
also the impact of AI tools on clinical workflow, radiologist
confidence, and patient outcomes. Such evidence will be critical
for regulatory approval and incorporation into clinical
guidelines. Ethical principles should be embedded throughout
both

monitoring, transparent documentation of model updates, and

research and deployment, including ongoing bias
rigorous data governance frameworks to protect patient rights
and ensure equitable access to Al benefits.

Finally, research should explore the dynamics of human-AI
interaction, examining how clinicians engage with AI tools, how
workflows evolve, and the implications for healthcare disparities
and access. Incorporating socio-technical frameworks will be
essential to ensure Al innovations translate into practical,

equitable, and sustainable improvements in breast cancer care.

8 Conclusion

This study reviews the emerging potential of SSL and
transformer-based architectures in breast imaging, demonstrating
their ability to enhance performance across lesion detection,
classification, and segmentation tasks, particularly in scenarios with
limited annotations. These approaches offer notable advantages in
label efficiency, cross-modality adaptability, and robustness under
data-scarce conditions. However, fully realizing their clinical
impact depends on addressing persistent challenges, including the
limited availability of large and diverse datasets, vulnerability to
shifts,
interpretability, high computational demands, and the absence of

domain incomplete assessments of fairness and
prospective validation frameworks.

Strategic directions for future research include the development
of federated, vendor-agnostic SSL frameworks to enable privacy-
preserving pretraining, along with parameter-efficient adaptation
techniques for deployment in diverse clinical environments.
Integrating Al tools within human-in-the-loop workflows can build
clinician trust, while establishing standardized, bias-audited
benchmarks will support reproducibility and fairness. Robust
uncertainty quantification and continual learning protocols could
further facilitate safe adaptation to evolving imaging technologies

and heterogeneous patient populations.
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Bridging the gap from promising research prototypes to
clinically reliable tools will require coordinated multi-institutional
collaboration, rigorous external validation, prospective clinical trials,
and strong ethical oversight. Such concerted efforts are essential to
ensure that SSL and transformer-based innovations meaningfully
enhance the accuracy, efficiency, and equity of breast cancer care.
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