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Breast cancer is the most common malignancy among women worldwide, and 

imaging remains critical for early detection, diagnosis, and treatment planning. 

Recent advances in artificial intelligence (AI), particularly self-supervised 

learning (SSL) and transformer-based architectures, have opened new 

opportunities for breast image analysis. SSL offers a label-efficient strategy 

that reduces reliance on large annotated datasets, with evidence suggesting 

that it can achieve strong performance. Transformer-based architectures, 

such as Vision Transformers, capture long-range dependencies and global 

contextual information, complementing the local feature sensitivity of 

convolutional neural networks. This study provides a comprehensive overview 

of recent developments in SSL and transformer models for breast lesion 

segmentation, detection, and classification, highlighting representative studies 

in each domain. It also discusses the advantages and current limitations of 

these approaches and outlines future research priorities, emphasizing that 

successful clinical translation depends on access to multi-institutional 

datasets to ensure generalizability, rigorous external validation to confirm 

real-world performance, and interpretable model designs to foster clinician 

trust and enable safe, effective deployment in clinical practice.
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1 Introduction

Breast cancer is the most common malignancy among women worldwide and remains a 

leading cause of cancer-related mortality (1). Early and accurate detection is essential for 

guiding treatment decisions, improving clinical outcomes, and increasing patient survival 

(2). Medical imaging modalities, including mammography, ultrasonography, and magnetic 

resonance imaging (MRI), play critical roles in screening, diagnosis, and monitoring of 

breast lesions.

Mammography is the established gold standard for population-based breast cancer 

screening due to its cost-effectiveness and high spatial resolution, which enables early 

detection of malignancy indicators such as microcalcifications and architectural 

distortions (3). Its effectiveness is bolstered by standardized protocols and widespread 

availability, supporting its central role in early detection programs globally. However, 

mammography relies on low dose ionizing radiation, raising concerns about 

cumulative exposure, and requires breast compression, which can cause patient 

discomfort. More importantly, its sensitivity decreases significantly in women with 
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dense breast tissue, where overlapping fibroglandular tissue can 

obscure lesions and increase false-negative rates.

To address these limitations, breast ultrasonography is often 

used as a complementary modality, especially in women with 

dense breasts (4). Ultrasound offers real-time imaging without 

ionizing radiation and effectively differentiates cystic from solid 

lesions. However, its diagnostic accuracy is highly operator- 

dependent, and variability in image quality can lead to 

inconsistent interpretations.

MRI serves as an advanced adjunctive tool, particularly valuable 

for high-risk populations and preoperative staging (5). It offers 

superior soft-tissue contrast and enhanced sensitivity for detecting 

invasive cancers, especially in dense breast tissue. Contrast- 

enhanced MRI can also visualize angiogenic activity associated with 

malignancy. Despite these advantages, broader clinical adoption 

remains limited by high cost, limited accessibility, lengthy 

examination times, and concerns regarding the safety of 

gadolinium-based contrast agents.

Artificial intelligence (AI), particularly convolutional neural 

networks (CNNs), has recently attracted significant attention in 

breast imaging, with applications in lesion segmentation, 

classification, detection, and risk stratification (6–8). Encoder– 

decoder architectures such as U-Net preserve fine-grained spatial 

information through skip connections (9), while deep residual 

networks (10) and densely connected networks (11) address 

vanishing gradient issues, enabling more effective hierarchical 

feature extraction. A key limitation of conventional supervised 

CNNs, however, is their reliance on large annotated datasets, which 

are costly to produce and often restricted by privacy regulations. To 

address this challenge, self-supervised learning (SSL) has emerged 

as a label-efficient strategy that can be applied across CNNs, 

transformers, and hybrid architectures (12). SSL uses surrogate 

tasks such as inpainting, context prediction, rotation, or contrastive 

learning on unlabeled data to pretrain models on unlabeled data. 

These pretrained models can then be fine-tuned on smaller labeled 

datasets, achieving competitive downstream performance while 

reducing annotation requirements.

Recently, Transformer-based models, particularly Vision 

Transformers (ViTs), have been adapted for breast imaging to 

overcome the limited receptive fields of CNNs (13). By employing 

multi-head self-attention mechanisms, ViTs capture long-range 

dependencies and global contextual information, which are 

especially valuable for detecting diffuse lesions and subtle 

architectural distortions. Although attention maps from ViTs can 

highlight image regions that in;uence predictions, similar 

interpretability can also be achieved in CNNs through saliency- 

based methods such as Grad-CAM and SHAP. Hybrid architectures 

that integrate CNN backbones with transformer modules have 

demonstrated synergistic performance, combining the local feature 

sensitivity of convolutional layers with the global contextual 

reasoning enabled by self-attention (14). This fusion represents a 

promising direction for advancing AI-driven breast cancer imaging.

This study reviews recent advances in SSL and Transformer- 

based approaches in breast imaging, addressing key tasks including 

segmentation, detection, and classification across mammography, 

ultrasound, and MRI. The study also addresses current challenges 

and limitations, including annotation scarcity, image heterogeneity, 

and barriers to clinical implementation. The following research 

questions are addressed: 

1. How can SSL pretraining strategies be optimized to learn 

robust and transferable feature representations from 

unlabeled breast imaging datasets, thereby reducing reliance 

on large-scale labeled data?

2. Which self-supervised pretext tasks most effectively enhance 

downstream performance in breast imaging applications— 

such as lesion detection, segmentation, and classification— 

across diverse imaging modalities?

3. To what extent do ViTs and hybrid CNN–Transformer 

architectures capture global contextual information in multi- 

modal breast images, and how does this impact diagnostic 

accuracy compared to purely convolutional models?

4. Can integrating SSL with Transformer-based architectures 

mitigate modality-specific artifacts and improve cross-modal 

data harmonization, thereby enabling more consistent and 

reproducible AI-driven interpretations?

5. What practical and regulatory challenges must be addressed to 

implement SSL–Transformer frameworks in routine clinical 

work;ows, particularly regarding model interpretability, 

computational efficiency, and clinician adoption?

The remainder of this paper is organized as follows. Section 2 presents 

the materials and methods applied in this study. Section 3 provides an 

overview of foundational SSL, Transformer, and hybrid architectures. 

Sections 4 through 6 present application-specific findings in 

segmentation, detection, and classification, respectively. Section 7

discusses current limitations, clinical implications, and future 

research directions. Finally, Section 8 concludes the review.

2 Materials and methods

This study offers a summary of key research that uses SSL and 

transformer-based models in breast cancer imaging. Its goal is to 

provide an overview of current methods, datasets, types of 

supervision, reported results, as well as the main challenges 

and limitations.

2.1 Eligibility criteria

Peer-reviewed studies were considered eligible if they applied 

SSL or transformer-based architectures to breast cancer imaging 

tasks, including classification, detection, or segmentation. 

• Definition of SSL models: In this review, SSL refers to approaches 

in which model representations are learned from unlabeled data 

through pretext tasks (e.g., contrastive learning, masked image 

modeling, clustering-based objectives, rotation prediction, or 

inpainting) prior to fine-tuning on downstream diagnostic tasks.

• Supervised transformers: Supervised transformer models 

were included only when directly relevant to breast 

imaging tasks, to contextualize the broader adoption of 

transformer architectures.
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• Exclusion criteria: Studies were excluded if they (i) employed 

only conventional supervised convolutional neural networks 

(CNNs) without SSL or transformer components, (ii) did not 

report empirical results on breast imaging datasets, or (iii) 

were reviews, editorials, or conference abstracts lacking 

full data.

2.2 Information sources and search 
strategy

A literature search was conducted in PubMed, Scopus, IEEE 

Xplore, and Web of Science for English-language publications 

published between January 2015 and June 2025. Boolean logic was 

used to combine three conceptual domains: breast cancer 

pathology, imaging modalities, and machine learning approaches. 

The search strategy included terms such as (“breast cancer” OR 

“breast tumor” OR “breast lesion”) AND (“mammography” OR 

“ultrasound” OR “MRI”) AND (“self-supervised learning” OR 

“SSL” OR “representation learning”) AND (“transformer” OR 

“vision transformer” OR “ViT” OR “attention mechanism”).

2.3 Study selection

All retrieved records were imported into EndNote, and duplicates 

were removed. Titles and abstracts were then screened for relevance, 

followed by full-text review. As this is a narrative review, the screening 

process was conducted by the author. In total, 761 records were 

identified: 155 from PubMed, 249 from Scopus, 249 from IEEE 

Xplore, and 108 from Web of Science. After duplicate removal and 

relevance screening, 137 full-text articles were assessed, of which 85 

met the inclusion criteria.

2.4 Data extraction and synthesis

Key study characteristics were extracted, including the 

authors, year of publication, imaging modality, dataset size 

and source, supervision regime, external validation status, 

model type, downstream task (classification, detection, or 

segmentation), and reported performance metrics (e.g., AUC, 

Dice, sensitivity, specificity). Where available, comparisons with 

baseline methods were also recorded. The data were synthesized 

narratively and summarized in structured tables (Tables 1–3). 

Missing information was indicated as “NR” (Not Reported).

3 Related work

3.1 Self-supervised learning frameworks

SSL has emerged as a transformative paradigm in machine 

learning, enabling models to learn meaningful feature 

representations from unlabeled data by exploiting intrinsic image 

patterns and structures (33). Unlike traditional supervised 

approaches that rely heavily on manual annotation, SSL employs 

surrogate or “pretext” tasks—such as predicting missing image 

regions, reconstructing corrupted inputs, or aligning multiple views 

of the same sample—to guide models toward learning semantically 

rich embeddings. By solving these tasks, SSL frameworks capture 

hierarchical features that transfer effectively to diagnostic 

applications, including classification, detection, and segmentation.

In medical imaging, SSL methodologies are commonly grouped 

into three categories: contrastive, non-contrastive, and generative. 

Contrastive methods (e.g., SimCLR, MoCo) encourage 

representation learning by maximizing agreement between 

differently augmented views of the same image while minimizing 

similarity to unrelated samples, typically using an InfoNCE loss. 

Non-contrastive approaches (e.g., BYOL, SimSiam) eliminate the 

need for negative pairs by employing dual-network architectures 

that align representations without momentum encoders. 

Generative strategies, such as denoising autoencoders and 

generative adversarial networks, aim to model the underlying data 

distribution by reconstructing or synthesizing data. These 

approaches often improve robustness to noise and help handle class 

imbalance, particularly for underrepresented lesion types.

In breast imaging, SSL-based models have been increasingly 

adopted to address challenges such as limited data availability, high 

annotation costs, and inter-observer variability. Contrastive 

learning has demonstrated improvements in lesion classification for 

mammography and ultrasound, enhancing generalization from 

relatively small datasets. Non-contrastive pretraining on unlabeled 

ultrasound data has produced robust feature encoders that require 

minimal fine-tuning for downstream tasks. Generative SSL 

techniques have been applied to tasks such as noise reduction and 

synthetic oversampling, improving classifier performance for rare 

lesion categories. Building on this foundation, Section 4 explores 

how SSL has been applied in breast imaging across classification, 

detection, and segmentation tasks.

3.2 Transformers

Transformers have revolutionized computer vision by 

modeling long-range dependencies through self-attention 

mechanisms (34). Unlike CNNs, which rely on local receptive 

fields and translation equivariance, transformers compute global 

relationships among all input elements, enabling richer 

contextual representation. In breast imaging, this capability is 

particularly advantageous for identifying lesions, subtle 

architectural distortions, and bilateral asymmetries.

Vision Transformers (ViTs) adapt the original Transformer 

architecture for image analysis by partitioning images into fixed- 

size patches, linearly embedding them, and processing the resulting 

sequence through stacked encoder layers (35). This design 

facilitates global context modeling from early stages but lacks the 

inductive biases of CNNs, such as locality and hierarchical feature 

extraction. Consequently, ViTs typically require large annotated 

datasets and significant computational resources—constraints that 

are especially pronounced in medical imaging.
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To overcome these limitations, hierarchical variants such as the 

Swin Transformer have been developed (36). Swin Transformers 

divide images into non-overlapping windows and apply local self- 

attention, using a shifted-window mechanism to enable cross- 

window information ;ow. This approach reduces computational 

cost and supports multi-scale feature learning, making it suitable 

for high-resolution breast imaging tasks such as mass segmentation 

and tissue classification. Not all Transformer models are self- 

supervised. This review includes only architectures incorporating 

SSL pretraining—such as masked autoencoders, contrastive 

learning, or generative modeling—while excluding purely 

supervised variants to maintain scope consistency and avoid 

con;ating learning paradigms.

Transformer-based frameworks have shown strong performance 

across breast imaging modalities. For instance, UNETR (37) and 

TransUNet (38) integrate Transformer encoders into U-Net–style 

segmentation frameworks, enabling precise lesion boundary 

delineation in MRI and ultrasound. T-SVDNet (39) exploits 

higher-order prototypical correlations for domain adaptation, 

improving generalization across heterogeneous datasets. Although 

attention maps can enhance model interpretability, comparable 

visualization techniques such as SHAP and Grad-CAM remain 

applicable to CNNs.

In summary, Transformer architectures offer powerful tools 

for breast imaging analysis, particularly when combined with 

SSL pretraining. Their capacity for global context modeling 

complements the local feature sensitivity of CNNs, and hybrid 

designs consistently outperform traditional architectures in 

segmentation, classification, and detection tasks. Nevertheless, 

challenges persist regarding data requirements, computational 

efficiency, and clinical integration—issues addressed in 

subsequent sections.

3.3 Hybrid models

Hybrid CNN–Transformer models are designed to leverage 

the complementary strengths of CNNs and Transformer-based 

architectures within a unified learning framework (36). They 

exploit the inherent inductive biases of CNNs—like translation 

equivariance and localized receptive fields—to efficiently extract 

low-level, hierarchical features while keeping computational costs 

low. Simultaneously, they incorporate the global context modeling 

strengths of Transformers, which are critical for capturing long- 

range dependencies and complex spatial relationships. This two- 

stage approach creates a representational synergy: CNNs encode 

fine-grained textures and structural patterns, while Transformers 

integrate information across the entire image.

In typical hybrid architecture, the initial stage comprises a 

deep CNN backbone that processes raw input images into 

multi-scale feature maps (37). The early convolutional layers 

capture local contrasts and edge features, which are particularly 

important for detecting small or subtle lesions. This early 

processing also reduces spatial resolution, helping to limit the 

computational cost of applying self-attention to high-resolution 

medical images. Once compressed, spatial regions are projected T
A
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into fixed-dimensional token vectors, and positional embeddings 

are added to preserve spatial relationships.

The second stage involves one or more Transformer encoder 

blocks that process these tokenized representations. In each block, 

multi-head self-attention captures pairwise dependencies between 

tokens, enabling the model to prioritize features based on broader 

contextual relevance. This is particularly advantageous in breast 

imaging, where assessing bilateral symmetry and connecting distant 

yet clinically related regions is often essential. Layer normalization 

and feed-forward networks further refine these globally informed 

features, which can then be reconstructed into spatial maps to 

support downstream tasks such as segmentation, detection, 

and classification.

The integration of CNN and Transformer components varies 

across hybrid architectures. In sequential designs, CNNs first 

extract features, which are then processed by Transformers for 

global reasoning. This simplifies information ;ow but adds 

overhead during tokenization of CNN outputs. In contrast, 

dual-stream architectures process inputs simultaneously through 

separate CNN and Transformer branches, merging outputs via 

learned fusion mechanisms to reconcile local and global 

representations. While this enhances representational diversity, it 

also increases model complexity and training demands. A third 

approach embeds lightweight attention modules within CNN 

layers, expanding the receptive field without incurring the full 

computational cost of dedicated Transformer modules. This 

strikes a balance between efficiency and expressive power.

To further enhance performance in high-resolution breast 

imaging, recent developments have introduced localized and 

hierarchical attention mechanisms (38, 39). For instance, the 

Swin Transformer uses a shifted window mechanism, restricting 

self-attention to overlapping local regions (38).

This reduces attention complexity from quadratic to linear in 

relation to token count, making it feasible for megapixel-scale 

scans, such as digital mammography and MRI. Hierarchical 

attention frameworks further align with radiologists’ work;ows, 

aggregating information from small regions of interest to form 

a holistic view, mimicking a zoom-in/zoom-out interpretive 

process (39). Moreover, spatially adaptive tokenization allocates 

more tokens to diagnostically significant regions, directing 

computational resources where they matter most, enhancing 

both accuracy and efficiency.

4 Self-Supervised learning in breast 
imaging

This section reviews the application of SSL frameworks to 

breast imaging tasks, including segmentation, classification, and 

detection. Figure 1 illustrates a representative SSL pipeline, 

showing how unlabeled data are exploited during pretraining 

and subsequently fine-tuned for specific diagnostic tasks. The 

following subsections provide a summary of the included 

studies, highlighting the employed model strategies, imaging 

modalities, specific tasks, datasets, and performance results.T
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4.1 SSL-based breast image segmentation

SSL has been increasingly applied to breast lesion segmentation 

across mammography, ultrasound, and MRI, aiming to reduce 

annotation burden while improving model robustness. Table 1

summarizes representative studies, including dataset characteristics, 

supervision regimes, and reported performance.

Early work by Saidnassim et al. (15) introduced a BYOL-based 

transformer for mammographic lesion segmentation. Using 1,227 

mammograms from UMC Hospital (Kazakhstan), their SSL 

pretraining improved validation accuracy by 16.7% and reduced 

loss by 12.5% compared with supervised baselines, highlighting 

the potential of contrastive SSL in dense breast tissue.

In ultrasound imaging, Mishra et al. (16) developed Closely 

Related SSL (CR SSL), tailored to the low resolution and noise 

inherent in breast ultrasound. On the BUS dataset, CR SSL 

achieved Dice scores up to 82.1% and Jaccard indices above 80%, 

representing 10%–20% improvements over supervised CNNs. 

Similarly, Zhang et al. (17) combined SSL with transformer-based 

architectures (DIGN + APMN + STA-UNet), reporting Dice 

improvements of 2%–4% and Hausdorff distance reductions of 

30%–38% on the Mendeley and SIIT ultrasound datasets.

Semi-supervised approaches have also been explored. El Sayed 

et al. (18) proposed CT Match, a dual-branch CNN–Transformer 

framework enforcing cross-architectural consistency. On 780 in- 

house ultrasound images and 163 BUS images, CT Match achieved 

Dice scores of 78.9% and 84.9%, respectively, outperforming 

supervised baselines despite limited labeled data.

In MRI, Meng et al. (19) introduced a dual-module SSL paradigm 

combining global content perception with peritumoral context 

restoration. Evaluated on 229 dynamic contrast-enhanced MRI 

cases, the model achieved a Dice score of 87.8% and HD95 of 

7.47 mm, surpassing multiple SSL and semi-supervised baselines.

Weakly supervised SSL has also demonstrated promise. 

NguyenTat et al. (20) proposed QMaxViT-UNet+, a query- 

guided transformer trained with scribble annotations. Despite 

the absence of dense pixel-level labels, the model achieved a 

Dice score of 69.4% on the BUSI dataset and 71%–89% on other 

modalities, demonstrating strong label efficiency.

Collectively, these studies suggest that SSL can enhance 

segmentation accuracy and label efficiency across imaging 

modalities. However, the magnitude of benefit varies depending on 

dataset, supervision regime, and evaluation protocol. Many studies 

lacked external validation or standardized baselines, limiting direct 

comparison. Future work should prioritize multi-institutional 

datasets, consistent reporting of supervision regimes, and external 

validation to establish the generalizability of SSL-based 

segmentation methods.

4.2 SSL-based breast image classification

SSL has been increasingly applied to breast image classification 

tasks, encompassing mammography, ultrasound, and multimodal 

pipelines. By leveraging unlabeled or weakly labeled data, SSL 

frameworks aim to reduce annotation costs while improving 

FIGURE 1 

Representative SSL pipeline for breast imaging.
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generalization across heterogeneous imaging cohorts. Table 2

provides an overview of representative studies, highlighting the 

employed model strategies, imaging modalities, specific tasks, 

datasets, and performance results.

Li et al. (21) introduced DSMT-Net, a dual self-supervised 

multi-operator transformation framework that jointly leverages 

endoscopic ultrasound (EUS) and breast ultrasound (BUS) for 

lesion classification. Using 3,500 labeled and 8,000 unlabeled 

EUS images (LEPset) alongside 780 BUSI images, DSMT-Net 

achieved accuracies of 87.7% (EUS) and 89.2% (BUSI), with 

balanced precision and recall. Compared with supervised CNN 

baselines, SSL pretraining provided 5%–7% accuracy gains, 

demonstrating robust cross-domain performance.

Hybrid approaches combining segmentation and classification 

have also been explored. Xin et al. (22) proposed BCT-Net, 

integrating CNN and transformer modules with semantic 

contrastive alignment. On the BUSI dataset (780 images across 

three classes), the model achieved 86.1% precision and a Dice score 

of 88.7%, outperforming CNN baselines. Similarly, Huang et al. 

(23) developed Flip Learning, a weakly supervised SSL framework 

combining multi-agent reinforcement learning with curriculum 

learning. On 2D BUS and 3D ABUS datasets, Flip Learning 

achieved Dice scores of 92.4% (BUS) and 75.5% (ABUS), 

comparable to fully supervised methods despite using weaker 

labels, highlighting SSL’s label efficiency in volumetric imaging.

In mammography, Tardy et al. (24) demonstrated that self- and 

weakly supervised autoencoders can achieve clinically relevant 

performance for abnormality detection. On INBreast and a private 

multi-vendor dataset, their model reached an AUC of 86%, a 

region-level true positive rate of 93%, and a pixel-wise F1 score of 

64% for malignant masses, underscoring SSL’s potential in multi- 

vendor settings. Panambur et al. (25) extended this approach 

with AGE, a DINO-based SSL framework with attention-guided 

erasing. Across digital, contrast-enhanced, and scanned-film 

mammography, AGE improved F1 scores by 0.4%–2% depending 

on the task, representing incremental but consistent gains.

Transformer-based SSL has also been applied to BI-RADS 

classification. Abdallah et al. (26, 27) introduced PatchCascade 

ViT and CascadePLS ViT, achieving sensitivity and F1 scores of 

approximately 85% on 4,368 mammograms, outperforming 

CNN baselines in both breast density and cancer risk 

categorization. These findings suggest that SSL-based ViTs can 

capture global context in high-resolution mammograms more 

effectively than conventional architectures.

Finally, multimodal SSL has been extended to cross-domain 

classification. Zhang et al. (28) proposed a semi-supervised ViT 

with adaptive token sampling and consistency training, 

evaluated on BUSI ultrasound and BreakHis histopathology 

datasets. The model achieved 95.3% accuracy on BUSI and 

98.1% on BreakHis, representing 3%–5% gains over supervised 

baselines and demonstrating the transferability of SSL features 

across imaging domains.

Collectively, these studies indicate that SSL can enhance 

classification accuracy and label efficiency across modalities. 

However, the magnitude of improvement varies, with some 

methods yielding only marginal gains. Reporting gaps remain: 

external validation was inconsistently performed, and supervision 

regimes were not always clearly defined. Future work should 

prioritize multi-institutional datasets, standardized reporting of 

baselines, and rigorous external validation to establish the clinical 

utility of SSL-based classification methods.

4.3 SSL-based breast image detection

The scarcity of expertly annotated breast imaging datasets has 

accelerated the adoption of SSL and weakly supervised learning 

(WSL) approaches for detection tasks. By leveraging intrinsic image 

structure and coarse supervision, these methods aim to reduce 

dependence on dense voxel- or pixel-level labels while maintaining 

clinically acceptable performance. Table 3 summarizes 

representative studies, including dataset characteristics, supervision 

regime, and reported performance.

The limited availability of expertly annotated breast imaging 

datasets has driven the adoption of SSL and weakly supervised 

learning (WSL) approaches for detection tasks. By leveraging 

intrinsic image structure and coarse supervision, these methods 

aim to reduce reliance on dense voxel- or pixel-level labels while 

maintaining clinically acceptable performance. Table 3 provides 

an overview of representative studies, highlighting the employed 

model strategies, imaging modalities, specific tasks, datasets, and 

performance results.

In automated breast ultrasound (ABUS), MohammadiNasab 

et al. (29) proposed DATTR2U-Net, a double-attention recurrent 

residual U-Net trained with multi-task SSL proxy tasks, including 

rotation prediction and image reconstruction. On the TDSCABUS 

dataset, the model achieved a recall of 79.6% with 5.67 false 

positives per volume, representing an approximate 6% recall 

improvement over fully supervised baselines, despite using only 

10% of voxel-level labels. This demonstrates SSL’s potential to 

approximate full supervision in complex 3D ultrasound applications.

In mammography, Tardy et al. (24) developed a two-channel 

autoencoder integrating self- and weak supervision for 

abnormality detection and classification. Using INBreast and a 

private multi-vendor dataset, the model achieved an AUC of 

0.86, a region-level true positive rate of 93%, and a pixel-wise F1 

score of 64% for malignant masses. Notably, multi-vendor data 

improved model robustness, although external validation across 

larger, more diverse cohorts remains limited.

Alsuhbani et al. (30) addressed dense breast tissue localization 

using weakly supervised saliency mapping. Trained on 4,387 

mammograms from the RSNA Breast Cancer Detection dataset, 

their CNN-based model achieved an accuracy of 75.3% and a 

Dice score of 75.4%. These results approached fully supervised 

U-Net performance while requiring only ∼15% of pixel-level 

annotations, highlighting the label efficiency of weak supervision.

Chang et al. (31) extended YOLOv8 with bi-level routing attention 

and bidirectional feature pyramid networks, incorporating SSL 

pretraining with rotation and cutout augmentations. On contrast- 

enhanced and standardized mammograms, the model achieved a 

precision of 99.3%, recall of 85.0%, and F1 score of 91.6% at an IoU 

threshold of 0.6. The high precision is clinically valuable for 
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minimizing false positives, though sensitivity for subtle calcifications 

remains an area for improvement.

In MRI, Chen et al. (32) applied self-supervised rotation 

learning with a ResNet50 backbone to classify breast cancer vs. 

healthy tissue. On the Kaggle Breast Cancer MRI dataset (1,480 

images), the model achieved an AUC of 95.8%, accuracy of 

92.5%, sensitivity of 95%, and specificity of 90%, outperforming 

ImageNet-based transfer learning baselines. However, the 

relatively small and homogeneous dataset limits generalizability.

Across these studies, several patterns emerge. Proxy tasks such 

as rotation prediction and image reconstruction generally 

outperform contrastive learning variants in breast imaging, as 

they encourage the extraction of orientation-invariant and 

anatomically meaningful features. Integration of attention 

mechanisms—such as dual spatial–channel attention for 

ultrasound and bi-level routing attention for mammography— 

consistently improves detection and segmentation performance 

by enhancing feature discrimination. The use of image-level 

labels in weak supervision has enabled segmentation accuracy 

within approximately 10%–15% of fully supervised methods 

while dramatically reducing annotation requirements. 

Importantly, these models have maintained clinically acceptable 

false positive rates, which is essential for real-world deployment.

Despite these advances, several challenges remain. Most studies 

have relied on retrospective datasets, which may not fully capture 

the heterogeneity of clinical practice, including variations in 

scanner hardware, acquisition protocols, and patient demographics. 

Prospective clinical trials and external validation using multi- 

institutional datasets are essential to ensure robustness and 

generalizability. SSL proxy tasks may also struggle to capture rare 

or subtle pathologies, suggesting that combining multiple SSL tasks 

or integrating domain-specific priors could enhance sensitivity. 

Model interpretability remains a key barrier, as transparent and 

explainable outputs are necessary to secure clinician trust and 

regulatory approval. Additionally, AI systems must integrate 

seamlessly into existing imaging work;ows to support, rather than 

increase, radiologists’ cognitive workload.

Looking forward, several promising directions can be identified. 

Multi-modal SSL approaches that jointly leverage ABUS, 

mammography, and MRI could capture complementary 

information, improving diagnostic accuracy. Federated SSL 

frameworks provide a viable approach to train geographically 

distributed datasets while preserving patient privacy, potentially 

overcoming longstanding data-sharing restrictions. Advances in 

architecture design, including transformer-based models and 

refined contrastive learning variants, offer opportunities for richer 

feature extraction. The creation of standardized benchmarks and 

publicly available datasets specifically tailored to SSL and WSL in 

breast imaging will be critical for enabling rigorous, reproducible 

performance comparisons and accelerating methodological progress.

In summary, current evidence demonstrates that SSL and 

WSL methodologies can achieve diagnostic performance 

comparable to fully supervised models across diverse breast 

imaging modalities while substantially reducing annotation 

burden. To realize their full clinical potential, the field must 

prioritize external validation, enhance interpretability, conduct 

prospective trials, and ensure smooth work;ow integration. 

Through coordinated efforts in algorithm design, clinical 

research, and systems integration, SSL-driven AI tools have the 

potential to transform breast cancer screening, providing 

scalable, cost-effective, and advanced diagnostic capabilities to a 

wider global population.

5 Transformers in breast imaging

In recent years, Transformer-based models have seen rapid 

adoption for breast lesion segmentation, detection, and 

classification. Both pure Transformer architectures and hybrid 

designs that integrate CNNs with self-attention mechanisms have 

demonstrated considerable promise in medical image analysis. 

Their primary advantage lies in the ability to capture fine-grained 

local texture information alongside global contextual relationships, 

a capability particularly relevant for breast imaging, where lesions 

often exhibit complex and heterogeneous appearances. Across 

mammography, ultrasound, and MRI, diagnostic interpretation 

benefits from models that can represent both localized structural 

patterns and broader anatomical context, enabling more accurate 

lesion characterization and supporting clinical decision-making.

5.1 Transformer-based breast lesion 
segmentation

Accurate segmentation of breast lesions is a fundamental 

prerequisite for effective computer-aided diagnosis and 

individualized treatment planning. Segmentation is challenged by 

anatomical variability, imaging artifacts, speckle or noise patterns, 

and the scarcity of high-quality annotated datasets. While 

traditional CNN architectures are effective at capturing local spatial 

features, they are inherently limited in modeling long-range 

dependencies. Transformer-based models have begun to address 

these limitations by incorporating global self-attention mechanisms, 

enabling the capture of contextual relationships across entire images 

or volumes. Table 4 summarizes representative peer-reviewed 

studies employing Transformer-based segmentation approaches 

across mammography, MRI, and ultrasound, highlighting consistent 

improvements over finely tuned CNN baselines.

In mammography, early integration of Transformers has 

demonstrated substantial gains in delineating small and subtle 

lesions that CNNs often struggle to segment accurately. Zhao et al. 

(40) proposed Swin-SFTNet, which leverages the hierarchical Swin 

Transformer architecture for micro-mass segmentation. The model 

achieved Dice coefficient improvements of 3.10% on CBIS-DDSM 

and 3.81% on INBreast, with a notable 3.13% gain in cross-dataset 

testing when trained on CBIS-DDSM and evaluated on INBreast. 

Liu et al. (41) introduced Transformer-based encoder–decoder 

(TrEnD), optimized with mix-frame training, achieving Dice scores 

exceeding 92% and IoU values above 85% across both CBIS-DDSM 

and INBreast. These findings indicate that Transformer attention 

mechanisms enhance the ability to balance local texture modeling 
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with global anatomical structure, a capability particularly beneficial 

for detecting minute or low-contrast lesions.

In MRI segmentation, the volumetric nature of the data and 

pronounced tissue heterogeneity create challenges that 

Transformers are particularly well-suited to address. Schmidt et al. 

(42) developed TraBS for fibroglandular tissue segmentation, 

reporting Dice scores of 91.6% ± 6.7% on internal datasets and 

86.4% ± 8.1% on external datasets, alongside sub-millimeter surface 

distance errors (0.548 ± 2.195 mm internally, 0.584 ± 0.413 mm 

externally). These results demonstrate a high degree of robustness 

to variability in acquisition protocols, underscoring the potential of 

Transformer architectures for quantitative MRI analysis in diverse 

clinical settings.

In ultrasound imaging, where speckle noise, operator 

dependence, and heterogeneous acquisition protocols contribute 

to substantial domain shifts, Transformer-based approaches have 

been extensively explored in both pure and hybrid forms. 

Zhuang et al. (43) introduced the residual Swin Transformer 

U-Net with consistency regularization (RSTUnet-CR), 

incorporating residual Swin Transformer encoder blocks with a 

dual-decoder for segmentation and reconstruction. While 

achieving a moderate Dice score of 60.43% on large-scale ABUS 

datasets, the model demonstrated strong lesion recall (68.96%) 

and improved boundary preservation, attributes critical for 

surgical planning. Wang et al. (44) presented DSTransUFRRN, 

achieving a Dice score of 83.42% on the BUSI dataset. He et al. 

(45) developed HCTNet, a hierarchical cross-attention 

Transformer–CNN hybrid, which achieved exceptionally high 

Dice scores across three ultrasound datasets, including 97.23% 

on Dataset B, with balanced precision and recall above 97%. 

Zhang et al. (46) combined ViT with U-Net, yielding precision 

and recall values of approximately 79% each, though the Dice 

score of 75.84% suggests further optimization is possible. Li 

et al. (47) proposed Swin-Net, integrating relative location 

modeling and hierarchical fusion modules, maintaining Dice 

scores above 81% across multiple datasets.

Expanding into multimodal applications, Zhou et al. (48) 

introduced the faster boundary-aware transformer (FBAT), 

TABLE 4 Transformer-based breast image segmentation studies.

Refs Year Model Task Imaging 
modality

Dataset Performance

(40) 2022 Swin-SFTNet Micro-mass 

segmentation

Mammography CBIS-DDSM, INbreast Dice Improvement: + 3.10% (CBIS- 

DDSM), + 3.81% 

(InBreast), + 3.13% 

(CBIS→InBreast)

(41) 2023 TrEnD (Transformer-based encoder– 

decoder)

Breast mass 

segmentation

Mammography CBIS-DDSM (mix-frame), 

INbreast (mix-frame)

CBIS-DDSM: Dice: 92.20%, IoU: 

85.81%; 

INbreast: Dice: 91.83%; IoU 85.29%

(42) 2023 TraBS Fibroglandular 

tissue 

segmentation

MRI 200 internal, 40 external Dice (Internal/External): 

91.6% ± 6.7%/86.4% ± 8.1%, Surface 

Distance (mm):0.548 ± 2.195/ 

0.584 ± 0.413

(43) 2022 RSTUnet-CR (Residual Swin Transformer 

U-Net with Consistency Regularization); 

Residual Swin Transformer encoder 

blocks; Dual-decoder

Tumor 

segmentation

ABUS Proprietary ABUS: 84 480 

frames from 256 subjects (1: 19 

lesion/non-lesion ratio)

Acc: 79.57%, Dice: 60.43%, mIoU: 

51.83%, Recall: 68.96%, HD95: 

7.74 mm

(44) 2023 DSTransUFRRN Lesion 

segmentation

Ultrasound BUSI Dice: 83.42%

(45) 2023 HCTNet Lesion 

segmentation

Ultrasound BUSI, BUS, Dataset B BUSI: Dice:82% Acc:96.94%, 

Jaccard:71.84%, Recall:82.14%, 

Precision: 83.24%; 

BUS: Dice:84.13% Acc:98.49%, 

Jaccard:73.83%, Recall:83.19%, 

Precision: 88.5%; 

Dataset B: Dice:97.23% Acc:97.41%, 

Jaccard:94.63%, Recall:97.33%, 

Precision: 97.14%;

(46) 2024 ViT + UNet Breast Tumor 

Segmentation

Ultrasound BUSI Dice: 75.84%; IoU: 62.92%; 

Precision: 79.01%; Recall: 78.82%, 

F1 score: 75.84%

(47) 2024 Swin-Net (Swin-T + RLM + HFM) Breast tumor 

segmentation

Ultrasound BUSI, BUS-B, BUS-O BUSIS: Dice: 81.8%, Precision: 

83.4%, Recall: 84.4%; 

BUS-B: Dice: 83.7%, Precision: 

85.6%, Recall: 86.3%; 

BUS-O: Dice: 84%, Precision: 85.5%, 

Recall: 85%

(48) 2023 Faster Boundary-aware Transformer 

(FBAT): Boundary-wise Attention Block 

(BAB) in each transformer encoder layer, 

Reference-point-guided cross-attention in 

decoder for faster convergence

Breast lesion 

segmentation

Ultrasound, MRI BUSI: 647 benign/malignant 

ultrasound images (512 × 512); 

BUSB: public ultrasound test 

set; Private BMRI: 1 200 MRI 

images

BUSI + BUSB: Dice 75.02%; IoU 

65.37% (200 epochs); 

BMRI: Dice 89.69%; IoU 82.75% 

(200 epochs)
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which incorporates boundary-wise attention and reference-point- 

guided cross-attention, applying it to both ultrasound and MRI. 

This approach achieved a Dice score of 75.02% on ultrasound 

datasets and 89.69% on MRI, while demonstrating accelerated 

convergence compared with conventional Transformer baselines.

Comparative analysis across these studies reveals several 

notable trends. Variants of the Swin Transformer architecture 

dominate both mammography and ultrasound research, likely 

due to their hierarchical token representation and robust multi- 

scale feature extraction. MRI-based Transformer segmentation, 

although less studied, shows strong generalization potential, 

indicating that further research and larger-scale validation could 

solidify their role in volumetric breast imaging. In ultrasound, 

performance variability across datasets highlights the persistent 

challenge of domain shifts, as models trained on curated or 

internal datasets often experience substantial degradation when 

evaluated externally. Nevertheless, Transformer-based models 

consistently outperform CNN-only counterparts, demonstrating 

their ability to integrate fine-grained spatial features with global 

contextual cues, which is crucial for accurate lesion delineation.

Transformer-based segmentation has emerged as a promising 

methodological direction in breast imaging, showing strong 

performance across multiple modalities. Their inherent ;exibility 

supports both pure Transformer configurations and hybrid 

architectures that combine the global contextual modeling of self- 

attention with the fine-grained spatial sensitivity of convolutional 

networks. Moreover, their adaptability to multimodal pipelines— 

such as those integrating mammography, ultrasound, and 

histopathology—suggests considerable potential for advancing 

computer-aided diagnosis systems.

Future research priorities should include developing domain 

adaptation techniques to mitigate performance variability across 

institutions, establishing standardized multi-institutional 

benchmarks, and optimizing architectures to reduce computational 

costs without compromising accuracy. Equally important is the 

seamless integration of these models into clinical work;ows to 

ensure outputs support radiologists’ decision-making without 

introducing additional complexity. Addressing these considerations 

will be essential for translating Transformer-based approaches into 

scalable, clinically impactful solutions for breast imaging.

5.2 Transformer-based breast lesion 
detection

In recent years, ViTs and their hierarchical or cross-modal 

extensions have seen growing adoption for breast lesion detection. 

These models leverage self-attention mechanisms to capture both 

fine-grained local features and long-range contextual relationships, 

which are critical for identifying subtle lesions and complex tissue 

patterns. Table 5 summarizes key Transformer-based studies in this 

area, highlighting the diversity of architectural innovations and 

performance results across different imaging modalities.

In mammography, early Transformer models explored multi- 

view integration, leveraging the inherent symmetry and paired 

imaging protocols in breast screening. Chen et al. (49) 

introduced a Multi-View Vision Transformer that 

simultaneously processes craniocaudal and mediolateral oblique 

views, using cross-attention to align anatomical correspondences 

without explicit spatial registration. The model achieved an 

AUC of 81.8% on a moderately sized in-house dataset, 

performing comparably to CNN-based architectures such as 

DenseNet and EfficientNet. Its ability to learn view-invariant 

features without extensive preprocessing highlights a promising 

direction for multi-view mammographic AI.

Nguyen et al. (50) advanced this approach with TransReg, a 

hybrid architecture combining a Swin Transformer backbone, a 

cross-transformer registration module, and a Faster R-CNN 

detection head. By learning to spatially normalize the 

contralateral breast, TransReg enables detection on difference 

images rather than raw intensities, mirroring radiologists’ 

comparative reading strategies. The model achieved recalls of 

83.3% on DDSM and 79.7% on VinDr-Mammo at a low false- 

positive rate of 0.5 per image, outperforming both standard 

Faster R-CNN and Transformer-free baselines by 4%–6%. This 

work illustrates how Transformer-based attention mechanisms 

can be tailored to capture anatomical context unique to breast 

imaging, resulting in tangible gains in lesion localization.

The scalability of Transformer architecture was demonstrated by 

Shen et al. (51), who introduced the multi-modal transformer 

(MMT). Trained on 1.3 million screening exams, MMT integrates 

full-field digital mammograms and matches ultrasound volumes 

within a single model. It achieved an AUC of 94.3% for concurrent 

cancer detection and 82.6% for five-year risk prediction, 

outperforming ensemble CNN baselines by over five percentage 

points. This study highlights two core strengths of Transformers: 

their ability to integrate heterogeneous data modalities within a 

unified framework and their favorable performance scaling 

properties, where accuracy improves with increasing dataset size 

when representational bottlenecks are avoided.

In parallel, Transformer adoption in breast ultrasound has 

accelerated, driven by high frame rates, expanding public 

datasets, and growing use in dense breast populations. Ayana 

et al. (54) proposed BUViTNet, a ViT architecture pre-trained 

on ImageNet, then fine-tuned on cancer-cell histology patches 

before adaptation to ultrasound. This biologically inspired 

pretraining strategy yielded AUCs of 100% on the Mendeley 

dataset, 96.8% on BUSI, and 93.7% on a mixed dataset, 

outperforming standard CNNs by 3%–5% points. These results 

demonstrate the potential of multi-stage transfer learning to 

align general visual features with domain-specific tumor 

morphology, even in low-data regimes.

Addressing the challenge of ROI dependency in ultrasound, 

Mo et al. (55) developed HoVer-Trans, an anatomy-aware 

architecture that processes full ultrasound frames using separate 

horizontal and vertical self-attention streams. This directional 

bias enhances sensitivity to spiculated and irregular mass 

boundaries while suppressing false positives from acoustic 

shadowing and other artifacts. HoVer-Trans achieved an AUC 

of 88.1%, F1 score of 91.6%, and accuracy of 89.3% across three 

independent Chinese cohorts, substantially outperforming CNN 

counterparts in both sensitivity and precision.
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Alruily et al. (56) demonstrated that Transformers can be 

effective in data-constrained settings through progressive fine- 

tuning. A vanilla ViT was first trained on natural images, then 

adapted to a thyroid ultrasound corpus, and finally fine-tuned 

on only 780 breast ultrasound images. Despite the limited 

dataset, the model achieved an AUC of 92.1% and accuracy of 

94.5%, validating the effectiveness of domain-adaptive transfer 

learning in mitigating data scarcity and emphasizing the 

importance of task-aware pretraining pipelines.

Collectively, these studies reveal several recurring design 

principles underlying the success of Transformer-based breast 

lesion detection. Cross-view and cross-modal attention 

mechanisms enhance performance by integrating complementary 

information, whether across mammographic projections or 

between imaging modalities. Hierarchical and directional attention 

strategies, as in Swin Transformers and HoVer-Trans, enable 

broader contextual awareness while preserving spatial resolution, 

critical for detecting small, diffuse, or spiculated lesions. Multi- 

stage pretraining approaches grounded in biologically or 

anatomically relevant domains further improve robustness by 

accelerating convergence and enhancing generalizability. 

Compared with leading CNN architectures, Transformer models 

consistently yield 3%–6% gains in key metrics such as AUC, recall, 

and F1 score across diverse datasets, often without labor-intensive 

preprocessing steps like manual ROI annotations or bilateral 

registration, supporting greater automation and clinical applicability.

Despite these advances, several challenges remain. Many studies 

rely on retrospective, single-center datasets, limiting generalizability 

across scanners, populations, and clinical environments. 

Prospective clinical validation through blinded reader studies, real- 

world implementation trials, or integration into PACS/RIS 

infrastructure is essential for regulatory approval and clinical 

deployment. Model size and computational demands also pose 

practical constraints. Large-scale Transformers, such as ViT-L and 

Swin-B, perform well but may be impractical in low-resource or 

time-sensitive settings. Future work should explore lightweight 

TABLE 5 Transformer-based breast lesion detection studies.

Refs Year Model Task Imaging modality Dataset Performance

(49) 2022 Multi-View Vision Transformer Breast Cancer 

Diagnosis

Mammography 949 cases (470 malignant, 479 

benign/normal)

AUC: 81.8%

(50) 2023 TransReg (Cross-Transformer + Swin- 

T + Faster R-CNN)

Mass Detection 

& Auto- 

Registration

Mammography DDSM, VinDr-Mammo Recall @ 0.5 FP/image: 

83.3% (DDSM), 79.7% 

(VinDr-Mammo)

(51) 2024 Transformer-Based Mammogram 

Classifier

Breast cancer 

detection 

(binary)

Mammography DDSM, MIAS, INbreast, 

VinDr-Mammo

Acc:95.9%, AUC: 97.7%, 

Recall: 94.9%, Precision: 

97.1%

(52) 2024 Dual-View Cross Attention with Swin 

Transformer

Breast cancer 

detection

Mammography RSNA dataset Acc: 81%; AUC: 87%

(53) 2024 Transferred-learning Deformable 

DETR with deformable attention 

modules on ResNet-50 backbone; 

decoder queries tuned (50, 75, 100, 

125, 150)

Breast mass 

detection

Mammography Pre-training: COCO 2017 (18 

000 images, 91 classes); Fine- 

tuning: INBreast (410 images, 

MLO and CC views)

Best model (50 queries): 

mAP50 = 0.68, mAP50: 

95 = 0.41

(54) 2025 Ensemble of Vision Transformer (Vit- 

L16) and CNN backbones (ResNet50, 

EfficientNetB1, ProDense block) with 

a stack-ensemble scheme

Breast tumor 

detection 

(benign vs. 

malignant)

Mammography INbreast Acc: 98.08%

(55) 2022 BUViTNet (Stage-wise ViT pre- 

trained on ImageNet + cancer cells)

Breast Lesion 

Detection

Ultrasound BUSI, Mendeley, Mixed AUC: 100% (Mendeley), 

96.8% (BUSI), 93.7% 

(Mixed)

(56) 2022 HoVer-Trans (Anatomy-aware 

horizontal + vertical transformers)

ROI-Free Breast 

Cancer 

Diagnosis

Ultrasound GDPH&SYSUCC, 2 others AUC: 88.1%, Acc: 89.3%, 

Sensitivity: 83.6%, 

Precision:90.6%, Recall: 

92.6%, F1: 91.6%

(57) 2024 Progressive Fine-Tuned ViT Breast Lesion 

Detection

Ultrasound BUS (780 images) AUC: 92.1%, Acc: 94.49%

(58) 2025 DAMF-former (Dual-Modal Adaptive 

Mid-Term Fusion Transformer)

Axillary lymph 

node metastasis 

diagnosis

Ultrasound elastography (B- 

mode + shear-wave elastography)

Axillary UE scans from early 

breast cancer patients (N not 

specified)

Junior radiologist AUC 

improved from 0.807 to 

0.883; inter-reader κ 0.805– 

0.895

(59) 2023 MMT (Multi-Modal Transformer) Cancer 

Detection & 

5-Year Risk 

Prediction

Mammography + Ultrasound 1.3 million exams AUC: 94.3% for cancer 

detection 

AUC: 82.6% for 5-year risk

(60) 2025 Frozen large-scale pretrained vision- 

language models as foundational 

backbone, employing a frozen vision- 

language encoder plus a lightweight 

trainable classifier

Multimodal 

breast cancer 

prediction

Mammography & clinical EHR 

data

CBIS-DDSM; EMBED CBIS-DDSM: AUC 

improved from 86.7% to 

90.2%; test AUC from 

0.80.3% to 83%; 

EMBED: AUC improved 

from 78% to 80.5%
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Transformer variants, hybrid CNN–Transformer architectures, and 

model compression techniques for scalable adoption. Although 

attention mechanisms offer a pathway to model interpretability, 

few studies have systematically evaluated their transparency in 

clinical work;ows. Incorporating attention heatmaps, saliency 

overlays, and formal explainability frameworks could foster 

clinician trust and meet emerging regulatory expectations for 

accountability and interpretability.

5.3 Transformer-based breast lesions 
classification

Recent advances in Transformer-based architectures have led to 

substantial improvements in breast lesion classification across 

mammography, ultrasound, and MRI. These models are 

particularly effective at capturing both local texture patterns and 

global contextual relationships, which are critical for distinguishing 

benign from malignant lesions. By integrating information across 

entire images or volumes, Transformers have the potential to 

enhance early cancer detection, reduce unnecessary biopsies, and 

streamline radiology work;ows. Table 6 summarizes representative 

studies in this domain, highlighting the diversity of network 

designs, imaging modalities, and reported performance outcomes.

In mammography, hybrid CNN–Transformer frameworks have 

demonstrated outstanding classification performance. Al-Tam et al. 

(61) combined a residual CNN with a Transformer encoder, 

achieving perfect binary classification accuracy (100%) and 95.8% 

accuracy for multiclass tasks on the CBIS-DDSM and DDSM 

datasets. Similarly, Al-Hejri et al. (62) employed an ensemble CNN 

with a ViT encoder, reaching 98.58% (binary) and 97.87% 

(multiclass) accuracy on INbreast, with slightly lower but still 

competitive results on a private dataset. These findings underscore 

the advantage of integrating CNN-based local feature extraction 

with the Transformer’s global attention mechanism, enabling the 

capture of both fine-grained details and broader contextual 

patterns. For breast density classification, Tsai et al. (63) applied a 

Swin Transformer, achieving 74.96% accuracy and highlighting the 

TABLE 6 Transformer-based breast lesion classification studies.

Refs Year Architecture Task Imaging 
modality

Dataset(s) Performance

(61) 2022 Residual CNN + Transformer Encoder Binary & Multiclass 

Classification

Mammography CBIS-DDSM, DDSM Acc: 100% (Binary), 95.8% 

(Multiclass)

(62) 2023 Ensemble CNN + Vision Transformer 

Encoder (ViT)

Binary & Multiclass 

Classification

Mammography INbreast, Private 

annotated set

Acc: 98.58% (Binary), 97.87% 

(Multiclass); Private set: 97.16% 

(Binary), 89.4% (Multiclass)

(63) 2024 Swin Transformer Four-category Breast 

Density Classification 

(BI-RADS)

Mammography Small curated set Acc: 74.96%

(64) 2024 LCVT-GR (Backbone + LCVTM + GRM) Benign & Malignant 

Classification

Mammography Mini-DDSM, CMMD Mini-DDSM: AUC-ROC: 85.85%, 

AUC-PR: 65.76%; 

CMMD:AUC-ROC: 87.12%, AUC- 

PR: 89.03%;

(65) 2025 Dense-UMAF + DeiT (Dual-Track) Classification of 

Masses & 

Microcalcifications

Mammography CBIS-DDSM (Curated 

Subset)

Accuracy: 88.69%

(66) 2025 ViT-based Benign & Malignant 

Classification

dynamic contrast- 

enhanced MRI

DCE-MRI dataset Precision:80%, Recall:80%, F1 

score: 80%, AUC: 80%

(67) 2022 VGGA-ViT: VGG attention vision 

transformer network combining a VGG- 

based CNN module (local feature extractor 

with SE block) and a ViT module (global 

relationship learner), ImageNet-pretrained

Benign & Malignant 

Classification

Ultrasound Two BUS datasets: 

Dataset A (cross- 

validation); Dataset B 

(independent test)

Dataset A: acc: 88.71% ± 1.55%, 

recall: 90.735 ± 1.57%, specificity: 

85.58% ± 3.35%, precision: 

90.77% ± 1.98%, 

F1:90.73% ± 1.24%, 

MCC:76.34% ± 3.29%; 

Dataset B: acc: 81.72% ± 2.99%, 

recall: 64.45% ± 2.96%, specificity: 

90.28%± 3.51%, precision: 

77.08% ± 7.21%, 

F1:70.11% ± 4.25%, MCC:57.64%± 

6.88%.

(68) 2025 Multimodal Sieve Transformer with ViT 

encoder (MMST-V); integrates UF-DCE 

MRI volumes, lesion characteristics, and 

clinical/geometrical data

Benign & Malignant 

Classification

Ultrafast dynamic 

contrast-enhanced 

MRI + clinical 

reports

240 patients; 987 

lesions (280 benign, 

121 malignant, 586 

benign lymph nodes); 1 

081 radiology reports

MMST-V: AUROC 0.928 ± 0.027; 

non-imaging only: AUROC 

0.900 ± 0.045; imaging only: 

AUROC 0.863 ± 0.025

(69) 2024 Three ImageNet-pretrained Vision 

Transformer transfer-learning architectures 

evaluated on mammograms (Mendeley 

Data) and ultrasound (Mendeley Data & 

Kaggle), compared to ViT trained from 

scratch and CNN-based TL

Benign & Malignant 

Classification

Mammography and 

ultrasound

Mendeley Data 

mammogram dataset; 

Mendeley Data 

ultrasound dataset; 

Kaggle breast 

ultrasound dataset

AUC 1.0 ± 0 for both modalities, 

outperforming ViT from scratch 

and CNN-based transfer learning
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persistent challenges posed by intra-class variability and limited 

annotated data.

Specialized Transformer architectures have also shown promise. 

Wu et al. (64) developed LCVT-GR, which incorporates local 

channel-wise ViT modules with a gating refinement mechanism, 

achieving AUCs of 85.85% on Mini-DDSM and 87.12% on 

CMMD. Paavankumar et al. (65) proposed a dual-track Dense- 

UMAF + DeiT pipeline to differentiate masses from 

microcalcifications, reaching 88.69% accuracy on a curated CBIS- 

DDSM subset. Beyond mammography, Wang et al. (66) compared 

multiple CNN and Transformer variants for dynamic contrast- 

enhanced MRI, reporting consistent but moderate performance 

across architectures (AUC ≈ 84%), suggesting that lesion 

enhancement patterns in MRI present distinct feature-learning 

challenges compared with the structural cues in mammography.

In ultrasound imaging, Transformer integration has similarly 

yielded advances. Qu et al. (67) developed VGGA-ViT, combining 

a VGG-SE CNN for local feature extraction with a ViT for global 

context modeling. On BUS Dataset A, the model achieved 88.71% 

accuracy and an F1-score of 90.73%, but performance dropped to 

81.72% accuracy on an independent Dataset B, illustrating the 

domain shift problem in ultrasound. Ayana et al. (69) 

demonstrated that ImageNet-pretrained ViTs, when fine-tuned for 

breast imaging, can achieve perfect AUC (100%) for both 

mammography and ultrasound, outperforming CNN-based 

transfer learning and ViTs trained from scratch. These results 

emphasize the critical role of large-scale pretraining in overcoming 

data scarcity and improving generalization.

Multimodal approaches represent a promising frontier. Lokaj 

et al. (68) introduced MMST-V, which integrates ultrafast DCE- 

MRI with clinical and geometrical data using a multimodal sieve 

Transformer. This model achieved an AUC of 92.8% ± 2.7%, 

outperforming single-modality imaging (86.3%) and non- 

imaging inputs alone (90%). These findings highlight the 

diagnostic value of fusing anatomical, functional, and clinical 

data to generate richer, more comprehensive representations.

Collectively, the evidence indicates that hybrid CNN– 

Transformer pipelines excel in mammography by effectively 

combining local texture analysis with global spatial relationships, 

while multimodal fusion approaches hold promise for MRI-based 

diagnosis. Ultrasound classification remains highly susceptible to 

domain shifts, emphasizing the need for robust domain adaptation 

strategies. For clinical translation, future research should prioritize 

validation on large, diverse, and prospective datasets, and focus on 

integrating these models into radiology work;ows in ways that 

enhance decision-making without increasing cognitive load.

5.4 Transformer-based multi-task learning 
in breast imaging

Recent advances in deep learning have markedly improved 

breast cancer detection and diagnosis across multiple imaging 

modalities, particularly mammography and ultrasound. These 

developments hold substantial clinical significance, as early and 

accurate identification of malignant lesions can meaningfully 

in;uence treatment strategies and patient outcomes. The studies 

summarized below illustrate how Transformer-based models, 

when combined with multi-task learning (MTL) frameworks, are 

being applied to address persistent challenges in breast imaging.

In 2021, Aly et al. (70) introduced a hybrid model integrating 

YOLO-v3 with ResNet and Inception-style Transformers for mass 

detection and classification in mammography using the INbreast 

dataset. Their method achieved a detection rate of 89.4%, a 

precision of 94.2%, and classification accuracies of 91.0% with 

ResNet and 95.5% with InceptionV3. By combining object 

detection with deep feature extraction, this approach proved 

particularly effective for high-resolution mammograms, where 

precise localization and characterization of masses are critical.

Building on this foundation, Su et al. (71) employed YOLOv5L6 

enhanced with a LOGO Transformer to perform both detection and 

segmentation on the CBIS-DDSM and INbreast datasets. The model 

achieved a true positive detection rate of 95.7% and a mean average 

precision (mAP) of 65.0%. For segmentation, it reported an 

F1-score of 74.5% and an intersection over union (IoU) of 64.0%. 

This dual-task framework demonstrates the potential of 

Transformer-based models to simultaneously enhance spatial 

localization and boundary delineation, enabling more accurate 

lesion characterization in mammographic images.

In breast ultrasound, Rodriguez et al. (72) proposed a multi-task 

learning framework with a shared encoder and separate classification 

and segmentation heads. Four backbone architectures—VGG-16, 

ResNet-50, Swin Transformer V2 Tiny, and VMamba Tiny—were 

evaluated on a public BUS dataset. For segmentation, the USwin 

backbone achieved the highest mean IoU (85.59%), closely 

followed by VMamba (85.25%). For classification, VMamba 

attained the highest AUC (96.96%), precision (88.57%), and lowest 

false positive rate (4.4%), while ResNet Multi recorded the best true 

positive rate (94.87%), accuracy (92.31%), and F1-score (88.1%). 

This study represents the first application of the VMamba 

architecture to breast ultrasound and highlights the advantages of 

multi-task learning, which can optimize complementary tasks 

within a single model.

Despite these encouraging results, several challenges remain 

before widespread clinical adoption is feasible. Most datasets 

remain relatively small and lack diversity, limiting the 

generalizability of trained models across populations, scanners, 

and clinical settings. Transformer architectures often require 

substantial computational resources, which can hinder real-time 

use, particularly in resource-limited environments. Future 

research should focus on improving domain adaptation, 

employing advanced data augmentation strategies, and 

developing computationally efficient model designs to facilitate 

scalable, real-world deployment.

6 Hybrid technologies in breast 
imaging

Recent advancements in breast imaging highlight the substantial 

potential of combining SSL with Transformer architectures. These 

hybrid models effectively address persistent challenges, including 
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lesion variability, limited annotated data, and heterogeneous tissue 

appearances, across modalities such as ultrasound, MRI, and 

mammography. Table 7 provides a comprehensive overview of key 

studies, summarizing architectures, imaging modalities, datasets, 

tasks, and reported performance outcomes. This section reviews 

these developments by task category, highlighting methodological 

strengths, comparative results, and clinical implications.

6.1 Segmentation

In ultrasound segmentation, hybrid models such as CSwin-PNet 

and HEAT-Net have demonstrated substantial improvements in Dice 

scores across multiple datasets, including both high-quality and 

lower-quality ultrasound images (Table 7) (73, 74). The integration 

of multi-scale Transformer blocks within U-Net frameworks 

enhances lesion boundary delineation, effectively addressing 

challenges posed by lesion heterogeneity and noisy imaging 

conditions. For volumetric data, Liu et al. (79) extended these 

concepts to 3D segmentation of automated breast volume scans, 

achieving respectable sensitivity but highlighting persistent 

difficulties in boundary precision, with an HD95 of 23.2 mm. 

These findings indicate that, despite the representational power of 

Transformers, accurately capturing fine-grained 3D lesion 

morphology remains a challenge.

In dynamic contrast-enhanced MRI, hybrid CNN– 

Transformer models such as TR-IMUnet achieve exceptional 

segmentation performance (80), illustrating the benefit of 

combining local convolutional feature extraction with global 

attention mechanisms. However, models addressing multi-task 

segmentation and diagnosis, exemplified by PLHN (81), reveal 

the complexity of jointly optimizing segmentation accuracy and 

malignancy prediction. Notably, PLHN exhibits reduced 

diagnostic recall despite solid Dice scores, underscoring the 

trade-offs inherent in multi-objective learning within breast MRI.

In mammography, Transformer-augmented U-Net architectures 

such as HTU-Net consistently outperform pure CNN models on 

benchmarks including CBIS-DDSM and INbreast, achieving Dice 

scores above 92% and accuracies exceeding 95% (82). Nonetheless, 

mammographic segmentation remains challenged by tissue overlap 

and dense breast patterns, with some models demonstrating 

reduced precision metrics (83). These limitations indicate that 

further innovations in network architecture and data augmentation 

strategies are needed to enhance spatial localization and fully 

exploit the potential of hybrid approaches.

6.2 Classification

The classification of breast lesions has similarly benefited from 

SSL–Transformer hybrid models, which use large unlabeled 

datasets for pretraining and capitalize on Transformers’ capacity to 

integrate global contextual information. In ultrasound, classifiers 

such as PolyBreastVit and C-TUNet have demonstrated impressive 

accuracies exceeding 95%, accompanied by high precision and 

recall across benign, malignant, and normal classes (87, 89). These 

results indicate that multi-scale convolutional backbones combined 

with Transformer layers can robustly discriminate complex tissue 

patterns, even in heterogeneous imaging environments.

In mammography, pyramid Transformer architectures paired 

with masked self-attention mechanisms have achieved near- 

perfect benign vs. malignant classification (91). However, other 

hybrid frameworks report more variable AUC scores, with some 

as low as 80% (Table 7) (92). This variability highlights the 

critical in;uence of data quality, preprocessing pipelines, and 

the importance of standardized benchmarks to ensure 

reproducibility and generalizability in classification tasks.

While ultrasound classification approaches generally achieve high 

sensitivity and specificity, MRI-based classification performance 

remains relatively lower in some studies (97), suggesting that 

further refinement is needed to capture subtle malignant signatures 

within volumetric and functional imaging data. Incorporating 

multimodal data fusion and interpretability mechanisms represents 

a promising strategy to enhance accuracy and clinical applicability.

6.3 Detection

In breast lesion detection, hybrid SSL–Transformer models have 

demonstrated strong performance across both mammography and 

ultrasound modalities. For example, YOLOv4 combined with a ViT 

backbone achieved high mean average precision on full-field digital 

mammography and contrast-enhanced spectral mammography 

datasets (101), performing comparably to leading CNN-based 

detectors under similar evaluation conditions. In ultrasound, 

hybrid detection models have shown precise lesion localization and 

classification, with reported accuracies exceeding 97% (84). These 

results indicate that integrating Transformer-based attention with 

established detection backbones enhances spatial awareness and 

reduces false positives, improving overall detection reliability.

Despite these advances, real-time clinical deployment remains 

constrained by computational complexity and latency. The 

development of lightweight Transformer blocks and optimized 

attention mechanisms is essential to enable rapid inference without 

compromising accuracy, particularly in resource-limited 

environments. Additionally, the lack of standardized evaluation 

protocols across diverse, multi-center datasets limits 

comprehensive assessment of model generalizability. Addressing 

these challenges will be critical to translating hybrid SSL– 

Transformer detection models into scalable, clinically viable tools.

6.4 Multi-task frameworks and prognostic 
prediction

Hybrid SSL–Transformer models have also been extended to 

multi-task frameworks that simultaneously address segmentation, 

classification, and prognostic prediction. Models such as PLHN 

demonstrate the feasibility of combining lesion delineation with 

malignancy assessment, though diagnostic recall in some cases 

remains suboptimal (81). In contrast, Transformer-based 

approaches for predicting pathological complete response following 
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TABLE 7 Hybrid -based breast imaging studies.

Refs Year Model Task Modality Dataset Performance

(73) 2023 CSwin-PNet (CNN + Swin Transformer 

Pyramid Network)

Breast Lesion Segmentation Ultrasound Dataset1 (High-quality 

BUS images), Dataset2 

(Lower-quality BUS 

images)

Dice: 87.25% (Dataset1), 83.68% 

(Dataset2), 

IoU: 78.61% (Dataset1), 75.11% 

(Dataset2)

(74) 2023 HEAT-Net Segmentation Ultrasound BUSI, DDTI, TN3k, 

CAMUS

Dice: 74.1% (BUSI), 82.7% 

(DDTI), 89.5% (TN3k), 94% 

(CAMUS)

(75) 2024 GED-Net Segmentation Ultrasound DatasetB, DDTI, 

OASBUD, BUSI

DatasetB: Acc:98.4%, IoU:68%, 

Recall:0.78.3%, Dice:77.4%, 

Precision:74.4%; 

DDTI: Acc:94%, IoU:62.2%, 

Recall:79.1%, Dice:74%, 

Precision:73.1%; 

OASBUD: Acc:96.7%, 

IoU:55.7%, Recall:72%, 

Dice:67.9%, Precision:74.3%; 

BUSI: Acc:96.1%, IoU:69.4%, 

Recall:80.1%, Dice:78.1%, 

Precision:74.3%

(76) 2024 Human Learning Paradigm Network Segmentation Ultrasound Local (600 images, 30 

patients), BUSI, DatasetB

Best variant: 0.76% ↑ Dice, 

3.14 mm ↓ HD vs. TransUNet 

Public dataset: 0.42% ↑ Dice, 

5.13 mm ↓ HD vs. TransUNet, 

Training time ↓ 31.25%

(77) 2024 BGRD-TransUNet Segmentation Ultrasound BUSI, DatasetB BUSI: DSC: 71.54%, IoU: 

69.76%, Recall:74.27%, 

Precision: 72.96%, Acc: 97.52%; 

DatasetB: DSC: 75.27%, IoU: 

64.92%, Recall: 91.41%, 

Precision:69.15%, Acc: 97.38%;

(78) 2025 FET-UNet (CNN + Transformer) Segmentation Ultrasound BUSI/UDIAT/BLUI Dice: 82.9% (BUSI), 88.9% 

(UDIAT), 90.1% (BLUI)

(79) 2025 3D segmentation network (i.e., DST-C) Segmentation ABVS 

Ultrasound

Private ABVS + TDSC- 

ABUS 2023

Dice: 73.65%, IoU: 61.10%, 

Sensitivity: 91.67%, HD: 

23.23 mm

(80) 2022 TR-IMUnet (Transformer + Multi-scale 

CNN)

Tumor Segmentation DCE-MRI Private dataset (clinical 

cases)

Dice: 96.25%, IoU: 90.55%, 

Sensitivity: 96.26%, PPV: 94.92%

(81) 2025 PLHN (Prototype Learning Guided 

Hybrid Network)

Tumor 

Segmentation + Diagnosis

DCE-MRI Public & Private DCE- 

MRI datasets

AUC: 66.6%, Acc: 63.8%, 

Precision: 64.0%, Recall: 33.5%, 

F1 Score: 41.3%, Dice: 85.6%

(82) 2025 Hybrid Transformer U-Net (HTU-Net) Breast Mass Segmentation Mammography CBIS-DDSM & INbreast CBIS-DDSM: Dice: 93.5%, IoU: 

87.41%, Acc: 98.43%, Sensitivity: 

94.01%, Specificity: 97.18%; 

INbreast: Dice: 92.14%, IoU: 

86.08%, Acc: 95.16%, Sensitivity: 

93.89%, Specificity: 95.11%

(83) 2025 Hybrid CNN + Transformer: CNN 

encoder (ResNet/EfficientNet) for local 

features → transformer blocks for global 

context → U-Net-style decoder for mask 

refinement

Breast tumor segmentation Mammography INbreast Acc: 89.40%, Dice: 76.50%, 

mIoU:73.%, HD95: 4.80 mm

(84) 2023 Dual-input CNN + GAP-guided 

Attention Loss

Benign & Malignant 

Classification

Ultrasound BUSI & BUSC BUSI: Acc: 98.1%, Precision: 

98.3%, Recall: 98.2%, F1 Score: 

98.2%; 

BUSC: Acc: 97.9%, Precision: 

97.5%, Recall: 98.1%, F1 Score: 

97.8%

(28) 2023 HoVer-Transformer ROI-Free Breast Cancer 

Diagnosis

Ultrasound GDPH & SYSUCC (2,405 

images)

Acc: 89.3%, AUC: 92.4%, 

Sensitivity: 92.6%, Specificity: 

83.6%

(85) 2024 CNN + Multi-scale Transformer 

(Ensemble)

Normal, Benign, Malignant 

Classification

Ultrasound BUSI Acc: 98.70%, F1 Score: 98.72%

(86) 2024 Dynamic Pooling + Hybrid ViT-CNN Benign & Malignant 

Classification

Ultrasound BUS sequences Acc: 93.78%

(87) 2024 PolyBreastVit: hybrid model combining 

PolyNet (multi-scale CNN) for detailed 

Three-way classification 

(benign/malignant/normal)

Ultrasound 880 high-definition 

ultrasound images from 

Overall acc: 98%; benign 

precision/recall: 98%/98%;                                                                                                                                                                               

(Continued) 
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neoadjuvant chemotherapy have achieved high accuracy and AUC 

(95), indicating that attention mechanisms can effectively capture 

imaging biomarkers associated with treatment response.

Multi-task learning in breast imaging requires careful 

architectural design to balance competing objectives and avoid 

performance trade-offs. Additionally, the clinical interpretability 

of these complex models is essential for adoption. Incorporating 

explainability techniques, such as attention rollout or Grad- 

CAM, can provide insights into model decision-making and 

help radiologists understand the rationale behind predictions, 

thereby supporting trust and facilitating integration into 

clinical work;ows.

TABLE 7 Continued

Refs Year Model Task Modality Dataset Performance

local feature extraction and Vision 

Transformer for global context

500 women (ages 25–75); 

three classes; extensive 

preprocessing and 

augmentation

malignant precision/recall: 96%/ 

96%; normal precision/recall: 

100%/100%; outperforms VGG- 

16, Inception V3, ResNet-50 

across accuracy, precision, recall, 

F1, AUC

(88) 2025 CNN-Transformer + Segmentation 

Knowledge

Benign & Malignant 

Classification

Ultrasound Breast & Thyroid datasets Dice: 83.62%, AUC: 95.36%;

(89) 2025 C-TUNet (CNN + Transformer) Benign & Malignant 

Classification

Ultrasound BUSI Acc: 96.7%, AUC: 97.1%, F1 

Score: 96.5%

(90) 2025 CNN_ViT (Hybrid CNN + ViT) Benign & Malignant 

Classification

Ultrasound KAUH-BCUSD (6,159 

images, 5,000 cases)

Acc: 95.12%, Recall: 97.54%, F1 

Score: 95.24%

(28) 2022 Semi-supervised ViT + ATS Benign & Malignant 

Classification

Ultrasound & 

Histopathology

BUSI & BreakHis BUSI: Acc: 96.1%, AUC: 97.2%; 

BreakHis: Acc: 95.8%, AUC 

96.9%

(91) 2024 Pyramid Transformer (PTr) + SAM Benign & Malignant 

Classification

Mammography INbreast Acc: 99.96%, AUC: 99.98%

(92) 2024 HybridMammoNet: hybrid CNN–ViT 

with cross-view transformer layer linking 

ResNet18/VGG16 feature maps before 

pooling

Benign & Malignant 

Classification

Mammography CBIS-DDSM AUC:80%; F1-score: 65%

(93) 2025 Hybrid Transformer Benign & Malignant 

Classification

Mammography 1,200 paired exams from 

3 sites

Acc: 90.80%, Sensitivity: 90.80%, 

Precision: 90.80%, Specificity: 

90.88%, F1 Score: 90.95%, AUC: 

92.58%

(94) 2025 Hybrid CNN + ViT framework (local 

feature extractor via CNN, global context 

via Vision Transformer); compared with 

DenseNet, Inception, SE-ResNet, 

XceptionNet

Benign & Malignant 

Classification

Mammography CLAHE-enhanced 

mammograms from 

Kaggle (balanced benign/ 

malignant)

CNN + ViT: acc:90.1%; 

XceptionNet: acc:100% (likely 

overfitting)

(95) 2023 Dual-Input Transformer pCR Prediction (NAC 

Response)

Ultrasound 484 cases from two 

clinical centers

Acc: 93.9%, AUC: 96%, F1 Score: 

92.7%

(96) 2024 EPTM (Efficient CNN + Vision 

Transformer + Choquet Integral Fusion)

Malignancy Prediction Ultrasound UDIAT BUS, Baheya 

Hospital

AUC: 93.2% (UDIAT), 98% 

(Baheya)

(97) 2023 Feature extraction via SEResNeXt; 

attention-based classification with Swin 

Transformer

Breast cancer detection 

(benign vs. malignant)

MRI Breast MRI scans (dataset 

size and source not 

specified)

Acc: 96%; F1 score: 61%

(98) 2024 Swin Transformer + CNN Slice Selection + Tumor 

Diagnosis

Ultrasound NTUH (807 patients) Slice Selection: Top-1 Acc: 

74.35%, Top-5 Acc: 97.27%; 

Diagnosis: Acc: 79.85%, 

Sensitivity: 80.13%, Specificity: 

79.80%, AUC: 86.41%

(99) 2024 Spatio-Temporal Memory Net Needle Tracking & 

Segmentation

Ultrasound Real-time biopsy video 

(11 patients)

Dice: 81.7%, IoU: 73.1%, 

Precision: 86.3%, Recall: 80.3%, 

F1 score: 83.2%

(100) 2024 ACSNet (UNet-based with DSAModule, 

Gate Units, Channel Attention)

Segmentation and 

Classification

Ultrasound Two publicly available 

BUS datasets

Segmentation: Dice: 84.90%, 

Jaccard: 78.62%, 95HD: 

13.04 mm, ASD: 3.45 mm; 

Classification: Acc: 94.44%, 

Precision: 94.61%, Recall: 

93.86%

(101) 2024 YOLOv4 backbone for mass detection 

coupled with a ViT transformer for 

classification

Breast mass detection & 

benign/malignant 

classification

CESM & FFDM 

Mammography

INbreast; 

CDD-CESM

Detection mAP: 98.69% 

(INbreast), 81.52% (CE-CESM), 

71.65% (DM-CESM); 

Classification Acc: 95.65% 

(INbreast), 97.61% (CE-CESM), 

80% (DM-CESM)
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6.5 Synthesis and future directions

The studies reviewed collectively demonstrate that SSL 

pretraining accelerates model convergence and enhances 

robustness across diverse breast imaging modalities, while 

Transformer architectures contribute essential global context 

modeling and multi-scale feature integration (Table 7). Despite 

these advances, several research gaps remain. Standardized multi- 

center, multi-modality benchmark datasets are limited, restricting 

objective comparisons and impeding clinical translation.

Future research should focus on developing unified SSL 

frameworks that are adaptable across imaging types and incorporate 

domain adaptation strategies to mitigate cross-center variability. The 

high computational demands of Transformer architectures also 

highlight the need for efficient attention mechanisms to enable real- 

time, point-of-care deployment. Equally important is the integration 

of interpretability directly within model architectures, ensuring 

that decision-making processes are transparent and fostering 

clinician trust. Addressing these challenges through collaborative, 

interdisciplinary efforts will be critical to realizing the full potential 

of SSL–Transformer hybrid models in breast imaging, paving the 

way for scalable, robust, and clinically actionable AI solutions.

7 Discussion

7.1 Key research findings

The recent evolution of AI in breast imaging has been 

marked by a decisive shift toward SSL and Transformer- 

based architectures, fundamentally reshaping approaches to 

segmentation, classification, and detection tasks. The studies 

reviewed consistently demonstrate SSL’s capacity to leverage large 

quantities of unlabeled imaging data, reducing reliance on 

extensive manual annotation while maintaining—or even 

enhancing—performance in downstream tasks. This is particularly 

valuable in breast imaging, where annotating small, heterogeneous 

lesions is time-consuming and prone to inter-observer variability.

In segmentation, SSL approaches particularly those integrating 

context restoration, contrastive pretraining, or pseudo-label 

refinements show notable gains in delineating lesion boundaries in 

challenging modalities such as ultrasound and MRI. Contrastive 

learning methods effectively capture discriminative features with 

relatively small labeled datasets, though they are sensitive to 

augmentation strategies and may underperform in the presence of 

high imaging variability. Masked autoencoders excel at 

reconstructing missing image regions and have demonstrated 

strong performance in mammography; however, they typically 

require larger unlabeled datasets and longer training times. 

Generative SSL approaches, such as GAN- or diffusion-based 

pretext tasks, offer potential for data augmentation and 

representation learning, though their clinical realism and stability 

remain limited. Collectively, these findings suggest that the optimal 

SSL strategy is likely modality- and dataset-dependent.

Classification tasks similarly benefit from SSL-pretrained 

encoders, particularly when combined with domain-specific 

augmentation strategies that replicate real-world imaging 

variability. The effectiveness of SSL in classification depends 

critically on aligning pretext task design with the distinct 

imaging characteristics of each modality.

Transformer-based architectures have emerged as equally 

transformative, providing powerful mechanisms to model global 

dependencies and multi-scale contextual relationships. These 

capabilities are vital for detecting microcalcifications, subtle 

spiculations, and complex lesion morphologies. Evidence indicates 

that ViTs offer strong global feature modeling but are 

computationally intensive and less robust on small datasets. Swin 

Transformers, with hierarchical window-based attention, improve 

scalability and efficiency, making them more suitable for high- 

resolution breast imaging tasks. Hybrid CNN–Transformer models 

strike a balance by leveraging CNNs for local texture extraction 

while using Transformers for global reasoning, often achieving 

competitive accuracy with reduced computational burden. 

Clinically, hybrid models may represent the most practical 

compromise, though prospective validation remains limited.

According to the reviewed literature, several converging trends 

are apparent. Researchers are increasingly focused on reducing 

annotation requirements through weak or scribble supervision, 

enhancing model interpretability via attention visualization, and 

incorporating multimodal data to overcome the limitations of 

single-modality analysis. These innovations are progressively 

aligning algorithmic performance with clinical priorities, 

including robustness across diverse patient populations and 

imaging platforms, and the ability to deliver reproducible results 

under varied acquisition conditions.

7.2 Challenges and limitations

SSL and Transformer-based architectures offer transformative 

potential in breast imaging; however, several recurring challenges 

currently impede their widespread clinical adoption. One of the 

most significant hurdles is the substantial computational demand 

of Transformer models. Their quadratic complexity relative to 

input size necessitates extensive memory and processing power, 

limiting real-time inference in clinical settings without access to 

high-performance GPUs or advanced hardware. Techniques such 

as sparse attention, token pruning, and hybrid CNN–Transformer 

architectures offer pathways to reduce computational complexity, 

yet these approaches require rigorous validation within clinical 

work;ows to ensure diagnostic accuracy is preserved, particularly 

when deployed on standard hospital equipment.

The effectiveness of SSL critically depends on the design of 

pretext tasks tailored to specific breast imaging modalities. 

Inadequate task selection can produce suboptimal feature 

representations that fail to capture clinically relevant patterns, 

undermining downstream performance. Furthermore, SSL 

requires access to large, diverse unlabeled datasets, which are 

often constrained by privacy regulations and institutional 

barriers, limiting model robustness and generalizability.

Domain shifts arising from variability in imaging protocols, 

scanner manufacturers, and patient demographics remain a 
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formidable challenge. Many studies relied on relatively small, 

single-center datasets without external validation, restricting 

generalizability. Standardized federated learning frameworks 

could address these issues by enabling collaborative model 

training without compromising patient privacy. Concurrently, 

the development of diverse, harmonized datasets re;ecting real- 

world variability, alongside rigorous external validation, is 

essential to ensure fairness and minimize bias.

Interpretability remains a persistent limitation. While 

Transformer attention maps can highlight in;uential regions, their 

clinical relevance is often ambiguous. CNN-based saliency methods, 

such as Grad-CAM and SHAP, face similar challenges. The absence 

of standardized visualization frameworks undermines clinician trust 

and complicates regulatory approval, as agencies such as the FDA 

and EMA require both explainability and demonstrable safety.

Reproducibility and clinical applicability are further constrained 

by the predominance of retrospective, single-center studies. 

Annotation quality was inconsistently reported, with some studies 

relying on a single annotator or omitting details altogether. Only a 

minority of studies provided open-source code or pretrained 

models, restricting transparency and independent verification. 

Evaluation metrics were often incompletely reported, with some 

studies presenting only a single measure and omitting confidence 

intervals or statistical comparisons. Prospective, multi-institutional 

clinical trials embedding AI tools into real-world work;ows remain 

scarce, limiting insights into their impact on diagnostic efficiency, 

clinician confidence, and patient outcomes.

Collectively, these limitations highlight the critical need for 

coordinated data sharing, standardized evaluation metrics, 

reproducibility practices, and multi-site prospective validation to 

ensure that SSL and Transformer-based methods can transition 

from promising research tools to clinically reliable systems.

7.3 Strategies for clinical translation and 
integration

Successful clinical translation of AI models, including 

Transformer architectures and SSL frameworks, requires more 

than high technical performance. It demands careful alignment 

with clinical work;ows and the real-world needs of radiologists, 

oncologists, and multidisciplinary healthcare teams. AI tools that 

deliver actionable, interpretable outputs and integrate seamlessly 

with Picture Archiving and Communication Systems (PACS) 

and electronic health records have the highest potential for 

adoption. Co-designing AI interfaces with clinicians is essential 

to ensure these tools augment, rather than disrupt, diagnostic 

work;ows and align with established clinical reasoning patterns.

Interpretability is pivotal for building clinician trust and 

facilitating regulatory approval. Recent strategies advocate 

combining attention maps with uncertainty quantification and 

counterfactual explanations to produce clinically meaningful 

insights. These approaches require validation in breast cancer 

imaging, emphasizing diagnostically relevant features such as 

lesion morphology and tissue heterogeneity that resonate with 

radiologists. Embedding explainable AI frameworks directly into 

user interfaces allows clinicians to verify AI suggestions, 

mitigating both skepticism and overreliance.

Beyond interface design, minimizing work;ow disruption and 

optimizing computational efficiency to enable near real-time 

inference are critical. Techniques such as edge computing, 

hardware acceleration, and model compression can overcome 

latency and resource constraints, facilitating deployment even in 

resource-limited settings. Addressing interoperability challenges 

posed by heterogeneous hospital IT systems and ensuring 

compliance with data standards are also essential for scalable 

integration. Ongoing clinician education and training in AI 

capabilities and limitations further promote appropriate adoption. 

Incorporating patient perspectives and addressing ethical concerns 

—such as bias and informed consent—are increasingly recognized 

as integral to successful integration.

Embedding AI models into prospective, multi-center clinical 

trials is necessary to rigorously evaluate their impact on diagnostic 

accuracy, work;ow efficiency, clinician confidence, and patient 

outcomes. Such evidence is foundational for informing regulatory 

decisions and reimbursement policies. Establishing standardized 

protocols for continuous monitoring, quality assurance, and post- 

deployment model updates ensures sustained safety and 

performance. Robust privacy and data governance frameworks are 

equally imperative. Federated learning and differential privacy offer 

promising strategies for collaborative model training without 

sharing raw patient data, effectively addressing ethical and legal 

constraints. Successful clinical translation depends on integrating 

these privacy-preserving approaches with strong cybersecurity 

measures and transparent data stewardship, fostering trust among 

clinicians and patients alike.

7.4 Future research directions

To fully realize the potential of AI in breast cancer imaging, 

future research should strategically address challenges related to 

computational efficiency, robustness, interpretability, and clinical 

validation. Advanced model compression techniques, including 

knowledge distillation, low-rank factorization, and pruning, 

tailored specifically for medical imaging data, could reduce 

computational demands while preserving diagnostic accuracy. 

Further development of hybrid architectures that combine 

CNNs’ proficiency in local feature extraction with transformers’ 

capacity for global context modeling represents a promising 

avenue. Dynamic inference strategies, which adaptively allocate 

computational resources based on image complexity, may 

optimize efficiency in real-time clinical environments but 

require validation in prospective work;ows.

Robustness remains a critical barrier to clinical deployment. 

Research should expand domain adaptation methods, including 

adversarial training and contrastive learning, with rigorous 

evaluation across diverse datasets that re;ect broad imaging 

protocols and patient demographics. Federated learning approaches 

also require refinement to handle inter-institutional heterogeneity, 

employing communication-efficient algorithms and personalized 

model aggregation to maintain diagnostic reliability while 
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safeguarding patient privacy. Building large, diverse, and harmonized 

datasets with standardized acquisition and annotation protocols, 

coupled with comprehensive external validation, will be essential to 

mitigate domain shifts and reduce bias.

Interpretability may benefit from multi-layered frameworks 

that link pixel-level explanations with higher-level clinical 

feature representations, enhancing alignment with established 

medical knowledge. Incorporating uncertainty quantification 

alongside interpretability techniques could enable clinicians to 

assess confidence in AI outputs, fostering more informed 

decision-making. Expanding multi-modal integration beyond 

imaging to include pathology, genomics, and clinical data may 

yield richer, personalized diagnostic and prognostic insights, 

better re;ecting the complexity of breast cancer.

Large-scale, prospective, multi-center clinical trials are 

urgently needed to evaluate not only diagnostic accuracy but 

also the impact of AI tools on clinical work;ow, radiologist 

confidence, and patient outcomes. Such evidence will be critical 

for regulatory approval and incorporation into clinical 

guidelines. Ethical principles should be embedded throughout 

both research and deployment, including ongoing bias 

monitoring, transparent documentation of model updates, and 

rigorous data governance frameworks to protect patient rights 

and ensure equitable access to AI benefits.

Finally, research should explore the dynamics of human–AI 

interaction, examining how clinicians engage with AI tools, how 

work;ows evolve, and the implications for healthcare disparities 

and access. Incorporating socio-technical frameworks will be 

essential to ensure AI innovations translate into practical, 

equitable, and sustainable improvements in breast cancer care.

8 Conclusion

This study reviews the emerging potential of SSL and 

transformer-based architectures in breast imaging, demonstrating 

their ability to enhance performance across lesion detection, 

classification, and segmentation tasks, particularly in scenarios with 

limited annotations. These approaches offer notable advantages in 

label efficiency, cross-modality adaptability, and robustness under 

data-scarce conditions. However, fully realizing their clinical 

impact depends on addressing persistent challenges, including the 

limited availability of large and diverse datasets, vulnerability to 

domain shifts, incomplete assessments of fairness and 

interpretability, high computational demands, and the absence of 

prospective validation frameworks.

Strategic directions for future research include the development 

of federated, vendor-agnostic SSL frameworks to enable privacy- 

preserving pretraining, along with parameter-efficient adaptation 

techniques for deployment in diverse clinical environments. 

Integrating AI tools within human-in-the-loop work;ows can build 

clinician trust, while establishing standardized, bias-audited 

benchmarks will support reproducibility and fairness. Robust 

uncertainty quantification and continual learning protocols could 

further facilitate safe adaptation to evolving imaging technologies 

and heterogeneous patient populations.

Bridging the gap from promising research prototypes to 

clinically reliable tools will require coordinated multi-institutional 

collaboration, rigorous external validation, prospective clinical trials, 

and strong ethical oversight. Such concerted efforts are essential to 

ensure that SSL and transformer-based innovations meaningfully 

enhance the accuracy, efficiency, and equity of breast cancer care.
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