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Objective: Magnetic resonance-guided focused ultrasound (MRgFUS) 

thalamotomy is an effective treatment for essential tremor (ET) and tremor- 

dominant Parkinson’s disease (PD), yet a substantial proportion of patients 

experience tremor recurrence over time. Reliable imaging biomarkers to 

predict long-term outcomes are lacking. The purpose of the study was to 

evaluate whether radiomic features extracted from 24-h post-treatment MRI 

can predict clinically relevant tremor recurrence at 12 months after MRgFUS 

thalamotomy, using a machine learning (ML) approach.

Materials and methods: Retrospective, single-center study included 120 

patients (61 ET, 59 PD) treated with unilateral MRgFUS Vim thalamotomy 

between February 2018 and June 2023. Tremor severity was assessed using 

part A of the Fahn–Tolosa–Marin Tremor Rating Scale (FTM-TRS) at baseline 

and 12 months. Recurrence was defined as an FTM-TRS part A score ≥ 3 at 

12 months. Lesions were manually segmented on 24-h post-treatment 

T2-weighted MRI. Forty radiomic features (18 first-order, 22 texture GLCM 

from Laplacian of Gaussian–filtered images) were extracted. A linear Support 

Vector Classifier with leave-one-out cross-validation was used for 

classification. Model explainability was assessed using SHapley Additive 

exPlanations (SHAP).

Results: Clinically relevant tremor recurrence occurred in 23 patients (19%). 

For the full cohort, the ML model achieved a balanced accuracy of 0.720, 

weighted F1-score of 0.737, and comparable sensitivity and specificity across 

classes. Performance was higher in PD (BA = 0.808, F1 = 0.793) than in ET 

(BA = 0.580, F1 = 0.696). The most predictive features were texture-derived 

GLCM metrics, particularly from edge-enhanced images, with first-order 

features contributing complementary information. No significant correlations 

were found between radiomic features and procedural parameters.
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Conclusion: Radiomic analysis of MRgFUS lesions on 24-h post-treatment 

MRI can provide early prediction of 12-month tremor recurrence, with 

higher predictive value in PD than in ET. Texture-based features may 

capture microstructural characteristics linked to treatment durability. This 

approach could inform post-treatment monitoring and individualized 

management strategies.
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essential tremor, Parkinson’s disease, MRgFUS thalamotomy, machine learning, 
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1 Introduction

Magnetic resonance–guided focused ultrasound (MRgFUS) 

thalamotomy targeting the ventral intermediate nucleus (Vim) of 

the thalamus has emerged as an innovative, minimally invasive 

treatment for essential tremor (ET) and tremor-dominant 

Parkinson’s disease (PD) (1). Long-term follow-up studies, with 

data extending beyond five years, consistently demonstrate 

immediate and substantial tremor reduction, as measured by 

clinical rating scales and disability scores (2, 3).

Despite these encouraging results, tremor recurrence remains 

a concern. A recent meta-analysis in ET patients reported that, at 

4–5 years after treatment, tremor recurrence occurred in 

approximately 23%–25% of cases (4). Similarly, a retrospective 

study in tremor-dominant PD reported a 23% relapse rate even 

within the first month (5). Most recurrences were partial, with 

tremor severity still improved compared with baseline in most 

patients. Nonetheless, these findings highlight the importance of 

identifying reliable predictors of sustained, long-term benefit.

Several studies have investigated potential prognostic factors 

for treatment failure or recurrence. Along with confirming 

higher relapse rates in PD, previous research has examined 

procedural parameters (e.g., number of sonications, maximum 

temperature achieved), lesion morphology on post-treatment 

MRI (e.g., size, shape), and advanced imaging markers from 

diffusion tensor imaging (DTI) and tractography of the dentato– 

rubro–thalamic pathway at the Vim level (5–9). However, results 

have been inconsistent, and no reliable method currently exists 

to predict the long-term durability of MRgFUS outcomes.

Radiomics and machine learning (ML) applied to MRI enable 

extraction of high-dimensional quantitative features—many 

imperceptible to the human eye—that may serve as imaging 

biomarkers. In oncology, multiple studies have demonstrated the 

prognostic value of imaging-derived radiomic features in 

treatment-induced thermal ablation lesions (10–12).

Radiomics and ML have been also applied to classify clinical 

characteristics of ET and PD, differentiate ET from healthy 

controls, explore radiomic correlations of clinical variables in 

ET, and distinguish PD motor subtypes (13–19). The results of 

previous studies provide preliminary evidence that radiomics 

analysis represents a growing potential imaging biomarker for 

both diagnosis and prognosis in movement disorders.

To the best of our knowledge, no prior study has applied radiomic 

analysis to MRgFUS thalamotomy lesions. This study addresses that 

gap by using MRI-derived radiomic biomarkers and ML to predict 

tremor relapse after treatment. We conducted a retrospective, 

single-center study to develop an ML pipeline for predicting 

12-month tremor recurrence using radiomic features extracted 

from lesion segmentations on MRI performed 24 h after MRgFUS. 

We also quantitatively evaluated the contribution of individual 

radiomic features to model performance.

2 Materials and methods

2.1 Participants

We retrospectively evaluated 120 patients who underwent 

unilateral MRgFUS Vim thalamotomy at a single center between 

February 2018 and June 2023. Details of the procedure have 

been described elsewhere (1).

From clinical records, we extracted demographic data (sex, 

age) and clinical information, including underlying diagnosis 

(ET or PD) and tremor intensity using part A of the Fahn– 

Tolosa–Marin Tremor Rating Scale (FTM-TRS). According to 

our clinical protocol, all patients underwent evaluation before 

treatment, the day after the procedure, and at follow-up visits 

scheduled at 1 month, 6 months, 1 year, and 2 years.

Tremor severity at 12 months was assessed with the FTM-TRS. 

Scores were binarized to indicate the presence or absence of 

clinically relevant tremor recurrence, framing the task as binary 

classification. Patients with a total FTM-TRS part A score < 3 were 

assigned to class 0 (no clinically significant tremor), while those 

with a score ≥ 3—considered a clinically relevant recurrence— 

were assigned to class 1. This threshold was selected based on 

clinical reasoning and it represents the lowest value which could 

interfere with the Quality of Life (QoL) of the patients as described 

by the same authors of the method Clinical rating scale for tremor 

(20). Moreover, as stated by Braccia et al. in (5), 30% of tremor 

intensity recurrence could be a reasonable cut off. The binarization 

yielded 97 patients in class 0 and 23 in class 1. Regarding the exact 

relapse rates for the two different diagnoses, within class 0, 44 

patients were in the PD group and 53 patients were in the ET 

group, while within class 1 there were 15 PD patients and 8 

ET patients.

From procedural reports, we recorded the total number of 

sonications, the number reaching ≥ 50°C, and the number 

reaching ≥ 54°C.
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Exclusion criteria were: (i) incomplete clinical records; (ii) 

tremor not attributable to PD or ET; and (iii) absence of FTM- 

TRS part A (upper limbs) data at 12 months post-treatment.

2.2 Image acquisition and segmentation

In our Institutional protocol, all patients undergo brain MRI 

the day after the procedure. All MRI scans were acquired on a 

3 T scanner (Discovery 750; GE Healthcare, Milwaukee, WI, 

USA) with a 32-channel head coil. The imaging protocol included: 

• Axial FLAIR: slice thickness = 3.0 mm, interslice gap = 0.3 mm, 

TR = 11,000 ms, TE = 125 ms, inversion time (TI) = 2,800 ms, 

frequency FOV = 240 mm, phase FOV = 0.8.

• Axial GRE: slice thickness = 3.0 mm, interslice gap = 0.3 mm, 

TR = 960 ms, TE = 25 ms, Kip angle = 20°, frequency 

FOV = 260 mm, phase FOV = 0.75.

• Axial SWI: slice thickness = 2.0 mm, TR = 49 ms, TE = 40 ms, 

frequency FOV = 240 mm, phase FOV = 0.85.

• Axial DWI: slice thickness = 3.0 mm, interslice gap = 0.3 mm, 

TR = 10,550 ms, TE = 85 ms, b-values = 0 and 1,000 s/mm2, 

frequency FOV = 260 mm, phase FOV = 0.8.

• Axial and Coronal T2 FSE: slice thickness = 3.0 mm, 

interslice gap = 0.3 mm, TR = 7,854 ms, TE = 85 ms, frequency 

FOV = 260 mm, phase FOV = 0.8; acquired in axial and 

coronal planes.

• 3D T1-weighted IR-FSPGR: isotropic voxel size = 1.0 mm3, 

slice thickness = 1.0 mm, TR = 8.5 ms, TE = 3.2 ms, inversion 

time = 450 ms, Kip angle = 12°, frequency FOV = 256 mm, 

phase FOV = 0.8; reconstructed in axial, coronal, and 

sagittal planes.

For the purpose of the study, T2W FSE images were segmented. 

Anonymized Digital Imaging and Communications in Medicine 

(DICOM) files were retrieved from the hospital PACS and 

converted to Neuroimaging Informatics Technology Initiative 

(NIfTI) format for radiomic analysis. The Region of Interest 

(ROI) was defined as the MRgFUS-induced Vim lesion, 

including surrounding edema.

Manual segmentation was performed by experienced 

radiologists using 3D Slicer (v5.6.2) (21, 22). A median smoothing 

filter with a spherical kernel radius of 3.0 mm was applied to the 

segmentation mask before export to reduce minor surface 

irregularities and mitigate inter-operator variability. An example 

of the segmentation and 3D ROI reconstruction is shown in Figure 1.

2.3 Feature extraction

Radiomic features were extracted using the PyRadiomics 

package (v3.1.0) in Python (v3.9) operating in 3D (23). WorkKow 

automation was managed with Snakemake (v7.32.4) (24).

Feature extraction was customized by specifying settings for pre- 

processing operations on MR images, by specifying the feature 

classes to extract, and by enabling the use of specified filters on the 

MR image. Regarding settings for pre-processing, MR images 

underwent image normalization (meaning that Z-score 

standardization was applied to voxels, based on all grey values in 

the image), and images were resampled to an isotropic spacing of 

1 mm3 using a B-spline interpolator. Geometry tolerance for 

FIGURE 1 

Segmentation example in axial T2W MRI. (A) Axial MRI prior to segmentation. (B) Axial MRI with overlapping segmentation mask and 3D 

reconstruction of segmented ROI (obtained with 3D Slicer).
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comparison of origin, direction and spacing between the image and 

the mask was set to 1 × 10-2. Finally, bin width for discretization of 

the image gray level intensities was set to 10. In terms of feature 

classes and filters applied on the image, first order features were 

extracted on the original (unfiltered) image, while second order 

features, namely Grey Level Co-occurrence Matrix (GLCM, 

Haralick) features, were extracted on the image filtered with a 

Laplacian of Gaussian (LoG) filter to enhance edges and fine 

details in the ROI (25). Specifically, first order statistics describe 

the distribution of grey level intensities of voxels in the ROI, while 

GLCM features describe ROI texture by measuring the 

occurrences of pairs of voxel intensities in a specific spatial 

relationship. First order features were extracted on unfiltered 

images to capture the underlying intensity distribution of tissue 

in the ROI without alteration of grey level values by filters. 

A σ = 1.5 mm for the LoG filter was selected as a balanced 

compromise between enhancement of fine textural details and 

preservation of larger-scale structures. This configuration of the 

filter captures both local texture variations and broader structural 

patterns. Feature extraction included first-order statistics from the 

original (unfiltered) images, capturing the distribution of voxel 

intensities, and Gray Level Co-occurrence Matrix (GLCM) features 

from images filtered with a Laplacian of Gaussian (LoG) filter 

(σ = 1.5 mm), enhancing both fine textural details and larger- 

scale structures. This process yielded 40 features: 18 first-order 

and 22 GLCM.

2.4 Classification pipeline

Radiomic features were used as input to a binary classification 

pipeline having as target the 12-month FTM binarized value. Given 

the moderate sample size (120 patients) relative to the number of 

radiomic features (40), a linear Support Vector Classifier (SVC) 

was selected for its ability to handle moderately high-dimensional 

data while maintaining good generalization performance in settings 

with limited observations. The SVC hyperparameters were selected 

as follows: a linear kernel, a regularization parameter C = 0.1 for 

the L2 penalty, and balanced class weight. The model was evaluated 

via Leave-One-Out Cross-Validation (LOO CV), so that its 

robustness might be assessed even with a small dataset. The LOO 

CV trains the model on all samples except one and tests the model 

on the excluded sample; this process is repeated once per sample, 

ensuring that each sample serves as the test sample exactly once. 

Within the pipeline, prior to being fed to the classifier, features 

were standardized. Other ML classifiers were considered and 

implemented, including logistic regression, random forest, and 

gradient boosting classifier. The resulting comparative analysis is 

reported in the Supplementary Material and provides justification 

for the choice of linear SVC as final model.

Since the study cohort comprised two pathologies, it was also 

of interest to assess the model’s performance also separately for 

each pathology using the same trained models. The LOO CV 

procedure was not repeated on each subset because of the 

reduced overall sample size, which would result in a further 

reduced sample size per diagnosis.

Quantitative evaluation of the model was obtained by using 

Balanced Accuracy (BA), Matthews Correlation Coefficient 

(MCC), and weighted F1-score as performance metrics. BA 

evaluates if the model correctly classifies negative cases (class 0) 

and positive cases (class 1), weighing with respect to the number 

of samples in each class. BA has range [0, 1]. MCC evaluates how 

well binary predictions are associated to true labels of data, and it 

considers all diagnostic errors (true positive TP, true negative 

TN, false positive FP, false negative FN) and it is particularly 

suitable to datasets with class imbalance. MCC lies in range 

[−1, 1], with −1 indicating a completely wrong prediction, 0 a 

random prediction, and +1 a perfect prediction. F1-score, the 

harmonic mean of precision and recall, is particularly suitable in 

biomedical applications as it balances the trade-off between false 

positives and false negatives, and lies in range [0, 1]. The weighted 

version of F1-score accounts for class imbalance by weighing each 

class’s F1-score by the number of samples in that class. The 

confusion matrix was also used for performance assessment; it 

provides a quick comparison between true labels and 

predicted labels.

Finally, a key aspect of ML analyses is to provide 

an interpretation of how models work in producing their 

predictions—i.e., model explainability. SHAP (SHapley Additive 

exPlanations) method stands out as one of the most used methods 

for this purpose: it quantifies the global importance of each input 

variable while also enabling individual-level interpretation of each 

variable (26). For these reasons, SHAP was used to provide 

interpretable explanations for the predictions made by the binary 

classifier. This approach helps to understand how much each 

feature contributes to pushing the prediction towards class 0 or 

class 1, and aggregates feature importance by stacking together all 

SHAP values from all test samples after the LOO CV.

The classification pipeline was implemented in scikit-learn 

(v1.5.2) (27), and SHAP values were computed using the shap 

package (v0.47.0) in Python (v3.12).

3 Results

3.1 Study population

The cohort included 120 patients (98 males): 61 with ET and 

59 with PD. Mean age at treatment was 69 ± 9 years (range: 39–87 

years). Disease duration, defined as the interval from tremor onset 

to MRgFUS treatment, was available for 107 patients (13 missing 

values) and averaged 14 ± 13 years (range: 1–60 years). 

Considering the side with the most pronounced tremor, 93 

patients had right-sided tremor and 27 had left-sided tremor.

3.2 Machine learning performance

The classification task—predicting clinically relevant tremor 

recurrence at 12 months—was based on binarized FTM scores 

(Section 2.1), using radiomic features from 24-h post-treatment 

T2W MRI (Section 2.3) as input to a linear SVC (Section 2.4).
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Performance metrics for the Leave-One-Out Cross-Validation 

(LOO CV) are summarized in Table 1. Results are reported for the 

entire cohort and for ET and PD subgroups to assess possible 

pathology-related differences. The highest performance was 

observed in the PD subgroup, though a predictive signal was 

also present for ET, reKected by a weighted F1-score of 

approximately 0.70.

For the entire cohort, the model achieved a balanced accuracy 

(BA) of 0.720, indicating a good trade-off between sensitivity and 

specificity. As shown in the confusion matrix (Figure 2), the 

classifier correctly identified 70.1% of class 0 cases and 73.9% of 

class 1 cases. The weighted F1-score of 0.737 further demonstrates 

the model’s capacity to manage both classes despite the marked 

imbalance (81% class 0, 19% class 1). Clinically, this balance is 

relevant, as both false negatives and false positives carry important 

implications for tremor management.

3.3 Feature importance analysis

Feature contributions were assessed using SHAP values 

computed within the LOO CV framework. The ten most 

inKuential features are shown in Figure 3. 

• Panel A: Mean absolute SHAP values averaged over all LOO 

CV iterations, identifying features with the greatest impact on 

predictions. The top seven were GLCM-derived from the 

LoG-filtered image; the remaining three were first-order 

features from the original image.

• Panel B: Beeswarm plot showing the distribution and direction 

of SHAP values for each test sample, illustrating how feature 

variation inKuenced prediction outcomes.

To assess category-level contributions, SHAP values were 

grouped by feature type—GLCM from LoG-filtered images vs. 

first order from the original image—and averaged across all 

LOO CV iterations and features within each category (Figure 4). 

GLCM-LoG features predominated, though first-order features 

also contributed meaningfully.

3.4 Correlation with procedural variables

A Spearman correlation analysis was performed between 

radiomic features and sonication variables (total number of 

TABLE 1 LOO cross-validated results of ML classification pipeline for 
binarized FTM RTS part A.

Metrics Whole cohort PD ET

BA 0.720 0.808 0.580

MCC 0.356 0.547 0.113

Weighted F1-score 0.737 0.793 0.696

FIGURE 2 

Confusion matrix averaged over cross-validation. The matrix is row-normalized, and reports mean values obtained on each test sample in the LOO 

CV procedure.
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sonications, number reaching 50°C, number reaching 54°C). After 

Benjamini–Hochberg correction for multiple comparisons, no 

statistically significant correlations were found.

3.5 Subgroup analysis

When evaluated separately by diagnosis: 

• ET: BA = 0.580, MCC = 0.113, weighted F1-score = 0.696

• PD: BA = 0.808, MCC = 0.547, weighted F1-score = 0.793

These results suggest radiomic features from 24-h post-treatment 

MRI may be more predictive of tremor recurrence in PD than in 

ET, though a detectable signal exists in both groups.

4 Discussion

To the best of the authors’ knowledge, this is the first application 

of a ML model to predict the clinical evolution of a thalamotomy 

lesion. The application of radiomics in MRgFUS-treated patients 

with tremor holds promise in predicting 12-month relapse of 

FIGURE 3 

Top ten SHAP values averaged over cross-validation. (A) Bar plot of mean absolute SHAP values. (B) Beeswarm plot of SHAP values of the top ten 

input features, averaged across the LOO CV. The colormap links SHAP values and feature values.

FIGURE 4 

Bar plot of grouped mean absolute SHAP values over cross-validation. Reported values are averaged on each test sample in the LOO CV procedure. 

Features were grouped according to their category and the image they were extracted on (original or filtered).
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tremor. This study highlights how a quantitative description of the 

lesion and edema induced by treatment might be linked to tremor 

relapse 12 months after treatment, suggesting that short-term 

tissue response to treatment (24 h after treatment) may already 

carry be informative for long-term clinical outcomes (12-month 

tremor relapse). Moreover, as this approach is based on MRI, 

it offers two key advantages: it enables long-term outcome 

prediction through a non-invasive imaging modality, and it 

reduces the impact of operator-dependent variability in 

MRI interpretation.

Notably, the developed ML pipeline demonstrated a balanced 

predictive behavior across both FTM classes, as highlighted by 

comparable classification metrics for each class. This indicates 

that the model does not favor one class over the other, which is 

a particularly desirable characteristic in ML models embedded 

in a clinical context.

Radiomic features analyzed here described both gray-level 

intensity and texture within the ROI. The combination of first 

order and second order features was effective for the 

classification task, reKecting their complementary nature. SHAP 

analysis indicated that second order GLCM features from edge- 

enhanced images contributed most to prediction, while first 

order features provided additional global intensity information.

Referring to the specific features with highest mean absolute 

SHAP value, the top feature Informational Measure of Correlation 

2 (Imc2) quantifies the complexity or uniformity of texture in the 

ROI of the image by means of correlation between neighboring 

pixel intensities. It measures the amount of information shared 

between rows and columns in the normalized GLCM. Higher 

values of Imc2, meaning less shared information, indicate a more 

complex and heterogenous texture, while lower values of Imc2 are 

associated with more shared information and thus a structured, 

homogeneous texture. Features 2 and 4, Inverse Difference 

Normalized (Idn) and Inverse Difference Moment Normalized 

(Idmn) respectively, measure local homogeneity in ROI texture, 

again highlighting the key role played by the degree of 

homogeneity of the ROI texture in relapse prediction. Feature 3, 

Maximum Probability, is the occurrences of the most predominant 

pair of neighboring grey-level intensity values, quantifying the 

repetitiveness of a textural pair in the ROI. Features 5–7 measure 

the degree of local intensity variation and spatial regularity in the 

ROI: Correlation analyses linear dependency of grey-level values 

and their respective voxels, Difference Variance focuses on the 

deviation from the mean of differing grey-level intensity pairs, and 

Difference Entropy quantifies the randomness in neighborhood 

grey-level intensity differences. Features 8–10 belong to first order 

features. Feature 8, Kurtosis, measures the tailedness of the grey- 

level intensity distribution, thus reKecting the (possible) deviation 

from a normal intensity distribution. Feature 9, Uniformity, 

quantifies the homogeneity of grey-level intensities in the intensity 

distribution (ignoring their spatial distribution, which is instead 

taken into account by second order features); in other words, it 

measures how evenly intensities are distributed. Finally, feature 10, 

Total Energy, reKects the overall signal magnitude within the ROI 

by calculating the sum of squared intensities and scaling it by the 

voxel volume in mm3.

To our knowledge, this is the first study to use radiomic 

features from MRgFUS-induced lesions to predict treatment 

outcome. Prior research has focused primarily on morphological 

parameters (6). Lesion size and shape remain important 

predictors: in a prospective cohort of 52 tremor-dominant PD 

patients, Braccia et al. found that smaller 24-h lesion volumes 

significantly increased relapse risk, with an optimal range of 

∼145–220 mm3 for minimizing recurrence. Achieving lesions 

within this range may balance long-term benefit and adverse- 

event risk (5). Our previous work also suggested that a more 

caudally oriented lesion may yield greater stability (28).

Radiomic features may also indirectly reKect histopathological 

lesion composition. Classically, MRgFUS lesions are described as a 

necrotic core surrounded by concentric edema zones (6, 29). 

However, recent histopathological reports suggest preferential 

demyelination with relative axonal and neuronal preservation.

At the microstructural level, diffusion-based metrics such as 

fractional anisotropy (FA) within the Vim and along the dentato– 

rubro–thalamic tract have shown inconsistent correlations with 

tremor improvement (7, 9, 28). This variability supports integrating 

multiparametric imaging and raises the possibility that texture- 

sensitive radiomic features might capture these differences (30).

Our correlation analysis found no association between 

radiomic features and procedural parameters, consistent with 

evidence that lesion formation is reliably achieved once 

temperatures exceed 54°C (7).

It will be of future interest to investigate the applicability of a 

similar model to the preoperative assessment of the thalamus, with 

the aim of more accurately selecting patients who are potentially 

responsive to thalamotomy. A comparable attempt was made by 

Zhang et al. (31), who applied machine learning techniques 

to resting-state functional MRI (rs-fMRI) data, identifying 

that the fractional amplitude of low-frequency Kuctuations 

(fALFF) pattern predicts tremor benefits induced by MRgFUS 

thalamotomy. Unlike the approach adopted by Zhang et al., an 

ML-based evaluation of the thalamus in a preoperative setting 

could explore potential radiomic features capable of predicting 

responsiveness of the tissues to thalamotomy.

In this direction, Pinheiro et al. (32) reported promising 

performance of a deep learning model for thalamus segmentation, 

leaving to future studies the task of achieving a finer segmentation 

of the thalamus into its distinct nuclei.

The study’s strengths include a uniform imaging protocol and 

systematic post-treatment timing. However, the modest sample 

size limits generalizability. It will be of future interest to enlarge 

the study cohort, possibly also by collecting data from different 

clinical centers to enable a multicentric-scale analysis and external 

validation of ML models. This would also unlock the possibility of 

conducting separate analyses for the two pathologies in exam. 

However, considering the currently available cohort size for the 

study, techniques to mitigate overfitting of ML models are needed; 

in particular, LOO CV framework and applying a regularization 

technique during model training were adopted for this purpose. 

Moreover, in future studies we would like to evaluate the potential 

applicability to the entire thalamus in a pre-operative setting to 

estimate treatment outcome. The available literature suggests that 
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ML can assist clinicians in categorizing patients and achieving more 

precise diagnoses. Misdiagnosis of ET as other tremor disorders or 

enhanced physiological tremor remains common in clinical 

practice. ML has achieved excellent classification performance in 

the identification of ET, particularly by evaluating features within 

the cerebello-thalamo-cortical (CTC) pathway (13). Moreover, 

Panahi et al. (15) demonstrated that a radiomic approach 

may help differentiate Parkinson’s disease motor subtypes— 

tremor-dominant and postural-instability/gait-difficulty—at early 

stages. Such evaluations are highly relevant in our setting, as more 

precise clinical diagnoses improve the selection of patients who are 

more likely to achieve favorable post-procedural outcomes.

Manual segmentation, although protocolized, could benefit 

from inter-operator variability assessment. Finally, the class 

imbalance between recurrence and non-recurrence cases may 

have inKuenced performance metrics.

Quantitative radiomic analysis of MRgFUS-induced lesions on 

24-h post-treatment MRI, integrated into an ML framework, can 

provide early prediction of 12-month tremor recurrence. This 

approach could help guide post-procedure decision-making, 

including consideration of early adjunctive interventions. Future 

studies should explore multiparametric models combining 

imaging with clinical and biohumoral markers, and SHAP-based 

interpretability may facilitate clinical adoption.
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