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long-term clinical outcome in
patients with tremor after
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Objective: Magnetic resonance-guided focused ultrasound (MRgFUS)
thalamotomy is an effective treatment for essential tremor (ET) and tremor-
dominant Parkinson’s disease (PD), yet a substantial proportion of patients
experience tremor recurrence over time. Reliable imaging biomarkers to
predict long-term outcomes are lacking. The purpose of the study was to
evaluate whether radiomic features extracted from 24-h post-treatment MRI
can predict clinically relevant tremor recurrence at 12 months after MRgFUS
thalamotomy, using a machine learning (ML) approach.

Materials and methods: Retrospective, single-center study included 120
patients (61 ET, 59 PD) treated with unilateral MRgFUS Vim thalamotomy
between February 2018 and June 2023. Tremor severity was assessed using
part A of the Fahn—-Tolosa—Marin Tremor Rating Scale (FTM-TRS) at baseline
and 12 months. Recurrence was defined as an FTM-TRS part A score>3 at
12 months. Lesions were manually segmented on 24-h post-treatment
T2-weighted MRI. Forty radiomic features (18 first-order, 22 texture GLCM
from Laplacian of Gaussian—filtered images) were extracted. A linear Support
Vector Classifier with leave-one-out cross-validation was used for
classification. Model explainability was assessed using SHapley Additive
exPlanations (SHAP).

Results: Clinically relevant tremor recurrence occurred in 23 patients (19%).
For the full cohort, the ML model achieved a balanced accuracy of 0.720,
weighted Fl-score of 0.737, and comparable sensitivity and specificity across
classes. Performance was higher in PD (BA=0.808, F1=0.793) than in ET
(BA=0.580, F1=0.696). The most predictive features were texture-derived
GLCM metrics, particularly from edge-enhanced images, with first-order
features contributing complementary information. No significant correlations
were found between radiomic features and procedural parameters.
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Conclusion: Radiomic analysis of MRgFUS lesions on 24-h post-treatment

MRI
higher

can provide early prediction of 12-month tremor
predictive value

recurrence, with

in PD than in ET. Texture-based features may

capture microstructural characteristics linked to treatment durability. This

approach could

inform  post-treatment

monitoring and individualized

management strategies.
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1 Introduction

Magnetic resonance-guided focused ultrasound (MRgFUS)
thalamotomy targeting the ventral intermediate nucleus (Vim) of
the thalamus has emerged as an innovative, minimally invasive
(ET)
Parkinson’s disease (PD) (1). Long-term follow-up studies, with

treatment for essential tremor and tremor-dominant
data extending beyond five years, consistently demonstrate
immediate and substantial tremor reduction, as measured by
clinical rating scales and disability scores (2, 3).

Despite these encouraging results, tremor recurrence remains
a concern. A recent meta-analysis in ET patients reported that, at
4-5 years after treatment, tremor recurrence occurred in
approximately 23%-25% of cases (4). Similarly, a retrospective
study in tremor-dominant PD reported a 23% relapse rate even
within the first month (5). Most recurrences were partial, with
tremor severity still improved compared with baseline in most
patients. Nonetheless, these findings highlight the importance of
identifying reliable predictors of sustained, long-term benefit.

Several studies have investigated potential prognostic factors
for treatment failure or recurrence. Along with confirming
higher relapse rates in PD, previous research has examined
procedural parameters (e.g., number of sonications, maximum
temperature achieved), lesion morphology on post-treatment
MRI (e.g., size, shape), and advanced imaging markers from
diffusion tensor imaging (DTI) and tractography of the dentato-
rubro-thalamic pathway at the Vim level (5-9). However, results
have been inconsistent, and no reliable method currently exists
to predict the long-term durability of MRgFUS outcomes.

Radiomics and machine learning (ML) applied to MRI enable
extraction of high-dimensional quantitative features—many
imperceptible to the human eye—that may serve as imaging
biomarkers. In oncology, multiple studies have demonstrated the
prognostic value of imaging-derived radiomic features in
treatment-induced thermal ablation lesions (10-12).

Radiomics and ML have been also applied to classify clinical
characteristics of ET and PD, differentiate ET from healthy
controls, explore radiomic correlations of clinical variables in
ET, and distinguish PD motor subtypes (13-19). The results of
previous studies provide preliminary evidence that radiomics
analysis represents a growing potential imaging biomarker for
both diagnosis and prognosis in movement disorders.

To the best of our knowledge, no prior study has applied radiomic
analysis to MRgFUS thalamotomy lesions. This study addresses that
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gap by using MRI-derived radiomic biomarkers and ML to predict
tremor relapse after treatment. We conducted a retrospective,
single-center study to develop an ML pipeline for predicting
12-month tremor recurrence using radiomic features extracted
from lesion segmentations on MRI performed 24 h after MRgFUS.
We also quantitatively evaluated the contribution of individual
radiomic features to model performance.

2 Materials and methods
2.1 Participants

We retrospectively evaluated 120 patients who underwent
unilateral MRgFUS Vim thalamotomy at a single center between
February 2018 and June 2023. Details of the procedure have
been described elsewhere (1).

From clinical records, we extracted demographic data (sex,
age) and clinical information, including underlying diagnosis
(ET or PD) and tremor intensity using part A of the Fahn-
Tolosa-Marin Tremor Rating Scale (FTM-TRS). According to
our clinical protocol, all patients underwent evaluation before
treatment, the day after the procedure, and at follow-up visits
scheduled at 1 month, 6 months, 1 year, and 2 years.

Tremor severity at 12 months was assessed with the FTM-TRS.
Scores were binarized to indicate the presence or absence of
clinically relevant tremor recurrence, framing the task as binary
classification. Patients with a total FTM-TRS part A score < 3 were
assigned to class 0 (no clinically significant tremor), while those
with a score > 3—considered a clinically relevant recurrence—
were assigned to class 1. This threshold was selected based on
clinical reasoning and it represents the lowest value which could
interfere with the Quality of Life (QoL) of the patients as described
by the same authors of the method Clinical rating scale for tremor
(20). Moreover, as stated by Braccia et al. in (5), 30% of tremor
intensity recurrence could be a reasonable cut off. The binarization
yielded 97 patients in class 0 and 23 in class 1. Regarding the exact
relapse rates for the two different diagnoses, within class 0, 44
patients were in the PD group and 53 patients were in the ET
group, while within class 1 there were 15 PD patients and 8
ET patients.

From procedural reports, we recorded the total number of
sonications, the number reaching>50°C, and the number
reaching > 54°C.
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Exclusion criteria were: (i) incomplete clinical records; (ii)
tremor not attributable to PD or ET; and (iii) absence of FTM-
TRS part A (upper limbs) data at 12 months post-treatment.

2.2 Image acquisition and segmentation

In our Institutional protocol, all patients undergo brain MRI
the day after the procedure. All MRI scans were acquired on a
3T scanner (Discovery 750; GE Healthcare, Milwaukee, WI,
USA) with a 32-channel head coil. The imaging protocol included:

 Axial FLAIR: slice thickness = 3.0 mm, interslice gap = 0.3 mm,
TR =11,000 ms, TE = 125 ms, inversion time (TI)= 2,800 ms,
frequency FOV = 240 mm, phase FOV =0.8.

o Axial GRE: slice thickness = 3.0 mm, interslice gap =0.3 mm,
TR=960ms, TE=25ms, flip
FOV =260 mm, phase FOV =0.75.

o Axial SWL: slice thickness =2.0 mm, TR =49 ms, TE =40 ms,
frequency FOV =240 mm, phase FOV = 0.85.

o Axial DWI: slice thickness = 3.0 mm, interslice gap = 0.3 mm,
TR =10,550 ms, TE=85ms, b-values=0 and 1,000 s/mm?,
frequency FOV =260 mm, phase FOV =0.8.

o Axial T2 FSE: thickness = 3.0 mm,
interslice gap = 0.3 mm, TR = 7,854 ms, TE =85 ms, frequency
FOV =260 mm, phase FOV =0.8; acquired in axial and
coronal planes.

o 3D Tl-weighted IR-FSPGR: isotropic voxel size=1.0 mm?>,
slice thickness=1.0 mm, TR =8.5ms, TE=3.2 ms, inversion

angle =20°, frequency

and Coronal slice

time =450 ms, flip angle=12°, frequency FOV =256 mm,

10.3389/fradi.2025.1683274

FOV =0.8;
sagittal planes.

phase reconstructed in axial, coronal, and

For the purpose of the study, T2ZW FSE images were segmented.
Anonymized Digital Imaging and Communications in Medicine
(DICOM) files were retrieved from the hospital PACS and
converted to Neuroimaging Informatics Technology Initiative
(NIfTI) format for radiomic analysis. The Region of Interest
(ROI) was defined as the MRgFUS-induced Vim lesion,
including surrounding edema.

Manual segmentation was performed by experienced
radiologists using 3D Slicer (v5.6.2) (21, 22). A median smoothing
filter with a spherical kernel radius of 3.0 mm was applied to the
segmentation mask before export to reduce minor surface
irregularities and mitigate inter-operator variability. An example

of the segmentation and 3D ROI reconstruction is shown in Figure 1.

2.3 Feature extraction

Radiomic features were extracted using the PyRadiomics
package (v3.1.0) in Python (v3.9) operating in 3D (23). Workflow
automation was managed with Snakemake (v7.32.4) (24).

Feature extraction was customized by specifying settings for pre-
processing operations on MR images, by specifying the feature
classes to extract, and by enabling the use of specified filters on the
MR image. Regarding settings for pre-processing, MR images
that
standardization was applied to voxels, based on all grey values in

underwent image normalization (meaning Z-score

the image), and images were resampled to an isotropic spacing of
1 mm3 using a B-spline interpolator. Geometry tolerance for

FIGURE 1
Segmentation example in axial T2W MRI

(A) Axial MRI prior to segmentation
reconstruction of segmented ROI (obtained with 3D Slicer)

(B) Axial MRI with overlapping segmentation mask and 3D
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comparison of origin, direction and spacing between the image and
the mask was set to 1 x 10-2. Finally, bin width for discretization of
the image gray level intensities was set to 10. In terms of feature
classes and filters applied on the image, first order features were
extracted on the original (unfiltered) image, while second order
features, namely Grey Level Co-occurrence Matrix (GLCM,
Haralick) features, were extracted on the image filtered with a
Laplacian of Gaussian (LoG) filter to enhance edges and fine
details in the ROI (25). Specifically, first order statistics describe
the distribution of grey level intensities of voxels in the ROI, while
GLCM features ROI
occurrences of pairs of voxel intensities in a specific spatial

describe texture by measuring the
relationship. First order features were extracted on unfiltered
images to capture the underlying intensity distribution of tissue
in the ROI without alteration of grey level values by filters.
A o=15mm for the LoG filter was selected as a balanced
compromise between enhancement of fine textural details and
preservation of larger-scale structures. This configuration of the
filter captures both local texture variations and broader structural
patterns. Feature extraction included first-order statistics from the
original (unfiltered) images, capturing the distribution of voxel
intensities, and Gray Level Co-occurrence Matrix (GLCM) features
from images filtered with a Laplacian of Gaussian (LoG) filter
(0=1.5mm), enhancing both fine textural details and larger-
scale structures. This process yielded 40 features: 18 first-order
and 22 GLCM.

2.4 Classification pipeline

Radiomic features were used as input to a binary classification
pipeline having as target the 12-month FTM binarized value. Given
the moderate sample size (120 patients) relative to the number of
radiomic features (40), a linear Support Vector Classifier (SVC)
was selected for its ability to handle moderately high-dimensional
data while maintaining good generalization performance in settings
with limited observations. The SVC hyperparameters were selected
as follows: a linear kernel, a regularization parameter C=0.1 for
the L2 penalty, and balanced class weight. The model was evaluated
via Leave-One-Out Cross-Validation (LOO CV), so that its
robustness might be assessed even with a small dataset. The LOO
CV trains the model on all samples except one and tests the model
on the excluded sample; this process is repeated once per sample,
ensuring that each sample serves as the test sample exactly once.
Within the pipeline, prior to being fed to the classifier, features
were standardized. Other ML classifiers were considered and
implemented, including logistic regression, random forest, and
gradient boosting classifier. The resulting comparative analysis is
reported in the Supplementary Material and provides justification
for the choice of linear SVC as final model.

Since the study cohort comprised two pathologies, it was also
of interest to assess the model’s performance also separately for
each pathology using the same trained models. The LOO CV
procedure was not repeated on each subset because of the
reduced overall sample size, which would result in a further
reduced sample size per diagnosis.
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Quantitative evaluation of the model was obtained by using
Balanced Accuracy (BA), Matthews Correlation Coefficient
(MCC), and weighted Fl-score as performance metrics. BA
evaluates if the model correctly classifies negative cases (class 0)
and positive cases (class 1), weighing with respect to the number
of samples in each class. BA has range [0, 1]. MCC evaluates how
well binary predictions are associated to true labels of data, and it
considers all diagnostic errors (true positive TP, true negative
TN, false positive FP, false negative FN) and it is particularly
suitable to datasets with class imbalance. MCC lies in range
[-1, 1], with —1 indicating a completely wrong prediction, 0 a
random prediction, and +1 a perfect prediction. Fl-score, the
harmonic mean of precision and recall, is particularly suitable in
biomedical applications as it balances the trade-off between false
positives and false negatives, and lies in range [0, 1]. The weighted
version of F1-score accounts for class imbalance by weighing each
class’s Fl-score by the number of samples in that class. The
confusion matrix was also used for performance assessment; it

provides a quick comparison between true labels and
predicted labels.
Finally, a key aspect of ML analyses is to provide

an interpretation of how models work in producing their
predictions—i.e., model explainability. SHAP (SHapley Additive
exPlanations) method stands out as one of the most used methods
for this purpose: it quantifies the global importance of each input
variable while also enabling individual-level interpretation of each
variable (26). For these reasons, SHAP was used to provide
interpretable explanations for the predictions made by the binary
classifier. This approach helps to understand how much each
feature contributes to pushing the prediction towards class 0 or
class 1, and aggregates feature importance by stacking together all
SHAP values from all test samples after the LOO CV.

The classification pipeline was implemented in scikit-learn
(v1.5.2) (27), and SHAP values were computed using the shap
package (v0.47.0) in Python (v3.12).

3 Results
3.1 Study population

The cohort included 120 patients (98 males): 61 with ET and
59 with PD. Mean age at treatment was 69 + 9 years (range: 39-87
years). Disease duration, defined as the interval from tremor onset
to MRgFUS treatment, was available for 107 patients (13 missing
14+13 years
Considering the side with the most pronounced tremor, 93
patients had right-sided tremor and 27 had left-sided tremor.

values) and averaged (range: 1-60 vyears).

3.2 Machine learning performance

The classification task—predicting clinically relevant tremor
recurrence at 12 months—was based on binarized FTM scores
(Section 2.1), using radiomic features from 24-h post-treatment
T2W MRI (Section 2.3) as input to a linear SVC (Section 2.4).
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Performance metrics for the Leave-One-Out Cross-Validation
(LOO CV) are summarized in Table 1. Results are reported for the
entire cohort and for ET and PD subgroups to assess possible
pathology-related differences. The highest performance was
observed in the PD subgroup, though a predictive signal was
also present for ET, reflected by a weighted Fl-score of
approximately 0.70.

For the entire cohort, the model achieved a balanced accuracy
(BA) of 0.720, indicating a good trade-off between sensitivity and
specificity. As shown in the confusion matrix (Figure 2), the
classifier correctly identified 70.1% of class O cases and 73.9% of
class 1 cases. The weighted F1-score of 0.737 further demonstrates
the model’s capacity to manage both classes despite the marked
imbalance (81% class 0, 19% class 1). Clinically, this balance is
relevant, as both false negatives and false positives carry important
implications for tremor management.

TABLE 1 LOO cross-validated results of ML classification pipeline for
binarized FTM RTS part A.

Metrics Whole cohort PD ET
BA 0.720 0.808 0.580
MCC 0.356 0.547 0.113
Weighted F1-score 0.737 0.793 0.696

10.3389/fradi.2025.1683274

3.3 Feature importance analysis

Feature contributions were assessed using SHAP values
computed within the LOO CV framework. The ten most
influential features are shown in Figure 3.

o Panel A: Mean absolute SHAP values averaged over all LOO
CV iterations, identifying features with the greatest impact on
predictions. The top seven were GLCM-derived from the
LoG-filtered image; the remaining three were first-order
features from the original image.

o Panel B: Beeswarm plot showing the distribution and direction
of SHAP values for each test sample, illustrating how feature
variation influenced prediction outcomes.

To assess category-level contributions, SHAP values were
grouped by feature type—GLCM from LoG-filtered images vs.
first order from the original image—and averaged across all
LOO CV iterations and features within each category (Figure 4).
GLCM-LoG features predominated, though first-order features
also contributed meaningfully.

3.4 Correlation with procedural variables

A Spearman correlation analysis was performed between
radiomic features and sonication variables (total number of

True Label
Class 0

Class 1

Class 0

FIGURE 2

CV procedure.

Predicted Label

Confusion matrix averaged over cross-validation. The matrix is row-normalized, and reports mean values obtained on each test sample in the LOO

-1.0

Class 1
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(A) (B)
High
log-sigma-1-5-mm-3D_glcm_Imc2 0.359
log-sigma-1-5-mm-3D_glcm_ldn 0.325
log-sigma-1-5-mm-3D_glcm_MaximumProbability 0.272
log-sigma-1-5-mm-3D_glcm_Idmn 0.269 )
>
log-sigma-1-5-mm-3D_glcm_Correlation g
o
—_
log-sigma-1-5-mm-3D_glcm_DifferenceVariance . 2
©
()
log-sigma-1-5-mm-3D_glcm_DifferenceEntropy u-
original_firstorder_Kurtosis
original_firstorder_Uniformity 0.131
original_firstorder_TotalEnergy 0.129
t T T T Low
0.0 0.2 0.4 4
Mean absolute SHAP values SHAP values
FIGURE 3
Top ten SHAP values averaged over cross-validation. (A) Bar plot of mean absolute SHAP values. (B) Beeswarm plot of SHAP values of the top ten
input features, averaged across the LOO CV. The colormap links SHAP values and feature values.

LoG (o = 1.5 mm) filtered GLCM

Original First Order

2.802

0.0 0.5

Mean

FIGURE 4

Bar plot of grouped mean absolute SHAP values over cross-validation. Reported values are averaged on each test sample in the LOO CV procedure.
Features were grouped according to their category and the image they were extracted on (original or filtered).

1.0 1.5 2.0 2.5 3.0

absolute SHAP values per features' subset

sonications, number reaching 50°C, number reaching 54°C). After
Benjamini-Hochberg correction for multiple comparisons, no

statistically significant correlations were found.

3.5 Subgroup analysis
When evaluated separately by diagnosis:

o ET: BA=0.580, MCC = 0.113, weighted F1-score = 0.696
o PD: BA =0.808, MCC = 0.547, weighted F1-score = 0.793

Frontiers in Radiology

These results suggest radiomic features from 24-h post-treatment
MRI may be more predictive of tremor recurrence in PD than in
ET, though a detectable signal exists in both groups.

4 Discussion

To the best of the authors” knowledge, this is the first application
of a ML model to predict the clinical evolution of a thalamotomy
lesion. The application of radiomics in MRgFUS-treated patients
with tremor holds promise in predicting 12-month relapse of
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tremor. This study highlights how a quantitative description of the
lesion and edema induced by treatment might be linked to tremor
relapse 12 months after treatment, suggesting that short-term
tissue response to treatment (24 h after treatment) may already
carry be informative for long-term clinical outcomes (12-month
tremor relapse). Moreover, as this approach is based on MRI,
it offers two key advantages: it enables long-term outcome
prediction through a non-invasive imaging modality, and it
reduces the impact of operator-dependent variability in
MRI interpretation.

Notably, the developed ML pipeline demonstrated a balanced
predictive behavior across both FTM classes, as highlighted by
comparable classification metrics for each class. This indicates
that the model does not favor one class over the other, which is
a particularly desirable characteristic in ML models embedded
in a clinical context.

Radiomic features analyzed here described both gray-level
intensity and texture within the ROI. The combination of first
order and second order features was effective for the
classification task, reflecting their complementary nature. SHAP
analysis indicated that second order GLCM features from edge-
enhanced images contributed most to prediction, while first
order features provided additional global intensity information.

Referring to the specific features with highest mean absolute
SHAP value, the top feature Informational Measure of Correlation
2 (Imc2) quantifies the complexity or uniformity of texture in the
ROI of the image by means of correlation between neighboring
pixel intensities. It measures the amount of information shared
between rows and columns in the normalized GLCM. Higher
values of Imc2, meaning less shared information, indicate a more
complex and heterogenous texture, while lower values of Imc2 are
associated with more shared information and thus a structured,
homogeneous texture. Features 2 and 4, Inverse Difference
Normalized (Idn) and Inverse Difference Moment Normalized
(Idmn) respectively, measure local homogeneity in ROI texture,
again highlighting the key role played by the degree of
homogeneity of the ROI texture in relapse prediction. Feature 3,
Maximum Probability, is the occurrences of the most predominant
pair of neighboring grey-level intensity values, quantifying the
repetitiveness of a textural pair in the ROL Features 5-7 measure
the degree of local intensity variation and spatial regularity in the
ROLI: Correlation analyses linear dependency of grey-level values
and their respective voxels, Difference Variance focuses on the
deviation from the mean of differing grey-level intensity pairs, and
Difference Entropy quantifies the randomness in neighborhood
grey-level intensity differences. Features 8-10 belong to first order
features. Feature 8, Kurtosis, measures the tailedness of the grey-
level intensity distribution, thus reflecting the (possible) deviation
from a normal intensity distribution. Feature 9, Uniformity,
quantifies the homogeneity of grey-level intensities in the intensity
distribution (ignoring their spatial distribution, which is instead
taken into account by second order features); in other words, it
measures how evenly intensities are distributed. Finally, feature 10,
Total Energy, reflects the overall signal magnitude within the ROI
by calculating the sum of squared intensities and scaling it by the
voxel volume in mm?,
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To our knowledge, this is the first study to use radiomic
features from MRgFUS-induced lesions to predict treatment
outcome. Prior research has focused primarily on morphological
parameters (6). Lesion size and shape remain important
predictors: in a prospective cohort of 52 tremor-dominant PD
patients, Braccia et al. found that smaller 24-h lesion volumes
significantly increased relapse risk, with an optimal range of
~145-220 mm’ for minimizing recurrence. Achieving lesions
within this range may balance long-term benefit and adverse-
event risk (5). Our previous work also suggested that a more
caudally oriented lesion may yield greater stability (28).

Radiomic features may also indirectly reflect histopathological
lesion composition. Classically, MRgFUS lesions are described as a
necrotic core surrounded by concentric edema zones (6, 29).
However, recent histopathological reports suggest preferential
demyelination with relative axonal and neuronal preservation.

At the microstructural level, diffusion-based metrics such as
fractional anisotropy (FA) within the Vim and along the dentato—
rubro-thalamic tract have shown inconsistent correlations with
tremor improvement (7, 9, 28). This variability supports integrating
multiparametric imaging and raises the possibility that texture-
sensitive radiomic features might capture these differences (30).

Our correlation analysis found no association between
radiomic features and procedural parameters, consistent with
evidence that lesion formation is reliably achieved once
temperatures exceed 54°C (7).

It will be of future interest to investigate the applicability of a
similar model to the preoperative assessment of the thalamus, with
the aim of more accurately selecting patients who are potentially
responsive to thalamotomy. A comparable attempt was made by
Zhang et al. (31), who applied machine learning techniques
to resting-state functional MRI (rs-fMRI) data, identifying
that the fractional amplitude of low-frequency fluctuations
(fALFF) pattern predicts tremor benefits induced by MRgFUS
thalamotomy. Unlike the approach adopted by Zhang et al.,, an
ML-based evaluation of the thalamus in a preoperative setting
could explore potential radiomic features capable of predicting
responsiveness of the tissues to thalamotomy.

In this direction, Pinheiro et al. (32) reported promising
performance of a deep learning model for thalamus segmentation,
leaving to future studies the task of achieving a finer segmentation
of the thalamus into its distinct nuclei.

The study’s strengths include a uniform imaging protocol and
systematic post-treatment timing. However, the modest sample
size limits generalizability. It will be of future interest to enlarge
the study cohort, possibly also by collecting data from different
clinical centers to enable a multicentric-scale analysis and external
validation of ML models. This would also unlock the possibility of
conducting separate analyses for the two pathologies in exam.
However, considering the currently available cohort size for the
study, techniques to mitigate overfitting of ML models are needed;
in particular, LOO CV framework and applying a regularization
technique during model training were adopted for this purpose.
Moreover, in future studies we would like to evaluate the potential
applicability to the entire thalamus in a pre-operative setting to
estimate treatment outcome. The available literature suggests that
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ML can assist clinicians in categorizing patients and achieving more
precise diagnoses. Misdiagnosis of ET as other tremor disorders or
enhanced physiological tremor remains common in clinical
practice. ML has achieved excellent classification performance in
the identification of ET, particularly by evaluating features within
the cerebello-thalamo-cortical (CTC) pathway (13). Moreover,
Panahi et al. (15) demonstrated that a radiomic approach
may help differentiate Parkinson’s disease motor subtypes—
tremor-dominant and postural-instability/gait-difficulty—at early
stages. Such evaluations are highly relevant in our setting, as more
precise clinical diagnoses improve the selection of patients who are
more likely to achieve favorable post-procedural outcomes.

Manual segmentation, although protocolized, could benefit
from inter-operator variability assessment. Finally, the class
imbalance between recurrence and non-recurrence cases may
have influenced performance metrics.

Quantitative radiomic analysis of MRgFUS-induced lesions on
24-h post-treatment MRI, integrated into an ML framework, can
provide early prediction of 12-month tremor recurrence. This
approach could help guide post-procedure decision-making,
including consideration of early adjunctive interventions. Future
studies should explore multiparametric models combining
imaging with clinical and biohumoral markers, and SHAP-based
interpretability may facilitate clinical adoption.
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