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Objective: In this study, the accuracy of deep learning-based models developed 

for synthetic CT (sCT) generation from conventional Cone Beam Computed 

Tomography (CBCT) images of prostate cancer patients was evaluated. The 

clinical applicability of these sCTs in treatment planning and their potential to 

support adaptive radiotherapy decision-making were also investigated.

Methods: A total of 50 CBCT-CT mappings were obtained for each of 10 

retrospectively selected prostate cancer patients, including one planning CT 

(pCT) and five CBCT scans taken on different days during the treatment process. 

All images were preprocessed, anatomically matched and used as input to the U- 

Net and ResU-Net models trained with PyTorch after z-score normalisation. The 

sCT outputs obtained from model outputs were quantitatively compared with the 

pCT with metrics such as SSIM, PSNR, MAE, and HU difference distribution.

Results: Both models produced sCT images with higher similarity to pCT 

compared to CBCT images. The mean SSIM value was 0.763 ± 0.040 for CBCT- 

CT matches, 0.840 ± 0.026 with U-Net and 0.851 ± 0.026 with ResU-Net, with a 

significant increase in both models (p < 0.05). PSNR values were 21.55 ± 1.38 dB 

for CBCT, 24.74 ± 1.83 dB for U-Net, and 25.24 ± 1.61 dB for ResU-Net. ResU- 

Net provided a statistically significant higher PSNR value compared to U-Net 

(p < 0.05). In terms of MAE, while the mean error in CBCT-CT matches was 

75.2 ± 18.7 HU, the U-Net model reduced this value to 65.3 ± 14.8 HU and ResU- 

Net to 61.8 ± 13.7 HU (p < 0.05).

Conclusion: Deep learning models trained with simple architectures such as U- 

Net and ResU-Net provide effective and feasible solutions for the generation of 

clinically relevant sCT from CBCT images, supporting accurate dose calculation 

and facilitating adaptive radiotherapy workflows in prostate cancer management.
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1 Introduction

Radiotherapy is a major component of cancer treatment and is 

applied in more than 50% of patients, either alone or in 

combination with surgery and systemic therapies. It aims to deliver 

radiation to the tumor site with high precision while minimizing 

damage to healthy tissues. Achieving this precision is critical for 

increasing the tumor control probability while reducing the normal 

tissue complication probability. Maintaining this balance in 

radiotherapy depends on several factors. Accurate delineation of 

target volumes and OARs is the primary factor in achieving 

effective and safe radiotherapy. Traditionally, computed 

tomography (CT) simulation has been considered the gold 

standard for this purpose (1). Another important factor is the 

accuracy of the patient’s spatial position at the time of treatment. 

This accuracy is currently achieved by various Image Guided 

Radiotherapy (IGRT) methods. While kV portal imaging offers 

two-dimensional matching with digital reconstructed radiography 

(DRR) images obtained from CT, cone beam computed 

tomography (CBCT) provides volumetric imaging, enabling the 

monitoring of anatomical changes and treatment adaptation (2).

Soft tissue-based IGRT has replaced two-dimensional (2D) 

correction methods (3, 4). Among these online position correction 

methods, CBCT is the fastest and most accessible for conventional 

C-Arm and O-Ring linac systems (5). Thus, CBCT has become an 

indispensable component of patient positioning and daily 

treatment verification processes in radiotherapy clinics (1). The 

main advantage of CBCT compared to conventional CT is that it 

can be obtained on the treatment table and thus can respond 

immediately to anatomical changes. In this context, CBCT also 

forms the basis of adaptive radiotherapy (ART) applications (6). 

However, CBCT images are characterized by serious artifacts, low 

contrast resolution and most importantly inaccurate HU 

(Hounsfield Unit) values compared to conventional CT due to 

their low dose acquisition and differences in imaging geometries 

(7). These limitations seriously limit the use of CBCT in direct dose 

calculations and intensity-based segmentation/planning algorithms. 

In particular, failure to provide HU accuracy causes errors in dose 

distribution in photon/electron planning, while in sensitive 

modalities such as proton, even a few HU deviations can lead to 

deviations with intervals of a few millimeters (8, 9).

In order to improve the CBCT image quality, many methods have 

been proposed in the past (10–12). Among the hardware solutions, 

anti-scatter grid placement, ray blocking patterns or lead cages are 

noteworthy (13). Software solutions include methods such as 

iterative reconstruction (IR), ray tracing, model-based corrections 

and Monte Carlo (MC)-based simulations. Although MC-based 

approaches in particular provide successful results in terms of HU 

accuracy, they have not been put into clinical practice due to their 

high computational load (14).

The sCT generation has been proposed as an effective solution 

to resolve these challenges (10). This process involves the 

generation of CT-like images using various techniques such as 

bulk density assignment, atlas-based methods, hybrid methods, 

and deep learning-based approaches. Among these techniques, 

deep learning-based methods have proven to be the most the 

most promising approach (10, 15–18). In particular, direct sCT 

generation from CBCT images has become possible by using 

convolutional neural networks (CNN). Thus, the strategies used 

for CT generation from MRI have begun to be used in CBCT 

transformation as well as in low-dose CT enhancements 

(17, 19). Ryu et al. took these approaches a step further and 

proposed a new architecture called COMPUNet, which includes 

both multi-planar and 2.5D data approaches to improve CBCT 

quality. This model enhances learning efficiency, even when data 

availability is limited, and remains robust to slight spatial 

misalignments between input and output images. In addition, a 

contextual loss term is integrated in addition to the traditional 

L1 loss function. Thus, artifacts are attenuated while preserving 

details, and clinically significant improvements are achieved (20).

Zhang et al. presented one of the important studies in this 

field, generating images with CT-like appearance from pelvic 

CBCT images using a model based on the 2.5D Pix2pix GAN 

architecture. The model was strengthened with additional 

learning criteria such as feature matching and perceptual loss, 

and compared with different architectures (U-Net, CycleGAN). 

The results demonstrated that the MAE value was reduced to 

around 8 HU with the 2.5D GAN architecture, and the PSNR 

value reached 24 (21). Moreover, Kida et al. studied sCT 

generation from pelvic region CBCT with U-Net and reduced 

the MAE value from 92 to 31 HU (22). Zhu et al. introduced a 

residual block–based three-dimensional (3D) U-Net architecture 

combined with Dice–Focal loss to facilitate efficient, fully 

automated segmentation of head and neck anatomy (23). Liu 

et al. implemented a deep attention-based CycleGAN model in 

their study and achieved a reduction in MAE from 81 HU to 57 

HU for the abdominal region (24).

Although GAN-based models can achieve high accuracy, they 

generally require larger datasets, longer training times, and greater 

computational resources, which can limit their clinical feasibility 

(15, 24, 25). Beyond CNN-based methods, diffusion models have 

been explored for CBCT-to-CT synthesis, reporting improved 

artifact suppression and high-frequency detail preservation 

(26–28). In parallel, transformer-based architectures, including 

Swin variants and hybrid CNN–transformer models, have been 

investigated for CBCT correction and sCT generation, leveraging 

long-range dependencies to enhance global consistency (29–31). 

These advanced approaches demonstrate strong performance but 

typically demand substantial data and computational resources, 

which may hinder their translation in resource-constrained 

clinical settings.

In this study, we focus on lightweight, relatively simple and 

resource-efficient CNN architectures, specifically U-Net and 

ResU-Net, as practical alternatives for prostate CBCT-to-sCT 

generation. These models are relatively simple, stable, and 

reproducible, making them more suitable for limited-data 

environments. Our contribution lies in demonstrating feasibility 

in a pilot study with multi-temporal CBCT data, where “multi- 

temporal” refers to multiple CBCT acquisitions obtained from 

the same patient across different treatment fractions (different 

days), from real patient treatments, emphasizing the clinical 

practicality of lightweight models under resource constraints. 
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With this approach, we aim to show that deep learning models 

built on simpler architectures can still provide clinically relevant 

results and form a foundation for future integration into 

adaptive radiotherapy workHows.

2 Methods

2.1 Patient selection and imaging protocol

In this retrospective study, 10 patients diagnosed with prostate 

adenocarcinoma were randomly selected from the institutional 

radiotherapy archive and treated at the Radiation Oncology 

Department of Bahçelievler Medipol Hospital between 2019 and 

2024. For each patient, one conventional planning CT scan and 

five separate CBCT images acquired on different days during the 

treatment course were included in the analysis. A total of 50 

paired CBCT-CT image sets were generated. All image data 

were acquired in anonymized DICOM format and analyzed in 

accordance with the exemption granted by the local ethics 

committee (Non-Interventional Clinical Research Ethics 

Committee, Verification Code: 365043D5X6).

Planning CT images were acquired using a Siemens Biograph 

mCT 40 (Siemens Healthineers, Erlangen, Germany) scanner with 

a tube voltage of 120 kVp and a dose parameter of 132 mAs, 

resulting in voxel dimensions of 1.5 × 1.5 × 2 mm3. CBCT 

images were acquired using a Halcyon linear accelerator (Varian 

Medical Systems, Palo Alto, CA, USA) with a voxel size of 

0.96 × 0.96 × 1.25 mm3 and a matrix size of 512 × 512 × 120. All 

images were registered for each patient, and CBCT scans were 

selected from different treatment fractions to ensure optimal 

anatomical consistency with the corresponding pCT.

2.2 Image preprocessing and slice 
matching

CBCT and CT datasets were imported and processed from 

DICOM format using the SimpleITK library within a Python 3.9 

environment. To ensure spatial consistency, CBCT volumes were 

resampled to match the resolution of the corresponding 

planning CT scans, standardizing voxel dimensions across all 

datasets. A linear interpolation method was applied during the 

resampling process.

Each CBCT dataset was rigidly registered to the corresponding 

planning CT scan. Slice-wise alignment was then performed, and 

slices lying outside the overlapping anatomical region between 

CBCT and CT were excluded. In addition, slice correspondence 

was visually verified by a radiation oncologist and a medical 

physicist to ensure that key pelvic structures (e.g., prostate, 

rectum, bladder, femoral heads) were adequately represented. 

Slices showing severe mismatch due to differences in bladder/ 

rectum filling or patient positioning were also discarded. After 

this process, a total of 1,890 slice pairs were retained, of which 

1,323 were used for training, 283 for validation, and 284 for 

testing at the patient level.

This step was intended to isolate differences in image quality 

while minimizing the impact of anatomical variability. The 

alignment process was conducted individually for each patient, 

and only overlapping anatomical regions were used for model 

training. All images were normalized based on HU values using 

z-score normalization (mean = 0, std = 1) to standardize the 

input for model training. The normalized datasets were then 

converted to.npy format and used as input for the training process.

2.3 Deep learning architectures

This study employed two distinct fully convolutional neural 

network architectures for image translation. Each convolutional 

block consisted of two 3 × 3 convolutions with batch normalization 

and ReLU activation. In ResU-Net, identity skip connections were 

added to each block to stabilize training. Residual blocks enhanced 

feature extraction without a significant increase in parameters.

2.3.1 U-Net

The U-Net architecture adopts the classical encoder–decoder 

design originally introduced by Ronneberger et al. 2D CBCT slice 

(256 × 256) is progressively downsampled in the encoder path 

through four convolutional blocks (channels: 32 →64 → 128 → 

256 → 512), each block containing 3 × 3 convolutions, batch 

normalization, ReLU activation, and max pooling (32). The 

bottleneck layer consisted of 1,024 filters with a dropout rate of 0.5. 

The decoder path symmetrically upsamples the feature maps 

(channels: 512 → 256 → 128 → 64 →32) using 2 × 2 up- 

convolutions, concatenation with encoder features via skip 

connections, and subsequent convolutional blocks. This design 

preserves both global and local contextual information during 

reconstruction of the synthetic CT output.

2.3.2 ResU-Net

ResU-Net incorporates residual connections (identity mappings) 

into each convolutional block of the original U-Net architecture. The 

encoder follows the same progression of channels (32 →64 → 128 → 

256 → 512), with each block implemented as a residual block to 

enhance gradient How and training stability. The bottleneck 

consisted of 1,024 filters with dropout (0.5) and residual blocks. The 

decoder similarly performs upsampling (channels: 512 → 256 → 

128 → 64→32) using 2 × 2 up-convolutions followed by residual 

blocks. This integration mitigates the vanishing gradient problem 

and allows for deeper feature extraction without a significant 

increase in model complexity.

All model architectures were implemented from scratch in 

Python using the PyTorch 1.13.1 framework. Model training was 

conducted locally on a dedicated workstation featuring an 

NVIDIA GeForce GTX 1660 GPU (NVIDIA Corporation, Santa 

Clara, CA) with 6 GB of memory.

2.4 Training protocol

The model was trained on a slice-wise basis. One-to-one 

correspondence between CBCT and CT slices was ensured for 
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each mapping. Both models were trained using a combined L1 and 

mean squared error (MSE) loss function, chosen to balance 

structural preservation with HU fidelity. Models were trained for 

200 epochs with a batch size of 1 using the Adam optimizer 

(learning rate 1 × 10−4, β1 = 0.9, β2 = 0.999). Early stopping with 

a patience of 20 epochs was employed to prevent overfitting. 

Data augmentation included random horizontal/vertical Hips 

and rotations within ±10°. Data were normalized to [0,1], and 

all images were resampled to a uniform voxel spacing of 

1 × 1 × 1 mm3 prior to training. Training and validation data 

were split using slice-level randomization, with 80% allocated 

for training and 20% for validation. The schematic diagrams 

of the U-Net and ResU-Net architectures are provided in 

Supplementary Figures S1a,b, respectively.

2.5 Performance evaluation metrics

The outputs of the model, sCT images, were compared 

with the reference pCT and evaluated using several 

quantitative metrics. These included Structural Similarity 

Index (SSIM), measuring structural resemblance; Peak 

Signal-to-Noise Ratio (PSNR), Mean Absolute Error (MAE), 

representing the average HU difference; and the histogram 

of direct HU differences. Statistical analyses were performed 

using two-tailed Student’s t-test, with p < 0.05 considered 

statistically significant. The performance of U-Net and 

ResU-Net models was analyzed individually for each metric, 

and improvements over the original CBCT images were 

quantitatively demonstrated.

3 Results

In this study, the effectiveness of U-Net and ResU-Net 

architectures was evaluated for generating sCT images from 

TABLE 1 Mean ± standard deviation values of all evaluation metrics and 
statistical significance comparisons for CBCT–CT, U-Net sCT–CT, and 
resU-Net sCT–CT matches (n = 50 matched pairs; significance level set 
at p < 0.05).

Metric CBCT– 
CT

U-Net sCT– 
CT

ResU-Net 
sCT–CT

p-value

SSIM 0.763 ± 0.040 0.840 ± 0.026 0.851 ± 0.026 a, b

PSNR 

(dB)

21.55 ± 1.38 24.74 ± 1.83 25.24 ± 1.61 a, b, c

MAE 

(HU)

75.2 ± 18.7 65.3 ± 14.8 61.8 ± 13.7 a, b, c

p < 0.05 was considered statistically significant. a Significant difference between CBCT–CT 

and U-Net sCT–CT. b Significant difference between CBCT–CT and ResU-Net sCT–CT. c 

Significant difference between U-Net sCT–CT and ResU-Net sCT–CT.

FIGURE 1 

Comparison of SSIM values for CBCT–pCT, U-Net-based sCT–pCT, and resU-Net-based sCT–pCT pairs, presented as mean ± standard deviation. 

Statistically significant differences between groups (p < 0.05) are indicated on the plot.
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CBCT scans, aiming to achieve image quality comparable to pCT. 

Following the training and testing of the models on 50 CBCT–CT 

image pairs obtained from 10 patients, the resulting sCT images 

were quantitatively compared to the corresponding reference CT 

using a set of established image quality metrics.

3.1 Quantitative evaluation

Both models generated sCT outputs that demonstrated 

improved similarity to the reference CT images compared to the 

original CBCT scans. Comparative analyses were performed for 

both CBCT–CT and sCT–pCT pairs produced using the U-Net 

and ResU-Net architectures. Evaluation metrics included SSIM, 

PSNR, MAE, and average HU difference. The mean and 

standard deviation values for each metric, along with statistical 

comparisons for significance, are summarized in Table 1.

According to Figure 1, both models significantly improved 

SSIM scores compared to the CBCT images (p < 0.05). While 

the mean SSIM was 0.763 ± 0.040 for CBCT–CT pairs, it 

increased to 0.840 ± 0.026 for U-Net sCT–CT and 0.851 ± 0.026 

for ResU-Net sCT–CT. Statistical analysis confirmed that both 

U-Net and ResU-Net provided significant enhancements over 

CBCT; however, the difference between U-Net and ResU-Net 

was not statistically significant (p > 0.05).

As shown in Figure 2, the mean PSNR for CBCT–CT pairs 

was 21.55 ± 1.38 dB, while U-Net sCT–CT and ResU-Net sCT– 

CT yielded 24.74 ± 1.83 dB and 25.24 ± 1.61 dB, respectively. 

Both models demonstrated significantly higher PSNR 

values compared to CBCT (p < 0.05). Moreover, the ResU- 

Net model significantly outperformed U-Net in terms of 

PSNR (p < 0.05).

The mean HU difference for CBCT–CT pairs was 75.2 ± 18.7 

HU. This was reduced to 65.3 ± 14.8 HU with U-Net and further to 

61.8 ± 13.7 HU using ResU-Net (Figure 3). Both models showed 

significant improvements in HU accuracy over CBCT (p < 0.05), 

while ResU-Net also demonstrated a statistically significant 

advantage over U-Net (p < 0.05). Likewise, the MAE was 

74.4 ± 36.8 HU on average in CBCT–CT, was reduced to 

64.8 ± 29.6 HU with U-Net, and further decreased to 62.1 ± 30.0 

HU with ResU-Net (Figure 4).

Based on these findings, although both models 

effectively improved the similarity of CBCT images to the pCT, 

the ResU-Net architecture achieved superior performance 

particularly in terms of structural similarity and reduction of 

reconstruction errors.

FIGURE 2 

Comparison of PSNR (peak signal-to-noise ratio) values for CBCT–CT, U-Net-based sCT–CT, and resU-Net-based sCT–CT pairs, presented as 

mean ± standard deviation.
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3.2 Qualitative evaluation

However, evaluating model performance requires not only 

analyzing mean HU differences but also examining their 

distributional characteristics. For this purpose, HU difference 

boxplots were generated, summarizing the central tendency, 

range, and outliers for all test cases (Figure 5a). The results 

demonstrate that raw CBCT images exhibit large deviations and 

outliers, particularly toward the negative HU range. While the 

U-Net model was able to reduce the spread of HU differences, 

the ResU-Net architecture produced even tighter distributions, 

reHecting improved robustness and consistency across patients.

Figure 5b displays the mid-slice of CBCT10.1 (patient 10, 

fraction 1) the planning CT, the raw CBCT, and the synthetic CT 

images generated by U-Net and ResU-Net, enabling a direct 

qualitative comparison of anatomical structures and visual fidelity 

across modalities. Figure 5c presents the mid-slice difference maps 

that visually reHect the anatomical alignment indicated by the 

quantitative analyses. In the CBCT map, pronounced deviations are 

visible, particularly at bone-to-soft tissue boundaries. While the 

U-Net model managed to reduce these discrepancies to a certain 

extent, ResU-Net achieved a more even correction of HU values 

and produced outputs that more closely resembled the reference 

CT. When considered alongside the numerical results, these visual 

observations reinforce the overall impression that ResU-Net 

provides a more consistent and dependable representation of 

HU information.

4 Discussion

In this study, the performance of the deep learning based model 

developed to generate sCT from conventional CBCT images was 

evaluated with quantitative metrics such as SSIM, PSNR, MAE, and 

HU. The results show that the closeness of the generated 

sCT images to the original CT images is significantly increased 

compared to the raw CBCT images.

The SSIM analysis demonstrated that both U-Net and ResU-Net 

architectures more effectively preserved structural information 

compared to conventional CBCT. The mean SSIM value for 

CBCT–CT alignment was 0.76, whereas it improved to 0.84 with 

U-Net and 0.85 with ResU-Net. These improvements were 

statistically significant when compared to CBCT. However, the 

slight advantage of ResU-Net over U-Net did not reach statistical 

significance. Although the SSIM values reported here are lower 

than the 0.93–0.98 range achieved by GAN-based models as 

described by Maspero et al., the results remain clinically acceptable 

given the model’s simplicity and the limited dataset used (33).

FIGURE 3 

Comparison of the mean HU differences for CBCT–CT, U-Net sCT–pCT, and resU-Net sCT–pCT pairings.
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The PSNR metric was employed to assess the signal fidelity of the 

generated sCT images. The average PSNR, calculated as 21.55 dB for 

CBCT–CT comparisons, increased to 24.74 dB with U-Net and 

25.24 dB with ResU-Net. Both models yielded statistically 

significant improvements compared to CBCT, and ResU-Net 

demonstrated a notably higher PSNR than U-Net (p < 0.05). This 

result indicates that ResU-Net enhances sCT quality by more 

effectively preserving anatomical structures. The obtained values 

are consistent with the acceptable PSNR range for sCT quality, 

reported in the literature to be between 25 and 28 dB (17, 34).

A similar pattern was observed in the MAE results. The average 

MAE for CBCT–CT alignment was measured at 75.2 HU, which 

decreased to 64.1 HU with U-Net and 61.8 HU with ResU-Net. 

Both deep learning models achieved statistically significant 

reductions in error compared to CBCT (p < 0.05). Furthermore, 

ResU-Net demonstrated a modest yet statistically significant 

advantage over U-Net, indicating that residual connections 

enhance the suppression of HU-related discrepancies. In previous 

research, Wongtrakool et al. reported reducing the mean MAE to 

approximately 58 HU using a GAN-based approach in the head 

and neck region (17). While the MAE values obtained in our study 

are slightly higher than those reported in some previous study and 

commercial implementations, they nevertheless highlight the 

feasibility of lightweight CNN architectures in improving CBCT 

image quality. These findings should be interpreted as proof-of- 

concept results, with further optimization and larger datasets 

required to establish clinical acceptability. Despite its simpler 

architecture, the ResU-Net model employed in this study achieved 

comparably low MAE values, underscoring its potential to balance 

algorithmic efficiency with clinical relevance.

Figure 5 presents case-wise HU difference boxplots and mid-slice 

difference maps that visually support the quantitative findings. The 

boxplot analysis reveals that CBCT images exhibit a broad 

distribution with pronounced variability and outliers, whereas the 

U-Net model reduces this spread and the ResU-Net architecture 

further centralizes the HU values, indicating improved accuracy 

and consistency across patients. Similarly, mid-slice difference 

maps indicate prominent deviations at bone–soft tissue interfaces 

in CBCT images, whereas ResU-Net suppresses these discrepancies 

more uniformly, yielding an image that closely aligns with the pCT. 

Further inspection revealed that the outlier points in Figure 5A

predominantly originated from high-density bony regions and 

adjacent interfaces, where inherent HU gradients and CBCT- 

specific artifacts such as scatter and beam hardening cause local 

intensity deviations. Despite these localized discrepancies, the 

synthetic CTs exhibited consistent HU improvement over raw 

CBCT, particularly at bone–soft tissue boundaries, as also evident 

in Figure 5C. When considered collectively, these findings suggest 

that the ResU-Net architecture provides more stable and reliable 

performance in terms of HU accuracy, both in pixel differences 

and mean absolute error.

Although simpler than GAN-based models, the U-Net and 

ResU-Net architectures implemented in this study achieved 

performance levels consistent with previous research and suitable 

FIGURE 4 

Statistical comparison of the mean absolute error (MAE) values for CBCT, U-Net, and resU-Net.
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for feasibility assessment in clinical imaging quality improvement. 

For instance, the cGAN model used by O’Connor et al. for MR- 

based sCT generation demonstrated high SSIM scores and low HU 

deviations, but required a more complex and data-intensive 

training process (10). In contrast, the ResU-Net model, enhanced 

with residual connections, produced comparable results in both 

HU accuracy and structural similarity while preserving a relatively 

simple design.

In this context, the approaches introduced in this study offer 

alternative model architectures that are effective under limited data 

conditions and hold strong potential for clinical integration. Given 

that only 10 patients (50 paired CBCT–CT volumes) were 

included, the findings should be interpreted as a pilot feasibility 

study rather than a robust validation. We also acknowledge that the 

feasibility of deep learning–based CBCT enhancement has been 

demonstrated in earlier studies; however, our contribution 

emphasizes the applicability of lightweight architectures in prostate 

cancer and multi-temporal CBCT settings, highlighting a practical 

pathway under resource-constrained clinical conditions.

Another notable limitation is that the study was conducted 

using 2D slice-based architecture. In addition, although both 

U-Net and ResU-Net significantly reduced the MAE compared 

to CBCT, the absolute values remained modest and slightly 

higher than those reported in some previous studies and 

commercial systems, indicating that further optimization is 

needed before clinical acceptability can be established. Future 

FIGURE 5 

(a) Case-wise boxplots of mean HU differences for CBCT–pCT, U-Net sCT–pCT, and resU-Net sCT–pCT pairs (body-masked). (b) The mid-slice of 

CBCT10.1 (patient 10, fraction 1), including the planning CT, the raw CBCT, and the synthetic CT images generated by U-Net and ResU-Net, enabling 

a direct qualitative comparison of anatomical structures and visual fidelity across modalities. (c) Corresponding HU difference maps of CBCT, U-Net 

sCT, and ResU-Net sCT relative to the reference planning CT in the same mid-slice.
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research should therefore explore more advanced approaches, 

including three-dimensional CNNs, and incorporate larger, 

multi-center datasets to enhance model generalizability. 

Moreover, comprehensive evaluations are needed, including 

integration into clinical workHows, assessment of dose 

calculation accuracy, auto-contouring performance, and DVH 

integrity. Therefore, the present results should be interpreted as 

a feasibility study at the imaging quality level only, while future 

work must establish true clinical utility for 

radiotherapy applications.

5 Conclusion

These findings suggest that deep learning-based 

transformation methods, even those employing relatively simple 

architectures, can be effectively applied in clinical settings with 

limited data availability. The results indicate that U-Net, and 

especially ResU-Net, enhance CBCT image quality and enable 

reliable sCT generation, providing proof-of-concept feasibility in 

a pilot setting. This study highlights the clinical practicality of 

lightweight CNN architectures for sCT generation in prostate 

radiotherapy. Nevertheless, further validation with larger multi- 

institutional datasets and advanced methods is warranted. In 

particular, comprehensive evaluations such as dosimetric 

accuracy, auto-contouring performance, and DVH integrity are 

required before true clinical integration can be established.
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