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Objective: In this study, the accuracy of deep learning-based models developed
for synthetic CT (sCT) generation from conventional Cone Beam Computed
Tomography (CBCT) images of prostate cancer patients was evaluated. The
clinical applicability of these sCTs in treatment planning and their potential to
support adaptive radiotherapy decision-making were also investigated.
Methods: A total of 50 CBCT-CT mappings were obtained for each of 10
retrospectively selected prostate cancer patients, including one planning CT
(pCT) and five CBCT scans taken on different days during the treatment process.
All images were preprocessed, anatomically matched and used as input to the U-
Net and ResU-Net models trained with PyTorch after z-score normalisation. The
sCT outputs obtained from model outputs were quantitatively compared with the
pCT with metrics such as SSIM, PSNR, MAE, and HU difference distribution.
Results: Both models produced sCT images with higher similarity to pCT
compared to CBCT images. The mean SSIM value was 0.763 + 0.040 for CBCT-
CT matches, 0.840 + 0.026 with U-Net and 0.851 + 0.026 with ResU-Net, with a
significant increase in both models (p < 0.05). PSNR values were 21.55 + 1.38 dB
for CBCT, 24.74 + 1.83 dB for U-Net, and 25.24 + 1.61 dB for ResU-Net. ResU-
Net provided a statistically significant higher PSNR value compared to U-Net
(p<0.05). In terms of MAE, while the mean error in CBCT-CT matches was
75.2 + 18.7 HU, the U-Net model reduced this value to 65.3 + 14.8 HU and ResU-
Net to 61.8 + 13.7 HU (p < 0.05).

Conclusion: Deep learning models trained with simple architectures such as U-
Net and ResU-Net provide effective and feasible solutions for the generation of
clinically relevant sCT from CBCT images, supporting accurate dose calculation
and facilitating adaptive radiotherapy workflows in prostate cancer management.

KEYWORDS

synthetic CT, CBCT, deep learning, image-guided radiotherapy (IGRT), adaptive
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1 Introduction

Radiotherapy is a major component of cancer treatment and is
applied in more than 50% of patients, either alone or in
combination with surgery and systemic therapies. It aims to deliver
radiation to the tumor site with high precision while minimizing
damage to healthy tissues. Achieving this precision is critical for
increasing the tumor control probability while reducing the normal
tissue complication probability. Maintaining this balance in
radiotherapy depends on several factors. Accurate delineation of
target volumes and OARs is the primary factor in achieving
effective and safe radiotherapy. Traditionally, computed
tomography (CT) simulation has been considered the gold
standard for this purpose (1). Another important factor is the
accuracy of the patient’s spatial position at the time of treatment.
This accuracy is currently achieved by various Image Guided
Radiotherapy (IGRT) methods. While kV portal imaging offers
two-dimensional matching with digital reconstructed radiography
(DRR) obtained from CT,

tomography (CBCT) provides volumetric imaging, enabling the

images cone beam computed
monitoring of anatomical changes and treatment adaptation (2).

Soft tissue-based IGRT has replaced two-dimensional (2D)
correction methods (3, 4). Among these online position correction
methods, CBCT is the fastest and most accessible for conventional
C-Arm and O-Ring linac systems (5). Thus, CBCT has become an
indispensable component of patient positioning and daily
treatment verification processes in radiotherapy clinics (1). The
main advantage of CBCT compared to conventional CT is that it
can be obtained on the treatment table and thus can respond
immediately to anatomical changes. In this context, CBCT also
forms the basis of adaptive radiotherapy (ART) applications (6).
However, CBCT images are characterized by serious artifacts, low
contrast resolution and most importantly inaccurate HU
(Hounsfield Unit) values compared to conventional CT due to
their low dose acquisition and differences in imaging geometries
(7). These limitations seriously limit the use of CBCT in direct dose
calculations and intensity-based segmentation/planning algorithms.
In particular, failure to provide HU accuracy causes errors in dose
distribution in photon/electron planning, while in sensitive
modalities such as proton, even a few HU deviations can lead to
deviations with intervals of a few millimeters (8, 9).

In order to improve the CBCT image quality, many methods have
been proposed in the past (10-12). Among the hardware solutions,
anti-scatter grid placement, ray blocking patterns or lead cages are
noteworthy (13). Software solutions include methods such as
iterative reconstruction (IR), ray tracing, model-based corrections
and Monte Carlo (MC)-based simulations. Although MC-based
approaches in particular provide successful results in terms of HU
accuracy, they have not been put into clinical practice due to their
high computational load (14).

The sCT generation has been proposed as an effective solution
to resolve these challenges (10). This process involves the
generation of CT-like images using various techniques such as
bulk density assignment, atlas-based methods, hybrid methods,
and deep learning-based approaches. Among these techniques,
deep learning-based methods have proven to be the most the
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most promising approach (10, 15-18). In particular, direct sCT
generation from CBCT images has become possible by using
convolutional neural networks (CNN). Thus, the strategies used
for CT generation from MRI have begun to be used in CBCT
transformation as well as in low-dose CT enhancements
(17, 19). Ryu et al. took these approaches a step further and
proposed a new architecture called COMPUNet, which includes
both multi-planar and 2.5D data approaches to improve CBCT
quality. This model enhances learning efficiency, even when data
availability is limited, and remains robust to slight spatial
misalignments between input and output images. In addition, a
contextual loss term is integrated in addition to the traditional
L1 loss function. Thus, artifacts are attenuated while preserving
details, and clinically significant improvements are achieved (20).

Zhang et al. presented one of the important studies in this
field, generating images with CT-like appearance from pelvic
CBCT images using a model based on the 2.5D Pix2pix GAN
architecture. The model was strengthened with additional
learning criteria such as feature matching and perceptual loss,
and compared with different architectures (U-Net, CycleGAN).
The results demonstrated that the MAE value was reduced to
around 8 HU with the 2.5D GAN architecture, and the PSNR
value reached 24 (21). Moreover, Kida et al. studied sCT
generation from pelvic region CBCT with U-Net and reduced
the MAE value from 92 to 31 HU (22). Zhu et al. introduced a
residual block-based three-dimensional (3D) U-Net architecture
combined with Dice-Focal loss to facilitate efficient, fully
automated segmentation of head and neck anatomy (23). Liu
et al. implemented a deep attention-based CycleGAN model in
their study and achieved a reduction in MAE from 81 HU to 57
HU for the abdominal region (24).

Although GAN-based models can achieve high accuracy, they
generally require larger datasets, longer training times, and greater
computational resources, which can limit their clinical feasibility
(15, 24, 25). Beyond CNN-based methods, diffusion models have
been explored for CBCT-to-CT synthesis, reporting improved
artifact suppression and high-frequency detail preservation
(26-28). In parallel, transformer-based architectures, including
Swin variants and hybrid CNN-transformer models, have been
investigated for CBCT correction and sCT generation, leveraging
long-range dependencies to enhance global consistency (29-31).
These advanced approaches demonstrate strong performance but
typically demand substantial data and computational resources,
which may hinder their translation in resource-constrained
clinical settings.

In this study, we focus on lightweight, relatively simple and
resource-efficient CNN architectures, specifically U-Net and
ResU-Net, as practical alternatives for prostate CBCT-to-sCT
generation. These models are relatively simple, stable, and
reproducible, making them more suitable for limited-data
environments. Our contribution lies in demonstrating feasibility
in a pilot study with multi-temporal CBCT data, where “multi-
temporal” refers to multiple CBCT acquisitions obtained from
the same patient across different treatment fractions (different
days), from real patient treatments, emphasizing the clinical
practicality of lightweight models under resource constraints.
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With this approach, we aim to show that deep learning models
built on simpler architectures can still provide clinically relevant
results and form a foundation for future integration into
adaptive radiotherapy workflows.

2 Methods
2.1 Patient selection and imaging protocol

In this retrospective study, 10 patients diagnosed with prostate
adenocarcinoma were randomly selected from the institutional
radiotherapy archive and treated at the Radiation Oncology
Department of Bahgelievler Medipol Hospital between 2019 and
2024. For each patient, one conventional planning CT scan and
five separate CBCT images acquired on different days during the
treatment course were included in the analysis. A total of 50
paired CBCT-CT image sets were generated. All image data
were acquired in anonymized DICOM format and analyzed in
accordance with the exemption granted by the local ethics
committee  (Non-Interventional Clinical Research  Ethics
Committee, Verification Code: 365043D5X6).

Planning CT images were acquired using a Siemens Biograph
mCT 40 (Siemens Healthineers, Erlangen, Germany) scanner with
a tube voltage of 120 kVp and a dose parameter of 132 mAs,
resulting in voxel dimensions of 1.5x1.5x2mm?® CBCT
images were acquired using a Halcyon linear accelerator (Varian
Medical Systems, Palo Alto, CA, USA) with a voxel size of
0.96 x 0.96 x 1.25 mm® and a matrix size of 512 x 512 x 120. All
images were registered for each patient, and CBCT scans were
selected from different treatment fractions to ensure optimal
anatomical consistency with the corresponding pCT.

2.2 Image preprocessing and slice
matching

CBCT and CT datasets were imported and processed from
DICOM format using the SimpleITK library within a Python 3.9
environment. To ensure spatial consistency, CBCT volumes were
resampled to match the resolution of the corresponding
planning CT scans, standardizing voxel dimensions across all
datasets. A linear interpolation method was applied during the
resampling process.

Each CBCT dataset was rigidly registered to the corresponding
planning CT scan. Slice-wise alignment was then performed, and
slices lying outside the overlapping anatomical region between
CBCT and CT were excluded. In addition, slice correspondence
was visually verified by a radiation oncologist and a medical
physicist to ensure that key pelvic structures (e.g., prostate,
rectum, bladder, femoral heads) were adequately represented.
Slices showing severe mismatch due to differences in bladder/
rectum filling or patient positioning were also discarded. After
this process, a total of 1,890 slice pairs were retained, of which
1,323 were used for training, 283 for validation, and 284 for
testing at the patient level.
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This step was intended to isolate differences in image quality
while minimizing the impact of anatomical variability. The
alignment process was conducted individually for each patient,
and only overlapping anatomical regions were used for model
training. All images were normalized based on HU values using
z-score normalization (mean=0, std=1) to standardize the
input for model training. The normalized datasets were then
converted to.npy format and used as input for the training process.

2.3 Deep learning architectures

This study employed two distinct fully convolutional neural
network architectures for image translation. Each convolutional
block consisted of two 3 x 3 convolutions with batch normalization
and ReLU activation. In ResU-Net, identity skip connections were
added to each block to stabilize training. Residual blocks enhanced
feature extraction without a significant increase in parameters.

2.3.1 U-Net

The U-Net architecture adopts the classical encoder-decoder
design originally introduced by Ronneberger et al. 2D CBCT slice
(256 x 256) is progressively downsampled in the encoder path
through four convolutional blocks (channels: 32 —-64 — 128 —
256 — 512), each block containing 3 x3 convolutions, batch
normalization, ReLU activation, and max pooling (32). The
bottleneck layer consisted of 1,024 filters with a dropout rate of 0.5.
The decoder path symmetrically upsamples the feature maps
(channels: 512 — 256 — 128 — 64 —32) using 2x2 up-
convolutions, concatenation with encoder features via skip
connections, and subsequent convolutional blocks. This design
preserves both global and local contextual information during
reconstruction of the synthetic CT output.

2.3.2 ResU-Net

ResU-Net incorporates residual connections (identity mappings)
into each convolutional block of the original U-Net architecture. The
encoder follows the same progression of channels (32 -64 — 128 —
256 — 512), with each block implemented as a residual block to
enhance gradient flow and training stability. The bottleneck
consisted of 1,024 filters with dropout (0.5) and residual blocks. The
decoder similarly performs upsampling (channels: 512 — 256 —
128 — 64—32) using 2 x 2 up-convolutions followed by residual
blocks. This integration mitigates the vanishing gradient problem
and allows for deeper feature extraction without a significant
increase in model complexity.

All model architectures were implemented from scratch in
Python using the PyTorch 1.13.1 framework. Model training was
conducted locally on a dedicated workstation featuring an
NVIDIA GeForce GTX 1660 GPU (NVIDIA Corporation, Santa
Clara, CA) with 6 GB of memory.

2.4 Training protocol

The model was trained on a slice-wise basis. One-to-one
correspondence between CBCT and CT slices was ensured for
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each mapping. Both models were trained using a combined L1 and
mean squared error (MSE) loss function, chosen to balance
structural preservation with HU fidelity. Models were trained for
200 epochs with a batch size of 1 using the Adam optimizer
(learning rate 1x 107% B1=0.9, B2 =0.999). Early stopping with
a patience of 20 epochs was employed to prevent overfitting.
Data augmentation included random horizontal/vertical flips
and rotations within £10°. Data were normalized to [0,1], and
all images were resampled to a uniform voxel spacing of
1x1x1mm?® prior to training. Training and validation data
were split using slice-level randomization, with 80% allocated

TABLE 1 Mean + standard deviation values of all evaluation metrics and
statistical significance comparisons for CBCT-CT, U-Net sCT-CT, and
resU-Net sCT-CT matches (n =50 matched pairs; significance level set
at p<0.05).

Metric = CBCT- | U-Net sCT-| ResU-Net | p-value
CT CT sCT-CT

SSIM 0.763 + 0.040 0.840 + 0.026 0.851 + 0.026 a, b

PSNR 21.55+1.38 24.74+1.83 25.24+1.61 a, b, c

(dB)

MAE 75.2+18.7 65.3 £ 14.8 61.8+13.7 a, b, c

(HU)

P <0.05 was considered statistically significant. a Significant difference between CBCT-CT
and U-Net sCT-CT. b Significant difference between CBCT-CT and ResU-Net sCT-CT. ¢
Significant difference between U-Net sCT-CT and ResU-Net sCT-CT.

10.3389/fradi.2025.1680803

for training and 20% for validation. The schematic diagrams
of the U-Net and ResU-Net architectures are provided in
Supplementary Figures Sla,b, respectively.

2.5 Performance evaluation metrics

The outputs of the model, sCT images, were compared
with the pCT and
quantitative metrics. These included Structural Similarity
Index (SSIM), measuring structural resemblance; Peak
Signal-to-Noise Ratio (PSNR), Mean Absolute Error (MAE),
representing the average HU difference; and the histogram

reference evaluated using several

of direct HU differences. Statistical analyses were performed
using two-tailed Student’s t-test, with p<0.05 considered
statistically significant. The performance of U-Net and
ResU-Net models was analyzed individually for each metric,
and improvements over the original CBCT images were
quantitatively demonstrated.

3 Results

In this study, the effectiveness of U-Net and ResU-Net
architectures was evaluated for generating sCT images from

100 Structural Similarity Index (SSIM) Comparison
0.95 ~0.05
<0.05
e e e
S <0.05
0
!
%
© 0.85
=
=
9]
0
0.80
0.75F
0.70 - - )
CBCT-CT PredCT-CT (UNet) PredCT-CT (ResUNet)
FIGURE 1
Comparison of SSIM values for CBCT—pCT, U-Net-based sCT—pCT, and resU-Net-based sCT—pCT pairs, presented as mean + standard deviation.
Statistically significant differences between groups (p < 0.05) are indicated on the plot.
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CBCT scans, aiming to achieve image quality comparable to pCT.
Following the training and testing of the models on 50 CBCT-CT
image pairs obtained from 10 patients, the resulting sCT images
were quantitatively compared to the corresponding reference CT
using a set of established image quality metrics.

3.1 Quantitative evaluation

Both models generated sCT outputs that demonstrated
improved similarity to the reference CT images compared to the
original CBCT scans. Comparative analyses were performed for
both CBCT-CT and sCT-pCT pairs produced using the U-Net
and ResU-Net architectures. Evaluation metrics included SSIM,
PSNR, MAE, and average HU difference. The mean and
standard deviation values for each metric, along with statistical
comparisons for significance, are summarized in Table 1.

According to Figure 1, both models significantly improved
SSIM scores compared to the CBCT images (p<0.05). While
the mean SSIM was 0.763+0.040 for CBCT-CT pairs, it
increased to 0.840 +0.026 for U-Net sCT-CT and 0.851 +0.026
for ResU-Net sCT-CT. Statistical analysis confirmed that both
U-Net and ResU-Net provided significant enhancements over

10.3389/fradi.2025.1680803

CBCT; however, the difference between U-Net and ResU-Net
was not statistically significant (p > 0.05).

As shown in Figure 2, the mean PSNR for CBCT-CT pairs
was 21.55 + 1.38 dB, while U-Net sCT-CT and ResU-Net sCT-
CT yielded 24.74 +1.83 dB and 25.24 + 1.61 dB, respectively.
Both models demonstrated significantly higher PSNR
values compared to CBCT (p<0.05). Moreover, the ResU-
Net model significantly outperformed U-Net in terms of
PSNR (p < 0.05).

The mean HU difference for CBCT-CT pairs was 75.2 + 18.7
HU. This was reduced to 65.3 + 14.8 HU with U-Net and further to
61.8 £13.7 HU using ResU-Net (Figure 3). Both models showed
significant improvements in HU accuracy over CBCT (p < 0.05),
while ResU-Net also demonstrated a statistically significant
advantage over U-Net (p<0.05). Likewise, the MAE was
744+36.8 HU on average in CBCT-CT, was reduced to
64.8 +29.6 HU with U-Net, and further decreased to 62.1 + 30.0
HU with ResU-Net (Figure 4).

Based these although both  models
effectively improved the similarity of CBCT images to the pCT,
the ResU-Net architecture achieved
particularly in terms of structural similarity and reduction of

on findings,

superior performance

reconstruction errors.

- Peak Signal-to-Noise Ratio (PSNR) Comparison
_________ <005 ________.
e e 0RO e
281
_________ <005 _______.
o
Z 26}
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-
0
+
=
©
)
=
£ 24t
wn
o
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20 1 L 1
CBCT-CT PredCT-CT (UNet) PredCT-CT (ResUNet)
FIGURE 2
Comparison of PSNR (peak signal-to-noise ratio) values for CBCT-CT, U-Net-based sCT—-CT, and resU-Net-based sCT—CT pairs, presented as
mean + standard deviation
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HU Difference Comparison
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Comparison of the mean HU differences for CBCT-CT, U-Net sCT-pCT, and resU-Net sCT-pCT pairings

PredCT-CT (ResUNet)

3.2 Qualitative evaluation

However, evaluating model performance requires not only
analyzing mean HU differences but also examining their
distributional characteristics. For this purpose, HU difference
boxplots were generated, summarizing the central tendency,
range, and outliers for all test cases (Figure 5a). The results
demonstrate that raw CBCT images exhibit large deviations and
outliers, particularly toward the negative HU range. While the
U-Net model was able to reduce the spread of HU differences,
the ResU-Net architecture produced even tighter distributions,
reflecting improved robustness and consistency across patients.

Figure 5b displays the mid-slice of CBCT10.1 (patient 10,
fraction 1) the planning CT, the raw CBCT, and the synthetic CT
images generated by U-Net and ResU-Net, enabling a direct
qualitative comparison of anatomical structures and visual fidelity
across modalities. Figure 5c presents the mid-slice difference maps
that visually reflect the anatomical alignment indicated by the
quantitative analyses. In the CBCT map, pronounced deviations are
visible, particularly at bone-to-soft tissue boundaries. While the
U-Net model managed to reduce these discrepancies to a certain
extent, ResU-Net achieved a more even correction of HU values
and produced outputs that more closely resembled the reference
CT. When considered alongside the numerical results, these visual

Frontiers in Radiology

observations reinforce the overall impression that ResU-Net
provides a more consistent and dependable representation of
HU information.

4 Discussion

In this study, the performance of the deep learning based model
developed to generate sCT from conventional CBCT images was
evaluated with quantitative metrics such as SSIM, PSNR, MAE, and
HU. The results show that the closeness of the generated
sCT images to the original CT images is significantly increased
compared to the raw CBCT images.

The SSIM analysis demonstrated that both U-Net and ResU-Net
architectures more effectively preserved structural information
compared to conventional CBCT. The mean SSIM value for
CBCT-CT alignment was 0.76, whereas it improved to 0.84 with
U-Net and 0.85 with ResU-Net. These improvements were
statistically significant when compared to CBCT. However, the
slight advantage of ResU-Net over U-Net did not reach statistical
significance. Although the SSIM values reported here are lower
than the 0.93-0.98 range achieved by GAN-based models as
described by Maspero et al., the results remain clinically acceptable
given the model’s simplicity and the limited dataset used (33).
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Statistical comparison of the mean absolute error (MAE) values for CBCT, U-Net, and resU-Net.

The PSNR metric was employed to assess the signal fidelity of the
generated sCT images. The average PSNR, calculated as 21.55 dB for
CBCT-CT comparisons, increased to 24.74 dB with U-Net and
2524 dB with ResU-Net.
significant improvements compared to CBCT, and ResU-Net
demonstrated a notably higher PSNR than U-Net (p <0.05). This
result indicates that ResU-Net enhances sCT quality by more

Both models yielded statistically

effectively preserving anatomical structures. The obtained values
are consistent with the acceptable PSNR range for sCT quality,
reported in the literature to be between 25 and 28 dB (17, 34).

A similar pattern was observed in the MAE results. The average
MAE for CBCT-CT alignment was measured at 75.2 HU, which
decreased to 64.1 HU with U-Net and 61.8 HU with ResU-Net.
Both deep learning models achieved statistically significant
reductions in error compared to CBCT (p <0.05). Furthermore,
ResU-Net demonstrated a modest yet statistically significant
advantage over U-Net, indicating that residual connections
enhance the suppression of HU-related discrepancies. In previous
research, Wongtrakool et al. reported reducing the mean MAE to
approximately 58 HU using a GAN-based approach in the head
and neck region (17). While the MAE values obtained in our study
are slightly higher than those reported in some previous study and
commercial implementations, they nevertheless highlight the
feasibility of lightweight CNN architectures in improving CBCT
image quality. These findings should be interpreted as proof-of-
concept results, with further optimization and larger datasets
required to establish clinical acceptability. Despite its simpler

Frontiers in Radiology

architecture, the ResU-Net model employed in this study achieved
comparably low MAE values, underscoring its potential to balance
algorithmic efficiency with clinical relevance.

Figure 5 presents case-wise HU difference boxplots and mid-slice
difference maps that visually support the quantitative findings. The
boxplot analysis reveals that CBCT images exhibit a broad
distribution with pronounced variability and outliers, whereas the
U-Net model reduces this spread and the ResU-Net architecture
further centralizes the HU values, indicating improved accuracy
and consistency across patients. Similarly, mid-slice difference
maps indicate prominent deviations at bone-soft tissue interfaces
in CBCT images, whereas ResU-Net suppresses these discrepancies
more uniformly, yielding an image that closely aligns with the pCT.
Further inspection revealed that the outlier points in Figure 5A
predominantly originated from high-density bony regions and
adjacent interfaces, where inherent HU gradients and CBCT-
specific artifacts such as scatter and beam hardening cause local
intensity deviations. Despite these localized discrepancies, the
synthetic CTs exhibited consistent HU improvement over raw
CBCT, particularly at bone-soft tissue boundaries, as also evident
in Figure 5C. When considered collectively, these findings suggest
that the ResU-Net architecture provides more stable and reliable
performance in terms of HU accuracy, both in pixel differences
and mean absolute error.

Although simpler than GAN-based models, the U-Net and
ResU-Net architectures implemented in this study achieved
performance levels consistent with previous research and suitable
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FIGURE 5

(a) Case-wise boxplots of mean HU differences for CBCT—pCT, U-Net sCT—pCT, and resU-Net sCT—-pCT pairs (body-masked). (b) The mid-slice of
CBCT10.1 (patient 10, fraction 1), including the planning CT, the raw CBCT, and the synthetic CT images generated by U-Net and ResU-Net, enabling
a direct qualitative comparison of anatomical structures and visual fidelity across modalities. (c) Corresponding HU difference maps of CBCT, U-Net
sCT, and ResU-Net sCT relative to the reference planning CT in the same mid-slice

for feasibility assessment in clinical imaging quality improvement.
For instance, the cGAN model used by O’Connor et al. for MR-
based sCT generation demonstrated high SSIM scores and low HU
deviations, but required a more complex and data-intensive
training process (10). In contrast, the ResU-Net model, enhanced
with residual connections, produced comparable results in both
HU accuracy and structural similarity while preserving a relatively
simple design.

In this context, the approaches introduced in this study offer
alternative model architectures that are effective under limited data
conditions and hold strong potential for clinical integration. Given
that only 10 patients (50 paired CBCT-CT volumes) were
included, the findings should be interpreted as a pilot feasibility

Frontiers in Radiology

study rather than a robust validation. We also acknowledge that the
feasibility of deep learning-based CBCT enhancement has been
demonstrated our contribution
emphasizes the applicability of lightweight architectures in prostate
cancer and multi-temporal CBCT settings, highlighting a practical

pathway under resource-constrained clinical conditions.

in earlier studies; however,

Another notable limitation is that the study was conducted
using 2D slice-based architecture. In addition, although both
U-Net and ResU-Net significantly reduced the MAE compared
to CBCT, the absolute values remained modest and slightly
higher than those reported in some previous studies and
commercial systems, indicating that further optimization is
needed before clinical acceptability can be established. Future
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research should therefore explore more advanced approaches,
including three-dimensional CNNs, and incorporate larger,

multi-center datasets to enhance model generalizability.

Moreover, comprehensive evaluations are needed, including
integration into clinical workflows, assessment of dose
calculation accuracy, auto-contouring performance, and DVH
integrity. Therefore, the present results should be interpreted as

a feasibility study at the imaging quality level only, while future

work  must  establish  true  clinical  utility  for
radiotherapy applications.
5 Conclusion

These findings suggest that deep learning-based

transformation methods, even those employing relatively simple
architectures, can be effectively applied in clinical settings with
limited data availability. The results indicate that U-Net, and
especially ResU-Net, enhance CBCT image quality and enable
reliable sCT generation, providing proof-of-concept feasibility in
a pilot setting. This study highlights the clinical practicality of
lightweight CNN architectures for sCT generation in prostate
radiotherapy. Nevertheless, further validation with larger multi-
institutional datasets and advanced methods is warranted. In
particular, comprehensive evaluations such as dosimetric
accuracy, auto-contouring performance, and DVH integrity are

required before true clinical integration can be established.
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