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Feasibility of artificial 
intelligence-assisted fast 
magnetic resonance imaging 
technology in the ankle joint 
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and Honghai Chen*†
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Objective: To evaluate the image quality and diagnostic efficacy of proton 

density-weighted MRI with intelligent quick magnetic resonance (iQMR) 

technology in the ankle joint injury.

Materials and methods: Forty-six patients with ankle injuries were prospectively 

enrolled, and proton density-weighted fat suppression imaging was performed 

on a 3.0T MRI scanner using both an iQMR protocol (48.28 s) and a 

Conventional protocol (113.00 s), respectively. The original image was 

processed using iQMR to improve spatial resolution and reduce noise 

interference. Thus, four sets of images (iQMR raw, iQMR-processed, 

Conventional raw, and Conventional-processed) were generated. Image 

quality and diagnostic efficacy were assessed by objective metrics (signal-to- 

noise ratio, SNR and contrast-to-noise ratio, CNR), subjective scores (tissue 

edge clarity/sharpness, signal uniformity, fat suppression uniformity, vascular 

pulsation artifacts, and overall image quality), and ligaments/tendons 

injury grade.

Results: The SNRs (tibia, talus, etc.) and CNRs (talus-flexor hallucis longus, etc.) 

of iQMR-processed images were significantly higher than those of 

Conventional raw images (P < 0.05), except for the SNR of Achilles tendon 

(P > 0.05). And the iQMR-processed images were superior to the 

Conventional raw images in the scores of edge clarity/sharpness, signal 

uniformity and overall image quality (P < 0.05), with no significant differences 

in fat suppression uniformity and vascular pulsation artifacts (P > 0.05). There 

was no significant difference among the four groups of images in ligaments/ 

tendons injury grading (P > 0.05), but the iQMR-processed images improved 

diagnostic confidence [κ (kappa) = 0.919].

Conclusion: The iQMR technology can effectively shorten the scan time, 

improve the image quality without affecting the diagnostic accuracy, which is 

especially suitable for the motion artifacts-sensitive patients and optimizes 

clinical workflow.
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1 Introduction

The ankle joint, a composite structure formed by the articular 

surfaces of the distal tibia, distal fibula, and the talar trochlea, 

serves as the primary weight-bearing joint critical for 

maintaining upright posture and facilitating gait. Injuries to this 

joint are clinically prevalent and frequently lead to chronic pain, 

impaired mobility and diminished quality of life (1–3). Current 

diagnostic imaging for ankle pathologies predominantly relies 

on radiography and computed tomography (CT). However, 

these modalities exhibit limited soft tissue resolution, 

particularly for cartilage and ligaments, which may compromise 

diagnostic accuracy in cases of occult injuries (4, 5). Magnetic 

resonance imaging (MRI) has become the gold standard for 

evaluating osseous and soft tissue injuries owing to its 

exceptional soft tissue contrast and absence of ionizing radiation 

(6, 7). Nevertheless, traditional MRI sequences require 

prolonged acquisition times, which presents significant 

challenges for patients experiencing acute pain or swelling. 

Inability to remain motionless during scanning often introduces 

motion artifacts, degrading image quality and compromising 

diagnostic accuracy (8, 9). Therefore, reducing MRI acquisition 

time has emerged as a critical research priority in medical 

imaging, aiming to enhance patient compliance, minimize 

motion-induced artifacts and improve clinical diagnostic 

efficacy (10–12).

In clinical MRI, Parallel Imaging (PI) and Compressed 

Sensing (CS) have been widely used to accelerate scanning (13). 

However, both methods face inherent limitations: PI’s 

acceleration capability is fundamentally constrained by coil 

geometry, invariably leading to signal-to-noise ratio (SNR) 

degradation, whereas CS relies on sparsity assumptions that are 

prone to generate nonlinear reconstruction artifacts, potentially 

compromising diagnostic reliability (14, 15).

Recent advances in artificial intelligence (AI) have catalyzed 

the development of intelligent quick magnetic resonance 

(iQMR), an end-to-end deep learning-based reconstruction 

system designed to overcome these challenges (16, 17). The 

iQMR platform integrates three dedicated modules: a deep 

learning reconstruction algorithm; an iterative reconstruction 

processor; and a k-space correction unit, collectively optimizing 

the image reconstruction work;ow (15, 18–20) (Figure 1). 

Compatible with major MRI vendors (Siemens, GE and Philips), 

the iQMR system utilizes hospital-grade servers and seamlessly 

integrates into the DICOM work;ow between MRI scanners and 

Picture Archiving and Communication Systems (PACS). The 

system automates the complete processing pipeline, from raw 

data acquisition to high-fidelity image reconstruction and 

distribution, while preserving existing clinical work;ows and 

delivering diagnostically superior image quality (21). However, 

research on the clinical feasibility of fast ankle MRI strategies 

using iQMR is still rare to our knowledge (22, 23).

The iQMR technology integrates multiple algorithmic 

modules, with the Iterative Image Reconstruction (IIR) module 

and the Image Sharpening module serving as the core 

components that collectively perform the primary enhancement 

tasks. The IIR module is a post-processing algorithm based on 

volumetric data, designed primarily for the retrospective 

reconstruction of high-noise MRI images. This algorithm 

significantly reduces image noise, recovers anatomical details 

obscured by noise, and improves image quality parameters such 

as edge enhancement. The processing pipeline begins by 

decomposing the input MRI dataset into multiple three- 

dimensional blocks. Multidimensional features are computed for 

each block, which are then mapped into a feature space and 

grouped based on specific similarity metrics. Leveraging the 

similarity relationships between blocks and noise statistical 

priors, the algorithm performs joint prediction and separation of 

the signal and noise. This procedure iterates until predefined 

convergence criteria are met. Subsequently, specific filters are 

applied to enhance image features (e.g., edge structures) and 

tailor the reconstructed image to better align with radiologists’ 

visual preferences. Finally, the dataset can be reconstructed into 

images along any orientation (axial, sagittal, or coronal) and 

with a specified slice thickness as required clinically. The core of 

the algorithm is tunable via multiple parameters, allowing 

control over output characteristics such as overall smoothness, 

sharpness level, and edge enhancement intensity. Furthermore, 

an integrated machine learning module can automatically 

identify the optimal parameter combination for the input image 

and feed it into the iterative reconstruction pipeline to achieve 

the highest quality output.

Building upon the foundation laid by the IIR module, the 

iQMR Image Sharpening module further augments the image 

enhancement capabilities by specifically increasing sharpness 

and clarity. This module employs a fixed-parameter 

Convolutional Neural Network (CNN) that performs a 

deterministic nonlinear filtering operation on the input image. 

The image data is sequentially processed through a bank of 

filters composed of thresholding and scaled transformation 

operations. This process enhances the image’s sharpness and 

clarity while significantly improving the visibility of fine details. 

The parameters for the iQMR sharpening filter were obtained 

through an image-guided optimization process. This process 

utilized paired high-resolution and low-resolution images to 

optimize the filter weights. The CNN architecture is based on a 

modified Super-Resolution Generative Adversarial Network 

(SRGAN), incorporating an adapted filter block structure and 

loss function. After training, this sharpening model can restore a 

low-resolution input image to a high-resolution, sharper output. 

The training leveraged a large-scale, multi-center MRI dataset 

comprising over 500,000 images from various mainstream 

scanner models and multiple hospitals. The dataset encompasses 

a wide range of clinical indications, magnetic field strengths, 

Abbreviations  

CT, computed tomography; MRI, magnetic resonance imaging; PI, parallel 

Imaging; CS, compressed sensing; SNR, signal-to-noise ratio; AI, artificial 

intelligence; iQMR, intelligent quick magnetic resonance; PACS, picture 

archiving and communication systems; PDWI-FS, proton density-weighted 

fat saturation imaging; ROIs, regions of interest; SI, signal intensity; SD, 

standard deviation; CNR, contrast-to-noise ratio; T1WI, T1-weighted 

Imaging; T2WI, T2-weighted Imaging.
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image qualities, tissue contrasts, acquisition parameters, and 

patient anatomies to ensure the model’s broad applicability.

Upon completion of training, the model’s weights, 

architecture, and all parameters are fixed, enabling the algorithm 

to operate as a stable nonlinear filtering system. This strategy 

ensures consistent and reliable performance across different 

datasets. Following the initial training phase, the model can be 

deployed without requiring further training or fine-tuning.

This study was designed to systematically evaluate the clinical 

utility of iQMR in ankle MRI by comparing its performance with 

conventional scanning protocol across three critical parameters: 

scanning efficiency, image quality, and diagnostic accuracy.

2 Materials and methods

2.1 Participants

The prospective study was reviewed and approved by the 

Ethics Committee of the Second Affiliated Hospital of Dalian 

Medical University, and adhered to the principles of the 

Declaration of Helsinki. Written informed consent was obtained 

from all participants prior to enrollment. Fifty-six patients who 

underwent MRI examinations for clinically suspected ankle 

injuries from October 2024 to February 2025 at the Second 

Hospital of Dalian Medical University were enrolled. Inclusion 

criteria: (1) ankle injury; (2) no standard MRI contraindications; 

(3) age >= 18 years. Exclusion criteria: (1) history of ankle joint 

surgery within the preceding six months; (2) ferromagnetic 

implants in the ankle region; (3) incomplete MRI scans due to 

patient intolerance; (4) significant image artifacts affecting 

diagnostic assessment. Finally, 46 patients (17 males and 29 

females; age range, 18–68 years) were included in our study 

(Figure 2). For each participant, we collected a range of data 

including demographic and clinical information, medical 

history, as well as MRI data.

2.2 Scan protocols

MRI examinations were performed using a 3.0T MRI scanner 

(Verio, Siemens Healthineers, Erlangen, Germany) equipped with 

a cranial phased array coil. To minimize motion artifacts, 

participants assumed the standard supine position with the 

affected ankle stabilized using foam padding and sandbags to 

restrict involuntary movement. The scanning plane was oriented 

along the anatomical axial plane, centered at the midpoint 

between the medial malleolus and lateral malleolus. All 

participants underwent a transverse-axis proton density- 

weighted fat saturation imaging (PDWI-FS) scan using an 

iQMR (acquisition time of 48.28 s) and a Conventional 

(acquisition time of 113 s) protocols. The detailed MRI 

protocols are presented in Table 1. The raw images were 

automatically transferred to the iQMR post-processing system, 

which generated both iQMR-processed images and 

Conventional-processed images (Figures 3A–D).

2.3 Quantitative assessment

A senior radiographer (15 years of experience) performed 

quantitative measurements on a Siemens post-processing 

workstation under blinded conditions (no access to subject data or 

sequence parameters). Regions of interest (ROIs) were manually 

FIGURE 1 

Research flowchart. iQMR, intelligent quick magnetic resonance.
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placed in the following anatomical structures on three consecutive 

slices at identical levels, window widths, and window positions: 

tibia (20–30 mm2), talus (20–30 mm2), Achilles tendon (5– 

10 mm2), Kager’s fat pad (10–20 mm2) and ;exor hallucis longus 

(20–30 mm2). The mean signal intensity (SI) of each ROI was 

calculated based on three consecutive measurements. Image 

background noise was quantified by placing four ROIs (40– 

50 mm2) in the artifact-free corners of the image, with the final 

noise level defined as the mean standard deviation (SD) of these 

regions (Figures 4A,B). The SNR and contrast-to-noise ratio 

(CNR) were calculated using the following formulas:

SNR ¼
SItissue

SDcontexts 

CNR ¼
jSItissue1 � SItissue2j

SDcontexts 

2.4 Qualitative assessment

Two independent musculoskeletal radiologists (10 and 12 

years of experience) conducted a double-blind assessment of 

four image sets. The evaluation dimensions included tissue edge 

clarity/sharpness, signal uniformity, fat suppression uniformity, 

vascular pulsation artifacts, and overall image quality. And the 

detailed scoring criteria using a 5-point Likert scale (range: 

1 = “worst” to 5 = “best”) was as follows: 

Score 1: Significant blurring of image edges, obvious signal non- 

uniformity, fat suppression failure, severe artifacts, no 

diagnostic value;

Score 2: Blurring of image edges visible, uneven signal, poor fat 

suppression, obvious artifacts, limited diagnosis value;

Score 3: Image edges with fair clarity and sharpness, more uniform 

signals, fair fat suppression, moderate artifacts, basic diagnosis 

can be satisfied;

Score 4: Good image edge clarity and sharpness, more uniform 

signal, better fat suppression, mild artifacts, good diagnostic 

value;

Score 5: Good image edge clarity and sharpness, uniform signal, 

ideal fat suppression, no artifacts, best diagnostic value.

2.5 Diagnostic assessment

The structures of ligaments and tendons were independently 

evaluated by the two musculoskeletal radiologists according to the 

Schweitzer classification system (24). The grading criteria was as 

follows: Grade 0: structurally intact with normal morphology and 

signal; Grade 1: post-traumatic fibrous changes (e.g., thickening 

or degenerative changes); and Grade 2: partial or complete tear. 

To further evaluate the practical value of iQMR technology in 

clinical diagnosis, the two aforementioned musculoskeletal 

radiologists independently performed diagnostic confidence 

ratings for key ligament and tendon structures under double- 

blind conditions. The assessments were conducted on four sets of 

ankle joint images: iQMR raw images, iQMR-processed images, 

conventional raw images, and conventional-processed images. The 

evaluated structures included the anterior talofibular ligament, 

posterior talofibular ligament, calcaneofibular ligament, Achilles 

tendon, posterior tibial tendon, ;exor digitorum longus tendon, 

;exor hallucis longus tendon, peroneus brevis tendon, and 

peroneus longus tendon. A 5-point Likert scale was used for 

FIGURE 2 

Schematic diagram illustrating the iQMR post-processing workflow. iQMR, intelligent quick magnetic resonance.
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scoring, where 1 indicated very low confidence, 2 indicated low 

confidence, 3 indicated moderate confidence, 4 indicated high 

confidence, and 5 indicated very high confidence.

2.6 Statistical analysis

Normally distributed continuous variables are reported as 

Mean ± SD. Continuous variables were compared using one-way 

ANOVA under the assumption of homogeneity of variances 

(verified via Levene’s test). For datasets violating this 

assumption, Welch’s ANOVA was employed. Post-hoc pairwise 

comparisons utilized Tukey’s test (equal variances) or Games- 

Howell test (unequal variances). To evaluate the agreement and 

potential bias in quantitative image quality parameters (SNR 

and CNR) between iQMR-processed images and conventional 

raw images, Bland-Altman analysis was performed on 

measurements from various anatomical structures (e.g., tibia, 

talus, Achilles tendon, Kager’s fat pad, ;exor hallucis longus 

muscle). The limits of agreement (LoA) and mean bias were 

calculated, and corresponding Bland-Altman plots were 

generated. Non-normally distributed variables are expressed as 

median with inter-quartile range [M (Q1, Q3)]. Between-group 

differences were assessed using the Friedman rank-sum test for 

repeated measures, followed by Bonferroni-corrected pairwise 

comparisons. Inter-rater reliability for qualitative scores was 

evaluated using weighted Cohen’s kappa (κ), with κ values 

interpreted as follows: 0.81–1.00, excellent agreement; 0.61–0.80, 

substantial agreement; 0.41–0.60, moderate agreement. 

Subjective image quality scores and diagnostic confidence score 

(ordinal data) were compared across groups using the Friedman 

test, with Bonferroni-correction for post-hoc pairwise analysis. 

Ligaments/tendons injury grading (non-parametric categorical 

data) was analyzed via the Kruskal–Wallis test. Statistical 

significance was set at P < 0.05 for all tests. Data analysis was 

performed using IBM SPSS Statistics 27.0.

3 Results

3.1 Participant characteristics

A total of 46 patients (17 males and 29 females; age, 

35.5 ± 14.5 years; age range, 18–68 years) with ankle injuries 

were included in this study.

3.2 Results of quantitative assessment

The ANOVA showed significant differences in all the SNRs 

and CNRs across the four groups of images (P < 0.001). Post-hoc 

pairwise comparisons showed that tibia SNR, talus SNR, Kager’s 

fat pad SNR and ;exor hallucis longus SNR, talus-;exor hallucis 

longus CNR, Achilles tendon-;exor hallucis longus CNR, 

Kager’s fat pad-Achilles tendon CNR of the PDWI-FS sequences 

were statistically significant for each sequence (P < 0.001). The T
A
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differences in Achilles tendon SNR between iQMR raw and 

iQMR-processed sequences, iQMR raw and Conventional- 

processed sequences, iQMR-processed and Conventional raw 

sequences, and Conventional raw and Conventional-processed 

sequences were all statistically significant (P < 0.05). And the 

differences in Achilles tendon SNR between iQMR raw and 

Conventional raw sequences, and iQMR-processed and 

Conventional-processed sequences were not statistically 

significant (P > 0.05). Detailed results are summarized in 

Table 2. Bland-Altman analysis revealed that the differences in 

SNR and CNR across all anatomical structures were 

predominantly concentrated within the agreement limits, with 

the mean bias approximating zero, indicating no substantial 

systematic bias or evident dispersion trend (Figure 5).

3.3 Results of qualitative assessment

The two musculoskeletal radiologists demonstrated excellent 

inter-rater agreement (weighted κ statistic = 0.871, CI: 0.896– 

0.846), with all subjective image quality scores ≥3, confirming 

diagnostic acceptability across sequences. Tissue edge clarity/ 

sharpness: κ = 0.871 (95% CI: 0.924–0.818); Signal uniformity: 

κ = 0.871 (95% CI: 0.925–0.817); Fat suppression uniformity: 

κ = 0.854 (95% CI: 0.922–0.787); Vascular pulsation artifacts: 

κ = 0.821 (95% CI: 0.898–0.744); Overall image quality: κ = 0.867 

(95% CI: 0.922–0.812). Friedman’s test analysis revealed 

statistically significant differences among the four PDWI-FS 

sequences groups in tissue edge clarity/sharpness, signal 

uniformity, fat suppression uniformity, vascular pulsation 

FIGURE 3 

Female, 38 years old, patient with ankle pain. (A) iQMR raw PDWI-FS image; (B) Conventional raw PDWI-FS image; (C) iQMR-processed PDWI-FS 

image; (D) Conventional-processed PDWI-FS image. iQMR, intelligent quick magnetic resonance.
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artifacts, and overall image quality (P < 0.001). Tissue edge 

clarity/sharpness: Kendall’s W = 0.915; Signal uniformity: 

Kendall’s W = 0.888; Fat suppression uniformity: Kendall’s 

W = 0.375; Vascular pulsation artifacts: Kendall’s W = 0.457; 

Overall image quality: Kendall’s W = 0.815. Post-hoc pairwise 

comparisons after Bonferroni correction identified specific 

inter-group variations, with detailed results summarized in 

Tables 3, 4.

3.4 Diagnostic performance

3.4.1 Diagnostic grading results
The diagnostic accuracy of the four groups of PDWI-FS images 

for structural injuries of tendons and ligaments was not significantly 

different (P > 0.05, Figures 6A–D). The Kappa of 0.919 (CI: 0.971– 

0.866)showed a high degree of inter-observer agreement in grading 

between the two musculoskeletal radiologists.

3.4.2 Diagnostic confidence results
The two radiologists demonstrated excellent agreement in 

their diagnostic confidence ratings (weighted κ = 0.884, CI: 

0.932–0.821). Although the median diagnostic confidence for 

iQMR-processed images was higher than that for conventional 

raw images across most key structures, the Friedman test 

revealed no statistically significant differences among the four 

image sets (P > 0.05). Detailed rating results are provided in 

Supplementary Table S1.

4 Discussion

In this study, patients with ankle injuries underwent MRI scans 

using both iQMR and Conventional sequences. After post- 

processing at the iQMR workstation, four distinct image sets were 

generated: (1) iQMR raw images, (2) iQMR-processed images, (3) 

conventional raw images, and (4) conventional-processed images. 

These four groups were systematically evaluated for scanning 

efficiency, image quality, and diagnostic efficacy.

The iQMR-processed sequences reduced acquisition time by 

58% compared to Conventional raw sequences. Primarily, 

shorter scan durations improve patient tolerability, reduce 

motion artifacts caused by prolonged positioning, and enhance 

compliance among children, elderly individuals, and patients 

with claustrophobia, thereby decreasing reliance on sedation and 

streamlining the examination process (25). Additionally, iQMR 

technology increases MRI throughput by alleviating 

appointment backlogs, prioritizing urgent diagnostic cases, and 

optimizing daily equipment utilization without requiring 

additional hardware investments (26). Finally, accelerated 

imaging expands MRI’s clinical potential in emergency medicine 

(e.g., trauma, acute ischemic stroke) and facilitates routine 

preventive screening protocols.

The iQMR-processed images showed significantly higher SNR 

and CNR than Conventional raw images (P < 0.05), consistent 

with prior studies. For instance, Liu et al. (17) reported that AI- 

assisted iterative algorithms improved image quality and 

scanning efficiency for T1-Weighted Imaging (T1WI), 

T2-Weighted Imaging (T2WI), and FS-PDWI sequences without 

compromising diagnostic information. Similarly, Yao et al. (27) 

validated iQMR’s utility in 3D cervical spine MRI, achieving 

reduced noise and superior SNR and CNR in 2-min scans. 

However, no significant differences in Achilles tendon SNR were 

observed between iQMR raw and Conventional raw sequences 

(P > 0.05), likely due to the tendon’s dense collagen structure 

FIGURE 4 

Axial ankle MR conventional raw images showing regions of interest 

(ROIs) used for quantitative analysis. All ROIs were manually 

delineated by a senior radiologic technologist (15 years of 

experience) under blinded conditions using the Siemens post- 

processing workstation. In image A, O1 indicates the tibia, O2 the 

Achilles tendon, and O3 the flexor hallucis longus; in image B, O1 

represents the talus, O2 the Kager’s fat pad, and O3–O6 the 

background regions for noise quantification.
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and low water content, which inherently limit signal intensity 

changes (28–30). This study further validated the agreement and 

reliability of iQMR post-processing technology for quantitative 

image quality assessment using Bland-Altman analysis. The 

analysis demonstrated that despite the significant increase in 

SNR and CNR values of iQMR-processed images, the 

differences compared to conventional raw images exhibited no 

systematic bias, with all data points lying within the limits of 

agreement. These results substantiate that iQMR technology 

enhances image quality while maintaining the reliability and 

reproducibility of measurements, supporting its potential 

application in clinical quantitative analysis.

The iQMR-processed images scored significantly higher in 

image quality (P < 0.05). However, no significant differences 

were observed in tissue edge clarity/sharpness, signal uniformity, 

or overall image quality compared to Conventional-processed 

images (P > 0.05). This discrepancy may attributed to 

Conventional-processed images already reached diagnostic 

adequacy thresholds, or the strict double-blind design increased 

inter-observer variability. Additionally, fat suppression 

uniformity and vascular pulsation artifacts showed no significant 

differences across sequences (P > 0.05). Despite these findings, 

the combined benefits of reduced scan time and enhanced 

objective metrics underscore the clinical value of iQMR- 

processed images in ankle MRI.

Although no statistical differences emerged in ligaments/ 

tendons injury grading (Schweitzer classification), radiologists 

reported improved lesion boundary delineation in iQMR- 

processed images. Enhanced SNR and CNR likely increased 

radiologists’ diagnostic confidence in assessing injury severity, 

highlighting iQMR technology’s potential to optimize clinical 

decision-making even without altering grading outcomes. 

Furthermore, this study introduces the novel application of 

diagnostic confidence ratings in ankle MRI to evaluate the 

impact of iQMR technology on radiologists’ subjective 

diagnostic confidence. The results demonstrated that, although 

iQMR-processed images did not yield a statistically significant 

increase in confidence for most structures, the median ratings 

were consistently higher than those for conventional raw images. 

This suggests that by improving the SNR and CNR, iQMR 

technology may provide ancillary support in delineating 

complex anatomical boundaries, thereby contributing to a 

positive trend in diagnostic assessment. This finding indicates 

that beyond optimizing image quality, iQMR technology 

possesses potential clinical applicability and may play a 

supportive role in diagnostic tasks requiring high anatomical 

detail. Future studies incorporating larger sample sizes and a 

greater diversity of pathological conditions are warranted to 

further validate its value in enhancing diagnostic confidence. 

Moreover, although the two radiologists demonstrated excellent 

agreement in ligament and tendon injury grading (Schweitzer 

classification; κ = 0.919), we performed an in-depth analysis of 

cases with discrepant ratings. The results revealed that 

disagreements were not randomly distributed but were highly 

concentrated at specific diagnostic thresholds—particularly in 

differentiating between Schweitzer grade 1 (e.g., thickening or 

degenerative changes) and grade 2 (partial or complete tear). 

Imaging findings in such borderline cases often exhibit 

ambiguity, and diagnostic interpretation depends substantially 

on SNR, CNR, and the clarity and sharpness of tissue 

boundaries. The present study found that the iQMR post- 

processing technology, by improving overall image quality, 

provides radiologists with richer and clearer diagnostic 

information. As a result, borderline cases that appear ambiguous 

and are difficult to interpret on conventional images 

demonstrate more definitive characteristics on enhanced images, 

thereby reducing diagnostic uncertainty and minimizing inter- 

observer variability. This finding further underscores the 

potential value of iQMR technology in improving diagnostic 

reliability from the perspective of clinical decision consistency.

This study has several limitations. First, the relatively small 

sample size (n = 46) and the single-center design necessitate 

future validation through larger-scale, multi-center studies to 

further confirm the generalizability and robustness of the iQMR 

TABLE 2 Quantitative assessment results.

Items iQMR raw 
sequences

iQMRp 
sequences

Conventional raw 
sequences

Conventionalp 
sequences

F- 
value

P-value

Tibia SNR 18.89 ± 3.84 30.07 ± 6.28 25.25 ± 4.85 38.92 ± 7.74 96.791 <0.001①②③④⑤⑥
Talus SNR 19.92 ± 3.77 31.93 ± 6.16 26.81 ± 4.93 41.56 ± 7.89 112.238 <0.001①②③④⑤⑥
Achilles tendon SNR 2.91 ± 1.21 4.50 ± 1.85 3.38 ± 1.45 5.42 ± 2.16 19.360 <0.001①③④⑥
Kager’s fat pad SNR 28.19 ± 5.05 44.76 ± 8.68 37.98 ± 7.55 58.15 ± 11.51 108.387 <0.001①②③④⑤⑥
Flexor hallucis longus 

SNR

40.99 ± 6.74 65.41 ± 11.32 54.46 ± 9.23 82.96 ± 14.65 129.674 <0.001①②③④⑤⑥

Talus-Flexor hallucis 

longus CNR

21.06 ± 5.52 33.47 ± 8.79 27.65 ± 7.63 41.39 ± 11.75 48.428 <0.001①②③④⑤⑥

Achilles tendon-Flexor 

hallucis longus CNR

38.07 ± 6.36 60.91 ± 10.98 51.07 ± 8.78 77.54 ± 14.24 123.906 <0.001①②③④⑤⑥

Kager’s fat pad-Achilles 

tendon CNR

25.28 ± 4.84 40.26 ± 8.54 34.59 ± 7.29 52.72 ± 11.21 96.599 <0.001①②③④⑤⑥

iQMR, intelligent quick magnetic resonance; iQMRp, iQMR-processed images; Conventionalp, Conventional-processed images.

①Post hoc two-by-two comparison of iQMR raw with iQMR-processed PDWI-FS sequences; ②Post hoc two-by-two comparison of iQMR raw with Conventional raw PDWI-FS sequences; 

③Post hoc two-by-two comparison of iQMR raw with Conventional-processed PDWI-FS sequences; ④Post hoc two-by-two comparison of iQMR-processed with Conventional raw PDWI- 

FS sequences; ⑤Post hoc two-by-two comparison of iQMR-processed with Conventional-processed PDWI-FS sequences; ⑥Post hoc two-by-two comparison of Conventional raw with 

Conventional-processed PDWI-FS sequences.
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FIGURE 5 

Bland–altman analysis revealed that the differences in SNR and CNR across all anatomical structures were predominantly concentrated within the 

agreement limits, with the mean bias approximating zero, indicating no substantial systematic bias or evident dispersion trend.

TABLE 3 Qualitative scoring results.

Evaluation 
indicators

iQMR raw 
sequences

iQMRp 
sequences

Conventional raw 
sequences

Conventionalp 
sequences

χ2- 
valiue

P-value

Tissue edge clarity/ 

sharpness

3.0 (3.0,3.0) 5.0 (5.0,5.0) 4.0 (4.0,4.0) 5.0 (5.0,5.0) 126.201 <0.001

Signal uniformity 3.0 (3.0,3.0) 5.0 (5.0,5.0) 4.0 (4.0,4.0) 5.0 (5.0,5.0) 122.574 <0.001

Fat suppression 

uniformity

4.0 (3.0,4.0) 4.0 (4.0,4.0) 4.0 (3.0,4.0) 4.0 (4.0,5.0) 51.801 <0.001

Vascular pulsation 

artifacts

3.0 (3.0,4.0) 3.0 (3.0,4.0) 4.0 (4.0,4.0) 4.0 (4.0,4.0) 63.070 <0.001

Overall image quality 3.0 (3.0,3.0) 5.0 (4.0,5.0) 4.0 (4.0,4.0) 5.0 (5.0,5.0) 112.515 <0.001

iQMR, intelligent quick magnetic resonance; iQMRp, iQMR-processed images; Conventionalp, Conventional-processed images.
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TABLE 4 Pairwise comparison results of qualitative assessment.

Evaluation 
indicators/series

Tissue edge clarity/ 
sharpness

Signal 
uniformity

Fat suppression 
uniformity

Vascular pulsation 
artifacts

Overall image 
quality

iQMR raw-iQMRp sequences P < 0.05 P < 0.05 P = 0.945 P = 1.000 P < 0.05

iQMR raw-Conventional raw 

sequences

P < 0.05 P < 0.05 P = 1.000 P < 0.05 P < 0.05

iQMR raw-Conventionalp 

sequences

P < 0.05 P < 0.05 P < 0.05 P < 0.05 P < 0.05

iQMRp-Conventional raw 

sequences

P < 0.05 P < 0.05 P = 1.000 P < 0.05 P < 0.05

iQMRp-Conventionalp 

sequences

P = 1.000 P = 1.000 P < 0.05 P < 0.05 P = 1.000

Conventional raw- 

Conventionalp sequences

P < 0.05 P < 0.05 P < 0.05 P = 1.000 P < 0.05

iQMR, intelligent quick magnetic resonance; iQMRp, iQMR-processed images; Conventionalp, Conventional-processed images.

FIGURE 6 

Axial proton density-weighted imaging with fat suppression (PDWI-FS) demonstrating: (A,B) ligament injuries (purple circles) using conventional and 

iQMR protocol; (C,D) bone marrow edema (purple circles) using conventional and iQMR protocol. iQMR, intelligent quick magnetic resonance.
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technology. The results of this study indicate that iQMR 

technology offers significant advantages in improving image 

quality. It is noteworthy that annotated data are often limited in 

the field of musculoskeletal (MSK) MRI. Recent research has 

demonstrated that even with scarce annotated data, deep 

learning methods based on transfer learning can achieve 

automated detection of joint effusion in knee MRI while 

maintaining good performance (31). This provides strong 

support for the application of AI-assisted technologies like 

iQMR in MSK MRI scenarios involving small datasets, such as 

ankle MRI. Furthermore, it suggests that future research should 

place greater emphasis on the robustness of models to domain 

shifts caused by different scanning protocols. Second, this study 

evaluated only the PDWI-FS sequence; the performance of 

iQMR on other crucial sequences, such as T1WI, T2WI, and 

contrast-enhanced protocols, remains to be systematically 

investigated. Third, the study was conducted at a 3.0T field 

strength; the performance and applicability of this technology 

across different magnetic field strengths (e.g., 1.5T scanners) are 

currently unknown.

Furthermore, this study primarily focused on the immediate 

assessment of technical feasibility. All diagnoses were based on 

imaging evaluation, and the lack of a reference standard, such as 

surgical pathology or long-term clinical follow-up, may impact 

the comprehensive validation of injury grading accuracy. 

Although this study demonstrated the advantage of iQMR in 

reducing acquisition time, it did not systematically quantify the 

post-processing time or its overall impact on the end-to-end 

work;ow efficiency from scan initiation to final diagnosis. The 

improvement in image sharpness and edge clarity achieved by 

iQMR must ultimately contribute to more accurate feature 

identification and diagnosis. In challenging tasks such as 

sperm morphology classification, deep learning has not only 

achieved high classification accuracy but, more importantly, 

has utilized interpretability techniques (e.g., Grad-CAM) to 

visualize the decision-making process, thereby establishing an 

intuitive link between morphological features and 

classification outcomes (32). Inspired by this approach, our 

future work will incorporate similar explainable analyses (e.g., 

generating attention maps) to visually demonstrate how 

iQMR reconstruction enhances the visualization of 

anatomically critical features—such as ligamentous fibers, 

subtle tendon tears, and cartilage surfaces—that are essential 

for diagnosis. This will more directly link the image quality 

metrics to the underlying mechanisms that boost diagnostic 

confidence. Additionally, the study did not explore the 

technology’s in;uence on ultimate clinical endpoints, such as 

long-term patient outcomes, clinical decision-making, or the 

reduction of repeat scan rates. Finally, the current validation 

dataset lacks sufficient diversity in pathology types and injury 

severity distributions, preventing a systematic evaluation of 

the algorithm’s consistency in visualizing lesions from 

different tissue origins or varying degrees of severity.

Future research will aim to build richer, multi-parametric, 

multi-field-strength datasets through multi-center collaboration 

and to systematically collect surgical pathology and follow-up 

data. This will enable a comprehensive assessment of the clinical 

reliability, long-term benefits, and value of iQMR technology in 

optimizing the overall diagnostic work;ow.

In summary, the iQMR technology can significantly shorten 

ankle MRI scan time, reduce motion artifacts, and improve 

diagnostic accuracy without sacrificing image quality, suggesting 

its potential for clinical utility.
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