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The increasing number of computed tomography (CT) scan examinations and the 

time-intensive nature of manual analysis necessitate efficient automated methods 

to assist radiologists in managing their increasing workload. While deep learning 

approaches primarily classify abnormalities from three-dimensional (3D) CT 

images, radiologists also incorporate clinical indications and patient 

demographics, such as age and sex, for diagnosis. This study aims to enhance 

multilabel abnormality classification and automated report generation by 

integrating imaging and non-imaging data. We propose a multimodal deep 

learning model that combines 3D chest CT scans, clinical information reports, 

patient age, and sex to improve diagnostic accuracy. Our method extracts visual 

features from 3D volumes using a visual encoder, textual features from clinical 

indications via a pretrained language model, and demographic features through 

a lightweight feedforward neural network. These extracted features are projected 

into a shared representation space, concatenated, and processed by a projection 

head to predict abnormalities. For the multilabel classification task, incorporating 

clinical indications and patient demographics into an existing visual encoder, 

called CT-Net, improves the F1 score to 51.58, representing a +D6.13% increase 

over CT-Net alone. For the automated report generation task, we extend two 

existing methods, CT2Rep and CT-AGRG, by integrating clinical indications and 

demographic data. This integration enhances Clinical Efficacy metrics, yielding 

an F1 score improvement of +D14.78% for the CT2Rep extension and +D6.69%

for the CT-AGRG extension. Our findings suggest that incorporating patient 

demographics and clinical information into deep learning frameworks can 

significantly improve automated CT scan analysis. This approach has the 

potential to enhance radiological workflows and facilitate more comprehensive 

and accurate abnormality detection in clinical practice.
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1 Introduction

Three-dimensional computed tomography (3D CT) scans have 

become essential tools in medical imaging [1], offering unparalleled 

insights into anatomical structures and pathological conditions. 

This type of medical image is critical for identifying diseases such 

as pleural effusion [2], lung cancer [3], and cardiomegaly [4]. 

Given the rapidly growing number of scans to analyze [5] and the 

increasing demand for specialized radiological expertise in many 

healthcare systems [6, 7], automating abnormality classification has 

emerged as an active research area [8–10] to enhance radiologist 

efficiency. The interpretation of 3D CT scans presents a time- 

intensive challenge, exacerbated by the heterogeneous nature of 

observed anomalies. Some anomalies, such as lung nodules [11], 

can be very small, requiring careful attention from radiologists 

to avoid missing them. Hence, depending on the patient 

demographics [12] and clinical indications [13], radiologists may 

dedicate more time to specific anatomical regions that could 

potentially present anomalies. As illustrated in Table 1, clinical 

indications consists of a brief paragraph written by the radiologist 

before the examination, describing the patient’s condition, reason 

for the visit, and any suspected pathologies that might be revealed 

during the examination.

Inspired by the work6ow of radiologists, we propose a 

multimodal end-to-end model that integrate clinical indications, 

patient age, and sex to predict chest pathologies [14]. As shown 

in Figure 1, our approach extends state-of-the-art methods 

relying on 3D CT scans to the integration of textual data 

corresponding to clinical indications, along with utilizing 

structured data such as patient age and sex. These data have a 

significant impact on the prevalence of a pathology [15, 16]. We 

separate feature extraction from each modality using individual 

modules and then aggregate all these extracted features to 

predict anomalies. As illustrated in Figure 3, we extend our 

experimental results by leveraging this multimodal encoder to 

enhance existing automated report generation methods [17, 18]. 

Our contributions are as follows: 

• We introduce a supervised multimodal method for multilabel 

classification, capable of taking the 3D CT scan, clinical 

indications, age, and sex as input.

• We evaluate the model on a public dataset and add an ablation 

study to demonstrate the importance of each module.

• We extend our experimental results by integrating clinical 

indications and patient demographics into the automated 

report generation task.

2 Related work

2.1 Supervised abnormality classification

In the domain of abnormality classification in medical imaging 

[21], significant research has been conducted on 2D imaging 

[22, 23] across various modalities such as magnetic resonance 

imaging (MRI) [24, 25], x-rays [26–29], and skin images [30]. In 

the field of x-ray imaging, the publicly available MIMIC-CXR 

dataset [31], comprising 2D radiographs and associated clinical 

reports, has facilitated the development of various supervised 

approaches for abnormality detection [32–35] and classification 

[36]. While some methods focus on a single abnormality or a 

specific anatomical region [37, 38], others adopt a more 

comprehensive approach by aiming to simultaneously detect or 

classify multiple anomalies [39–41] using deep learning models. 

However, new challenges emerged with 3D imaging and the use of 

CT or 3D MRI. These modalities introduce novel challenges 

stemming from the scarcity of publicly available datasets in this 

domain [10], the high-dimensional nature of the data, and the 

significant computational demands. Prior work [9, 42] adopted 

traditional convolutional neural network (CNN) architectures. 

Recent advances have adopted transformer-based architectures [43] 

for volumetric data analysis. ViViT [44], an extension of the Vision 

Transformer [45] originally designed for video understanding [46], 

has demonstrated strong representational capacity and has since 

been adapted for a range of CT-based tasks, including radiology 

report generation [18] and synthetic volume generation [19], with 

the introduction of CT-ViT [19], which has already demonstrated 

its effectiveness for various tasks such as report generation [18] and 

abnormality classification [10].

2.2 Multimodal fusion

In machine learning, multimodal fusion [47] has played a 

pivotal role in advancing classification tasks across various 

research domains [48–51]. By integrating information from 

multiple data sources or modalities [52–54], such as combining 

images from different imaging techniques (e.g., MRI, CT, PET) 

or fusing imaging data with clinical records [55] or biological 

information [56], multimodal approaches offer significant 

advantages. They not only enhance the discriminative capability 

of classification models but also provide resilience against the 

inherent variability in single-modal datasets [47, 57, 58]. Feature 

extraction from each modality is typically performed using a 

module per modality [59] and then aggregated with a fusion 

module [60, 61]. The fusion of features across modalities can be 

achieved through simple concatenation [48], by leveraging self- 

attention mechanisms [59], or via cross-modality attention 

modules[62]. Regarding specific work on 3D CT scans, 

CT2RepLong [18] automatically generates a medical report from 

the volume and imaging report of the previous medical report 

of the same patient. This fusion between visual and textual 

features is achieved through a cross-attention module.

TABLE 1 Examples of patient demographics (sex and age) and clinical 
indications from the CT-RATE dataset [10].

ID Sex Age Clinical indications

Patient 1 F 64 Shortness of breath

Patient 2 F 42 Suspicion of lung cancer

Patient 3 M 50 Hematological malignancy fever chest pain

Patient 4 M 37 Patient with multiple myeloma, focus of infection
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2.3 Report generation

Image captioning [63] refers to generating textual descriptions 

from input images, with significant progress made across various 

application domains [64–66]. In medical imaging, early generation 

methods [67] were introduced for 2D modalities using public 

datasets, such as x-rays [31]. The initial approaches, based 

on encoder–decoder architectures [68], extract a vector 

representation using a visual encoder (typically a CNN or 

attention-based model) and then pass it to a decoder module, 

often relying on attention mechanisms, to generate the report. 

Recently, the incorporation of relational memory [69], prior 

knowledge [70], large language models (LLMs) [71], 

reinforcement learning [72], and guidance-based methods [73] 

has enhanced the quality of generated reports. Existing methods 

for x-ray report generation [74] incorporate medical knowledge 

or prior information, often in the form of textual modalities, to 

enhance the quality of the generated reports [75–77]. For 3D 

CT volumes, the CT-RATE public dataset [10] enabled the 

development of CT2Rep [18], the first end-to-end method for 

report generation that extracts vector representations from CT- 

ViT [19] and passes them to a decoder to generate the report. 

Similar to 2D imaging, integrating LLMs [78] or multiview 

encoders [79] has shown improvements in report quality. In the 

2D x-ray imaging domain, prior works have explored the 

integration of clinical indications for report generation. For 

example, SEI and MLRG employ cross-attention mechanisms to 

combine indication features with multiview or historical case 

information [80, 81], while Pragmatic LLaMA introduces 

indications as additional input to a large language model for 

guiding report generation [82]. These approaches share with our 

work the idea of leveraging clinical indications to enrich textual 

output. However, they are designed for 2D chest radiographs, 

whereas our method targets volumetric 3D CT scans, which 

present unique challenges in terms of data dimensionality, 

abnormality diversity, and multimodal fusion. Regarding guided 

methods for 3D CT scans, CT-AGRG [17] decomposes the task 

into two steps: first, a visual encoder performs feature extraction 

and abnormality classification, and second, a GPT-2 model [83] 

fine-tuned on a medical corpus [84] generates a description for 

each detected abnormality. In our work, we extend these 

approaches by integrating clinical indications and patient 

demographics into CT2Rep (an end-to-end method) and CT- 

AGRG (a guided method) to improve performance on the 

report generation task.

3 Dataset

We used the CT-RATE public dataset [10], containing 50,188 

reconstructed non-contrast 3D chest CT volumes, to train and 

evaluate our method. For each scan, we had access to age, sex, 

and 18 distinct types of abnormalities. The pseudo-labels were 

extracted from radiology reports using a RadBERT classifier 

[10, 20]. We only retained samples containing clinical 

indications, resulting in a dataset comprising 16,009 unique 

patients (24,085 volumes) for the train set, 792 patients (1,551 

volumes) for the validation set, and 792 patients (1,531 

volumes) for the test set. We ensured there was no overlap 

of patients between the training, validation, and test sets. 

Following Draelos et al. and Hamamci et al. (author?) [9, 10], 

all volumes were either center-cropped or padded to achieve a 

resolution of 240 � 480 � 480 with in-slice spacings of 0.75 mm 

and 1.5 mm on the z-axis. Hounsfield unit (HU) [85] values 

were clipped between �1, 000 and þ200. Subsequently, we 

normalized the clipped HU values to the range [�1, 1] to 

FIGURE 1 

Overview of the method. The input volume is processed by a visual extractor FV [either CT-Net [9] or CT-ViT [19]] and FV , which generates a visual 

embedding. Clinical indication is processed by RadBERT [20], yielding a token-level embedding. The [CLS] token is fed into a lightweight MLP FT to 

project textual and visual features into a common latent space. Patient age and sex information are processed by another lightweight MLP FA,S. These 

vectors are concatenated, and the resulting vector is passed to a classification head C, which predicts an abnormality score for each label.
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facilitate network training. The input age was min–max- 

normalized [86] to the range [0, 1] to ensure proper handling 

by the neural network. Sex was encoded as a binary variable, 

with 0 representing female and 1 representing male. Figure 2

illustrates the distribution of patient age and sex, along with the 

18 abnormalities.

FIGURE 2 

Overview of the multimodal dataset. (a) Bar plot of label frequency. (b) Bar plot of sex frequency. (c) Distribution of age in years. (d) Distribution plot of 

reports’ lengths based on token count using the RadBERT tokenizer.

FIGURE 3 

Integration of clinical indications and patients demographics for the CT-AGRG method. Features derived from the 3D CT volume, clinical indications, 

patient age, and sex are aggregated to form vector e. This vector is fed into 18 classification heads (one per abnormality). If a classification head 

predicts an abnormality, the corresponding vector representation is passed to a pretrained GPT-2 model, which generates a textual description 

of the detected abnormality.
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4 Methods

As illustrated in Figure 1, our feature extraction module consists 

of three key components. First, low-level feature extraction is 

performed independently for each modality, producing modality- 

specific vector representations. These embeddings are then mapped 

into a shared feature space using lightweight feedforward networks. 

Finally, the transformed representations are aggregated via 

summation to obtain a unified vector representation.

4.1 Visual feature extraction

The model receives an input volume x [ R
240�480�480. This 

volume is passed to a visual extractor FV, which is either CT- 

Net [9] or ViViT [19]. To demonstrate the 6exibility and 

generality of our framework across different visual encoders, we 

conducted experiments using both CT-Net and ViViT. CT-Net 

consists of 2D ResNet [87] modules followed by a lightweight 

3D convolutional network that aggregates the features maps into 

a compact vector representation [88]. ViViT [44] is a Vision 

Transformer [45] based on the attention mechanism [43] 

computed from 3D patches extracted from the initial volume. 

To ensure a fair evaluation across methods, ViViT is initialized 

via weight in6ation [89] from a 2D ViT [45] pretrained on 

ImageNet [90], while the 2D ResNet module in CT-Net is 

directly initialized from a 2D ResNet pretrained on ImageNet. 

While our contribution focuses on integrating modalities 

such as clinical indications and demographic information 

into a visual encoder, we leveraged pretrained weights to 

facilitate network training, ensuring that model parameters are 

initialized under comparable conditions. Exploring alternative 

initialization or pretraining strategies is left for future work. 

From the initial volume x, both CT-Net and CT-ViT yield 

a vector representation h [ R
512. Subsequently, this embedding 

is passed to a projection head [91] FV to obtain eV [ R
512, as 

defined in Equation 1 such that:

eV ¼ FV(h) ¼ (FV �FV)(x) : (1) 

4.2 Clinical indication feature extraction

To extract embedded tokens from the textual clinical indication 

report, a pretrained RadBERT [20] model is used. It is a bi- 

directional neural network, trained on a large radiology report 

database on a masked language modeling task. From T tokens of 

the clinical indications report, a single vector representation 

e768

[CLS]
[ R

768 is extracted from the Classification [CLS] token [92, 

93] outputted by the language model. Working exclusively with the 

[CLS]-embedded token enables easy projection of textual and 

visual embeddings into the same-dimensional latent space. Next, 

e768

[CLS] 
is passed through a lightweight multilayer perceptron 

(MLP) FT to project the vector representation from textual latent 

space of dimension 768 to a latent space of dimension 512. The 

resulting vector e[CLS] [ R
512 is obtained as defined by Equation 2:

e[CLS] ¼ FT(e768

[CLS]): (2) 

4.3 Age and sex feature extraction

To handle the normalized age feature xA [ [0, 1] and the sex 

feature xS [ {0, 1}, a lightweight MLP FA,S, implemented as a 

linear projection followed by a ReLU activation function, is 

used to obtain a vector representation eA,S [ R
2, as defined 

by Equation 3:

eA,S ¼ FA,S(xA, xS): (3) 

4.4 Multimodal fusion

The three vector representations associated with different 

modalities are concatenated [54, 94] into a single vector e [ R
1026, 

such that e ¼ [eV , e[CLS], eA,S]. A normalization layer [95] is 

incorporated to ensure stability during training and that the resulting 

vector e is properly scaled and balanced across its dimensions.

4.4.1 Multilabel classification

In the context of abnormality prediction from CT scans, 

leveraging clinical indications and patient demographics, vector 

e is given a traditional classification head C to obtain ŷ [ R
18. 

As commonly practiced, the model is trained on a multilabel 

classification task using a binary cross-entropy loss function [96].

4.4.2 Report generation

To integrate clinical indications and patient demographics into 

the report generation task, we extended the CT2Rep [18] and CT- 

AGRG [17] models by replacing their original visual encoder with 

our proposed module, which fuses multiple modalities. As 

illustrated in Figure 3, the decoder responsible for generating the 

report takes the vector representation e as input. In CT2Rep, the 

decoder generates the entire report in a single pass from e. In 

contrast, CT-AGRG follows a two-step process: the encoder first 

predicts the set of abnormalities, and the decoder then generates a 

detailed description for each predicted abnormality. The models 

are trained using a next-token prediction objective with binary 

cross-entropy loss [96]. During inference, the decoder receives only 

the vector representation e of the input volume and a Beginning Of 

Sentence [BOS] token to signal the start of the sequence [92]. The 

report is then generated iteratively, token by token [83].
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5 Experimental setup

5.1 Training details

For the multilabel classification task, the model was trained on 

40 epochs on a GPU with 48GB of memory. We used Adam 

Optimizer [97] with a learning rate of 10�4 and a batch size of 

4. For the report generation experiments, we adopted the same 

setup as used for CT2Rep [18] and CT-AGRG [17].

5.2 Language model

We limited the maximum number of tokens to 40, which is 

typically found in clinical indication reports [98]. During 

training, we only fine-tuned the last three layers of RadBERT, 

with the rest frozen [99].

6 Experimental results

This section is organized as follows: we first present 

quantitative results on the multilabel abnormality classification 

task with the integration of clinical indications and patient 

demographics; we then conduct an ablation study to assess the 

contribution of each module; and finally, we extend our analysis 

to automatic report generation.

6.1 Multilabel classification task

We evaluated the model’s performance using commonly used 

metrics: AUROC, F1 score, precision, recall, and accuracy. We also 

reported the weighted F1 score, computed by averaging the F1 

score of each abnormality, weighted by its occurrence frequency. 

Because the dataset is dominated by normal findings for most 

labels (Figure 2), we determined label-specific thresholds on the 

validation set by maximizing the F1 score [100], as it balances 

precision and recall [21, 101]. On the test set, we then 

computed the average of each metric across all labels.

Table 2 demonstrates that incorporating clinical indications 

and patient demographics significantly improves upon state-of- 

the-art single-modality methods. Specifically, our model achieves 

an AUROC of 81:51 (þD3:23% over CT-Net) and the highest 

accuracy of 79:48. However, in an imbalanced multilabel setting, 

accuracy is primarily driven by correct predictions on abundant 

classes (especially the normal class) and therefore tends to 

overestimate overall performance. This also explains why 

precision (43:93) and recall (65:37) are lower despite high 

accuracy: even a small number of false positives can markedly 

reduce precision for rare classes. For this reason, we emphasize 

the F1 score as a more informative indicator of abnormality 

detection. Specifically, we achieved an average F1 score of 51:58 

[improvements of þD6:13% and þD16:22% over CT-Net [9] 

and CT-ViT [10], respectively]. CT-Net with demographics and 

clinical indications outperforms baseline CT-Net and CT-ViT 

(paired t-test, p , 0:01) for all metrics, indicating that 

incorporating clinical and demographic information enhances 

classification performance.

Figure 4 details the impact on F1 score for each abnormality 

when integrating patient demographics and clinical indications, 

demonstrating that this additional contextual information 

improves performance for 16 out of 18 anomalies. The largest 

gains, observed for interlobular septal thickening, consolidation, 

mosaic attenuation, and lung opacity, suggest that these findings 

are particularly context-dependent and strongly correlated with 

clinical factors. While most anomalies benefit from the auxiliary 

information, a minority, such as bronchiectasis, shows slight 

performance decreases, possibly because the added inputs may 

introduce noise for anomalies that already possess distinctive 

visual signatures. A promising future direction is to develop 

adaptive integration strategies that selectively incorporate 

contextual information when it is beneficial.

6.2 Ablation study

We conducted a comprehensive ablation study to assess the 

contributions of the clinical indication feature extractor, each 

auxiliary input modality, and the fusion module to overall 

performance.

6.2.1 Impact of the clinical indication encoding 

module
To evaluate the impact of different modules for encoding 

clinical indications into vector representations, we conducted an 

ablation study comparing three approaches: a transformer 

encoder trained from scratch, a BERT language model 

pretrained on a general corpus, and RadBERT, a BERT-based 

model pretrained specifically on radiology text. Table 3 and 

TABLE 2 Quantitative evaluation of the multilabel classification task on the test set.

Method AUROC Accuracy F1 score W. F1 score Precision Recall

Random predictions 49.93 + 0.51 50.11 + 0.37 27.18 + 0.35 33.02 + 0.39 20.24 + 0.28 49.68 + 0.51

CT-ViT [10] 75.14 + 0.51 73.52 + 0.57 44.38 + 0.18 49.56 + 0.25 35.35 + 0.51 62.42 + 0.96

+ clinical ind. + demographics 76.09 + 0.37 74.83 + 0.81 45.51 + 0.24 50.97 + 0.40 36.75 + 0.43 63.00 + 0.98

CT-Net [9] 78.96 + 0.30 78.49 + 0.55 48.60 + 0.37 54.18 + 0.55 42.56 + 1.01 60.15 + 0.99

+ clinical ind. + demographics 81.51 + 0.26 79.48 + 0.42 51.58 + 0.54 57.60 + 1.06 43.93 + 0.77 65.37 + 0.88

Reported mean and standard deviation metrics were computed over a fivefold cross-validation. The weighted F1 score corresponds to the average of F1 scores for each abnormality, weighted 

by the frequency of occurrence of the abnormality in the test set. Best results are in bold, and second best are in italics.
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FIGURE 4 

Variation in the F1 score across anomalies, highlighting the impact of integrating patient demographics and clinical indications into the multilabel 

abnormality classification task.

TABLE 3 Comparative analysis of individual modalities and full integration for multilabel abnormality classification from 3D CT volumes.

Method AUROC Accuracy F1 score W. F1 score Precision

Random predictions 49.93 + 0.51 50.11 + 0.37 27.18 + 0.35 33.02 + 0.39 20.24 + 0.28

Patient demographics

Age + sex 62.92 + 5.46 50.83 + 19.92 35.60 + 4.13 43.26 + 3.69 25.71 + 5.24

Clinical indications

Transformer encoder [43] 65.64 + 0.40 64.30 + 1.13 34.87 + 0.24 41.80 + 0.26 26.49 + 0.63

BERT [92] 65.96 + 0.07 63.28 + 0.48 35.16 + 0.29 42.00 + 0.18 25.98 + 0.41

RadBERT [20] 66.79 + 0.21 65.41 + 1.07 36.38 + 0.91 42.34 + 0.14 27.64 + 0.64

3D CT volumes

CT-Net [9] 78.96 + 0.30 78.49 + 0.55 48.60 + 0.37 54.18 + 0.55 42.56 + 1.01

Multimodal fusion

CT-Net þ RadBERT þ age þ sex 81.51 + 0.26 79.48 + 0.42 51.58 + 0.54 57.60 + 1.06 43.93 + 0.77

Results are shown for (1) patient demographics only, (2) clinical indications only, (3) visual 3D volumes only, and (4) integration of all inputs.

Bold values show “best results”.

FIGURE 5 

Comparison of (a) F1 score and (b) AUROC across clinical indications, patient demographics, 3D CT volume, and multimodal fusion for multilabel 

abnormality classification. The highest performance is achieved when fusing all modalities, highlighting the benefit of multimodal integration.
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Figure 5 report the classification performance achieved when 

using only clinical indications as input for each of these 

modules. RadBERT achieved an F1 score of 36.38, representing 

a þD3:47% improvement over general-domain BERT and a 

þD4:33% improvement over the transformer encoder trained 

from scratch. These results suggest that leveraging a domain- 

specific pretrained language model facilitates the extraction of 

more meaningful features from clinical indications, ultimately 

enhancing classification performance.

6.2.2 Impact of auxiliary information
Table 4 presents the ablation study evaluating the incremental 

impact of incorporating patient demographics and clinical 

indications as auxiliary inputs alongside the 3D CT Volumes. 

Adding patient demographics yields an F1 score of 49.79, re6ecting 

a þD2:45% improvement over the CT-Net baseline. Incorporating 

clinical indications results in an F1 score of 50.86, corresponding to 

a þD4:45% gain. For each auxiliary input configuration, a paired 

t-test comparing the F1 score distributions against the baseline 

yields a p-value , 0:01, highlighting the statistical significance of 

the observed performance improvements. Removing CT features led 

to a consistent drop in performance, indicating that the model does 

not rely solely on clinical text or metadata.

6.2.3 Impact of the fusion module

Our ablation study results related to the fusion module, presented 

in Table 5, indicate that concatenating features yields the highest 

AUROC and F1 score increase seen through the integration of 

clinical indications. Specifically, we obtained an F1 score of 50.86, 

demonstrating a þD0:97 improvement over sum and a þD2:12%

improvement over cross-modality attention. This suggests that, in 

our specific setting, direct concatenation provides a strong signal 

without the overhead of more complex interaction modeling where 

the modalities may have relatively low complexity. While more 

expressive mechanisms such as cross-attention mechanisms 

demonstrate robust performances in large-scale multimodal 

learning, we found that in our setting, where the dataset is relatively 

modest, a simpler fusion provides more robust performance, 

requiring fewer parameters to fully benefit from modalities 

effectively. We evaluated an alternative fusion strategy where clinical 

indications and demographic features are combined into a prompt 

for the BioMistral LLM [102]. As presented in Table 6, independent 

concatenation of modality-specific embeddings demonstrates a 

þD0:89% improvement in the F1 score and a þD1:05%

improvement in AUROC over the LLM-based prompt fusion. We 

attribute this improvement to the robustness of simpler fusion in 

the context of our relatively small dataset. While prompt-based 

fusion offers more expressive modeling, it may require larger 

datasets to fully realize its benefits, highlighting the importance of 

matching fusion complexity to dataset scale.

6.3 Report generation task

We extend our experiments to the task of automated report 

generation by integrating clinical information for two methods: 

CT2Rep [18], which generates the entire report in a single pass, 

and CT-AGRG [17], which first predicts abnormalities and then 

generates a description for each detected abnormality. Once the 

report is generated, we evaluate its quality using two sets of 

metrics: natural language generation (NLG) metrics and clinical 

efficacy (CE) metrics [69, 73]. NLG metrics assess the similarity 

between the generated text and the ground truth. We used 

BLEU-1 [103], which compares the overlapping 1-grams 

TABLE 5 Impact of the aggregation module between features extracted by a visual encoder from the 3D CT volumes and those extracted by RadBERT 
from clinical indications.

Method AUROC Accuracy F1 score W. F1 score Precision

Random predictions 49.93 + 0.51 50.11 + 0.37 27.18 + 0.35 33.02 + 0.39 20.24 + 0.28

CT-Net [9] 78.96 + 0.30 78.49 + 0.55 48.60 + 0.37 54.18 + 0.55 42.56 + 1.01

Methods below utilize clinical indications

With self-attention 80.35 + 0.18 78.67 + 0.78 49.21 + 0.57 55.35 + 0.48 42.23 + 0.59

With cross-attention 80.36 + 0.41 78.11 + 1.02 49.84 + 0.31 55.44 + 0.27 42.29 + 0.91

With sum 80.99 + 0.28 78.89 + 0.65 50.37 + 0.50 56.08 + 0.36 43.05 + 0.25

With concatenation 81.00 + 0.42 79.80 + 0.37 50.86 + 0.36 56.58 + 0.20 43.84 + 0.32

Bold values show “best results”.

TABLE 4 Ablation study on the contribution of auxiliary information for multilabel abnormality classification from 3D CT volumes.

3D CT  
volumes

Patient  
demographics

Clinical  
indications

AUROC F1 score Paired t-test  
p-value

Training time Inference time

✓ 78.96 + 0.30 48.60 + 0.37 – 15.09 + 1.55 4.16 + 0.68

✓ ✓ 80.51 + 0.49 49.79 + 0.69 , 0:01 16.05 + 1.06 4.11 + 0.32

✓ ✓ 81.00 + 0.42 50.86 + 0.36 , 0:01 111.30 + 3.33 76.19 + 0.79

✓ ✓ ✓ 81:51+ 0.26 51:58 + 0.54 , 0:01 112.96 + 4.38 76.76 + 0.97

We report performance using (1) visual encoder alone, (2) integration of patient demographics, (3) integration of clinical indications, and (4) integration of both. The paired t-test p-value 

column reports the statistical significance of the F1 score improvements compared to the baseline using only 3D CT volumes. Training time and inference time indicate the average time per 

sample (in ms) for forward and backward passes (training) and for inference, respectively.

Bold values show “best results”.
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between the reference and the prediction. ROUGE evaluates 

recall-oriented metrics, like overlap and precision, between 

n-grams. BERTScore [104], an embedding-based metric, 

measures the cosine similarity of vector representations of the 

embedded tokens between the reference and the generated text. 

Clinical efficacy metrics evaluate the clinical accuracy of generated 

reports. We extracted abnormality mentions as one-hot vectors 

using a RadBERT language model classifier [20], which was 

originally used for CT-RATE [10] label annotation. These 

predictions are then compared to ground-truth labels using 

standard multilabel classification metrics, such as the F1 score. In 

addition, we report the CRG score [105], a recently proposed 

distribution-aware metric for radiology report generation. Unlike 

conventional metrics, CRG focuses exclusively on clinically relevant 

abnormalities explicitly described in the reference report, while also 

accounting for class imbalance.

As shown in Table 7, the integration of clinical indications and 

patient demographics significantly enhances both NLG and CE 

metrics. For the CT2Rep model, incorporating these additional 

data results in a BLEU-1 score of 0.342, re6ecting a þD7:55%

increase compared to the baseline model, and an F1 score of 36.57, 

which corresponds to a þD14:78% improvement over the baseline. 

Similarly, for the CT-AGRG guided method, the inclusion of 

clinical indication and patient demographic information leads to a 

performance boost, achieving a recall of 60:43 (þD12:32%

increase) and an F1 score of 48:30 (þD6:69% increase) over the 

original model. For each method, we performed a paired t-test 

comparing the F1 score obtained with and without the integration 

of clinical indications and patient demographics. The resulting 

p-values are all strictly below 0.01, indicating statistically significant 

improvements in the quality of the generated reports. In addition, 

Figure 6 allows us to identify which anomalies benefit most from 

richer multimodal inputs, making performance gains more 

clinically interpretable and highlighting where report generation is 

most reliable. Figure 7 illustrates two examples of report 

generation compared to the ground truth, emphasizing that our 

TABLE 6 Comparison of fusion strategies for incorporating clinical indications and demographic information in 3D chest CT abnormality classification.

Demographics and indications Fusion strategy AUROC Accuracy F1 score W. F1 score Recall

✗ 78.96 + 0.30 78.49 + 0.55 48.60 + 0.37 54.18 + 0.55 60.15 + 1.39

✓ Prompt-based 80.66 + 0.45 79.68 + 0.47 51.12 + 0.51 56.78 + 0.37 63.50 + 1.28

✓ Modality-specific 81.51 + 0.26 79.48 + 0.42 51.58 + 0.54 57.60 + 1.06 65.37 + 1.53

We evaluated modality-specific embeddings for clinical indications, patient age, and sex, concatenated with CT features, against prompt-based fusion, where the same information is 

integrated into a BioMistral-7B input prompt. Best results are underlined.

TABLE 7 Quantitative evaluation of the report generation task.

Method NLG metrics CE metrics

BLEU-1 ROUGEL BERT CRG Recall F1 score

Random predictions – – – 0.397 + 0.004 50.92 + 1.48 27.18 + 0.35

CT2Rep [18] 0.318 + 0.007 0.236 + 0.006 0.863 + 0.002 0.417 + 0.009 32.56 + 2.62 31.86 + 1.74

+ clinical indications + demographics 0.342 + 0.006 0.259 + 0.003 0:871 + 0.001 0.430 + 0.004 36.22 + 0.81 36.57 + 0.73

CT-AGRG [17] 0.386 + 0.011 0.265 + 0.001 0.863 + 0.001 0.488 + 0.004 53.80 + 0.05 45.27 + 0.19

+ clinical indications + demographics 0:395 + 0.006 0:268 + 0.003 0:867 + 0.001 0:509 + 0.001 60:43 + 0.11 48:30 + 0.05

We used NLG metrics and CE metrics with CRG, recall, and F1 score.

Bold values shows “best results”.

FIGURE 6 

F1 score improvements across four abnormality groups, when incorporating demographic and clinical indication information into 3D CT volume 

report generation.
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method produces reports with a structure and terminology closely 

resembling those written by radiologists.

7 Conclusion and discussion

In this paper, we present a simple and effective method capable 

of integrating various sources of information to classify multiple 

anomalies from chest 3D CT scans, available clinical indications, 

and age and sex features. We also integrate these information 

sources for report generation, demonstrating their ability to 

enhance model performance across various tasks related to 3D 

CT scans. Furthermore, our experiments validate the effectiveness 

of each module and the use of a pretrained language model for 

clinical indication feature extraction. Due to the limited 

availability of multimodal publicly accessible 3D chest CT 

datasets, our findings are based solely on the CT-RATE dataset. 

While this provides a solid foundation for initial validation, 

reliance on a single dataset may introduce biases related to 

language patterns, labeling conventions, or demographic 

representations. Moreover, the demographic features considered 

in this study (age and sex) remain limited. Future work should 

therefore aim to include external validation on independent 

datasets and explore richer metadata to better assess model 

generalizability and robustness. To enhance multimodal 

representation of a patient, future work could incorporate 

additional modalities, such as longitudinal patient data, richer 

demographic features, or similarity-based retrieval of reports and 

volumes, to further strengthen multimodal fusion.
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