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The increasing number of computed tomography (CT) scan examinations and the
time-intensive nature of manual analysis necessitate efficient automated methods
to assist radiologists in managing their increasing workload. While deep learning
approaches primarily classify abnormalities from three-dimensional (3D) CT
images, radiologists also incorporate clinical indications and patient
demographics, such as age and sex, for diagnosis. This study aims to enhance
multilabel abnormality classification and automated report generation by
integrating imaging and non-imaging data. We propose a multimodal deep
learning model that combines 3D chest CT scans, clinical information reports,
patient age, and sex to improve diagnostic accuracy. Our method extracts visual
features from 3D volumes using a visual encoder, textual features from clinical
indications via a pretrained language model, and demographic features through
a lightweight feedforward neural network. These extracted features are projected
into a shared representation space, concatenated, and processed by a projection
head to predict abnormalities. For the multilabel classification task, incorporating
clinical indications and patient demographics into an existing visual encoder,
called CT-Net, improves the F1 score to 51.58, representing a +A6.13% increase
over CT-Net alone. For the automated report generation task, we extend two
existing methods, CT2Rep and CT-AGRG, by integrating clinical indications and
demographic data. This integration enhances Clinical Efficacy metrics, yielding
an F1 score improvement of +A14.78% for the CT2Rep extension and +A6.69%
for the CT-AGRG extension. Our findings suggest that incorporating patient
demographics and clinical information into deep learning frameworks can
significantly improve automated CT scan analysis. This approach has the
potential to enhance radiological workflows and facilitate more comprehensive
and accurate abnormality detection in clinical practice.
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1 Introduction

Three-dimensional computed tomography (3D CT) scans have
become essential tools in medical imaging [1], offering unparalleled
insights into anatomical structures and pathological conditions.
This type of medical image is critical for identifying diseases such
as pleural effusion [2], lung cancer [3], and cardiomegaly [4].
Given the rapidly growing number of scans to analyze [5] and the
increasing demand for specialized radiological expertise in many
healthcare systems [6, 7], automating abnormality classification has
emerged as an active research area [8-10] to enhance radiologist
efficiency. The interpretation of 3D CT scans presents a time-
intensive challenge, exacerbated by the heterogeneous nature of
observed anomalies. Some anomalies, such as lung nodules [11],
can be very small, requiring careful attention from radiologists
to avoid missing them. Hence, depending on the patient
demographics [12] and clinical indications [13], radiologists may
dedicate more time to specific anatomical regions that could
potentially present anomalies. As illustrated in Table 1, clinical
indications consists of a brief paragraph written by the radiologist
before the examination, describing the patient’s condition, reason
for the visit, and any suspected pathologies that might be revealed
during the examination.

Inspired by the workflow of radiologists, we propose a
multimodal end-to-end model that integrate clinical indications,
patient age, and sex to predict chest pathologies [14]. As shown
in Figure 1, our approach extends state-of-the-art methods
relying on 3D CT scans to the integration of textual data
corresponding to clinical indications, along with utilizing
structured data such as patient age and sex. These data have a
significant impact on the prevalence of a pathology [15, 16]. We
separate feature extraction from each modality using individual
modules and then aggregate all these extracted features to
predict anomalies. As illustrated in Figure 3, we extend our
experimental results by leveraging this multimodal encoder to
enhance existing automated report generation methods [17, 18].
Our contributions are as follows:

o We introduce a supervised multimodal method for multilabel
classification, capable of taking the 3D CT scan, clinical
indications, age, and sex as input.

o We evaluate the model on a public dataset and add an ablation
study to demonstrate the importance of each module.

o We extend our experimental results by integrating clinical
indications and patient demographics into the automated
report generation task.

TABLE 1 Examples of patient demographics (sex and age) and clinical
indications from the CT-RATE dataset [10].

D Sex Age  Clinicalindications
64

Patient 1 | F Shortness of breath

Patient 2 | F 42 Suspicion of lung cancer

Patient 3 | M 50 Hematological malignancy fever chest pain
Patient 4 | M 37 Patient with multiple myeloma, focus of infection

Frontiers in Radiology

10.3389/fradi.2025.1672364

2 Related work
2.1 Supervised abnormality classification

In the domain of abnormality classification in medical imaging
[21], significant research has been conducted on 2D imaging
[22, 23] across various modalities such as magnetic resonance
imaging (MRI) [24, 25], x-rays [26-29], and skin images [30]. In
the field of x-ray imaging, the publicly available MIMIC-CXR
dataset [31], comprising 2D radiographs and associated clinical
reports, has facilitated the development of various supervised
approaches for abnormality detection [32-35] and classification
[36]. While some methods focus on a single abnormality or a
specific anatomical region [37, 38], others adopt a more
comprehensive approach by aiming to simultaneously detect or
classify multiple anomalies [39-41] using deep learning models.
However, new challenges emerged with 3D imaging and the use of
CT or 3D MRI. These modalities introduce novel challenges
stemming from the scarcity of publicly available datasets in this
domain [10], the high-dimensional nature of the data, and the
significant computational demands. Prior work [9, 42] adopted
traditional convolutional neural network (CNN) architectures.
Recent advances have adopted transformer-based architectures [43]
for volumetric data analysis. ViViT [44], an extension of the Vision
Transformer [45] originally designed for video understanding [46],
has demonstrated strong representational capacity and has since
been adapted for a range of CT-based tasks, including radiology
report generation [18] and synthetic volume generation [19], with
the introduction of CT-ViT [19], which has already demonstrated
its effectiveness for various tasks such as report generation [18] and
abnormality classification [10].

2.2 Multimodal fusion

In machine learning, multimodal fusion [47] has played a
pivotal role in advancing classification tasks across various
research domains [48-51]. By integrating information from
multiple data sources or modalities [52-54], such as combining
images from different imaging techniques (e.g., MRI, CT, PET)
or fusing imaging data with clinical records [55] or biological
(561,
advantages. They not only enhance the discriminative capability

information multimodal approaches offer significant
of classification models but also provide resilience against the
inherent variability in single-modal datasets [47, 57, 58]. Feature
extraction from each modality is typically performed using a
module per modality [59] and then aggregated with a fusion
module [60, 61]. The fusion of features across modalities can be
achieved through simple concatenation [48], by leveraging self-
attention mechanisms [59], or via cross-modality attention
modules[62]. Regarding specific work on 3D CT scans,
CT2RepLong [18] automatically generates a medical report from
the volume and imaging report of the previous medical report
of the same patient. This fusion between visual and textual
features is achieved through a cross-attention module.
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2.3 Report generation

Image captioning [63] refers to generating textual descriptions
from input images, with significant progress made across various
application domains [64-66]. In medical imaging, early generation
methods [67] were introduced for 2D modalities using public
datasets, such as x-rays [31]. The initial approaches, based
(68],
representation using a visual encoder (typically a CNN or

on encoder-decoder architectures extract a vector

attention-based model) and then pass it to a decoder module,
often relying on attention mechanisms, to generate the report.
Recently, the incorporation of relational memory [69], prior

(701, (LLMs)  [71],
reinforcement learning [72], and guidance-based methods [73]

knowledge large language models
has enhanced the quality of generated reports. Existing methods
for x-ray report generation [74] incorporate medical knowledge
or prior information, often in the form of textual modalities, to
enhance the quality of the generated reports [75-77]. For 3D
CT volumes, the CT-RATE public dataset [10] enabled the
development of CT2Rep [18], the first end-to-end method for
report generation that extracts vector representations from CT-
ViT [19] and passes them to a decoder to generate the report.
Similar to 2D imaging, integrating LLMs [78] or multiview
encoders [79] has shown improvements in report quality. In the
2D x-ray imaging domain, prior works have explored the
integration of clinical indications for report generation. For
example, SEI and MLRG employ cross-attention mechanisms to
combine indication features with multiview or historical case
[80, 81], Pragmatic LLaMA
indications as additional input to a large language model for

information while introduces
guiding report generation [82]. These approaches share with our
work the idea of leveraging clinical indications to enrich textual

output. However, they are designed for 2D chest radiographs,
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whereas our method targets volumetric 3D CT scans, which
present unique challenges in terms of data dimensionality,
abnormality diversity, and multimodal fusion. Regarding guided
methods for 3D CT scans, CT-AGRG [17] decomposes the task
into two steps: first, a visual encoder performs feature extraction
and abnormality classification, and second, a GPT-2 model [83]
fine-tuned on a medical corpus [84] generates a description for
each detected abnormality. In our work, we extend these
approaches by integrating clinical indications and patient
demographics into CT2Rep (an end-to-end method) and CT-
AGRG (a guided method) to improve performance on the
report generation task.

3 Dataset

We used the CT-RATE public dataset [10], containing 50,188
reconstructed non-contrast 3D chest CT volumes, to train and
evaluate our method. For each scan, we had access to age, sex,
and 18 distinct types of abnormalities. The pseudo-labels were
extracted from radiology reports using a RadBERT classifier
[10, 20].
indications, resulting in a dataset comprising 16,009 unique
patients (24,085 volumes) for the train set, 792 patients (1,551
volumes) for the validation set, and 792 patients (1,531

We only retained samples containing clinical

volumes) for the test set. We ensured there was no overlap
of patients between the training, validation, and test sets.
Following Draelos et al. and Hamamci et al. (author?) [9, 10],
all volumes were either center-cropped or padded to achieve a
resolution of 240 x 480 x 480 with in-slice spacings of 0.75 mm
and 1.5 mm on the z-axis. Hounsfield unit (HU) [85] values
were clipped between —1,000 and +200. Subsequently, we
normalized the clipped HU values to the range [—1,1] to

frontiersin.org



Di Piazza et al.

facilitate network training. The input age was min-max-
normalized [86] to the range [0, 1] to ensure proper handling
by the neural network. Sex was encoded as a binary variable,

18 abnormalities.

10.3389/fradi.2025.1672364

with 0 representing female and 1 representing male. Figure 2
illustrates the distribution of patient age and sex, along with the
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4 Methods

As illustrated in Figure 1, our feature extraction module consists
of three key components. First, low-level feature extraction is
performed independently for each modality, producing modality-
specific vector representations. These embeddings are then mapped
into a shared feature space using lightweight feedforward networks.
Finally, the transformed representations are aggregated via
summation to obtain a unified vector representation.

4.1 Visual feature extraction

The model receives an input volume x € R*0*480x480 Thjs
volume is passed to a visual extractor ‘DV, which is either CT-
Net [9] or ViViT [19]. To demonstrate the flexibility and
generality of our framework across different visual encoders, we
conducted experiments using both CT-Net and ViViT. CT-Net
consists of 2D ResNet [87] modules followed by a lightweight
3D convolutional network that aggregates the features maps into
a compact vector representation [88]. ViViT [44] is a Vision
Transformer [45] based on the attention mechanism [43]
computed from 3D patches extracted from the initial volume.
To ensure a fair evaluation across methods, ViViT is initialized
via weight inflation [89] from a 2D ViT [45] pretrained on
ImageNet [90], while the 2D ResNet module in CT-Net is
directly initialized from a 2D ResNet pretrained on ImageNet.
While our contribution focuses on integrating modalities
such as clinical indications and demographic information
into a visual encoder, we leveraged pretrained weights to
facilitate network training, ensuring that model parameters are
initialized under comparable conditions. Exploring alternative
initialization or pretraining strategies is left for future work.
From the initial volume x, both CT-Net and CT-ViT yield
a vector representation h € R*'?. Subsequently, this embedding
is passed to a projection head [91] Fy to obtain ey € R>'2, as
defined in Equation 1 such that:

ey = Fy(h) = (Fvody)(x). 1

4.2 Clinical indication feature extraction

To extract embedded tokens from the textual clinical indication
report, a pretrained RadBERT [20] model is used. It is a bi-
directional neural network, trained on a large radiology report
database on a masked language modeling task. From T tokens of
the clinical indications report, a single vector representation
eFéLS] € R’ is extracted from the Classification [CLS] token [92,
93] outputted by the language model. Working exclusively with the
[CLS]-embedded token enables easy projection of textual and
visual embeddings into the same-dimensional latent space. Next,
eF(%LS] is passed through a lightweight multilayer perceptron
(MLP) Fr to project the vector representation from textual latent
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space of dimension 768 to a latent space of dimension 512. The

resulting vector e[cLs] € R*'? is obtained as defined by Equation 2:

efcLs] = Frie[Crs)): )

4.3 Age and sex feature extraction

To handle the normalized age feature x4 € [0, 1] and the sex
feature x5 € {0, 1}, a lightweight MLP F 45, implemented as a
linear projection followed by a ReLU activation function, is
used to obtain a vector representation ess € R?, as defined
by Equation 3:

eas = Fas(xas xs). (3)

4.4 Multimodal fusion

The three vector representations associated with different
modalities are concatenated [54, 94] into a single vector e € R10%6
such that e = [ey, ejcis), eas]. A normalization layer [95] is
incorporated to ensure stability during training and that the resulting
vector e is properly scaled and balanced across its dimensions.

4.4.1 Multilabel classification

In the context of abnormality prediction from CT scans,
leveraging clinical indications and patient demographics, vector
e is given a traditional classification head ¥ to obtain j € R'®.
As commonly practiced, the model is trained on a multilabel
classification task using a binary cross-entropy loss function [96].

4.4.2 Report generation

To integrate clinical indications and patient demographics into
the report generation task, we extended the CT2Rep [18] and CT-
AGRG [17] models by replacing their original visual encoder with
our proposed module, which fuses multiple modalities. As
illustrated in Figure 3, the decoder responsible for generating the
report takes the vector representation e as input. In CT2Rep, the
decoder generates the entire report in a single pass from e. In
contrast, CT-AGRG follows a two-step process: the encoder first
predicts the set of abnormalities, and the decoder then generates a
detailed description for each predicted abnormality. The models
are trained using a next-token prediction objective with binary
cross-entropy loss [96]. During inference, the decoder receives only
the vector representation e of the input volume and a Beginning Of
Sentence [BOS] token to signal the start of the sequence [92]. The
report is then generated iteratively, token by token [83].
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5 Experimental setup
5.1 Training details

For the multilabel classification task, the model was trained on
40 epochs on a GPU with 48GB of memory. We used Adam
Optimizer [97] with a learning rate of 107 and a batch size of
4. For the report generation experiments, we adopted the same
setup as used for CT2Rep [18] and CT-AGRG [17].

5.2 Language model

We limited the maximum number of tokens to 40, which is
typically found in clinical indication reports [98]. During
training, we only fine-tuned the last three layers of RadBERT,

with the rest frozen [99].

6 Experimental results

This section is organized as follows: we first present
quantitative results on the multilabel abnormality classification
task with the integration of clinical indications and patient
demographics; we then conduct an ablation study to assess the
contribution of each module; and finally, we extend our analysis
to automatic report generation.

6.1 Multilabel classification task

We evaluated the model’s performance using commonly used
metrics: AUROC, F1 score, precision, recall, and accuracy. We also
reported the weighted F1 score, computed by averaging the F1
score of each abnormality, weighted by its occurrence frequency.
Because the dataset is dominated by normal findings for most
labels (Figure 2), we determined label-specific thresholds on the
validation set by maximizing the F1 score [100], as it balances
101]. On the test set,
computed the average of each metric across all labels.

precision and recall [21, we then

Table 2 demonstrates that incorporating clinical indications
and patient demographics significantly improves upon state-of-
the-art single-modality methods. Specifically, our model achieves
an AUROC of 81.51 (+A3.23% over CT-Net) and the highest
accuracy of 79.48. However, in an imbalanced multilabel setting,

10.3389/fradi.2025.1672364

accuracy is primarily driven by correct predictions on abundant
classes (especially the normal class) and therefore tends to
overestimate overall performance. This also explains why
precision (43.93) and recall (65.37) are lower despite high
accuracy: even a small number of false positives can markedly
reduce precision for rare classes. For this reason, we emphasize
the F1 score as a more informative indicator of abnormality
detection. Specifically, we achieved an average F1 score of 51.58
[improvements of +A6.13% and +A16.22% over CT-Net [9]
and CT-ViT [10
clinical indications outperforms baseline CT-Net and CT-ViT
t-test, p <0.01) for all
incorporating clinical and demographic information enhances

], respectively]. CT-Net with demographics and

(paired metrics, indicating that
classification performance.

Figure 4 details the impact on F1 score for each abnormality
when integrating patient demographics and clinical indications,
demonstrating that this additional contextual information
improves performance for 16 out of 18 anomalies. The largest
gains, observed for interlobular septal thickening, consolidation,
mosaic attenuation, and lung opacity, suggest that these findings
are particularly context-dependent and strongly correlated with
clinical factors. While most anomalies benefit from the auxiliary
information, a minority, such as bronchiectasis, shows slight
performance decreases, possibly because the added inputs may
introduce noise for anomalies that already possess distinctive
visual signatures. A promising future direction is to develop
that

contextual information when it is beneficial.

adaptive integration strategies selectively incorporate

6.2 Ablation study

We conducted a comprehensive ablation study to assess the
contributions of the clinical indication feature extractor, each
auxiliary input modality, and the fusion module to overall
performance.

6.2.1 Impact of the clinical indication encoding
module

To evaluate the impact of different modules for encoding
clinical indications into vector representations, we conducted an
ablation study comparing three approaches: a transformer
encoder trained from scratch, a BERT language model
pretrained on a general corpus, and RadBERT, a BERT-based

model pretrained specifically on radiology text. Table 3 and

TABLE 2 Quantitative evaluation of the multilabel classification task on the test set.

AUROC Precision

Method Recall

Random predictions 4993 + 0.51 50.11 + 0.37 27.18 + 0.35 33.02 + 0.39 20.24 + 0.28 49.68 + 0.51
CT-ViT [10] 75.14 + 0.51 73.52 + 0.57 4438 + 0.18 49.56 + 0.25 35.35 + 0.51 62.42 + 0.96
+ clinical ind. + demographics 76.09 + 0.37 74.83 + 0.81 45.51 + 0.24 50.97 + 0.40 36.75 + 0.43 63.00 + 0.98
CT-Net [9] 78.96 + 0.30 7849 + 0.55 48.60 + 0.37 54.18 + 0.55 42.56 + 1.01 60.15 + 0.99
+ clinical ind. + demographics 81.51 + 0.26 79.48 + 0.42 51.58 + 0.54 57.60 + 1.06 4393 + 0.77 65.37 + 0.88

Reported mean and standard deviation metrics were computed over a fivefold cross-validation. The weighted F1 score corresponds to the average of F1 scores for each abnormality, weighted
by the frequency of occurrence of the abnormality in the test set. Best results are in bold, and second best are in italics.

Frontiers in Radiology

frontiersin.org



Di Piazza et al. 10.3389/fradi.2025.1672364

Bronchiectasis B Decrease
Peribronchial thickening Bl Increase

Pulmonary fibrotic sequela
Pleural effusion

Atelectasis

Lung nodule

Arterial wall calcification
Cardiomegaly

Medical material
Emphysema
Lymphadenopathy

Hiatal hernia

Pericardial effusion

Coronary artery wall calcification
Interlobular septal thickening
Consolidation

Mosaic attenuation pattern
Lung opacity

-4 -2 0 2 4 6
A F1-Score

FIGURE 4
Variation in the F1 score across anomalies, highlighting the impact of integrating patient demographics and clinical indications into the multilabel
abnormality classification task.

TABLE 3 Comparative analysis of individual modalities and full integration for multilabel abnormality classification from 3D CT volumes.

Method AUROC Accuracy F1 score W. F1 score Precision
Random predictions 4993 + 0.51 50.11 + 0.37 27.18 + 0.35 33.02 + 0.39 20.24 + 0.28
Patient demographics
Age + sex | 62.92 + 546 | 5083 +£1992 | 3560 + 413 | 4326 + 3.69 | 2571 + 5.24
Clinical indications
Transformer encoder [43] 65.64 + 0.40 64.30 + 1.13 34.87 + 0.24 41.80 + 0.26 26.49 + 0.63
BERT [92] 65.96 + 0.07 63.28 + 0.48 35.16 + 0.29 42.00 + 0.18 2598 + 0.41
RadBERT [20] 66.79 + 0.21 65.41 + 1.07 36.38 + 091 4234 + 0.14 27.64 + 0.64
3D CT volumes
CT-Net [9] \ 78.96 + 0.30 | 78494055 | 4860 + 037 | 54.18 + 0.55 | 4256 + 1.01
Multimodal fusion
CT-Net + RadBERT + age + sex | 8151+ 026 | 7948 + 042 | 5158 +054 |  57.60 £ 106 | 4393 + 077
Results are shown for (1) patient demographics only, (2) clinical indications only, (3) visual 3D volumes only, and (4) integration of all inputs.
Bold values show “best results”.
(a) (b)
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FIGURE 5
Comparison of (a) F1 score and (b) AUROC across clinical indications, patient demographics, 3D CT volume, and multimodal fusion for multilabel
abnormality classification. The highest performance is achieved when fusing all modalities, highlighting the benefit of multimodal integration.
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Figure 5 report the classification performance achieved when
using only clinical indications as input for each of these
modules. RadBERT achieved an F1 score of 36.38, representing
a +A3.47% improvement over general-domain BERT and a
+A4.33% improvement over the transformer encoder trained
from scratch. These results suggest that leveraging a domain-
specific pretrained language model facilitates the extraction of
more meaningful features from clinical indications, ultimately
enhancing classification performance.

6.2.2 Impact of auxiliary information

Table 4 presents the ablation study evaluating the incremental
impact of incorporating patient demographics and clinical
indications as auxiliary inputs alongside the 3D CT Volumes.
Adding patient demographics yields an F1 score of 49.79, reflecting
a +A2.45% improvement over the CT-Net baseline. Incorporating
clinical indications results in an F1 score of 50.86, corresponding to
a +A4.45% gain. For each auxiliary input configuration, a paired
t-test comparing the F1 score distributions against the baseline
yields a p-value < 0.01, highlighting the statistical significance of
the observed performance improvements. Removing CT features led
to a consistent drop in performance, indicating that the model does
not rely solely on clinical text or metadata.

6.2.3 Impact of the fusion module

Our ablation study results related to the fusion module, presented
in Table 5, indicate that concatenating features yields the highest
AUROC and F1 score increase seen through the integration of
clinical indications. Specifically, we obtained an F1 score of 50.86,
demonstrating a +A0.97 improvement over sum and a +A2.12%
improvement over cross-modality attention. This suggests that, in
our specific setting, direct concatenation provides a strong signal

10.3389/fradi.2025.1672364

without the overhead of more complex interaction modeling where
the modalities may have relatively low complexity. While more
expressive mechanisms such as cross-attention mechanisms
demonstrate robust performances in large-scale multimodal
learning, we found that in our setting, where the dataset is relatively
modest, a simpler fusion provides more robust performance,
requiring fewer parameters to fully benefit from modalities
effectively. We evaluated an alternative fusion strategy where clinical
indications and demographic features are combined into a prompt
for the BioMistral LLM [102]. As presented in Table 6, independent
concatenation of modality-specific embeddings demonstrates a
+A0.89% improvement in the Fl score and a +A1.05%
improvement in AUROC over the LLM-based prompt fusion. We
attribute this improvement to the robustness of simpler fusion in
the context of our relatively small dataset. While prompt-based
fusion offers more expressive modeling, it may require larger
datasets to fully realize its benefits, highlighting the importance of
matching fusion complexity to dataset scale.

6.3 Report generation task

We extend our experiments to the task of automated report
generation by integrating clinical information for two methods:
CT2Rep [18], which generates the entire report in a single pass,
and CT-AGRG [17], which first predicts abnormalities and then
generates a description for each detected abnormality. Once the
report is generated, we evaluate its quality using two sets of
metrics: natural language generation (NLG) metrics and clinical
efficacy (CE) metrics [69, 73]. NLG metrics assess the similarity
between the generated text and the ground truth. We used

BLEU-1 [103], which compares the overlapping 1-grams

TABLE 4 Ablation study on the contribution of auxiliary information for multilabel abnormality classification from 3D CT volumes.

3D CT Patient Clinical AUROC F1 score Paired t-test | Training time | Inference time
volumes | demographics @ indications p-value

v 7896 + 0.30 | 48.60 + 0.37 - 15.09 + 1.55 4.16 + 0.68

v v 80.51 + 0.49 | 49.79 + 0.69 <0.01 16.05 + 1.06 411 + 032

v v 81.00 + 0.42 | 50.86 + 0.36 <0.01 11130 + 3.33 76.19 + 0.79

v v v 81.51+ 026 | 51.58 + 0.54 <0.01 112.96 + 4.38 76.76 + 0.97

We report performance using (1) visual encoder alone, (2) integration of patient demographics, (3) integration of clinical indications, and (4) integration of both. The paired t-test p-value
column reports the statistical significance of the F1 score improvements compared to the baseline using only 3D CT volumes. Training time and inference time indicate the average time per
sample (in ms) for forward and backward passes (training) and for inference, respectively.

Bold values show “best results”.

TABLE 5 Impact of the aggregation module between features extracted by a visual encoder from the 3D CT volumes and those extracted by RadBERT
from clinical indications.

Method AUROC Accuracy F1 score W. F1 score Precision
Random predictions 49.93 + 0.51 50.11 + 0.37 27.18 + 0.35 33.02 + 0.39 2024 + 0.28
CT-Net [9] 78.96 + 0.30 7849 + 0.55 48.60 + 0.37 54,18 + 0.55 4256 + 1.01
Methods below utilize clinical indications

With self-attention 80.35 + 0.18 78.67 + 0.78 4921 + 0.57 55.35 + 0.48 4223 + 0.59
With cross-attention 80.36 + 0.41 7811 + 1.02 49.84 + 0.31 5544 + 0.27 4229 + 091
With sum 80.99 + 0.28 78.89 + 0.65 50.37 + 0.50 56.08 + 0.36 43.05 + 025
With concatenation 81.00 + 0.42 79.80 + 0.37 50.86 + 0.36 56.58 + 0.20 43.84 + 0.32

Bold values show “best results”.
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between the reference and the prediction. ROUGE evaluates
recall-oriented metrics, like overlap and precision, between
BERTScore [104],
measures the cosine similarity of vector representations of the

n-grams. an embedding-based metric,
embedded tokens between the reference and the generated text.
Clinical efficacy metrics evaluate the clinical accuracy of generated
reports. We extracted abnormality mentions as one-hot vectors
using a RadBERT language model classifier [20], which was
originally used for CT-RATE [10] label annotation. These
predictions are then compared to ground-truth labels using
standard multilabel classification metrics, such as the F1 score. In
addition, we report the CRG score [105], a recently proposed
distribution-aware metric for radiology report generation. Unlike
conventional metrics, CRG focuses exclusively on clinically relevant
abnormalities explicitly described in the reference report, while also
accounting for class imbalance.

As shown in Table 7, the integration of clinical indications and
patient demographics significantly enhances both NLG and CE

10.3389/fradi.2025.1672364

metrics. For the CT2Rep model, incorporating these additional
data results in a BLEU-1 score of 0.342, reflecting a +A7.55%
increase compared to the baseline model, and an F1 score of 36.57,
which corresponds to a +A14.78% improvement over the baseline.
Similarly, for the CT-AGRG guided method, the inclusion of
clinical indication and patient demographic information leads to a
performance boost, achieving a recall of 60.43 (+A12.32%
increase) and an F1 score of 48.30 (+A6.69% increase) over the
original model. For each method, we performed a paired t-test
comparing the F1 score obtained with and without the integration
of clinical indications and patient demographics. The resulting
p-values are all strictly below 0.01, indicating statistically significant
improvements in the quality of the generated reports. In addition,
Figure 6 allows us to identify which anomalies benefit most from
richer multimodal inputs, making performance gains more
clinically interpretable and highlighting where report generation is
most reliable. Figure 7 illustrates two examples of report
generation compared to the ground truth, emphasizing that our

TABLE 6 Comparison of fusion strategies for incorporating clinical indications and demographic information in 3D chest CT abnormality classification.

Demographics and indications | Fusion strategy AUROC Accuracy F1 score W. F1 score Recall

X 7896 + 0.30 | 7849 + 0.55 | 48.60 + 037 5418 + 0.55 60.15 + 1.39
v Prompt-based 80.66 + 0.45 | 79.68 + 047 | 5112 + 051 56.78 + 0.37 63.50 + 1.28
v Modality-specific 8151 + 026 | 79.48 + 042 | 51.58 + 0.54 57.60 + 1.06 65.37 + 1.53

We evaluated modality-specific embeddings for clinical indications, patient age, and sex, concatenated with CT features, against prompt-based fusion, where the same information is

integrated into a BioMistral-7B input prompt. Best results are underlined.

TABLE 7 Quantitative evaluation of the report generation task.

NLG metrics CE metrics
ROUGE, Recall F1 score
Random predictions - - - 0.397 + 0.004 50.92 + 1.48 27.18 + 0.35
CT2Rep [18] 0.318 + 0.007 0.236 + 0.006 0.863 + 0.002 0.417 + 0.009 32,56 + 2.62 31.86 + 1.74
+ clinical indications + demographics 0.342 + 0.006 0.259 + 0.003 0.871 + 0.001 0.430 £+ 0.004 36.22 £+ 0.81 36.57 + 0.73
CT-AGRG [17] 0.386 + 0.011 0.265 + 0.001 0.863 + 0.001 0.488 £ 0.004 53.80 + 0.05 45.27 + 0.19
+ clinical indications + demographics 0.395 + 0.006 0.268 + 0.003 0.867 + 0.001 0.509 + 0.001 60.43 + 0.11 48.30 + 0.05
‘We used NLG metrics and CE metrics with CRG, recall, and F1 score.
Bold values shows “best results”.
(a) CT2Rep (b) CT-AGRG
Pulmonary | Pulmonary |
Cardiovascular I Cardiovascular |
Mediastinal | Mediastinal |
f T T T T 1k T T T T T T T
+1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +6 +7
Overall F1-Score Absolute Improvement Overall F1-Score Absolute Improvement
FIGURE 6
F1 score improvements across four abnormality groups, when incorporating demographic and clinical indication information into 3D CT volume
report generation.
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Axial Slice | | Clinical Indication |

Headache, sore throat fever and a suspicion of viral pneumonia? 45

I Ground Truth |

There are lymph nodes in the mediastinum and hilar regions. There are minimal pleuroparenchymal sequelae changes
in both lung apexes. There are minimal emphysematous changes in bith lunges. There is a nodular lesion measuring
approximately 20x16mm in the right lung.

I CT-AGRG Generation

There are several millimeter-sized nodules in the lung parenchyma.

I CT-AGRG Generation with Clinical Indication and Patient Demographics |

There are lymph nodes in the medistinum and hilar regions. When examined in the lung parenchyma window, pleuro-
parenchymal sequelae changes are observed in both lung apexes. There are millimetric nodules in both lungs.

Axial Slice Il Clinical Indication | I Age ] I Sex |

Acute upper respiratory tract infection. 41 Female

| Ground Truth |

In the left lung, peribronchial thickening is observed in the apicoposterior segment of the upper lobe, the inferio
segment of the lingula, and the lower lobe. Additionally, areas of indistinct ground-glass opacities and increased
density, consistent with consolidation, are noted in the peribronchial regions.

10.3389/fradi.2025.1672364

[ CT-AGRG Generation

T

There is a patchy ground glass density in the lower lobe of the right lung.

| CT-AGRG Generation with Clinical Indication and Patient Demographics

In the lower lobe of the right lung, there are areas of consolidation in which air bronchograms are observed.
Patchy ground glass densities are observed in the upper and lower lobe of the right lung.

FIGURE 7

Comparison of ground-truth labels with the report generated by the CT-AGRG model with and without the integration of clinical indications and
patient demographics. For each of the two CT-RATE test set examples, we present an axial
ground truth, and the generated report. Clinical relevance is highlighted using color-coded annotations

slice, clinical indications, demographic information,

method produces reports with a structure and terminology closely
resembling those written by radiologists.

7 Conclusion and discussion

In this paper, we present a simple and effective method capable
of integrating various sources of information to classify multiple
anomalies from chest 3D CT scans, available clinical indications,
and age and sex features. We also integrate these information
sources for report generation, demonstrating their ability to
enhance model performance across various tasks related to 3D
CT scans. Furthermore, our experiments validate the effectiveness
of each module and the use of a pretrained language model for
Due to the limited
availability of multimodal publicly accessible 3D chest CT
datasets, our findings are based solely on the CT-RATE dataset.
While this provides a solid foundation for initial validation,

clinical indication feature extraction.

reliance on a single dataset may introduce biases related to

language conventions, or demographic

representations. Moreover, the demographic features considered

patterns, labeling

in this study (age and sex) remain limited. Future work should

therefore aim to include external validation on independent
datasets and explore richer metadata to better assess model

Frontiers in Radiology

generalizability and robustness. To enhance multimodal
representation of a patient, future work could incorporate
additional modalities, such as longitudinal patient data, richer
demographic features, or similarity-based retrieval of reports and

volumes, to further strengthen multimodal fusion.
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