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Background: Non-invasive and comprehensive molecular characterization of
glioma is crucial for personalized treatment but remains limited by invasive
biopsy procedures and stringent privacy restrictions on clinical data sharing.
Federated learning (FL) provides a promising solution by enabling multi-
institutional collaboration without compromising patient confidentiality.
Methods: We propose a multi-task 3D deep neural network framework based
on federated learning. Using multi-modal MRI images, without sharing the
original data, the automatic segmentation of T2w high signal region and the
prediction of four molecular markers (IDH mutation, 1p/19g co-deletion,
MGMT promoter methylation, WHO grade) were completed in collaboration
with multiple medical institutions. We trained the model on local patient
data at independent clients and aggregated the model parameters on a
central server to achieve distributed collaborative learning. The model was
trained on five public datasets (n=1,552) and evaluated on an external
validation dataset (n = 466).

Results: The model showed good performance in the external test set (IDH
AUC = 0.88, 1p/19g AUC = 0.84, MGMT AUC = 0.85, grading AUC = 0.94), and
the median Dice of the segmentation task was 0.85.

Conclusions: Our federated multi-task deep learning model demonstrates the
feasibility and effectiveness of predicting glioma molecular characteristics and
grade from multi-parametric MRI, without compromising patient privacy.
These findings suggest significant potential for clinical deployment, especially
in scenarios where invasive tissue sampling is impractical or risky.

KEYWORDS

federated learning, multi-institutional, multi-task deep learning model, molecular
subtyping, image segmentation
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1 Introduction

Gliomas are the most frequent primary brain tumors,
exhibiting substantial prognostic and therapeutic variability due
to molecular heterogeneity (1). Key molecular biomarkers
including isocitrate dehydrogenase (IDH) mutation, 1p/19q
chromosomal co-deletion, 0O6-methylguanine-DNA
methyltransferase (MGMT) promoter methylation, and WHO
tumor grade significantly influence clinical outcomes and
treatment response. Accurate, non-invasive characterization of
these biomarkers is increasingly essential for personalized
therapeutic  decision-making, prognostic assessments, and
treatment monitoring. Traditionally, molecular profiling has
relied on invasive surgical resections or biopsies, procedures that
carry
neurological damage, and can be impractical due to tumor
Additionally,

molecular analyses are susceptible to sampling bias, potentially

inherent risks such as hemorrhage, infection, and

location or patient frailty. biopsy-derived
failing to fully capture the heterogeneous nature of gliomas and
limiting the accuracy and representativeness of molecular
characterization (2-4).

Recent advancements in radiomics and deep learning have
facilitated the development of non-invasive molecular subtyping
methods  through  MRI-based
significantly enhancing the clinical utility of imaging data (5).
MRI

information through a variety of sequences, including pre- and

computational  analyses,

offers comprehensive anatomical and functional
post-contrast T1-weighted, T2-weighted, and fluid-attenuated
inversion recovery (FLAIR), enabling detailed insights into
tumor morphology and physiology. Deep convolutional neural
networks (CNNs), known for their powerful capacity to extract
and interpret high-dimensional hierarchical imaging features,
have demonstrated remarkable efficacy in accurately predicting
molecular biomarkers and delineating tumor boundaries (6).
However, conventional methods predominantly utilize single-
task models that focus either on predicting isolated molecular
markers or exclusively performing tumor segmentation, without
exploiting the potential synergies and shared biological contexts
among these tasks. This approach not only limits the depth of
clinical insights achievable from imaging data but also reduces
the interpretability and integrative clinical applicability of
predictive outcomes.

To overcome the limitations of single-task models, an
important research trend is the development of unified
frameworks capable of performing both classification and
segmentation simultaneously. Such multi-task learning (MTL)
approaches can leverage shared feature representations, allowing
the spatial localization information provided by the
segmentation task to support the classification task, thereby
enhancing the overall performance and interpretability of the
model. For example, previous studies (7, 8), which are highly
relevant to this work, have successfully designed advanced single
models that can simultaneously predict diagnostic labels and
precisely delineate tumor boundaries, often employing methods
such as Grad-CAM to visualize the association between the
classification  decisions  and tumor

model’s specific
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subregions.Although these powerful multi-task models have set
new benchmarks for comprehensive glioma analysis, they
generally rely on large-scale, high-quality centralized datasets.In
practical applications, centralized training models face
substantial challenges such as stringent data-sharing restrictions
due to regulatory frameworks, diverse imaging protocols, and
site-specific variability in patient populations (9). Such factors
result in restricted model generalizability, hindering broader
clinical adoption and scalability.

FL has recently emerged as an innovative methodology to
tackle these critical challenges, allowing distributed model
training across multiple institutions without sharing patient-level
data. FL aggregates model parameters rather than raw data,
ethical

guidelines, while improving the diversity and generalization

ensuring compliance with privacy standards and
capability of trained models across heterogeneous populations
(10).In the context of federated learning, existing studies have
primarily focused on three types of single tasks: image
segmentation, classification, and image-to-image translation. In
segmentation, efforts aim to enhance generalization and
structural modeling. Alphonse et al. proposed an attention-based
multiscale U-Net under a federated framework for high-
precision tumor segmentation on the BraTS dataset (11). Zhou
introduced Fed-MUnet to

consistency in multi-modal MRI (12), while Bercea et al.

et al improve  cross-modal
developed FedDis, sharing only shape encoder parameters to
support weakly supervised lesion segmentation (13). Manthe
et al. established a BraTS federated benchmark to evaluate
aggregation strategies systematically (14).For tumor classification,
FL enables robust subtype prediction across centers. Ali et al.
combined 3D CNN and focal loss in the EtFedDyn framework
to jointly predict IDH mutation and WHO grading, achieving
centralized-level performance (15). Mastoi et al. enhanced model
interpretability via gradient-weighted class activation mapping
(Grad-CAM) (16), and Gong et al. tackled non-IID challenges
through perturbation-based aggregation.In image-to-image
introduced FedMed-GAN,
integrating GANs into FL for unsupervised MRI modality

translation (17), Wang et al

synthesis (18). Fiszer et al. benchmarked ten FL strategies for
and Al-Saleh et al
developed a federated GAN model combining synthesis and

multi-contrast MRI translation (19),
segmentation with privacy protection (20). Notably, a recent
study by Raggio et al. represents a significant breakthrough by
being the first to successfully generate synthetic CT from MRI
within a global, multi-center, distributed training framework
(21). Their model demonstrated robust generalization on an
external validation cohort from a center not included in the
original federation. This work provides strong evidence for the
advantages of federated learning in enabling privacy-preserving,
cross-institutional image synthesis with excellent generalizability.
The fact that their study utilized several variants of the U-Net
architecture aligns closely with our own choice of a U-Net-
based structure for our model. Overall, FL has demonstrated
strong capabilities in segmentation, classification, and
translation, advancing collaborative modeling. However, as

mentioned above, although centralized multi-task learning has
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made progress, most current federated learning studies still focus
on single-task modeling, such as performing only segmentation or
classification, and usually rely on similar modalities and label
structures. In real-world applications—such as glioma analysis—
tasks like segmentation, grading, and molecular subtyping often
co-exist, with heterogeneous or incomplete annotations across
institutions. Therefore, a key challenge that remains to be
addressed is how to combine the advantages of multi-task
learning in terms of performance and interpretability with the
strengths of federated learning in privacy preservation and
generalization, while adapting to real clinical demands such as
label heterogeneity and modality robustness.

To align with this research direction and address the above
challenges, this study proposes a federated multi-task learning
framework for glioma analysis. It enables collaborative training
of models across multiple medical centers using preoperative
MRI data without sharing raw data, jointly predicting the IDH
mutation status, 1p/19q co-deletion status, MGMT methylation
status,
T2-weighted hyperintense

tumor grading, and automatically segmenting the
Our
uniquely combines federated learning—a decentralized, privacy-
advanced 3D
optimized for
MRI  data.
Specifically, our model simultaneously predicts critical glioma
including IDH mutation, 1p/19q co-deletion,
MGMT promoter methylation, and WHO tumor grade (II, III,
IV), while precisely delineating the tumor’s T2-weighted
federated

facilitates collaboration across multiple institutions without

tumor region. framework

preserving training approach—with an

convolutional neural network architecture

comprehensive analysis of multi-parametric

biomarkers

hyperintense region. Importantly, our strategy
sharing patient-level data, significantly enhancing data diversity
and model generalization. Additionally, we incorporated Grad-
CAM

visualization of spatial attention patterns and providing clinical

interpretability ~into our architecture, enabling
experts with transparent insights into the model’s decision-
making processes. To our knowledge, this represents the first
implementation integrating federated learning with multi-task
CNNs and interpretability tools in glioma imaging, offering
both robust clinical predictions and enhanced transparency for
clinical adoption. Leveraging the computational capabilities of
state-of-the-art GPUs, optimizing memory consumption, and
employing distributed federated multi-institutional training, our
model efficiently processes entire 3D MRI volumes. Training
was performed on a diverse patient cohort comprising 1552
patients across five publicly available datasets (BraTS2021,
UPENN-GBM, REM- BRANDT, TCGA-GBM, and TCGA-LGG)
from multiple institutions. To maximize clinical relevance and
applicability, minimal inclusion criteria were applied—requiring
only the four standard MRI sequences: pre- and post- contrast
T1-weighted, T2-weighted, and T2-FLAIR (22). No exclusion
criteria based on clinical characteristics (e.g., tumor grade) or
radiological quality (e.g., scan artifacts) were imposed, thereby
capturing the intrinsic heterogeneity representative of routine
clinical practice. The generalizability of our method was
rigorously evaluated on an independent dataset comprising 466
patients from external multi-institutional cohorts, confirming
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robust performance and broad applicability across diverse
clinical settings.

2 Materials and methods
2.1 Patient population

Our study is based on retrospectively collected data from five
publicly available datasets: BraTS2021 (23), UPENN-GBM (24),
TCGA-GBM (25), TCGA-LGG (25), and REMBRANDT. The
first dataset, UPENN-GBM, was sourced from the University of
Pennsylvania Health System and includes multi-parametric
magnetic resonance imaging (mpMRI) scans of 671 newly

diagnosed glioblastoma (GBM) patients. These images
underwent standardized preprocessing procedures, including
skull-stripping and  co-registration. The second dataset,

BraTS2021, was used after excluding any overlapping patients
from the TCGA-LGG, TCGA-GBM, and UPENN-GBM subsets
to avoid data leakage.

Manual segmentation annotations were available in the BraTS
and UPENN-GBM datasets. The BraTS dataset employed the
training and validation cohorts from the 2021 BraTS challenge,
which included manually segmented tumor regions. In the
UPENN-GBM dataset, tumor subregion labels were generated
via computer-assisted annotation followed by manual
corrections. These segmentations were created by a diverse set
of qualified raters, introducing heterogeneity in annotation styles.

Patients were included if they were newly diagnosed with
glioma and had available pre- and post-contrast T1- weighted
(T1w), T2-weighted (T2w), and T2w-FLAIR

additional exclusion criteria were applied based on radiologic

scans. No

quality (e.g., low image resolution or artifacts) or clinical
features (e.g., tumor grade). In cases where multiple scans of the
same modality were available for a patient (e.g., multiple T2w
scans), the scan used for segmentation was selected. If no
segmentations were available or if segmentations were not
derived from the specified modality, the scan with the highest
axial resolution was chosen, with preference given to 3D
acquisitions over 2D.

Meanwhile, we utilized the TCGA-LGG and TCGA-GBM
collections from TCIA, as well as the REMBRANDT collection
from the Molecular Brain Tumor Data Repository. Both the
TCGA-LGG and TCGA-GBM datasets include multi-modal
MRI scans, comprising T1, T1CE, T2, and FLAIR sequences.The
original images are mainly three-dimensional (3D) MRI, but
due to multi-center acquisition, the images have some
differences in spatial resolution, slice thickness and contrast
consistency. In addition, some images have slight motion
artifacts or low signal-to-noise ratio problems.Genetic and
histological annotations were collected from both TCIA clinical
dataset published by

Segmentation masks for these cohorts followed the BraT$S 2021

records and the Ceccarelli et al.

Challenge guidelines, with tumors manually delineated by

one to four annotators and reviewed by board-certified
neuroradiologists. The inclusion criteria for these patients
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mirrored those of our training cohort, requiring pre- and post-
T2w, and T2w-FLAIR
histopathological metadata were available for public datasets. For
REMBRANDT, clinical and molecular data were obtained from
TCIA; for UPENN-GBM, these were collected from the clinical
archives of the University of Pennsylvania Health System. The
BraTS2021 dataset was sourced directly from the 2021 BraTS
Challenge.

contrast Tlw, scans.Genomic and

There are some differences in imaging protocols for different
datasets. For example, the BraTS and UPENN-GBM datasets are
both high-quality three-dimensional acquisition (3D MRI),
whereas the REMBRANDT data is 3D but has wide variation in
slice thickness and image quality. In terms of scanning
sequence, each dataset contained T1, T1CE, T2 and FLAIR
modes, but there were inconsistencies in spatial resolution, slice
spacing, and whether it was 2D or 3D acquisition. In addition,
the images in UPENN and REMBRANDT come from different
hospitals or scanners, and there may be variation in magnetic
field strength and noise level. At the annotation level, BraTS and
UPENN provide accurate manual segmentation, while the
REMBRANDT dataset is mainly used for classification analysis
due to the lack of pixel-level segmentation information.It should
be noted that although most TCGA cases had complete four-
modality MRI and high-quality segmentation signatures, some
cases were not included in the analysis due to missing or image
quality problems on specific sequences such as T1 or FLAIR.

Three patients were excluded from the final evaluation cohort
due to not meeting these imaging requirements despite the
availability of manual annotations: TCGA-08-0509 and TCGA-
08-0510 from TCGA-GBM lacked precontrast Tlw scans, and
TCGA-FG-7634 from TCGA- LGG
T1w imaging.

lacked  post-contrast

2.2 Patient characteristics

A total of 1,552 patients were included in this study, with 1,086
(approximately 70%) assigned to the training set and 466
(approximately 30%) to the testing set. Patient characteristics of
the training set and the test set are shown in Table 1, including
gender, age, IDH status, 1p/19q co-deletion status, MGMT
methylation status, and tumor grade. In the training set, the
proportion of males and females was 55.52% and 38.12%,
respectively. The age was mainly concentrated in people aged 40-
60 years old and over 60 years old (about 76%). The distribution
of the test set was consistent with the training set. IDH mutation
rate was low (about 3-4%) and 1p/19q co-deletion rate was about
50% in both sets. MGMT methylation status showed similar trends
in different sets. About 31% of the patients had grade IV gliomas,
and the remaining patients were mainly distributed in grade II and
111, but some cases lacked complete grading information.

To quantify dataset
characteristics across the five public datasets used in this study
(BraTS2021, UPENN-GBM, TCGA-GBM, TCGA-LGG, and
REMBRANDT), as shown in Table 2. A total of 1,552 cases were
included, with notable differences in WHO grade distribution:

heterogeneity, we compared key
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TABLE 1 Characteristics of the patients in the training and test sets.

Characteristic

Nk N

Total 1,086 100 466 100
Sex

Female 414 38.125% 192 41.20%

Male 603 55.52% 257 55.15%

Unknown 69 6.35% 35 7.51%
Age(years)

<40 100 9.21% 41 8.80%

40-60 358 32.97% 154 33.05%

>60 469 43.19% 202 43.35%
Unknown 159 14.64% 69 14.81%
IDH status

Mutated 41 3.78% 16 3.43%

Wildtype 716 65.93% 308 66.09%

Unknown 329 30.29% 142 30.47%
1p/19q co-deletion status

Co-deleted 184 16.94% 79 16.95%

Intact 545 50.18% 233 50.00%

Unknown 357 32.87% 154 33.05%
MGMT status

Unmethylated 210 19.34% 89 19.10%

Methylated 263 24.22% 113 24.25%

Unknown 613 56.45% 264 56.65%
Grade

1I 61 5.62% 27 5.79%

111 60 5.52% 26 5.58%

v 338 31.12% 146 31.33%

Unknown 627 57.73% 267 57.30%

lower-grade tumors (Grade II/III) were more prevalent in TCGA-
LGG and REMBRANDT, whereas BraTS2021, UPENN-GBM, and
TCGA-GBM were predominantly high-grade (Grade IV) tumors.

The
substantially. IDH mutation was relatively common in
BraTS2021 (2.86%) and TCGA-LGG (20.37%), but rare in
UPENN-GBM (2.83%) and TCGA-GBM (1.91%). A similar
pattern was observed for 1p/19q codeletion, which was enriched
in TCGA-LGG (24.07%) and BraTS2021 (56.77%), but nearly
in high-grade GBM datasets. MGMT promoter
methylation also showed marked differences across datasets,
with the highest proportion in BraTS2021 (66.41%) and the
lowest in UPENN-GBM (18.03%).

These results demonstrate substantial variability in tumor

distribution of molecular markers also varied

absent

grade and molecular characteristics across datasets, highlighting
the necessity of using federated learning to aggregate multi-
center data without sharing raw images. They also underscore
the applicability of the multi-task model for handling diverse
patient populations and molecular subtypes.

2.3 Federated learning framework

To achieve collaborative modeling across health care
organizations and avoid patient data leakage, we adopted a FL
strategy. Unlike the

classical FedAvg framework, which

aggregates models by exchanging parameters, we propose an
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TABLE 2 Heterogeneity across the datasets.

Dataset Cases WHO WHO WHO
(n) Grade |l Grade lll | Grade IV
384 0 4 329

BraTS2021

UPENN-GBM 671 0 0 132
TCGA-GBM 262 0 0 0
TCGA-LGG 108 47 59 0
REMBRANDT 127 41 25 23
Total 1,552 88 88 484

IDH mutation

10.3389/fradi.2025.1648145

1p/19q
codeletion (n, %)
218 (56.77%)
19 (2.83%)

MGMT promoter
methylation (n, %)
255 (66.41%)

121 (18.03%)

(n, %)
11 (2.86%)
19 (2.83%)

5 (1.91%) 0 0
22 (20.37%) 26 (24.07%) 0
0 0 0

57 (3.67%) 263 (16.95%) 376 (24.23%)

Percentages indicate the proportion of cases with each molecular marker or complete modality relative to the total number of cases in the dataset.

innovative strategy based on knowledge distillation and
compressed data transmission, aiming to reduce communication
overhead and enhance model fusion. This strategy enables
multiple hospitals (clients) to collaboratively train a global
model without sharing raw images or model parameters.

In this study, an innovative federated learning framework is
proposed to efficiently complete the tasks of medical image
analysis and classification under the premise of ensuring the
data privacy of medical institutions. The framework gradually
optimizes the shared global model through the cooperation of
the client and the server. The client-side procedure ensures that
raw patient data is neither directly used for model training nor
transmitted. A process, termed knowledge refining, is first
employed to transform the local data into a condensed and
abstract representation. This type of compressed data is a
compact and information-dense representation that is able to
preserve key medical features in the original data as much as
possible without compromising privacy. The compressed data
generation process is based on a Compression loss: the loss
function is optimized so that the output of the model when
processing the compressed data is as close as possible to its
performance when processing the original data, such as the
extracted features or the predicted classification probability.
Specifically, the client compares the prediction of the model on
the compressed data with its performance on the local real data
to guide the synthesis of the compressed data. This mechanism
ensures that the compressed data effectively represent the
original information in a medical sense. The client only uploads
the generated compressed data, and there is no need to share
the original image or patient information, which protects the
privacy and greatly reduces the communication overhead.

On the server side, the process of aggregation and training is
particularly critical. The server integrates the compressed data
from each client and uses the two objective functions to jointly
optimize the global model parameter 6. Firstly, the Cross-entropy
loss is used for basic supervised learning to ensure that the model
can accurately classify the compressed data. Second, Distillation
matching loss is introduced to further mine and integrate the
deep knowledge from different clients. This loss function works
by comparing two types of Soft labels: the first component is the
prediction of the current global model on the compressed data,
which reflects the model’s interpretation of that data; the other
category is soft labels calculated and uploaded by the client on
local real data, representing the knowledge refined by the client.
Different from the traditional hard labels (single category label),
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soft labels express the confidence level of the model for each
category in the form of probability distribution and contain more
fine-grained information. By minimizing the difference between
the server-side prediction soft label and the client-side soft label,
the distillation match loss realizes the migration from the client’s
real data knowledge to the global model, effectively alleviates the
problem of information loss that may be caused by compressed
data, and improves the stability and generalization ability of the
model. Within this federated framework, we introduce a multi-task
deep learning model based on the U-Net architecture, designed to
simultaneously perform tumor region segmentation as well as
genetic and histopathological feature prediction. This model
serves as the global model to be optimized on the server side and
as the foundational architecture for local models on the client
side, which are used to generate compressed data and soft labels.
Finally, the server combines the cross-entropy loss with the
distillation matching loss to obtain a global model with more
generalization ability and robustness. The model was then
distributed to the client, leading to a new round of more accurate
data compression and knowledge extraction. Through continuous
iteration, the whole federated learning process is continuously
optimized, and finally converges to a medical image analysis
model with stable performance and perfect privacy protection.

2.4 Classification model

To realize the proposed privacy-preserving federated
knowledge distillation framework, a powerful and efficient deep
learning model forms the core. This model not only serves as
the final global model to be optimized on the server side but
also functions as the tool for each client to generate compressed
data and soft labels locally. Within this federated framework, we
introduce a multi-task model based on the U-Net architecture,
designed to simultaneously perform tumor region segmentation
and predict genetic and histopathological features (IDH,
MGMT, 1p/19q, and Grade). The architecture is optimized for
memory efficiency, enabling the use of entire 3D MRI scans as
input to enhance spatial contextual modeling. The overall
structure of the model is illustrated in Figure 1.

The encoder part consists of three downsampling stages, each
consisting of two layers of 3D convolutions (convolution, batch
normalization, and ReLU activation). The downsampling is
implemented by 3D maximum pooling of size (1, 2, 2) to
reduce planar resolution while preserving slice dimension. The
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decoder adopts a symmetric structure, which is gradually
upsampled by transposed convolution and combined with
detail
recovery. After the bottleneck layer, the network was divided

corresponding encoder features to enhance spatial
into two output branches. The segmentation branch generated
voxellevel segmentation prediction by 1 x1x 1 convolution and
output four types of tumor regions. The classification branch
extracted the global information from the bottleneck features,
and then input the multi-layer fully connected network after
global average pooling to predict four clinical indicators. Each
task corresponding to an independent classification head (IDH
mutation, 1p/19q co-deletion, MGMT methylation as a binary
classification, and tumor grade as a triple classification).

In order to reduce the memory consumption and maintain the
input consistency, all MRI images were registered to the standard
skull in the
preprocessing stage, and uniformly resampled and trimmed to a

atlas, stripping and intensity normalization
128 x 128 planar resolution. All slices of the case were stacked in
order to form a 3D volume, and the depth was determined
according to the actual number of slices of the patient. During
training, the full 3D volume was directly input to the model
instead of local patches to fully retain the global spatial context
information. The baseline convolutional channel number of U-Net
is set to 16 (traditional 32), and it is multiplied sequentially in each
down-sampling stage (16—32—64—128) to reduce the video
memory footprint while maintaining the modeling ability. The
input data contained four MRI modalities (T1, T1ce, T2, and FLAIR).

During model training, 20% of the training cohort was held
out as a validation set for model selection. The final model was
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retrained on the entire training set using the selected
hyperparameters and subsequently evaluated only once on an
independent test set to ensure unbiased generalization and
realistic performance estimation.

The model was trained using stochastic gradient descent
(SGD) with an initial learning rate of 0.001 for a total of 60
epochs. The cross-entropy loss function was employed to
quantify the discrepancy between the predicted outputs and the
ground truth labels. All experiments were conducted on an
NVIDIA RTX A6000 GPU, leveraging its high computational
power to accelerate convergence. The implementation was
developed using PyTorch 2.4.1, ensuring efficient training
and scalability.

Model performance was quantitatively evaluated using the
area under the receiver operating characteristic curve (AUC),
accuracy, recall, F1 score, and specificity for molecular and
histopathological ~ predictions. To assess the model’s
segmentation capability, we further conducted visual analyses
of attention derived from activation

maps heatmaps,

illustrating ~ the  regions most influential to  the

network’s predictions.

2.5 Ethical considerations and data privacy

MRI data used in this study were obtained from publicly
available datasets, including BraTS2021, UPENN-GBM, TCGA-
GBM, TCGA-LGG, and REMBRANDT. These data sets were
rigorously de-identified before publication and had received
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ethical their thus
eliminating the need for additional informed patient consent.

approval from organizing institutions,

In addition to this, the federated learning framework adopted
in this study provides a higher level of privacy protection by
design. In this simulated multicenter study, a core principle of
federated learning was strictly observed: raw MRI data remained
on local clients at all times and were never transmitted to a
central server or any third party. Throughout the collaborative
shared

aggregated model parameters (e.g., network weights) with a

training process, participants only anonymized,
central server that did not contain any identifiable individual
patient information. The reverse derivation of highly complex
raw medical imaging data from these aggregated parameters is
not feasible under the current technology conditions, which
fundamentally ensures the confidentiality of patient data. The
data use and methodological design of this study were designed
to comply with the ethical guidelines of the Declaration of
Helsinki and the spirit of data protection regulations such as the
General Data Protection Regulation (GDPR) and the Health
Portability (HIPAA),

providing a compliance basis for future deployment of this

Insurance and Accountability Act

technology in real-world clinical Settings.

3 Results
3.1 Algorithm performance

We evaluated the model’s performance on multiple glioma
molecular subtype and tumor grading classificationtasks using
The
3, and the corresponding receiver

the independent test set. quantitative results are

summarized in Table
operating characteristic (ROC) curves are illustrated in Figure 2.
Overall, the model demonstrated strong discriminative capability
and robustness across all classification tasks, highlighting the
effectiveness of multimodal information fusion for fine-grained
glioma characterization (26).

In the molecular subtype classification tasks, the model
achieved an AUC of 0.88, accuracy of 0.90, and F1 score of 0.93
in predicting IDH mutation status, indicating high robustness in
identifying this 1p/19q
codeletion status, although the AUC was relatively lower at 0.84,

clinically critical biomarker. For

the model yielded excellent results in terms of accuracy (0.94)
and recall (0.93), suggesting a low false-negative rate and strong
sensitivity for detecting positive cases.

TABLE 3 Evaluation results of the final model on the test set.

IDH 0.88 (95% CI: 0.810-0.860) | 0.9 0.87 0.92 0.93
MGMT 0.85 (95% CI: 0.858-0.901) | 0.86 0.86 0.87 0.86
1P/19Q 0.84 (95% CI: 0.838-0.868) | 0.94 0.93 0.96 0.93
GRADE 0.94 (95% CI: 0.927-0.947) | 0.91 0.94 0.93 0.9
GRADE II | 0.95 (95% CI: 0.949-0.962) | 0.96 0.98 0.97 0.95
GRADE III | 0.94 (95% CI: 0.924-0.950) | 0.93 0.95 0.96 0.93

GRADE IV | 0.93 (95% CI: 0.929-0.944) | 0.85 0.89 0.88 0.84
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Prediction performance for MGMT promoter methylation
was slightly lower compared to other molecular markers, with
an AUC of 0.85, accuracy of 0.86, and F1 score of 0.86. This
modest performance may be attributed to the limited number of
MGMT-labeled samples in the training set or intrinsic modality-
specific feature disparities. Nonetheless, the results remain
clinically relevant and demonstrate practical utility.

For the tumor grading task, the model exhibited excellent
overall performance, achieving an AUC of 0.94 and accuracy of
0.91 for predicting overall tumor grade, indicating its ability to
effectively integrate multimodal information for accurate
grading. Subtype-specific analysis further revealed outstanding
performance in distinguishing Grade II and Grade III gliomas,
with AUCs of 0.95 and 0.94, and F1 scores of 0.95 and 0.93,
respectively. The performance on Grade IV tumors was
comparatively lower (AUC =0.93, F1 =0.84), which may be due
to greater intratumoral heterogeneity and complex imaging
phenotypes associated with high-grade gliomas. Future work
mechanisms ~ or

further

may consider incorporating attention

hierarchical classification  strategies to enhance
performance on this subgroup.

To validate the effectiveness of our approach, we conducted a
comparative analysis using different combinations of input
modalities, including: (1) T1 alone, (2) T1 combined with T2,
(3) a three-modality combination of T1,T2, and Tlce, and (4) a
fully integrated multimodal set- ting incorporating T1, T2, Tlce,
and FLAIR. On a fixed test set, we evaluated the classification
performance using area under the ROC curve (AUC), accuracy,
recall, F1 score, and specificity for the prediction of molecular
and histopathological features.

The results demonstrated that the multimodal configuration
achieved the best performance across all evaluation metrics.
Figure 3 presents a comprehensive comparison of five
performance metrics (AUC, accuracy, recall, specificity, and F1
score) for four glioma-related classification tasks (IDH mutation,
MGMT methylation, 1p/19q co-deletion, and tumor grade),
of different modality

A consistent upward trend in classification

systematically assessing the impact
combinations.
performance was observed as more modalities were incorporated,
particularly ~ with  the full four-modality =~ combination
(T1+ T2+ FLAIR + Tlce), which led to significant improvements
in performance and model stability. These findings underscore
the value of multimodal inputs in enhancing the model’s
generalization and representation capabilities.

Notably, the tumor grading task (GRADE) was the most
sensitive to modality variation, with substantial gains observed
when more modalities were fused. Clear improvements were also
seen in IDH and 1p/19q predictions, while MGMT classification
showed more modest gains, potentially due to the molecular
feature’s weaker radiographic representation or sample
imbalance. When modality information is insufficient, the model
struggles to learn robust features for minority classes, making its
performance more vulnerable to the negative effects of class
imbalance. In contrast, full-modality input provides richer feature
dimensions, enabling the model to effectively overcome this issue

and serving as our primary data-driven strategy to address the
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FIGURE 2
Receptor operating characteristic (ROC) curves for evaluating genetic and histological features on the test set.
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challenge. In terms of metric comparison, AUC and F1 score best
capture the overall performance improvement brought by
modality fusion, whereas specificity shows greater fluctuations in
certain tasks (e.g, MGMT). This further confirms that the model
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exhibits instability in recognizing the negative (majority) class
when dealing with imbalanced data.

exhibited
configuration

Importantly, different modality combinations

task-specific advantages. The full modality
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(T1+ T2 +FLAIR+ Tlce) achieved the highest AUC and F1
scores for IDH and GRADE classification tasks, demonstrating
excellent discriminative capability and predictive robustness. In
particular, for the multi-class tumor grading (GRADE II/III/IV),
this configuration substantially improved recall and specificity,
highlighting its effectiveness in modeling grade-associated
anatomical the three-modality
combination (T1+ T2 + FLAIR) performed competitively in the

characteristics. Meanwhile,
1p/19q classification task, even outperforming T1lce-inclusive
combinations in certain metrics, suggesting that this molecular
feature may rely more heavily on macrostructural tumor
morphology than on contrast-enhanced details. Overall, the
T1+ T2+ FLAIR combination serves as a strong and robust
baseline, while the inclusion of Tlce—when available—further
boosts the model’s multitask adaptability and classification
tasks
delineation and core structure characterization.In addition to

accuracy, especially for involving tumor boundary
using full modal data, algorithm-level strategies such as Focal
Loss or weighted sampling can also be explored in the future to
further the of the

imbalanced data.

optimize performance model on

To comprehensively evaluate the model’s segmentation
performance in identifying T2w hyperintense regions, we
combined both quantitative metrics and visual interpretability
techniques. As shown in Figure 4a, the violin plot of Dice
coefficients across all test samples demonstrates that the
segmentation branch achieves stable performance with a median

Dice score of 0.85, indicating accurate delineation of lesion

10.3389/fradi.2025.1648145

the
interpretability, employed heatmap-based
interpretability techniques (27), such as Grad-CAM (28).
4b the
representative patients in the test set, including the original

investigate model’s  decision-making process and

we visual

Figure shows visualization results of multiple
image, the segmentation mask generated by the model and the
corresponding Grad-CAM heat map. The segmentation results
clearly marked the lesion area, and the spatial location was
highly consistent with the high-activation area (red area) in the
heat map, which further verified the accuracy of the model in
extracting key features in complex brain anatomical structures.
Compared with the traditional evaluation method that relies on
pixel-level labels, the heatmap not only reveals the regions of
concern for the segmentation decision of the model, but also
provides an intuitive and interpretable reference for the
performance of the model when there is a lack of accurate
annotation, thereby improving the credibility of the model in

practical clinical applications.

3.2 Model interpretability

To provide deeper insight into the model’s behavior, heatmaps
and selected encoder feature outputs were generated and
visualized in Figure 4b.These visualizations highlight the regions
within the scans that contributed most significantly to the
model’s predictions. The heatmaps revealed that the network

boundaries from normal tissue. In addition, to further predominantly focused on the hyperin- tense boundary regions
1.0 1 Original
Image
Segment
091 ation
0.85
Heatmap
0.8
]
L2
[a)
Original
0.7 4 Image
Segment
ation
0.6
Heatmap
(@)
FIGURE 4
Segmentation performance and interpretability analysis of the model on the test set. (a) Dice coefficient violin plot of the segmentation results,
showing the distribution of model performance on all tested samples, with a median of 0.85. (b) shows the original images of typical patients in
the test set, the segmentation results of the model, and the interpretable heat map based on Grad-CAM. The red area represents the significant
regions that the model focuses on when making segmentation judgments
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in the T2w-FLAIR images and the strongly enhanced areas in
post-contrast T1w scans during inference.

The heatmap in Figure 4b was generated using Grad-CAM to
visualize the model’s region-of-interest. its generation principle is
explained as follows. Grad-CAM generates an interpretable
localization map by analyzing the gradient information in the
deep layers of the network. Specifically, the method begins by
computing the gradients of the target category’s score with
respect to the feature maps of the final convolutional layer.
These gradients reflect the importance of each feature channel
for the ultimate decision. Subsequently, global average pooling is
applied to these gradients to derive a set of weights, each
representing the importance of a corresponding feature map.
Finally, a weighted linear combination of the feature maps is
calculated using these weights and then passed through a ReLU
activation function to generate the final heatmap.In the resulting
visualization, brighter regions indicate a greater contribution
from the features in that area to the model’s prediction. Thus,
the heatmap in Figure 4b is not a simple image overlay but
rather a visual representation of the model’s internal decision-
making process. It explicitly highlights which parts of the image
were most influential in reaching the final prediction.

The visualization of encoder feature maps and segmentation
results further showed that the model could effectively focus on
the lesion area and accurately segment the structure consistent
with the actual lesion morphology. As can be observed in the
contrast between the original image and the segmentation mask,
the model successfully identified the tumor region with
hyperintensity in the T2w-FLAIR image and the lesion
boundary after contrast enhancement in the T1-weighted image.
In addition, the high activation regions shown by the heatmap
highly coincide with the segmented regions, indicating that the
model does pay attention to tumor-related imaging features
during the decision-making process. This result not only
validates the strong spatial localization ability of the model, but
also demonstrates its ability to capture fine-grained features with
thereby
interpretability of the model and its potential application in

diagnostic  value, significantly ~ enhancing  the
clinical scenarios. Compared with the visualization method
based on classification prediction only, the segmentation results
provide more explicit structural boundary information, so that
the model’s recognition of the lesion area is no longer limited to
the fuzzy focus area, but has the practical ability to localize

the lesion.

4 Discussion

We proposed a federated multi-task learning framework that
enables collaborative training across multiple clinical centers
without the need to share raw patient data. The method
leverages preoperative multi-parametric MRI to simultaneously
predict key molecular and histopathological features in newly
diagnosed glioma patients, including IDH mutation, 1p/19q co-
deletion, MGMT promoter methylation, and tumor grade, while
also performing automated segmentation of T2w hyperintense
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regions. Departing from the classical FedAvg algorithm, our
frame- work incorporates compressed encoding and auxiliary
decoding mechanisms to accommodate inter-institutional label
inconsistencies and data heterogeneity (29). For patients for
whom re-resection is infeasible or only a biopsy can be
obtained, this non-invasive approach could potentially serve as a
supplementary adjunct,
presence of diagnostic uncertainty.

offering decision support in the

In the test set, our method achieved promising performance in
predicting molecular and histological features, with AUCs of 0.88
for IDH, 0.84 for 1p/19q, 0.85 for MGMT, and 0.94 for tumor
grade. Notably, the test data were not involved in model
development or hyperparameter tuning, thus providing an initial
advanced GPU
hardware, we trained a large-scale deep learning model that

assessment of generalizability. Leveraging
directly ingests full 3D MRI volumes. Combined with a diverse,
multi-center dataset, our approach demonstrated a degree of
robustness to clinical imaging variability, suggesting potential
for further investigation in real-world settings.

By integrating multi-task learning with federated training, our
framework learns shared representations of molecular and
histopathological features across institutions, while preserving
data privacy. This joint modeling approach not only enhances
the contextual consistency between predicted attributes (e.g.,
preventing biologically implausible co-occurrences such as IDH-
wildtype with 1p/19q co-deletion) but also improves the model’s
generalization ability by exploiting inter-center heterogeneity
(30). Unlike traditional classification systems based solely on
fixed subtypes, our method independently predicts individual
markers, allowing seamless compatibility with modern glioma
classification guidelines, such as WHO 2021, and thus exhibits
higher clinical adaptability (31).

Several existing studies have attempted to jointly predict
Xu et al
simultaneously predicts

glioma biomarkers using multi-task networks.
proposed a model that multiple
molecular indicators and the overall survival of GBM patients
(32). However, this method was restricted to GBM and required
prior tumor grading, limiting its utility in preoperative settings.
Moreover, it relied on manual tumor segmentation, increasing
clinical workload and deployment complexity. Similarly, Tupe-
Waghmare et al. introduced a multi-task network that performs
tumor segmentation and predicts both tumor grade (LGG vs.
HGG) and IDH mutation status (33). However, their model
lacked the ability to predict 1p/19q status, a limitation for
complete WHO 2016 classification. Another related effort by
Decuyper et al. developed a model to jointly predict IDH,
1p/19q, and tumor grade (34), but their approach required pre-
segmented tumor masks obtained via a separate U-Net model,
effectively relying on a dual-network pipeline. In contrast, our
approach adopts a unified end-to-end architecture, avoiding the
complexity and potential error accumulation from separate
segmentation stages. A key aspect of our study is the evaluation
on a completely independent external test set, which enhances
the reliability of our findings.

Despite the promising results, this study has several important
limitations that must be acknowledged. First, our model was
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developed and validated using publicly available, retrospective
datasets. While these multi-center datasets provide diversity,
they are often curated and may not fully represent the
complexity and noise of prospective, real-world data
encountered in a live clinical environment. The framework’s
performance in a true, operational federated learning network
across hospitals with private, uncurated data remains to
be validated.

Second, and critically, the model’s performance was
inconsistent across different molecular subtypes, particularly
for rarer groups. For example, IDH-wildtype GBMs were
predicted with high accuracy, whereas the model struggled
with distinguishing IDH-mutant and 1p/19q-codeleted LGGs
from other LGGs (35). This was particularly evident in Grade
II This

performance gap is a significant limitation, likely stemming

tumors, where sensitivity was suboptimal.
from the small number of samples for these rare subtypes in
the training cohort (36). Although we applied imbalance-
strategies data

subgroup size disparities still limited overall performance (37,

handling during training, diversity and
38).The federated framework allowed us to mitigate these
limitations to some extent by enabling model training across
multiple institutions, improving generalizability across diverse
patient populations (39, 40).

Third, the practical deployment of federated learning
presents substantial real-world challenges. Data heterogeneity
(Non-IID) across centers, while a source of generalization,
can also lead to inconsistent local model updates, potentially
slowing convergence or causing performance fluctuations.
Furthermore, the variability in data quality from different
MRI scanners and protocols introduces potential biases that
are difficult to fully mitigate without direct data access.

Finally, the logistical and infrastructural hurdles are non-

trivia. Our large 3D model necessitates significant
communication overhead, requiring stable and high-
bandwidth network infrastructure between participating

institutions. Remote debugging and troubleshooting in a
privacy-preserving setting are also far more complex than in a
centralized environment.

In future work, we plan to incorporate advanced imaging
modalities such as dynamic contrast-enhanced MRI (DCE-
MRI) and MR spectroscopy (MRSI), which have shown
potential in capturing tumor biology and treatment
response. These modalities were excluded in this study due
to their limited availability in routine clinical settings, in
contrast to the conventional MRI sequences we used. While
integrating DCE-MRI and MRSI data

availability and model accessibility (41, 42), the growing

may reduce

adoption of these techniques in clinical practice may
facilitate their inclusion in future studies and potentially
enhance model accuracy. Future efforts must also focus on
prospective validation within a real-world federated network
to address the aforementioned challenges of infrastructure
and data heterogeneity directly.

In conclusion, we have developed a federated learning-

based multi-task approach that can jointly learn from
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multiple medical institutions to achieve the prediction of IDH
1p/19q MGMT
methylation status and tumor grade without sharing the

mutation  status, co-deletion  status,
original data, and automatically complete the segmentation of
tumor regions based on preoperative MRI images. The
proposed method shows good generalization performance on
three independent test datasets, and has real cross-center
The of

predicting multiple clinical indicators rather than relying on a

adaptability. analysis  strategy simultaneously
single task is more in line with the actual needs of
comprehensive evaluation of multiple diagnostic factors in
clinical practice. In addition, this method does not rely on
complex prior knowledge in the training phase and does not
limit the applicable patient population, which helps to expand

the clinical coverage.
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