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Background: Non-invasive and comprehensive molecular characterization of 

glioma is crucial for personalized treatment but remains limited by invasive 

biopsy procedures and stringent privacy restrictions on clinical data sharing. 

Federated learning (FL) provides a promising solution by enabling multi- 

institutional collaboration without compromising patient confidentiality.

Methods: We propose a multi-task 3D deep neural network framework based 

on federated learning. Using multi-modal MRI images, without sharing the 

original data, the automatic segmentation of T2w high signal region and the 

prediction of four molecular markers (IDH mutation, 1p/19q co-deletion, 

MGMT promoter methylation, WHO grade) were completed in collaboration 

with multiple medical institutions. We trained the model on local patient 

data at independent clients and aggregated the model parameters on a 

central server to achieve distributed collaborative learning. The model was 

trained on five public datasets (n = 1,552) and evaluated on an external 

validation dataset (n = 466).

Results: The model showed good performance in the external test set (IDH 

AUC = 0.88, 1p/19q AUC = 0.84, MGMT AUC = 0.85, grading AUC = 0.94), and 

the median Dice of the segmentation task was 0.85.

Conclusions: Our federated multi-task deep learning model demonstrates the 

feasibility and effectiveness of predicting glioma molecular characteristics and 

grade from multi-parametric MRI, without compromising patient privacy. 

These findings suggest significant potential for clinical deployment, especially 

in scenarios where invasive tissue sampling is impractical or risky.
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1 Introduction

Gliomas are the most frequent primary brain tumors, 

exhibiting substantial prognostic and therapeutic variability due 

to molecular heterogeneity (1). Key molecular biomarkers 

including isocitrate dehydrogenase (IDH) mutation, 1p/19q 

chromosomal co-deletion, O6-methylguanine-DNA 

methyltransferase (MGMT) promoter methylation, and WHO 

tumor grade significantly in.uence clinical outcomes and 

treatment response. Accurate, non-invasive characterization of 

these biomarkers is increasingly essential for personalized 

therapeutic decision-making, prognostic assessments, and 

treatment monitoring. Traditionally, molecular profiling has 

relied on invasive surgical resections or biopsies, procedures that 

carry inherent risks such as hemorrhage, infection, and 

neurological damage, and can be impractical due to tumor 

location or patient frailty. Additionally, biopsy-derived 

molecular analyses are susceptible to sampling bias, potentially 

failing to fully capture the heterogeneous nature of gliomas and 

limiting the accuracy and representativeness of molecular 

characterization (2–4).

Recent advancements in radiomics and deep learning have 

facilitated the development of non-invasive molecular subtyping 

methods through MRI-based computational analyses, 

significantly enhancing the clinical utility of imaging data (5). 

MRI offers comprehensive anatomical and functional 

information through a variety of sequences, including pre- and 

post-contrast T1-weighted, T2-weighted, and .uid-attenuated 

inversion recovery (FLAIR), enabling detailed insights into 

tumor morphology and physiology. Deep convolutional neural 

networks (CNNs), known for their powerful capacity to extract 

and interpret high-dimensional hierarchical imaging features, 

have demonstrated remarkable efficacy in accurately predicting 

molecular biomarkers and delineating tumor boundaries (6). 

However, conventional methods predominantly utilize single- 

task models that focus either on predicting isolated molecular 

markers or exclusively performing tumor segmentation, without 

exploiting the potential synergies and shared biological contexts 

among these tasks. This approach not only limits the depth of 

clinical insights achievable from imaging data but also reduces 

the interpretability and integrative clinical applicability of 

predictive outcomes.

To overcome the limitations of single-task models, an 

important research trend is the development of unified 

frameworks capable of performing both classification and 

segmentation simultaneously. Such multi-task learning (MTL) 

approaches can leverage shared feature representations, allowing 

the spatial localization information provided by the 

segmentation task to support the classification task, thereby 

enhancing the overall performance and interpretability of the 

model. For example, previous studies (7, 8), which are highly 

relevant to this work, have successfully designed advanced single 

models that can simultaneously predict diagnostic labels and 

precisely delineate tumor boundaries, often employing methods 

such as Grad-CAM to visualize the association between the 

model’s classification decisions and specific tumor 

subregions.Although these powerful multi-task models have set 

new benchmarks for comprehensive glioma analysis, they 

generally rely on large-scale, high-quality centralized datasets.In 

practical applications, centralized training models face 

substantial challenges such as stringent data-sharing restrictions 

due to regulatory frameworks, diverse imaging protocols, and 

site-specific variability in patient populations (9). Such factors 

result in restricted model generalizability, hindering broader 

clinical adoption and scalability.

FL has recently emerged as an innovative methodology to 

tackle these critical challenges, allowing distributed model 

training across multiple institutions without sharing patient-level 

data. FL aggregates model parameters rather than raw data, 

ensuring compliance with privacy standards and ethical 

guidelines, while improving the diversity and generalization 

capability of trained models across heterogeneous populations 

(10).In the context of federated learning, existing studies have 

primarily focused on three types of single tasks: image 

segmentation, classification, and image-to-image translation. In 

segmentation, efforts aim to enhance generalization and 

structural modeling. Alphonse et al. proposed an attention-based 

multiscale U-Net under a federated framework for high- 

precision tumor segmentation on the BraTS dataset (11). Zhou 

et al. introduced Fed-MUnet to improve cross-modal 

consistency in multi-modal MRI (12), while Bercea et al. 

developed FedDis, sharing only shape encoder parameters to 

support weakly supervised lesion segmentation (13). Manthe 

et al. established a BraTS federated benchmark to evaluate 

aggregation strategies systematically (14).For tumor classification, 

FL enables robust subtype prediction across centers. Ali et al. 

combined 3D CNN and focal loss in the EtFedDyn framework 

to jointly predict IDH mutation and WHO grading, achieving 

centralized-level performance (15). Mastoi et al. enhanced model 

interpretability via gradient-weighted class activation mapping 

(Grad-CAM) (16), and Gong et al. tackled non-IID challenges 

through perturbation-based aggregation.In image-to-image 

translation (17), Wang et al. introduced FedMed-GAN, 

integrating GANs into FL for unsupervised MRI modality 

synthesis (18). Fiszer et al. benchmarked ten FL strategies for 

multi-contrast MRI translation (19), and Al-Saleh et al. 

developed a federated GAN model combining synthesis and 

segmentation with privacy protection (20). Notably, a recent 

study by Raggio et al. represents a significant breakthrough by 

being the first to successfully generate synthetic CT from MRI 

within a global, multi-center, distributed training framework 

(21). Their model demonstrated robust generalization on an 

external validation cohort from a center not included in the 

original federation. This work provides strong evidence for the 

advantages of federated learning in enabling privacy-preserving, 

cross-institutional image synthesis with excellent generalizability. 

The fact that their study utilized several variants of the U-Net 

architecture aligns closely with our own choice of a U-Net- 

based structure for our model. Overall, FL has demonstrated 

strong capabilities in segmentation, classification, and 

translation, advancing collaborative modeling. However, as 

mentioned above, although centralized multi-task learning has 
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made progress, most current federated learning studies still focus 

on single-task modeling, such as performing only segmentation or 

classification, and usually rely on similar modalities and label 

structures. In real-world applications—such as glioma analysis— 

tasks like segmentation, grading, and molecular subtyping often 

co-exist, with heterogeneous or incomplete annotations across 

institutions. Therefore, a key challenge that remains to be 

addressed is how to combine the advantages of multi-task 

learning in terms of performance and interpretability with the 

strengths of federated learning in privacy preservation and 

generalization, while adapting to real clinical demands such as 

label heterogeneity and modality robustness.

To align with this research direction and address the above 

challenges, this study proposes a federated multi-task learning 

framework for glioma analysis. It enables collaborative training 

of models across multiple medical centers using preoperative 

MRI data without sharing raw data, jointly predicting the IDH 

mutation status, 1p/19q co-deletion status, MGMT methylation 

status, tumor grading, and automatically segmenting the 

T2-weighted hyperintense tumor region. Our framework 

uniquely combines federated learning—a decentralized, privacy- 

preserving training approach—with an advanced 3D 

convolutional neural network architecture optimized for 

comprehensive analysis of multi-parametric MRI data. 

Specifically, our model simultaneously predicts critical glioma 

biomarkers including IDH mutation, 1p/19q co-deletion, 

MGMT promoter methylation, and WHO tumor grade (II, III, 

IV), while precisely delineating the tumor’s T2-weighted 

hyperintense region. Importantly, our federated strategy 

facilitates collaboration across multiple institutions without 

sharing patient-level data, significantly enhancing data diversity 

and model generalization. Additionally, we incorporated Grad- 

CAM interpretability into our architecture, enabling 

visualization of spatial attention patterns and providing clinical 

experts with transparent insights into the model’s decision- 

making processes. To our knowledge, this represents the first 

implementation integrating federated learning with multi-task 

CNNs and interpretability tools in glioma imaging, offering 

both robust clinical predictions and enhanced transparency for 

clinical adoption. Leveraging the computational capabilities of 

state-of-the-art GPUs, optimizing memory consumption, and 

employing distributed federated multi-institutional training, our 

model efficiently processes entire 3D MRI volumes. Training 

was performed on a diverse patient cohort comprising 1552 

patients across five publicly available datasets (BraTS2021, 

UPENN-GBM, REM- BRANDT, TCGA-GBM, and TCGA-LGG) 

from multiple institutions. To maximize clinical relevance and 

applicability, minimal inclusion criteria were applied—requiring 

only the four standard MRI sequences: pre- and post- contrast 

T1-weighted, T2-weighted, and T2-FLAIR (22). No exclusion 

criteria based on clinical characteristics (e.g., tumor grade) or 

radiological quality (e.g., scan artifacts) were imposed, thereby 

capturing the intrinsic heterogeneity representative of routine 

clinical practice. The generalizability of our method was 

rigorously evaluated on an independent dataset comprising 466 

patients from external multi-institutional cohorts, confirming 

robust performance and broad applicability across diverse 

clinical settings.

2 Materials and methods

2.1 Patient population

Our study is based on retrospectively collected data from five 

publicly available datasets: BraTS2021 (23), UPENN-GBM (24), 

TCGA-GBM (25), TCGA-LGG (25), and REMBRANDT. The 

first dataset, UPENN-GBM, was sourced from the University of 

Pennsylvania Health System and includes multi-parametric 

magnetic resonance imaging (mpMRI) scans of 671 newly 

diagnosed glioblastoma (GBM) patients. These images 

underwent standardized preprocessing procedures, including 

skull-stripping and co-registration. The second dataset, 

BraTS2021, was used after excluding any overlapping patients 

from the TCGA-LGG, TCGA-GBM, and UPENN-GBM subsets 

to avoid data leakage.

Manual segmentation annotations were available in the BraTS 

and UPENN-GBM datasets. The BraTS dataset employed the 

training and validation cohorts from the 2021 BraTS challenge, 

which included manually segmented tumor regions. In the 

UPENN-GBM dataset, tumor subregion labels were generated 

via computer-assisted annotation followed by manual 

corrections. These segmentations were created by a diverse set 

of qualified raters, introducing heterogeneity in annotation styles.

Patients were included if they were newly diagnosed with 

glioma and had available pre- and post-contrast T1- weighted 

(T1w), T2-weighted (T2w), and T2w-FLAIR scans. No 

additional exclusion criteria were applied based on radiologic 

quality (e.g., low image resolution or artifacts) or clinical 

features (e.g., tumor grade). In cases where multiple scans of the 

same modality were available for a patient (e.g., multiple T2w 

scans), the scan used for segmentation was selected. If no 

segmentations were available or if segmentations were not 

derived from the specified modality, the scan with the highest 

axial resolution was chosen, with preference given to 3D 

acquisitions over 2D.

Meanwhile, we utilized the TCGA-LGG and TCGA-GBM 

collections from TCIA, as well as the REMBRANDT collection 

from the Molecular Brain Tumor Data Repository. Both the 

TCGA-LGG and TCGA-GBM datasets include multi-modal 

MRI scans, comprising T1, T1CE, T2, and FLAIR sequences.The 

original images are mainly three-dimensional (3D) MRI, but 

due to multi-center acquisition, the images have some 

differences in spatial resolution, slice thickness and contrast 

consistency. In addition, some images have slight motion 

artifacts or low signal-to-noise ratio problems.Genetic and 

histological annotations were collected from both TCIA clinical 

records and the dataset published by Ceccarelli et al. 

Segmentation masks for these cohorts followed the BraTS 2021 

Challenge guidelines, with tumors manually delineated by 

one to four annotators and reviewed by board-certified 

neuroradiologists. The inclusion criteria for these patients 
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mirrored those of our training cohort, requiring pre- and post- 

contrast T1w, T2w, and T2w-FLAIR scans.Genomic and 

histopathological metadata were available for public datasets. For 

REMBRANDT, clinical and molecular data were obtained from 

TCIA; for UPENN-GBM, these were collected from the clinical 

archives of the University of Pennsylvania Health System. The 

BraTS2021 dataset was sourced directly from the 2021 BraTS 

Challenge.

There are some differences in imaging protocols for different 

datasets. For example, the BraTS and UPENN-GBM datasets are 

both high-quality three-dimensional acquisition (3D MRI), 

whereas the REMBRANDT data is 3D but has wide variation in 

slice thickness and image quality. In terms of scanning 

sequence, each dataset contained T1, T1CE, T2 and FLAIR 

modes, but there were inconsistencies in spatial resolution, slice 

spacing, and whether it was 2D or 3D acquisition. In addition, 

the images in UPENN and REMBRANDT come from different 

hospitals or scanners, and there may be variation in magnetic 

field strength and noise level. At the annotation level, BraTS and 

UPENN provide accurate manual segmentation, while the 

REMBRANDT dataset is mainly used for classification analysis 

due to the lack of pixel-level segmentation information.It should 

be noted that although most TCGA cases had complete four- 

modality MRI and high-quality segmentation signatures, some 

cases were not included in the analysis due to missing or image 

quality problems on specific sequences such as T1 or FLAIR.

Three patients were excluded from the final evaluation cohort 

due to not meeting these imaging requirements despite the 

availability of manual annotations: TCGA-08-0509 and TCGA- 

08-0510 from TCGA-GBM lacked precontrast T1w scans, and 

TCGA-FG-7634 from TCGA- LGG lacked post-contrast 

T1w imaging.

2.2 Patient characteristics

A total of 1,552 patients were included in this study, with 1,086 

(approximately 70%) assigned to the training set and 466 

(approximately 30%) to the testing set. Patient characteristics of 

the training set and the test set are shown in Table 1, including 

gender, age, IDH status, 1p/19q co-deletion status, MGMT 

methylation status, and tumor grade. In the training set, the 

proportion of males and females was 55.52% and 38.12%, 

respectively. The age was mainly concentrated in people aged 40– 

60 years old and over 60 years old (about 76%). The distribution 

of the test set was consistent with the training set. IDH mutation 

rate was low (about 3–4%) and 1p/19q co-deletion rate was about 

50% in both sets. MGMT methylation status showed similar trends 

in different sets. About 31% of the patients had grade IV gliomas, 

and the remaining patients were mainly distributed in grade II and 

III, but some cases lacked complete grading information.

To quantify dataset heterogeneity, we compared key 

characteristics across the five public datasets used in this study 

(BraTS2021, UPENN-GBM, TCGA-GBM, TCGA-LGG, and 

REMBRANDT), as shown in Table 2. A total of 1,552 cases were 

included, with notable differences in WHO grade distribution: 

lower-grade tumors (Grade II/III) were more prevalent in TCGA- 

LGG and REMBRANDT, whereas BraTS2021, UPENN-GBM, and 

TCGA-GBM were predominantly high-grade (Grade IV) tumors.

The distribution of molecular markers also varied 

substantially. IDH mutation was relatively common in 

BraTS2021 (2.86%) and TCGA-LGG (20.37%), but rare in 

UPENN-GBM (2.83%) and TCGA-GBM (1.91%). A similar 

pattern was observed for 1p/19q codeletion, which was enriched 

in TCGA-LGG (24.07%) and BraTS2021 (56.77%), but nearly 

absent in high-grade GBM datasets. MGMT promoter 

methylation also showed marked differences across datasets, 

with the highest proportion in BraTS2021 (66.41%) and the 

lowest in UPENN-GBM (18.03%).

These results demonstrate substantial variability in tumor 

grade and molecular characteristics across datasets, highlighting 

the necessity of using federated learning to aggregate multi- 

center data without sharing raw images. They also underscore 

the applicability of the multi-task model for handling diverse 

patient populations and molecular subtypes.

2.3 Federated learning framework

To achieve collaborative modeling across health care 

organizations and avoid patient data leakage, we adopted a FL 

strategy. Unlike the classical FedAvg framework, which 

aggregates models by exchanging parameters, we propose an 

TABLE 1 Characteristics of the patients in the training and test sets.

Characteristic
Train Set Test Set

N % N %

Total 1,086 100 466 100

Sex

Female 414 38.12s% 192 41.20%

Male 603 55.52% 257 55.15%

Unknown 69 6.35% 35 7.51%

Age(years)

<40 100 9.21% 41 8.80%

40–60 358 32.97% 154 33.05%

>60 469 43.19% 202 43.35%

Unknown 159 14.64% 69 14.81%

IDH status

Mutated 41 3.78% 16 3.43%

Wildtype 716 65.93% 308 66.09%

Unknown 329 30.29% 142 30.47%

1p/19q co-deletion status

Co-deleted 184 16.94% 79 16.95%

Intact 545 50.18% 233 50.00%

Unknown 357 32.87% 154 33.05%

MGMT status

Unmethylated 210 19.34% 89 19.10%

Methylated 263 24.22% 113 24.25%

Unknown 613 56.45% 264 56.65%

Grade

II 61 5.62% 27 5.79%

III 60 5.52% 26 5.58%

IV 338 31.12% 146 31.33%

Unknown 627 57.73% 267 57.30%
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innovative strategy based on knowledge distillation and 

compressed data transmission, aiming to reduce communication 

overhead and enhance model fusion. This strategy enables 

multiple hospitals (clients) to collaboratively train a global 

model without sharing raw images or model parameters.

In this study, an innovative federated learning framework is 

proposed to efficiently complete the tasks of medical image 

analysis and classification under the premise of ensuring the 

data privacy of medical institutions. The framework gradually 

optimizes the shared global model through the cooperation of 

the client and the server. The client-side procedure ensures that 

raw patient data is neither directly used for model training nor 

transmitted. A process, termed knowledge refining, is first 

employed to transform the local data into a condensed and 

abstract representation. This type of compressed data is a 

compact and information-dense representation that is able to 

preserve key medical features in the original data as much as 

possible without compromising privacy. The compressed data 

generation process is based on a Compression loss: the loss 

function is optimized so that the output of the model when 

processing the compressed data is as close as possible to its 

performance when processing the original data, such as the 

extracted features or the predicted classification probability. 

Specifically, the client compares the prediction of the model on 

the compressed data with its performance on the local real data 

to guide the synthesis of the compressed data. This mechanism 

ensures that the compressed data effectively represent the 

original information in a medical sense. The client only uploads 

the generated compressed data, and there is no need to share 

the original image or patient information, which protects the 

privacy and greatly reduces the communication overhead.

On the server side, the process of aggregation and training is 

particularly critical. The server integrates the compressed data 

from each client and uses the two objective functions to jointly 

optimize the global model parameter θ. Firstly, the Cross-entropy 

loss is used for basic supervised learning to ensure that the model 

can accurately classify the compressed data. Second, Distillation 

matching loss is introduced to further mine and integrate the 

deep knowledge from different clients. This loss function works 

by comparing two types of Soft labels: the first component is the 

prediction of the current global model on the compressed data, 

which re.ects the model’s interpretation of that data; the other 

category is soft labels calculated and uploaded by the client on 

local real data, representing the knowledge refined by the client. 

Different from the traditional hard labels (single category label), 

soft labels express the confidence level of the model for each 

category in the form of probability distribution and contain more 

fine-grained information. By minimizing the difference between 

the server-side prediction soft label and the client-side soft label, 

the distillation match loss realizes the migration from the client’s 

real data knowledge to the global model, effectively alleviates the 

problem of information loss that may be caused by compressed 

data, and improves the stability and generalization ability of the 

model.Within this federated framework, we introduce a multi-task 

deep learning model based on the U-Net architecture, designed to 

simultaneously perform tumor region segmentation as well as 

genetic and histopathological feature prediction. This model 

serves as the global model to be optimized on the server side and 

as the foundational architecture for local models on the client 

side, which are used to generate compressed data and soft labels.

Finally, the server combines the cross-entropy loss with the 

distillation matching loss to obtain a global model with more 

generalization ability and robustness. The model was then 

distributed to the client, leading to a new round of more accurate 

data compression and knowledge extraction. Through continuous 

iteration, the whole federated learning process is continuously 

optimized, and finally converges to a medical image analysis 

model with stable performance and perfect privacy protection.

2.4 Classification model

To realize the proposed privacy-preserving federated 

knowledge distillation framework, a powerful and efficient deep 

learning model forms the core. This model not only serves as 

the final global model to be optimized on the server side but 

also functions as the tool for each client to generate compressed 

data and soft labels locally. Within this federated framework, we 

introduce a multi-task model based on the U-Net architecture, 

designed to simultaneously perform tumor region segmentation 

and predict genetic and histopathological features (IDH, 

MGMT, 1p/19q, and Grade). The architecture is optimized for 

memory efficiency, enabling the use of entire 3D MRI scans as 

input to enhance spatial contextual modeling. The overall 

structure of the model is illustrated in Figure 1.

The encoder part consists of three downsampling stages, each 

consisting of two layers of 3D convolutions (convolution, batch 

normalization, and ReLU activation). The downsampling is 

implemented by 3D maximum pooling of size (1, 2, 2) to 

reduce planar resolution while preserving slice dimension. The 

TABLE 2 Heterogeneity across the datasets.

Dataset Cases 
(n)

WHO 
Grade II

WHO 
Grade III

WHO 
Grade IV

IDH mutation 
(n, %)

1p/19q 
codeletion (n, %)

MGMT promoter 
methylation (n, %)

BraTS2021 384 0 4 329 11 (2.86%) 218 (56.77%) 255 (66.41%)

UPENN-GBM 671 0 0 132 19 (2.83%) 19 (2.83%) 121 (18.03%)

TCGA-GBM 262 0 0 0 5 (1.91%) 0 0

TCGA-LGG 108 47 59 0 22 (20.37%) 26 (24.07%) 0

REMBRANDT 127 41 25 23 0 0 0

Total 1,552 88 88 484 57 (3.67%) 263 (16.95%) 376 (24.23%)

Percentages indicate the proportion of cases with each molecular marker or complete modality relative to the total number of cases in the dataset.
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decoder adopts a symmetric structure, which is gradually 

upsampled by transposed convolution and combined with 

corresponding encoder features to enhance spatial detail 

recovery. After the bottleneck layer, the network was divided 

into two output branches. The segmentation branch generated 

voxellevel segmentation prediction by 1 × 1 × 1 convolution and 

output four types of tumor regions. The classification branch 

extracted the global information from the bottleneck features, 

and then input the multi-layer fully connected network after 

global average pooling to predict four clinical indicators. Each 

task corresponding to an independent classification head (IDH 

mutation, 1p/19q co-deletion, MGMT methylation as a binary 

classification, and tumor grade as a triple classification).

In order to reduce the memory consumption and maintain the 

input consistency, all MRI images were registered to the standard 

atlas, skull stripping and intensity normalization in the 

preprocessing stage, and uniformly resampled and trimmed to a 

128 × 128 planar resolution. All slices of the case were stacked in 

order to form a 3D volume, and the depth was determined 

according to the actual number of slices of the patient. During 

training, the full 3D volume was directly input to the model 

instead of local patches to fully retain the global spatial context 

information. The baseline convolutional channel number of U-Net 

is set to 16 (traditional 32), and it is multiplied sequentially in each 

down-sampling stage (16→32→64→128) to reduce the video 

memory footprint while maintaining the modeling ability. The 

input data contained four MRI modalities (T1, T1ce, T2, and FLAIR).

During model training, 20% of the training cohort was held 

out as a validation set for model selection. The final model was 

retrained on the entire training set using the selected 

hyperparameters and subsequently evaluated only once on an 

independent test set to ensure unbiased generalization and 

realistic performance estimation.

The model was trained using stochastic gradient descent 

(SGD) with an initial learning rate of 0.001 for a total of 60 

epochs. The cross-entropy loss function was employed to 

quantify the discrepancy between the predicted outputs and the 

ground truth labels. All experiments were conducted on an 

NVIDIA RTX A6000 GPU, leveraging its high computational 

power to accelerate convergence. The implementation was 

developed using PyTorch 2.4.1, ensuring efficient training 

and scalability.

Model performance was quantitatively evaluated using the 

area under the receiver operating characteristic curve (AUC), 

accuracy, recall, F1 score, and specificity for molecular and 

histopathological predictions. To assess the model’s 

segmentation capability, we further conducted visual analyses 

of attention maps derived from activation heatmaps, 

illustrating the regions most in.uential to the 

network’s predictions.

2.5 Ethical considerations and data privacy

MRI data used in this study were obtained from publicly 

available datasets, including BraTS2021, UPENN-GBM, TCGA- 

GBM, TCGA-LGG, and REMBRANDT. These data sets were 

rigorously de-identified before publication and had received 

FIGURE 1 

The overall framework of the research. (A) Global glioma dataset distribution. (B) Import the dataset. (C) Data preprocessing. (D) Deep learning model.
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ethical approval from their organizing institutions, thus 

eliminating the need for additional informed patient consent.

In addition to this, the federated learning framework adopted 

in this study provides a higher level of privacy protection by 

design. In this simulated multicenter study, a core principle of 

federated learning was strictly observed: raw MRI data remained 

on local clients at all times and were never transmitted to a 

central server or any third party. Throughout the collaborative 

training process, participants shared only anonymized, 

aggregated model parameters (e.g., network weights) with a 

central server that did not contain any identifiable individual 

patient information. The reverse derivation of highly complex 

raw medical imaging data from these aggregated parameters is 

not feasible under the current technology conditions, which 

fundamentally ensures the confidentiality of patient data. The 

data use and methodological design of this study were designed 

to comply with the ethical guidelines of the Declaration of 

Helsinki and the spirit of data protection regulations such as the 

General Data Protection Regulation (GDPR) and the Health 

Insurance Portability and Accountability Act (HIPAA), 

providing a compliance basis for future deployment of this 

technology in real-world clinical Settings.

3 Results

3.1 Algorithm performance

We evaluated the model’s performance on multiple glioma 

molecular subtype and tumor grading classificationtasks using 

the independent test set. The quantitative results are 

summarized in Table 3, and the corresponding receiver 

operating characteristic (ROC) curves are illustrated in Figure 2. 

Overall, the model demonstrated strong discriminative capability 

and robustness across all classification tasks, highlighting the 

effectiveness of multimodal information fusion for fine-grained 

glioma characterization (26).

In the molecular subtype classification tasks, the model 

achieved an AUC of 0.88, accuracy of 0.90, and F1 score of 0.93 

in predicting IDH mutation status, indicating high robustness in 

identifying this clinically critical biomarker. For 1p/19q 

codeletion status, although the AUC was relatively lower at 0.84, 

the model yielded excellent results in terms of accuracy (0.94) 

and recall (0.93), suggesting a low false-negative rate and strong 

sensitivity for detecting positive cases.

Prediction performance for MGMT promoter methylation 

was slightly lower compared to other molecular markers, with 

an AUC of 0.85, accuracy of 0.86, and F1 score of 0.86. This 

modest performance may be attributed to the limited number of 

MGMT-labeled samples in the training set or intrinsic modality- 

specific feature disparities. Nonetheless, the results remain 

clinically relevant and demonstrate practical utility.

For the tumor grading task, the model exhibited excellent 

overall performance, achieving an AUC of 0.94 and accuracy of 

0.91 for predicting overall tumor grade, indicating its ability to 

effectively integrate multimodal information for accurate 

grading. Subtype-specific analysis further revealed outstanding 

performance in distinguishing Grade II and Grade III gliomas, 

with AUCs of 0.95 and 0.94, and F1 scores of 0.95 and 0.93, 

respectively. The performance on Grade IV tumors was 

comparatively lower (AUC = 0.93, F1 = 0.84), which may be due 

to greater intratumoral heterogeneity and complex imaging 

phenotypes associated with high-grade gliomas. Future work 

may consider incorporating attention mechanisms or 

hierarchical classification strategies to further enhance 

performance on this subgroup.

To validate the effectiveness of our approach, we conducted a 

comparative analysis using different combinations of input 

modalities, including: (1) T1 alone, (2) T1 combined with T2, 

(3) a three-modality combination of T1,T2, and T1ce, and (4) a 

fully integrated multimodal set- ting incorporating T1, T2, T1ce, 

and FLAIR. On a fixed test set, we evaluated the classification 

performance using area under the ROC curve (AUC), accuracy, 

recall, F1 score, and specificity for the prediction of molecular 

and histopathological features.

The results demonstrated that the multimodal configuration 

achieved the best performance across all evaluation metrics. 

Figure 3 presents a comprehensive comparison of five 

performance metrics (AUC, accuracy, recall, specificity, and F1 

score) for four glioma-related classification tasks (IDH mutation, 

MGMT methylation, 1p/19q co-deletion, and tumor grade), 

systematically assessing the impact of different modality 

combinations. A consistent upward trend in classification 

performance was observed as more modalities were incorporated, 

particularly with the full four-modality combination 

(T1 + T2 + FLAIR + T1ce), which led to significant improvements 

in performance and model stability. These findings underscore 

the value of multimodal inputs in enhancing the model’s 

generalization and representation capabilities.

Notably, the tumor grading task (GRADE) was the most 

sensitive to modality variation, with substantial gains observed 

when more modalities were fused. Clear improvements were also 

seen in IDH and 1p/19q predictions, while MGMT classification 

showed more modest gains, potentially due to the molecular 

feature’s weaker radiographic representation or sample 

imbalance.When modality information is insufficient, the model 

struggles to learn robust features for minority classes, making its 

performance more vulnerable to the negative effects of class 

imbalance. In contrast, full-modality input provides richer feature 

dimensions, enabling the model to effectively overcome this issue 

and serving as our primary data-driven strategy to address the 

TABLE 3 Evaluation results of the final model on the test set.

Task AUC ACC Recall SPEC F1  
Score

IDH 0.88 (95% CI: 0.810–0.860) 0.9 0.87 0.92 0.93

MGMT 0.85 (95% CI: 0.858–0.901) 0.86 0.86 0.87 0.86

1P/19Q 0.84 (95% CI: 0.838–0.868) 0.94 0.93 0.96 0.93

GRADE 0.94 (95% CI: 0.927–0.947) 0.91 0.94 0.93 0.9

GRADE II 0.95 (95% CI: 0.949–0.962) 0.96 0.98 0.97 0.95

GRADE III 0.94 (95% CI: 0.924–0.950) 0.93 0.95 0.96 0.93

GRADE IV 0.93 (95% CI: 0.929–0.944) 0.85 0.89 0.88 0.84
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challenge. In terms of metric comparison, AUC and F1 score best 

capture the overall performance improvement brought by 

modality fusion, whereas specificity shows greater .uctuations in 

certain tasks (e.g., MGMT). This further confirms that the model 

exhibits instability in recognizing the negative (majority) class 

when dealing with imbalanced data.

Importantly, different modality combinations exhibited 

task-specific advantages. The full modality configuration 

FIGURE 2 

Receptor operating characteristic (ROC) curves for evaluating genetic and histological features on the test set.

FIGURE 3 

Performance of multimodal combination in molecular grading and classification of glioma. (a) AUC, (b) accuracy, (c) recall, (d) specificity, and (e) F1 score.
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(T1 + T2 + FLAIR + T1ce) achieved the highest AUC and F1 

scores for IDH and GRADE classification tasks, demonstrating 

excellent discriminative capability and predictive robustness. In 

particular, for the multi-class tumor grading (GRADE II/III/IV), 

this configuration substantially improved recall and specificity, 

highlighting its effectiveness in modeling grade-associated 

anatomical characteristics. Meanwhile, the three-modality 

combination (T1 + T2 + FLAIR) performed competitively in the 

1p/19q classification task, even outperforming T1ce-inclusive 

combinations in certain metrics, suggesting that this molecular 

feature may rely more heavily on macrostructural tumor 

morphology than on contrast-enhanced details. Overall, the 

T1 + T2 + FLAIR combination serves as a strong and robust 

baseline, while the inclusion of T1ce—when available—further 

boosts the model’s multitask adaptability and classification 

accuracy, especially for tasks involving tumor boundary 

delineation and core structure characterization.In addition to 

using full modal data, algorithm-level strategies such as Focal 

Loss or weighted sampling can also be explored in the future to 

further optimize the performance of the model on 

imbalanced data.

To comprehensively evaluate the model’s segmentation 

performance in identifying T2w hyperintense regions, we 

combined both quantitative metrics and visual interpretability 

techniques. As shown in Figure 4a, the violin plot of Dice 

coefficients across all test samples demonstrates that the 

segmentation branch achieves stable performance with a median 

Dice score of 0.85, indicating accurate delineation of lesion 

boundaries from normal tissue. In addition, to further 

investigate the model’s decision-making process and 

interpretability, we employed visual heatmap-based 

interpretability techniques (27), such as Grad-CAM (28). 

Figure 4b shows the visualization results of multiple 

representative patients in the test set, including the original 

image, the segmentation mask generated by the model and the 

corresponding Grad-CAM heat map. The segmentation results 

clearly marked the lesion area, and the spatial location was 

highly consistent with the high-activation area (red area) in the 

heat map, which further verified the accuracy of the model in 

extracting key features in complex brain anatomical structures. 

Compared with the traditional evaluation method that relies on 

pixel-level labels, the heatmap not only reveals the regions of 

concern for the segmentation decision of the model, but also 

provides an intuitive and interpretable reference for the 

performance of the model when there is a lack of accurate 

annotation, thereby improving the credibility of the model in 

practical clinical applications.

3.2 Model interpretability

To provide deeper insight into the model’s behavior, heatmaps 

and selected encoder feature outputs were generated and 

visualized in Figure 4b.These visualizations highlight the regions 

within the scans that contributed most significantly to the 

model’s predictions. The heatmaps revealed that the network 

predominantly focused on the hyperin- tense boundary regions 

FIGURE 4 

Segmentation performance and interpretability analysis of the model on the test set. (a) Dice coefficient violin plot of the segmentation results, 

showing the distribution of model performance on all tested samples, with a median of 0.85. (b) shows the original images of typical patients in 

the test set, the segmentation results of the model, and the interpretable heat map based on Grad-CAM. The red area represents the significant 

regions that the model focuses on when making segmentation judgments.

Ren et al.                                                                                                                                                                10.3389/fradi.2025.1648145 

Frontiers in Radiology 09 frontiersin.org



in the T2w-FLAIR images and the strongly enhanced areas in 

post-contrast T1w scans during inference.

The heatmap in Figure 4b was generated using Grad-CAM to 

visualize the model’s region-of-interest. its generation principle is 

explained as follows. Grad-CAM generates an interpretable 

localization map by analyzing the gradient information in the 

deep layers of the network. Specifically, the method begins by 

computing the gradients of the target category’s score with 

respect to the feature maps of the final convolutional layer. 

These gradients re.ect the importance of each feature channel 

for the ultimate decision. Subsequently, global average pooling is 

applied to these gradients to derive a set of weights, each 

representing the importance of a corresponding feature map. 

Finally, a weighted linear combination of the feature maps is 

calculated using these weights and then passed through a ReLU 

activation function to generate the final heatmap.In the resulting 

visualization, brighter regions indicate a greater contribution 

from the features in that area to the model’s prediction. Thus, 

the heatmap in Figure 4b is not a simple image overlay but 

rather a visual representation of the model’s internal decision- 

making process. It explicitly highlights which parts of the image 

were most in.uential in reaching the final prediction.

The visualization of encoder feature maps and segmentation 

results further showed that the model could effectively focus on 

the lesion area and accurately segment the structure consistent 

with the actual lesion morphology. As can be observed in the 

contrast between the original image and the segmentation mask, 

the model successfully identified the tumor region with 

hyperintensity in the T2w-FLAIR image and the lesion 

boundary after contrast enhancement in the T1-weighted image. 

In addition, the high activation regions shown by the heatmap 

highly coincide with the segmented regions, indicating that the 

model does pay attention to tumor-related imaging features 

during the decision-making process. This result not only 

validates the strong spatial localization ability of the model, but 

also demonstrates its ability to capture fine-grained features with 

diagnostic value, thereby significantly enhancing the 

interpretability of the model and its potential application in 

clinical scenarios. Compared with the visualization method 

based on classification prediction only, the segmentation results 

provide more explicit structural boundary information, so that 

the model’s recognition of the lesion area is no longer limited to 

the fuzzy focus area, but has the practical ability to localize 

the lesion.

4 Discussion

We proposed a federated multi-task learning framework that 

enables collaborative training across multiple clinical centers 

without the need to share raw patient data. The method 

leverages preoperative multi-parametric MRI to simultaneously 

predict key molecular and histopathological features in newly 

diagnosed glioma patients, including IDH mutation, 1p/19q co- 

deletion, MGMT promoter methylation, and tumor grade, while 

also performing automated segmentation of T2w hyperintense 

regions. Departing from the classical FedAvg algorithm, our 

frame- work incorporates compressed encoding and auxiliary 

decoding mechanisms to accommodate inter-institutional label 

inconsistencies and data heterogeneity (29). For patients for 

whom re-resection is infeasible or only a biopsy can be 

obtained, this non-invasive approach could potentially serve as a 

supplementary adjunct, offering decision support in the 

presence of diagnostic uncertainty.

In the test set, our method achieved promising performance in 

predicting molecular and histological features, with AUCs of 0.88 

for IDH, 0.84 for 1p/19q, 0.85 for MGMT, and 0.94 for tumor 

grade. Notably, the test data were not involved in model 

development or hyperparameter tuning, thus providing an initial 

assessment of generalizability. Leveraging advanced GPU 

hardware, we trained a large-scale deep learning model that 

directly ingests full 3D MRI volumes. Combined with a diverse, 

multi-center dataset, our approach demonstrated a degree of 

robustness to clinical imaging variability, suggesting potential 

for further investigation in real-world settings.

By integrating multi-task learning with federated training, our 

framework learns shared representations of molecular and 

histopathological features across institutions, while preserving 

data privacy. This joint modeling approach not only enhances 

the contextual consistency between predicted attributes (e.g., 

preventing biologically implausible co-occurrences such as IDH- 

wildtype with 1p/19q co-deletion) but also improves the model’s 

generalization ability by exploiting inter-center heterogeneity 

(30). Unlike traditional classification systems based solely on 

fixed subtypes, our method independently predicts individual 

markers, allowing seamless compatibility with modern glioma 

classification guidelines, such as WHO 2021, and thus exhibits 

higher clinical adaptability (31).

Several existing studies have attempted to jointly predict 

glioma biomarkers using multi-task networks. Xu et al. 

proposed a model that simultaneously predicts multiple 

molecular indicators and the overall survival of GBM patients 

(32). However, this method was restricted to GBM and required 

prior tumor grading, limiting its utility in preoperative settings. 

Moreover, it relied on manual tumor segmentation, increasing 

clinical workload and deployment complexity. Similarly, Tupe- 

Waghmare et al. introduced a multi-task network that performs 

tumor segmentation and predicts both tumor grade (LGG vs. 

HGG) and IDH mutation status (33). However, their model 

lacked the ability to predict 1p/19q status, a limitation for 

complete WHO 2016 classification. Another related effort by 

Decuyper et al. developed a model to jointly predict IDH, 

1p/19q, and tumor grade (34), but their approach required pre- 

segmented tumor masks obtained via a separate U-Net model, 

effectively relying on a dual-network pipeline. In contrast, our 

approach adopts a unified end-to-end architecture, avoiding the 

complexity and potential error accumulation from separate 

segmentation stages. A key aspect of our study is the evaluation 

on a completely independent external test set, which enhances 

the reliability of our findings.

Despite the promising results, this study has several important 

limitations that must be acknowledged. First, our model was 
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developed and validated using publicly available, retrospective 

datasets. While these multi-center datasets provide diversity, 

they are often curated and may not fully represent the 

complexity and noise of prospective, real-world data 

encountered in a live clinical environment. The framework’s 

performance in a true, operational federated learning network 

across hospitals with private, uncurated data remains to 

be validated.

Second, and critically, the model’s performance was 

inconsistent across different molecular subtypes, particularly 

for rarer groups. For example, IDH-wildtype GBMs were 

predicted with high accuracy, whereas the model struggled 

with distinguishing IDH-mutant and 1p/19q-codeleted LGGs 

from other LGGs (35). This was particularly evident in Grade 

II tumors, where sensitivity was suboptimal. This 

performance gap is a significant limitation, likely stemming 

from the small number of samples for these rare subtypes in 

the training cohort (36). Although we applied imbalance- 

handling strategies during training, data diversity and 

subgroup size disparities still limited overall performance (37, 

38).The federated framework allowed us to mitigate these 

limitations to some extent by enabling model training across 

multiple institutions, improving generalizability across diverse 

patient populations (39, 40).

Third, the practical deployment of federated learning 

presents substantial real-world challenges. Data heterogeneity 

(Non-IID) across centers, while a source of generalization, 

can also lead to inconsistent local model updates, potentially 

slowing convergence or causing performance .uctuations. 

Furthermore, the variability in data quality from different 

MRI scanners and protocols introduces potential biases that 

are difficult to fully mitigate without direct data access. 

Finally, the logistical and infrastructural hurdles are non- 

trivial. Our large 3D model necessitates significant 

communication overhead, requiring stable and high- 

bandwidth network infrastructure between participating 

institutions. Remote debugging and troubleshooting in a 

privacy-preserving setting are also far more complex than in a 

centralized environment.

In future work, we plan to incorporate advanced imaging 

modalities such as dynamic contrast-enhanced MRI (DCE- 

MRI) and MR spectroscopy (MRSI), which have shown 

potential in capturing tumor biology and treatment 

response. These modalities were excluded in this study due 

to their limited availability in routine clinical settings, in 

contrast to the conventional MRI sequences we used. While 

integrating DCE-MRI and MRSI may reduce data 

availability and model accessibility (41, 42), the growing 

adoption of these techniques in clinical practice may 

facilitate their inclusion in future studies and potentially 

enhance model accuracy. Future efforts must also focus on 

prospective validation within a real-world federated network 

to address the aforementioned challenges of infrastructure 

and data heterogeneity directly.

In conclusion, we have developed a federated learning- 

based multi-task approach that can jointly learn from 

multiple medical institutions to achieve the prediction of IDH 

mutation status, 1p/19q co-deletion status, MGMT 

methylation status and tumor grade without sharing the 

original data, and automatically complete the segmentation of 

tumor regions based on preoperative MRI images. The 

proposed method shows good generalization performance on 

three independent test datasets, and has real cross-center 

adaptability. The analysis strategy of simultaneously 

predicting multiple clinical indicators rather than relying on a 

single task is more in line with the actual needs of 

comprehensive evaluation of multiple diagnostic factors in 

clinical practice. In addition, this method does not rely on 

complex prior knowledge in the training phase and does not 

limit the applicable patient population, which helps to expand 

the clinical coverage.
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