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Background: Intervertebral disc anomalies, such as degeneration and herniation, 

are common causes of spinal disorders, often leading to chronic pain and 

disability. Accurate diagnosis and classification of these anomalies are critical for 

determining appropriate treatment strategies. Traditional methods, such as 

manual image analysis, are prone to subjectivity and time-consuming. With the 

advancements in deep learning, automated and precise classification of 

intervertebral disc anomalies has become a promising alternative.

Objective: This study aims to propose a deep learning-based method for 

classifying intervertebral disc abnormalities, with the goal of improving 

diagnostic accuracy and clinical efficiency in spinal health management.

Methods: From August 2021 to March 2024, a dataset consisting of 574 CT 

images of intervertebral discs was collected and labeled into four clinically 

relevant categories: normal intervertebral discs, Schmorl’s nodes, disc bulges, 

and disc protrusions. The dataset was divided into 500 images for model 

training, and 74 images for validation. A YOLOv8-seg network was employed 

for classification, with multiple preprocessing techniques applied to ensure 

data consistency and enhance model performance.

Results: The IDAICS demonstrated high accuracy in classifying various 

intervertebral disc anomalies, including disc degeneration, herniation, and 

bulging, with a classification accuracy of over 93.2%, with a kappa coefficient of 

0.905 (P < 0.001).

Conclusion: This deep learning-based classification approach provides an efficient 

and reliable alternative to manual assessment, enabling automated diagnosis of 

intervertebral disc abnormalities. It offers significant potential to enhance clinical 

decision-making and improve spinal health management outcomes.

KEYWORDS

intervertebral disc abnormalities, deep learning, YOLOv8-seg, CT, automated 

diagnosis, classification accuracy, spinal health

1 Introduction

As one of the main manifestations of degenerative spinal disease, disc abnormalities range 

in condition from the common bulging and herniated discs to the complex Schmorl’s nodes. 

They seriously affect patients’ quality of life and can lead to chronic pain, motor dysfunction 

and even paraplegia (1, 2). In recent years, MRI (Magnetic Resonance Imaging) is a better 

clinical standard for diagnosing disc abnormalities than CT (Computed Tomography) 

(3, 4). However, the cost of using MRI is high, the examination time is long, and some 
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patients suffer from claustrophobia and cannot accept MRI 

examination (5, 6). CT remains widely utilized in clinical practice 

due to its speed and accessibility, particularly in emergency and 

outpatient settings, making it an essential diagnostic tool in specific 

clinical scenarios. And due to the complexity and diversity of 

clinical imaging data, traditional manual assessment methods are 

often in/uenced by subjective factors, resulting in certain 

limitations in diagnostic accuracy and consistency. Correct 

diagnosis is a prerequisite for adopting the correct treatment 

modality and plays a decisive role in the regression of the patient’s 

condition. Therefore, there is an urgent need for a more efficient, 

accurate, and automated system to assist in the early screening and 

classification of disc abnormalities.

Manual classification of intervertebral disc abnormalities 

presents substantial challenges due to subtle morphological 

differences among conditions. Disc bulges, and protrusions, for 

instance, often appear visually similar on imaging, though each 

has distinct characteristics regarding disc shape, size, and 

displacement. Differentiating these variations requires expertise 

and is susceptible to in/uence between observers, even among 

experienced radiologists. Factors such as image resolution, 

anatomical variability, and overlapping features across abnormality 

types further complicate accurate classification. These challenges 

underscore the need for standardized, automated methods to 

enhance diagnostic consistency and precision in identifying 

intervertebral disc conditions. Employing deep learning models for 

automated classification has the potential to significantly enhance 

diagnostic accuracy, reduce radiologists’ workload, and support 

more standardized treatment planning, ultimately improving 

patient outcomes in spinal health care (7–9).

Deep learning has emerged as a vital tool in clinical medicine, 

especially for reading and diagnosing medical images. By rapidly 

identifying abnormal structures or regions within patient 

images, deep learning supports physicians in making accurate 

diagnostic decisions. Research on deep learning in medical 

image analysis spans applications including liver (10), pancreas 

(11), lung (12)and breast cancer (13, 14). Additionally, studies 

have evaluated AI’s potential in tasks such as esophageal 

segmentation (15) and kidney analysis (16), where reducing 

inter-observer variability and excluding artifact-affected regions 

are crucial. Despite these advances, artificial intelligence remains 

an emerging field in orthopedic imaging, with significant scope 

for further development (17–21). This study aims to develop 

an automated classification system for intervertebral disc 

abnormalities using a novel approach based on the YOLOv8-seg 

deep learning model, designed to streamline the complex 

manual diagnosis process. The system categorizes intervertebral 

disc conditions into four clinically relevant categories: normal 

intervertebral discs, Schmorl’s nodes, disc bulges, and disc 

protrusions. By achieving accurate classification, the proposed 

system is expected to support timely clinical decisions, 

ultimately enhancing patient outcomes.

2 Materials and methods

2.1 Study subjects

This study utilizes a dataset of CT images, comprising 574 images 

collected at our hospital from August 2021 to March 2024, 

representing a range of intervertebral disc conditions. The dataset 

includes both abnormal cases, such as Schmorl’s nodes, disc bulges, 

and disc protrusions, as well as normal disc images to provide a 

baseline for comparison. All CT images are 2D slices extracted from 

3D scans. Axial and sagittal slices were processed independently, 

each capturing lesion characteristics from distinct anatomical 

perspectives, thereby enabling a complementary assessment of disc 

pathology. To ensure image quality, strict inclusion criteria were 

applied to exclude images with significant artifacts, low resolution, 

or incomplete visualization of the disc space. Each image was 

reviewed and labeled by experienced radiologists, with 

classifications guided by established clinical and radiological criteria 

for intervertebral disc conditions. To ensure consistency, the 

labeling process involved inter-rater agreement among multiple 

radiologists. Any discrepancies between the radiologists’ labels were 

resolved through consensus discussions, ensuring high agreement 

and minimizing subjectivity in the final dataset.

2.2 YOLOv8-seg-Based intervertebral disc 
conditions classification

This study proposes a classification method for intervertebral disc 

conditions using the YOLOv8-seg deep learning network. The output 

of the model classifies intervertebral disc conditions into one of four 

categories: normal, Schmorl’s nodes, bulge, or protrusion. Both axial 

and sagittal view slices were utilized in the model to provide 

comprehensive information. The YOLOv8-seg model is trained on 

a large dataset of pre-labeled CT images, each depicting distinct 

disc conditions. By extracting unique features for each type of 

intervertebral disc condition, the model uses these features as 

inputs to classify corresponding test images with high accuracy. 

This approach enables the model to reliably distinguish between 

normal intervertebral discs, Schmorl’s nodes, disc bulges, and disc 

protrusions, thereby supporting automated and consistent 

diagnosis. The model was trained on an Nvidia 4090 24GB GPU, 

providing the computational power necessary for efficient model 

training and high-performance processing of large image datasets.

2.2.1 Data preprocessing
To optimize the CT images for input into the YOLOv8-seg 

model, several preprocessing steps were applied. First, the images 

were standardized by converting them from their original black- 

and-white format to grayscale. This conversion reduces the number 

of image channels, which enhances processing efficiency. It is 

especially important because the global training label is a grayscale 

Abbreviations  

MRI, magnetic resonance imaging; CT, computed tomography; AI, artificial 

intelligence; DSC, dice similarity coefficient; C2f, cross stage partial (module); 

SPPF, spatial pyramid pooling fast; PANet, path aggregation network; ECA, 

efficient channel attention; PPV, positive predictive value; NPV, negative 

predictive value.
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image with a single channel, where pixel values range from 0 to 255. 

In this system, pixel values corresponding to the four intervertebral 

disc types are labeled as 1, 2, 3, and 4, respectively, while the 

background pixels are assigned a value of 0. Grayscale conversion 

was carried out using the Python PIL library, ensuring consistency 

between the input images and training labels. In addition, 

significant variations in image scale can lead to inconsistencies in 

feature extraction, adversely affecting the speed and accuracy of 

model training. To address this issue and mitigate the impact of 

scale variations on feature extraction, the images were resized to a 

uniform resolution(512 × 512 pixels), ensuring they met the input 

requirements of the YOLOv8-seg model. This resizing process was 

also performed using the PIL library, standardizing the image 

dimensions for the iterative learning network. To alleviate the 

imbalance of dataset samples, we applied real-time data 

augmentation techniques during the training phase, including 

horizontal /ipping. These enhancements were implemented 

through the built-in augmentation module of YOLOv8-seg, aiming 

to improve the generalization ability of the model without 

introducing bias into the test set.

2.2.2 Dataset construction
The dataset used in this study was constructed through 

collaboration with experienced clinicians at our hospital following 

data preprocessing procedures. The annotation process was 

performed manually using LabelMe (22), a tool available in 

Anaconda, to annotate the images. Two board-certified radiologists 

conducted fully manual contouring for each disc abnormality at 

the pixel level. The labels were derived solely from the imaging 

features, adhering to standardized radiological criteria. These 

annotations were then processed and used for deep learning model 

training. Using the Imaging Labeling system, radiologists classified 

and labeled CT images, which were subsequently divided into 

training and validation sets for deep learning network training. The 

dataset consists of 574 images in total, with 500 images allocated 

for training and 74 images for validation. The training set includes 

images categorized into four intervertebral disc condition types: 

104 intervertebral discs, 57 Schmorl’s nodes, 128 disc bulges, and 

211 disc protrusions. The radiological definitions for these 

conditions are as follows: normal intervertebral discs are located 

between two adjacent vertebrae without extending beyond their 

edges; Schmorl’s nodes refer to the protrusion of the nucleus 

pulposus into the vertebral body through cracks in the upper and 

lower cartilage end plates; disc bulges are characterized by a 

protrusion that exceeds 25% of the disc edge or an angle between 

the two sides of the protrusion and the center of the nucleus 

pulposus greater than 90°; and disc protrusions are defined by a 

protrusion of less than 25% of the disc edge, with the base of the 

protrusion larger than the protrusion itself and an angle between 

the protrusion sides and the center of the nucleus pulposus of less 

than 90°. The validation set comprises 14 normal intervertebral 

discs, 10 Schmorl’s nodes, 21 disc bulges, and 29 disc protrusions, 

and was used to evaluate the model’s performance. Figure 1 shows 

the count of instances for each intervertebral disc condition type 

across the training and validation sets.

2.2.3 Applying convolutional neural networks 

to extract features
For the intervertebral disc condition classification task, 

training images are first input into the YOLOv8-seg network, 

FIGURE 1 

The instance counts for each disc condition in the training and validation sets.
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which is designed to perform both object detection and instance 

segmentation (23). This end-to-end architecture simultaneously 

conducts object localization, classification, and pixel-level 

mask generation. The backbone network extracts multi-scale 

features, which are integrated through a hybrid FPN- 

PANet neck to capture detailed disc morphology across 

varying spatial scales. Figure 2 illustrates the overall framework 

of the proposed YOLOv8-seg–based method, including input 

images, model architecture, and output results. In a single 

forward pass, the network directly outputs bounding boxes, 

classification scores, and instance masks. A composite loss 

function is applied, comprising Focal Loss for classification to 

address sample imbalance, CIoU Loss for bounding box 

regression to account for overlap, center distance, and aspect 

ratio, and a Dice–BCE combination for segmentation 

to optimize both mask boundary delineation and pixel- 

level accuracy.

2.2.4 Training configuration

The YOLOv8-seg model was trained for 150 epochs with a 

batch size of 16. An initial learning rate of 0.001 was used for 

all experiments. These hyperparameters were selected based 

on empirical performance and training stability observed in 

preliminary experiments.

2.3 Evaluation indicators

In this study, the performance of the automated classification 

system was evaluated using several key metrics derived from the 

classification results of the test set. The primary indicators 

for assessing model performance were the overall correct 

classification rate and the kappa coefficient. The correct 

classification rate represents the proportion of correctly classified 

samples relative to the total number of samples, serving as a general 

measure of accuracy. The kappa coefficient quantifies the 

consistency between the model’s predictions and the true labels, 

with values closer to 1 indicating stronger agreement. Given that the 

YOLOv8-seg model is a multi-class classification network, the 

evaluation was conducted for each intervertebral disc condition by 

treating the problem as a multi-class classification task. For each 

category, the following metrics were computed: sensitivity, 

specificity, positive predictive value (PPV), negative predictive value 

(NPV), and the Youden index. Sensitivity (or recall) assesses the 

model’s ability to correctly identify true positives, while specificity 

evaluates its ability to correctly identify true negatives. PPV re/ects 

the precision of positive classifications, and NPV gauges the 

reliability of negative classifications. The Youden index combines 

sensitivity and specificity into a single value, providing a balanced 

measure of performance across both positive and negative 

classifications. Collectively, these evaluation metrics provide a 

FIGURE 2 

Framework of the proposed YOLOv8-seg-based method for intervertebral disc condition classification.

Gao et al.                                                                                                                                                                10.3389/fradi.2025.1646008 

Frontiers in Radiology 04 frontiersin.org



comprehensive assessment of the model’s ability to accurately classify 

intervertebral disc abnormalities, ensuring its potential clinical utility 

and applicability in real-world settings.

3 Results

The classification results for intervertebral disc conditions 

demonstrate the model’s high accuracy across multiple categories. 

Relevant data are provided in Table 1, which details the counts of 

disc bulge, disc protrusion, intervertebral disc, and Schmorl’s nodes 

in both the true and predicted categories. In the overall 

classification, comprising 74 images and 74 instances, the model 

correctly identified 69 instances and misclassified 5. For the “disc 

bulge” category, which includes 21 samples, 19 were correctly 

predicted, and 2 were misclassified as disc protrusion. In the “disc 

protrusion” category, with 29 samples, 26 were correctly identified, 

while 3 were misclassified as disc bulge. The “intervertebral disc” 

category, containing 14 samples, was perfectly classified, with all 14 

instances correctly identified. Similarly, in the “Schmorl’s nodes” 

category, which included 10 samples, all 10 instances were accurately 

identified. Figure 3 further emphasizes the model’s performance by 

illustrating the proportions of correct and incorrect predictions for 

each class. The overall classification performance is further assessed 

through the model’s sensitivity, specificity, positive predictive value, 

negative predictive value, and Youden index for each category. 

These metrics provide a thorough understanding of the model’s 

diagnostic efficacy. The corresponding data for these performance 

metrics are summarized in Table 2. Examples of successful 

identifications are presented in Figure 4. Figure 5 displays the 

TABLE 1 Counts of four categories in true and predicted classes.

True\predicted Disc bulge Disc protrusion Intervertebral disc Schmorl’s nodes

Disc bulge 19 2 0 0

Disc protrusion 2 26 1 0

Intervertebral disc 0 0 14 0

Schmorl’s nodes 0 0 0 10

FIGURE 3 

Normalized confusion matrix for intervertebral disc condition classification.
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change curves of loss functions and evaluation metrics throughout the 

training and validation processes. These curves demonstrate a steady 

reduction in box loss, segmentation loss, classification loss, and 

distribution focal loss in both training and validation stages, 

suggesting the model’s improving performance across iterations. 

Furthermore, evaluation metrics—such as precision, recall, and 

mAP50—show a continuous increase and stabilization, indicating 

the model’s convergence and enhanced diagnostic accuracy.

TABLE 2 Data for performance metrics.

Class Sensitivity Specificity Positive predictive value Negative predictive value Youden index

Disc bulge 0.905 0.962 0.905 0.962 0.867

Disc protrusion 0.897 0.956 0.929 0.935 0.853

Intervertebral disc 1.000 0.983 0.933 1.000 0.983

Schmorl’s nodes 1.000 1.000 1.000 1.000 1.000

FIGURE 4 

Examples of successful identifications.
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4 Discussion

Intervertebral disc disease, particularly abnormalities such as 

bulging and herniated discs and Schmorl’s nodes, usually manifests 

itself clinically as varying degrees of back pain, lumbago, and 

neurologic dysfunction. However, morphological changes in 

intervertebral discs are often subtle and these changes manifest 

differently between patients. Traditional imaging analysis methods 

rely on physicians’ experience and subjective judgment, which are 

susceptible to operational errors and differences in diagnosticians’ 

experience. Therefore, intelligent classification of intervertebral disc 

abnormalities using automated deep learning methods can not only 

FIGURE 5 

Change curves of loss functions and evaluation metrics during training and validation.
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improve diagnostic accuracy, but also reduce the interference of 

human factors and significantly improve diagnostic and treatment 

efficiency (24, 25).

In this study, deep learning techniques were applied to 

segmentation of intervertebral disc conditions (26). In recent meta- 

analyses, deep learning-based segmentation models for lumbar 

intervertebral discs (IVDs) have demonstrated exceptional 

accuracy, with pooled Dice Similarity Coefficients (DSC) reaching 

0.900 (95% CI: 0.887–0.914). Notably, Deeplab variants have 

achieved DSC values as high as 0.930 in multi-center datasets (27), 

while U-Net variants have consistently performed with DSC values 

above 0.897 (28). These findings reinforce the high reliability of 

deep learning models in IVD segmentation and provide a solid 

foundation for the anomaly classification task. Large datasets of CT 

images were screened, preprocessed, renamed, and annotated.

The deep learning-based method for classifying intervertebral 

disc abnormalities proposed in this study demonstrated significant 

advantages in automated diagnosis of intervertebral disc disease. To 

further validate the effectiveness of the proposed YOLOv8-based 

classifier, we conducted a comprehensive comparison with several 

baseline models, including YOLOv5, YOLOv3, and Faster R-CNN, 

using the same dataset. As summarized in Table 3, YOLOv8 

consistently outperformed these models across multiple evaluation 

metrics, achieving an accuracy of 93.2%, compared to 

approximately 86.5% for YOLOv5, 78.4% for YOLOv3, and 91.9% 

for Faster R-CNN under identical experimental conditions. These 

results corroborate previous studies highlighting YOLOv8’s 

enhanced architecture, which delivers superior mean average 

precision (mAP), particularly in detecting smaller lesions (23). 

Furthermore, YOLOv8 exhibited significantly lower inference 

latency than Faster R-CNN, enhancing its suitability for real-time 

clinical applications (29, 30). Similar comparative studies report 

YOLOv8 mAP50 values ranging from 71% to 94%, consistently 

surpassing those of Faster R-CNN (31). Collectively, these findings 

confirm that YOLOv8 provides an optimal b alance of accuracy, 

sensitivity, and speed, reinforcing its suitability for accurate and 

efficient intervertebral disc classification.

By using the YOLOv8-seg model to learn from preprocessed data, 

a segmentation model is built and disc conditions are segmented. 

We not only achieved a 93.2% correct classification rate in terms 

of accuracy, but also obtained a kappa coefficient of 0.905 

(P < 0.001), indicating that the model has a high degree of 

reliability and consistency in clinical practice. The classification 

model demonstrated strong performance in four categories of 

intervertebral disc disease. Both the “intervertebral disc” and 

“Schmorl’s node” categories achieved perfect sensitivity and 

specificity values of 1.00, re/ecting the clear and easily 

distinguishable characteristics of these diseases on medical imaging. 

In contrast, the sensitivities for “bulging disc” and “herniated disc” 

were slightly reduced (0.905 and 0.897, respectively), although their 

specificities remained high (0.962 and 0.956), indicating the 

model’s effectiveness in accurately excluding these conditions. The 

reduced sensitivity may be due to the morphological similarity 

between bulging and protruding discs, which may lead to 

occasional misclassification. Nevertheless, the model demonstrated 

strong positive predictive value (PPV) and negative predictive value 

(NPV) in all categories, with “Schmorl’s Nodes” achieving a perfect 

PPV and NPV score of 1.00. The overall performance of the model 

is further emphasized by the Youden Index, with Schmorl’s Nodes 

achieving the highest value (1.00), followed by Disc Bulge at 0.983. 

While Disc Bulge and Disc Protrusion achieve a perfect PPV and 

NPV score of 1.00, Schmorl’s Nodes achieves a perfect PPV and 

NPV score of 1.00. “Disc Bulge” and “Disc Protrusion” were 

slightly lower, the model maintained a good balance between 

sensitivity and specificity, especially in minimizing false positives. 

The above results indicate that the model effectively differentiates 

between various disc diseases. And compared to previous studies, 

we accurately differentiated between pathologic patterns such as 

bulging and herniated discs with greater accuracy (26, 32). It 

demonstrates the strong potential of the model in the diagnosis of 

intervertebral disc diseases, which can effectively compensate for 

the limitations in the traditional manual image analysis methods.

Combined with deep learning technology, the automated 

classification of intervertebral disc abnormalities not only provides 

strong support in imaging screening, but also facilitates early 

diagnosis and follow-up management of the disease (33). In the 

early stages of degenerative disc disease, automated identification 

using AI models can help detect signs of disease early, leading to 

individualized intervention and treatment. In addition, during 

post-operative follow-up, automated analysis based on deep 

learning can effectively monitor the disc health status of post- 

operative patients, preventing and timely detecting potential 

complications, such as the progression of degenerative disc changes 

or post-operative complications. With the automated analysis of 

the AI system, the patient’s diagnosis will be more accurate, which 

is conducive to the clinician’s adoption of an individualized 

treatment plan, thus optimizing the allocation of medical resources.

Despite the relatively favorable results of this study, the clinical 

application of deep learning models still faces some challenges. In 

clinical practice, image features of disc abnormalities have large 

individual variations, and different scanning equipment and 

scanning parameters may affect image quality and feature 

extraction. A key limitation of this study is that the dataset is 

relatively small, containing 574 images, which may not fully capture 

the range of variations encountered in clinical practice. This 

constraint may undermine the model’s ability to generalize, as deep 

learning models typically require large, diverse datasets to effectively 

distinguish subtle differences between conditions. In addition, class 

imbalances in the dataset may affect model performance. 

Specifically, a dataset containing a disproportionate number of 

herniated disc cases may bias the model toward better performance 

in that class. In contrast, cases with smaller samples, such as 

Schmorl nodes, may be underrepresented, which reduces the 

model’s sensitivity to these less common cases. Therefore, in future 

TABLE 3 Comparison of classification results on the same dataset.

Model Correct/Total Accuracy (%)

YOLOv8 69/74 93.2%

YOLOv5 64/74 86.5%

YOLOv3 58/74 78.4%

Faster R-CNN 68/74 91.9%
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studies, the training dataset needs to be further extended to cover more 

multicenter data to improve the model’s adaptability to different types 

and devices. While the conditions of normal, bulge, and protrusion 

discs can be clearly distinguished according to established diagnostic 

guidelines, we fully acknowledge that a disc may present both 

protrusion and Schmorl’s node. In our current study, we addressed 

only a single condition at a time. This limitation will be addressed in 

future research, where we plan to explore multi-label cases, enabling 

the model to better handle such complex scenarios and enhance its 

diagnostic accuracy for combined pathologies.

5 Conclusion

In summary, this study tackles the challenges associated with 

diagnosing intervertebral disc abnormalities using traditional 

methods and proposes a deep learning-based classification 

approach for automated diagnosis. The YOLOv8-seg model 

presented in this research effectively classifies four types of 

intervertebral disc conditions—intervertebral disc, Schmorl’s nodes, 

disc bulges, and disc protrusions—thereby aiding in the diagnostic 

process, alleviating the workload of radiologists, and enhancing 

diagnostic consistency. The model’s strong performance, 

particularly in terms of specificity, positive predictive value, and 

negative predictive value, underscores its potential to improve 

clinical decision-making and patient outcomes.

Nevertheless, the study has certain limitations. The relatively 

small sample size used for training and validation may hinder the 

model’s generalization to larger and more diverse populations, and 

some misclassifications, especially between disc bulges and disc 

protrusions, persist. Future research will aim to overcome these 

limitations by expanding the dataset and exploring alternative 

model architectures and techniques to further enhance classification 

accuracy and robustness in varied clinical environments. 

Furthermore, cross-validation will be incorporated in future work to 

ensure more reliable and unbiased performance evaluation. 

Multicenter validation is also necessary to assess the model’s 

effectiveness across different imaging protocols, scanner types, and 

patient populations. Such validation would enhance the reliability of 

the findings and help uncover potential biases associated with single- 

center data. In this study, we focused on single-condition cases. This 

limitation will be addressed in future research, where we plan to 

explore multi-label scenarios and expand our analysis to enhance the 

model’s ability to classify more complex, coexisting pathologies.
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