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Background: Intervertebral disc anomalies, such as degeneration and herniation,
are common causes of spinal disorders, often leading to chronic pain and
disability. Accurate diagnosis and classification of these anomalies are critical for
determining appropriate treatment strategies. Traditional methods, such as
manual image analysis, are prone to subjectivity and time-consuming. With the
advancements in deep learning, automated and precise classification of
intervertebral disc anomalies has become a promising alternative.

Objective: This study aims to propose a deep learning-based method for
classifying intervertebral disc abnormalities, with the goal of improving
diagnostic accuracy and clinical efficiency in spinal health management.
Methods: From August 2021 to March 2024, a dataset consisting of 574 CT
images of intervertebral discs was collected and labeled into four clinically
relevant categories: normal intervertebral discs, Schmorl's nodes, disc bulges,
and disc protrusions. The dataset was divided into 500 images for model
training, and 74 images for validation. A YOLOv8-seg network was employed
for classification, with multiple preprocessing techniques applied to ensure
data consistency and enhance model performance.

Results: The IDAICS demonstrated high accuracy in classifying various
intervertebral disc anomalies, including disc degeneration, herniation, and
bulging, with a classification accuracy of over 93.2%, with a kappa coefficient of
0.905 (P<0.001).

Conclusion: This deep learning-based classification approach provides an efficient
and reliable alternative to manual assessment, enabling automated diagnosis of
intervertebral disc abnormalities. It offers significant potential to enhance clinical
decision-making and improve spinal health management outcomes.

KEYWORDS

intervertebral disc abnormalities, deep learning, YOLOv8-seg, CT, automated
diagnosis, classification accuracy, spinal health

1 Introduction

As one of the main manifestations of degenerative spinal disease, disc abnormalities range
in condition from the common bulging and herniated discs to the complex Schmorl’s nodes.
They seriously affect patients’ quality of life and can lead to chronic pain, motor dysfunction
and even paraplegia (1, 2). In recent years, MRI (Magnetic Resonance Imaging) is a better
clinical standard for diagnosing disc abnormalities than CT (Computed Tomography)
(3, 4). However, the cost of using MRI is high, the examination time is long, and some
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patients suffer from claustrophobia and cannot accept MRI
examination (5, 6). CT remains widely utilized in clinical practice
due to its speed and accessibility, particularly in emergency and
outpatient settings, making it an essential diagnostic tool in specific
clinical scenarios. And due to the complexity and diversity of
clinical imaging data, traditional manual assessment methods are
often influenced by subjective factors, resulting in certain
limitations in diagnostic accuracy and consistency. Correct
diagnosis is a prerequisite for adopting the correct treatment
modality and plays a decisive role in the regression of the patient’s
condition. Therefore, there is an urgent need for a more efficient,
accurate, and automated system to assist in the early screening and
classification of disc abnormalities.

Manual classification of intervertebral disc abnormalities
presents substantial challenges due to subtle morphological
differences among conditions. Disc bulges, and protrusions, for
instance, often appear visually similar on imaging, though each
has distinct characteristics regarding disc shape, size, and
displacement. Differentiating these variations requires expertise
and is susceptible to influence between observers, even among
experienced radiologists. Factors such as image resolution,
anatomical variability, and overlapping features across abnormality
types further complicate accurate classification. These challenges
underscore the need for standardized, automated methods to
enhance diagnostic consistency and precision in identifying
intervertebral disc conditions. Employing deep learning models for
automated classification has the potential to significantly enhance
diagnostic accuracy, reduce radiologists’ workload, and support
more standardized treatment planning, ultimately improving
patient outcomes in spinal health care (7-9).

Deep learning has emerged as a vital tool in clinical medicine,
especially for reading and diagnosing medical images. By rapidly
identifying abnormal structures or regions within patient
images, deep learning supports physicians in making accurate
diagnostic decisions. Research on deep learning in medical
image analysis spans applications including liver (10), pancreas
(11), lung (12)and breast cancer (13, 14). Additionally, studies
have evaluated AD's potential in tasks such as esophageal
segmentation (15) and kidney analysis (16), where reducing
inter-observer variability and excluding artifact-affected regions
are crucial. Despite these advances, artificial intelligence remains
an emerging field in orthopedic imaging, with significant scope
for further development (17-21). This study aims to develop
an automated classification system for intervertebral disc
abnormalities using a novel approach based on the YOLOvS-seg
deep learning model, designed to streamline the complex
manual diagnosis process. The system categorizes intervertebral
disc conditions into four clinically relevant categories: normal
intervertebral discs, Schmorl’s nodes, disc bulges, and disc
protrusions. By achieving accurate classification, the proposed

Abbreviations

MRI, magnetic resonance imaging; CT, computed tomography; Al, artificial
intelligence; DSC, dice similarity coefficient; C2f, cross stage partial (module);
SPPF, spatial pyramid pooling fast; PANet, path aggregation network; ECA,
efficient channel attention; PPV, positive predictive value; NPV, negative
predictive value.
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system is expected to support timely clinical decisions,

ultimately enhancing patient outcomes.

2 Materials and methods

2.1 Study subjects

This study utilizes a dataset of CT images, comprising 574 images
collected at our hospital from August 2021 to March 2024,
representing a range of intervertebral disc conditions. The dataset
includes both abnormal cases, such as Schmorl’s nodes, disc bulges,
and disc protrusions, as well as normal disc images to provide a
baseline for comparison. All CT images are 2D slices extracted from
3D scans. Axial and sagittal slices were processed independently,
each capturing lesion characteristics from distinct anatomical
perspectives, thereby enabling a complementary assessment of disc
pathology. To ensure image quality, strict inclusion criteria were
applied to exclude images with significant artifacts, low resolution,
or incomplete visualization of the disc space. Each image was
labeled by with
classifications guided by established clinical and radiological criteria

reviewed and experienced  radiologists,
for intervertebral disc conditions. To ensure consistency, the
labeling process involved inter-rater agreement among multiple
radiologists. Any discrepancies between the radiologists’ labels were
resolved through consensus discussions, ensuring high agreement

and minimizing subjectivity in the final dataset.

2.2 YOLOv8-seg-Based intervertebral disc
conditions classification

This study proposes a classification method for intervertebral disc
conditions using the YOLOVS-seg deep learning network. The output
of the model classifies intervertebral disc conditions into one of four
categories: normal, Schmor!l’s nodes, bulge, or protrusion. Both axial
and sagittal view slices were utilized in the model to provide
comprehensive information. The YOLOv8-seg model is trained on
a large dataset of pre-labeled CT images, each depicting distinct
disc conditions. By extracting unique features for each type of
intervertebral disc condition, the model uses these features as
inputs to classify corresponding test images with high accuracy.
This approach enables the model to reliably distinguish between
normal intervertebral discs, Schmorl’s nodes, disc bulges, and disc
thereby supporting automated and consistent
diagnosis. The model was trained on an Nvidia 4090 24GB GPU,
providing the computational power necessary for efficient model

protrusions,

training and high-performance processing of large image datasets.

2.2.1 Data preprocessing

To optimize the CT images for input into the YOLOV8-seg
model, several preprocessing steps were applied. First, the images
were standardized by converting them from their original black-
and-white format to grayscale. This conversion reduces the number
of image channels, which enhances processing efficiency. It is
especially important because the global training label is a grayscale
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image with a single channel, where pixel values range from 0 to 255.
In this system, pixel values corresponding to the four intervertebral
disc types are labeled as 1, 2, 3, and 4, respectively, while the
background pixels are assigned a value of 0. Grayscale conversion
was carried out using the Python PIL library, ensuring consistency
between the input images and training labels. In addition,
significant variations in image scale can lead to inconsistencies in
feature extraction, adversely affecting the speed and accuracy of
model training. To address this issue and mitigate the impact of
scale variations on feature extraction, the images were resized to a
uniform resolution(512 x 512 pixels), ensuring they met the input
requirements of the YOLOv8-seg model. This resizing process was
also performed using the PIL library, standardizing the image
dimensions for the iterative learning network. To alleviate the
imbalance of dataset samples, we applied real-time data
augmentation techniques during the training phase, including
horizontal flipping. These enhancements were implemented
through the built-in augmentation module of YOLOv8-seg, aiming
to improve the generalization ability of the model without
introducing bias into the test set.

2.2.2 Dataset construction

The dataset used in this study was constructed through
collaboration with experienced clinicians at our hospital following
data preprocessing procedures. The annotation process was
performed manually using LabelMe (22), a tool available in
Anaconda, to annotate the images. Two board-certified radiologists
conducted fully manual contouring for each disc abnormality at
the pixel level. The labels were derived solely from the imaging
features, adhering to standardized radiological criteria. These

10.3389/fradi.2025.1646008

annotations were then processed and used for deep learning model
training. Using the Imaging Labeling system, radiologists classified
and labeled CT images, which were subsequently divided into
training and validation sets for deep learning network training. The
dataset consists of 574 images in total, with 500 images allocated
for training and 74 images for validation. The training set includes
images categorized into four intervertebral disc condition types:
104 intervertebral discs, 57 Schmorl’s nodes, 128 disc bulges, and
211 disc protrusions. The radiological definitions for these
conditions are as follows: normal intervertebral discs are located
between two adjacent vertebrae without extending beyond their
edges; Schmorl’s nodes refer to the protrusion of the nucleus
pulposus into the vertebral body through cracks in the upper and
lower cartilage end plates; disc bulges are characterized by a
protrusion that exceeds 25% of the disc edge or an angle between
the two sides of the protrusion and the center of the nucleus
pulposus greater than 90°% and disc protrusions are defined by a
protrusion of less than 25% of the disc edge, with the base of the
protrusion larger than the protrusion itself and an angle between
the protrusion sides and the center of the nucleus pulposus of less
than 90°. The validation set comprises 14 normal intervertebral
discs, 10 Schmorl’s nodes, 21 disc bulges, and 29 disc protrusions,
and was used to evaluate the model’s performance. Figure 1 shows
the count of instances for each intervertebral disc condition type
across the training and validation sets.

2.2.3 Applying convolutional neural networks
to extract features

For the intervertebral disc condition classification task,
training images are first input into the YOLOv8-seg network,
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which is designed to perform both object detection and instance
segmentation (23). This end-to-end architecture simultaneously
conducts object localization, classification, and pixel-level
mask generation. The backbone network extracts multi-scale
through a hybrid FPN-

PANet neck to capture detailed disc morphology across

features, which are integrated
varying spatial scales. Figure 2 illustrates the overall framework
of the proposed YOLOvS8-seg-based method, including input
images, model architecture, and output results. In a single
forward pass, the network directly outputs bounding boxes,
classification scores, and instance masks. A composite loss
function is applied, comprising Focal Loss for classification to
address sample imbalance, CloU Loss for bounding box
regression to account for overlap, center distance, and aspect
Dice-BCE
to optimize both mask boundary delineation and pixel-

ratioo and a combination for segmentation

level accuracy.

2.2.4 Training configuration

The YOLOvS-seg model was trained for 150 epochs with a
batch size of 16. An initial learning rate of 0.001 was used for
all experiments. These hyperparameters were selected based
on empirical performance and training stability observed in
preliminary experiments.

10.3389/fradi.2025.1646008

2.3 Evaluation indicators

In this study, the performance of the automated classification
system was evaluated using several key metrics derived from the
classification results of the test set. The primary indicators
for assessing model performance were the overall correct
and the The
classification rate represents the proportion of correctly classified

classification rate kappa coefficient. correct
samples relative to the total number of samples, serving as a general
measure of accuracy. The kappa coefficient quantifies the
consistency between the model’s predictions and the true labels,
with values closer to 1 indicating stronger agreement. Given that the
YOLOV8-seg model is a multi-class classification network, the
evaluation was conducted for each intervertebral disc condition by
treating the problem as a multi-class classification task. For each
category, the following metrics were computed: sensitivity,
specificity, positive predictive value (PPV), negative predictive value
(NPV), and the Youden index. Sensitivity (or recall) assesses the
model’s ability to correctly identify true positives, while specificity
evaluates its ability to correctly identify true negatives. PPV reflects
the precision of positive classifications, and NPV gauges the
reliability of negative classifications. The Youden index combines
sensitivity and specificity into a single value, providing a balanced
measure of performance across both positive and negative

classifications. Collectively, these evaluation metrics provide a
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Framework of the proposed YOLOvV8-seg-based method for intervertebral disc condition classification.
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comprehensive assessment of the model’s ability to accurately classify
intervertebral disc abnormalities, ensuring its potential clinical utility
and applicability in real-world settings.

3 Results

The classification results for intervertebral disc conditions
demonstrate the model’s high accuracy across multiple categories.
Relevant data are provided in Table 1, which details the counts of
disc bulge, disc protrusion, intervertebral disc, and Schmorl’s nodes
in both the true and predicted categories. In the overall
classification, comprising 74 images and 74 instances, the model
correctly identified 69 instances and misclassified 5. For the “disc
bulge” category, which includes 21 samples, 19 were correctly

TABLE 1 Counts of four categories in true and predicted classes.

10.3389/fradi.2025.1646008

predicted, and 2 were misclassified as disc protrusion. In the “disc
protrusion” category, with 29 samples, 26 were correctly identified,
while 3 were misclassified as disc bulge. The “intervertebral disc”
category, containing 14 samples, was perfectly classified, with all 14
instances correctly identified. Similarly, in the “Schmorl’s nodes”
category, which included 10 samples, all 10 instances were accurately
identified. Figure 3 further emphasizes the model’s performance by
illustrating the proportions of correct and incorrect predictions for
each class. The overall classification performance is further assessed
through the model’s sensitivity, specificity, positive predictive value,
negative predictive value, and Youden index for each category.
These metrics provide a thorough understanding of the model’s
diagnostic efficacy. The corresponding data for these performance
metrics are summarized in Table 2. Examples of successful
identifications are presented in Figure 4. Figure 5 displays the

Intervertebral disc Schmorl’s nodes

True\predicted Disc bulge Disc protrusion
Disc bulge 19 2 0 0
Disc protrusion 2 26 1 0
Intervertebral disc 0 0 14 0
Schmorl’s nodes 0 0 0 10
Confusion Matrix Normalized i
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FIGURE 3
Normalized confusion matrix for intervertebral disc condition classification.
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change curves of loss functions and evaluation metrics throughout the

training and validation processes. These curves demonstrate a steady

reduction in box loss, segmentation loss, classification loss, and

distribution focal loss in both training and validation stages,

TABLE 2 Data for performance metrics.

Disc bulge 0.905
Disc protrusion 0.897
Intervertebral disc 1.000
Schmorl’s nodes 1.000

0.962
0.956
0.983
1.000

0.905
0.929
0.933
1.000

10.3389/fradi.2025.1646008

suggesting the model’s improving performance across iterations.
Furthermore, evaluation metrics—such as precision, recall, and
mAP50—show a continuous increase and stabilization, indicating
the model’s convergence and enhanced diagnostic accuracy.

Specificity | Positive predictive value | Negative predictive value

0.962 0.867
0.935 0.853
1.000 0.983
1.000 1.000

disc bulge 1.0

Q‘J ;

disc bulge 0.9,

oM

FIGURE 4
Examples of successful identifications.
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FIGURE 5
Change curves of loss functions and evaluation metrics during training and validation.

4 Discussion

Intervertebral disc disease, particularly abnormalities such as
bulging and herniated discs and Schmorl’s nodes, usually manifests

itself clinically as varying degrees of back pain, lumbago, and
neurologic dysfunction. However, morphological changes in

Frontiers in Radiology

intervertebral discs are often subtle and these changes manifest
differently between patients. Traditional imaging analysis methods
rely on physicians’ experience and subjective judgment, which are
susceptible to operational errors and differences in diagnosticians’
experience. Therefore, intelligent classification of intervertebral disc
abnormalities using automated deep learning methods can not only
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improve diagnostic accuracy, but also reduce the interference of
human factors and significantly improve diagnostic and treatment
efficiency (24, 25).

In this study, deep learning techniques were applied to
segmentation of intervertebral disc conditions (26). In recent meta-
analyses, deep learning-based segmentation models for lumbar
(IVDs)
accuracy, with pooled Dice Similarity Coefficients (DSC) reaching
0.900 (95% CI: 0.887-0.914). Notably, Deeplab variants have
achieved DSC values as high as 0.930 in multi-center datasets (27),

intervertebral  discs have demonstrated exceptional

while U-Net variants have consistently performed with DSC values
above 0.897 (28). These findings reinforce the high reliability of
deep learning models in IVD segmentation and provide a solid
foundation for the anomaly classification task. Large datasets of CT
images were screened, preprocessed, renamed, and annotated.

The deep learning-based method for classifying intervertebral
disc abnormalities proposed in this study demonstrated significant
advantages in automated diagnosis of intervertebral disc disease. To
further validate the effectiveness of the proposed YOLOv8-based
classifier, we conducted a comprehensive comparison with several
baseline models, including YOLOv5, YOLOv3, and Faster R-CNN,
using the same dataset. As summarized in Table 3, YOLOv8
consistently outperformed these models across multiple evaluation
metrics, achieving an accuracy of 932%, compared to
approximately 86.5% for YOLOv5, 78.4% for YOLOv3, and 91.9%
for Faster R-CNN under identical experimental conditions. These
highlighting YOLOV8’s
enhanced architecture, which delivers superior mean average

results corroborate previous studies
precision (mAP), particularly in detecting smaller lesions (23).
Furthermore, YOLOV8 exhibited significantly lower inference
latency than Faster R-CNN, enhancing its suitability for real-time
clinical applications (29, 30). Similar comparative studies report
YOLOvV8 mAP50 values ranging from 71% to 94%, consistently
surpassing those of Faster R-CNN (31). Collectively, these findings
confirm that YOLOV8 provides an optimal b alance of accuracy,
sensitivity, and speed, reinforcing its suitability for accurate and
efficient intervertebral disc classification.

By using the YOLOV8-seg model to learn from preprocessed data,
a segmentation model is built and disc conditions are segmented.
We not only achieved a 93.2% correct classification rate in terms
of accuracy, but also obtained a kappa coefficient of 0.905
(P<0.001), indicating that the model has a high degree of
reliability and consistency in clinical practice. The classification
model demonstrated strong performance in four categories of
intervertebral disc disease. Both the “intervertebral disc” and
“Schmorl’s node” categories achieved perfect sensitivity and
of 1.00,

distinguishable characteristics of these diseases on medical imaging.

specificity values reflecting the clear and easily

TABLE 3 Comparison of classification results on the same dataset.

‘m Correct/Total Accuracy (%)

YOLOvS 69/74 93.2%
YOLOvV5 64/74 86.5%
YOLOv3 58/74 78.4%
Faster R-CNN 68/74 91.9%

Frontiers in Radiology
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In contrast, the sensitivities for “bulging disc” and “herniated disc”
were slightly reduced (0.905 and 0.897, respectively), although their
specificities remained high (0.962 and 0.956), indicating the
model’s effectiveness in accurately excluding these conditions. The
reduced sensitivity may be due to the morphological similarity
between bulging and protruding discs, which may lead to
occasional misclassification. Nevertheless, the model demonstrated
strong positive predictive value (PPV) and negative predictive value
(NPV) in all categories, with “Schmorl’s Nodes” achieving a perfect
PPV and NPV score of 1.00. The overall performance of the model
is further emphasized by the Youden Index, with Schmorl’s Nodes
achieving the highest value (1.00), followed by Disc Bulge at 0.983.
While Disc Bulge and Disc Protrusion achieve a perfect PPV and
NPV score of 1.00, Schmorl’s Nodes achieves a perfect PPV and
NPV score of 1.00. “Disc Bulge” and “Disc Protrusion” were
slightly lower, the model maintained a good balance between
sensitivity and specificity, especially in minimizing false positives.
The above results indicate that the model effectively differentiates
between various disc diseases. And compared to previous studies,
we accurately differentiated between pathologic patterns such as
bulging and herniated discs with greater accuracy (26, 32). It
demonstrates the strong potential of the model in the diagnosis of
intervertebral disc diseases, which can effectively compensate for
the limitations in the traditional manual image analysis methods.
Combined with deep learning technology, the automated
classification of intervertebral disc abnormalities not only provides
strong support in imaging screening, but also facilitates early
diagnosis and follow-up management of the disease (33). In the
early stages of degenerative disc disease, automated identification
using AI models can help detect signs of disease early, leading to
individualized intervention and treatment. In addition, during
post-operative follow-up, automated analysis based on deep
learning can effectively monitor the disc health status of post-
operative patients, preventing and timely detecting potential
complications, such as the progression of degenerative disc changes
or post-operative complications. With the automated analysis of
the Al system, the patient’s diagnosis will be more accurate, which
is conducive to the clinician’s adoption of an individualized
treatment plan, thus optimizing the allocation of medical resources.
Despite the relatively favorable results of this study, the clinical
application of deep learning models still faces some challenges. In
clinical practice, image features of disc abnormalities have large
individual variations, and different scanning equipment and
scanning parameters may affect image quality and feature
extraction. A key limitation of this study is that the dataset is
relatively small, containing 574 images, which may not fully capture
the range of variations encountered in clinical practice. This
constraint may undermine the model’s ability to generalize, as deep
learning models typically require large, diverse datasets to effectively
distinguish subtle differences between conditions. In addition, class
imbalances in the dataset may affect model performance.
Specifically, a dataset containing a disproportionate number of
herniated disc cases may bias the model toward better performance
in that class. In contrast, cases with smaller samples, such as
Schmorl nodes, may be underrepresented, which reduces the
model’s sensitivity to these less common cases. Therefore, in future

frontiersin.org



Gao et al.

studies, the training dataset needs to be further extended to cover more
multicenter data to improve the model’s adaptability to different types
and devices. While the conditions of normal, bulge, and protrusion
discs can be clearly distinguished according to established diagnostic
guidelines, we fully acknowledge that a disc may present both
protrusion and Schmorl’s node. In our current study, we addressed
only a single condition at a time. This limitation will be addressed in
future research, where we plan to explore multi-label cases, enabling
the model to better handle such complex scenarios and enhance its
diagnostic accuracy for combined pathologies.

5 Conclusion

In summary, this study tackles the challenges associated with
diagnosing intervertebral disc abnormalities using traditional
methods and proposes a deep learning-based classification
approach for automated diagnosis. The YOLOv8-seg model
presented in this research effectively classifies four types of
intervertebral disc conditions—intervertebral disc, Schmorl’s nodes,
disc bulges, and disc protrusions—thereby aiding in the diagnostic
process, alleviating the workload of radiologists, and enhancing
diagnostic consistency. The model’s strong performance,
particularly in terms of specificity, positive predictive value, and
negative predictive value, underscores its potential to improve
clinical decision-making and patient outcomes.

Nevertheless, the study has certain limitations. The relatively
small sample size used for training and validation may hinder the
model’s generalization to larger and more diverse populations, and
some misclassifications, especially between disc bulges and disc
protrusions, persist. Future research will aim to overcome these
limitations by expanding the dataset and exploring alternative
model architectures and techniques to further enhance classification
accuracy and robustness in varied clinical environments.
Furthermore, cross-validation will be incorporated in future work to
ensure more reliable and unbiased performance evaluation.
Multicenter validation is also necessary to assess the model’s
effectiveness across different imaging protocols, scanner types, and
patient populations. Such validation would enhance the reliability of
the findings and help uncover potential biases associated with single-
center data. In this study, we focused on single-condition cases. This
limitation will be addressed in future research, where we plan to
explore multi-label scenarios and expand our analysis to enhance the

model’s ability to classify more complex, coexisting pathologies.
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