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Mobile phone data provide high-resolution, near real-time measurements of
population mobility and have become an increasingly valuable source for public
health research, enabling rapid evaluation of policy impacts on human movement
and pandemic control. However, the methodological challenges surrounding the
extraction, governance, and validation of mobile phone data for the public health
community remain insufficiently explored. Following the PRISMA-ScR framework,
we conduct a scoping review to synthesize major research themes, opportunities,
and challenges in the use of mobile phone data for public health, particularly
pandemic-related studies. Our findings highlight limitations in the empirical use of
these datasets, including demographic and population coverage, representativeness,
and equity issues, as well as the transparency of data extraction and processing.
We also provide guidance for future research, including the development of
standardized frameworks for data curation and validation, a clear understanding
of algorithms that extract mobility information, and rigorous interpretation of
mobility metrics.

KEYWORDS
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Introduction

Human mobility, the movement of human beings across space and time, is a fundamental
determinant of disease transmission and public health dynamics (1, 2). However, measuring and
monitoring human mobility has traditionally been challenging due to limited data availability
and granularity (3). The widespread use of mobile phones and advances in big data technologies
have transformed this landscape, enabling large-scale, near-real-time tracking of human mobility
(4), offering insights that were previously unattainable (5). Capturing location information at
high spatial and temporal resolutions (6), mobile phone data allows continuous, rapid, and
detailed analysis of human behavior far beyond the capacity of traditional survey data (3).

In recent years, mobile phone data have attracted significant attention within the public
health community, as they provide valuable information for assessing the impact of health
policies and understanding transmission dynamics of infectious diseases (4, 7). They support
surveillance, forecasting, and evaluation of pandemics and have been widely used to analyze
the effects of Non-Pharmaceutical Interventions (NPIs) on population mobility (8). Diverse
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analytical perspectives and models have been developed to study
human behavior based on spatiotemporal features extracted from
various types of mobile phone data, facilitating research on mobility
patterns, social networks, disease transmission, and the evaluation of
control strategies (5). Despite these advances in mobile phone data,
concerns regarding personal privacy, data governance, and
methodological challenges persist, alongside the potential for misuse
of the data (5, 9).

Mobile phone generated data can be broadly categorized into two
types based on the source and the method of collection: signaling data
(and call detail records, CDRs) generated by phones during
communication with cell towers, and GPS/App-based data generated
by mobile Apps (Table 1). Mobile phones frequently ping nearby cell
towers, leaving a record of the signal data that can be used to
triangulate the phone’s location based on antenna connections (10). A
key advantage of mobile phone signaling data is that it provides
location information as long as the mobile phone is switched on, even
if it is not actively being used. CDRs typically contain the user ID,
timestamp, and cell tower location associated with calls, texts, or other
activities tied to the SIM card (7). In another way, GPS/App-based
data generated by Apps such as Google Maps and Baidu Maps, often
use global positioning system (GPS) services to record a device’s
location over time. GPS/App-based data offer greater accuracy in
terms of spatial precision and provide more frequent observations
than mobile signaling data (7). However, these data are usually
aggregated for privacy protection, often presented as population-level
data at specific point-of-interest (POIs) or locations. While GPS/
App-based data provide finer location details than mobile phone
signaling data, the latter is more representative of the broader
population since it is not limited to users of specific applications.

Despite the growing interest in and utilization of mobile phone
data in public health, significant methodological challenges are
associated with data extraction, data governance, and data quality for
mobile phone signaling data (3, 6). While there has been extensive
research using mobile phone data, no comprehensive review has
focused specifically on the empirical use of mobile phone signaling
data in public health. To address this gap, this article conducts a
scoping review on the use of mobile phone signaling data in public
health. Our review focuses on the mobile phone signaling data, while
the GPS/App-based mobile phone data warrants a separate review. We
have curated an extensive list of publications on the use of mobile
phone data in public health, synthesizing key themes, highlighting
both the opportunities and challenges of its application in pandemic
response efforts, and suggesting avenues for future research.

Methods
Overview
The scoping review follows the PRISMA-ScR (Preferred Reporting

Items for Systematic Reviews and Meta-Analyses Extension for

Abbreviations: NPIs, Non-Pharmaceutical Interventions; PRISMA-ScR, Preferred
Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping
Reviews; CDRs, Call Detail Records; GPS, Global Positioning System; POI, Point-

of-Interest; SES, Socioeconomic Status.
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Scoping Reviews) guidelines and adopts the Arksey and O’Malley
methodology framework (11).

Identifying the research question

The primary aim of this review was to examine the classification,
application, and methodological, societal, and data-related challenges
and opportunities of the empirical use of mobile phone data in public
health. The core research questions are:

(1) How have mobile phone data been used in public health
research, specifically for pandemic control?

(2) What are the key opportunities and challenges associated with
the use of mobile phone data for public health research?

Identifying relevant studies

The search strategy was developed by WJ, XC, and ZC. We
conducted a search across four major citation databases:
MEDLINE, PubMed, ScienceDirect, and Web of Science, covering
publications in English from January 1, 2012, to June 30, 2024.
The search strategy combined keywords related to mobile phone
data (“Cell phone” OR “Mobile Phone”) and mobility terms
(“Mobility” OR “Flow”) along with the pandemic (“COVID” OR
“Pandemic”). The search strategy was refined to ensure
comprehensive coverage of relevant themes (see Appendix Table 1
for details).

Study selection

Inclusion criteria of the review were: (1) studies focused on
population mobility, human movement, or related patterns; (2) studies
clearly described the applications of mobile phone data for illustrating
or measuring mobility patterns; (3) studies provided empirical
evidence in the context of the pandemic. Two reviewers (XC and W)
independently conducted the blind review process, screening titles
and abstracts to exclude studies that did not pertain to mobility,
pandemics, or healthcare utilization, secondary studies (e.g., review
articles), theoretical studies without empirical applications, and
studies lacking details on data sources. The full texts were assessed by
the two reviewers based on the metrics of the mobile phone data and
the study outcomes. Discrepancies when there was uncertainty (44%°)
or inconsistent decisions (9%') were resolved by a senior
reviewer (ZC).

Charting the data

Data from the included studies were charted by two reviewers (XC
and WJ), who identified key characteristics, including study title,
research theme, study region, study population, data source, mobility
metrics, main outcomes, and study findings. According to scoping
review guidelines, no studies were excluded based on quality, as the
aim was to identify gaps in the literature rather than assess
methodological rigor (11).
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TABLE 1 Comparing different types of mobile phone generated data.

10.3389/fpubh.2025.1728985

Type Subtype Description Providers Pros Cons
Mobile phone Continuous location Mobile service « Substantial coverage « Limited spatial and temporal
signaling data information about the cell operators of population granularity of data
tower that a handset is « Passive continuous « Duplicate identification in multi-SIM
connected to as long as it is connectivity logs without user scenarios
Mobile phone switched on user consent permission
data Call detail records Duration, timestamp and Mobile service « Cost-effectiveness and o SIM card event-driven records
(CDRs) location information of user | operators high availability with discontinuity
communication activities « With population « Duplicate identification issues for
representativeness multi-SIM users
« Limited spatiotemporal resolution
GPS/App- GPS related data GPS data collected and Major Tech firms o Precise location « Lack of transparency in data generation
based data from location aggregated from smartphone | (such as Google, information « Lack of representativeness
intelligence firms applications Twitter, Baidu) « Restricted outputs indexes

Collating, summarizing, and reporting the
findings

A PRISMA flowchart (Figure 1) was developed to track the
selection process. The findings were synthesized to identify key
patterns and relationships across studies, and a Sankey diagram was
used to visualize the distribution of research themes, mobility metrics,
and outcome domains.

Results
Overview

A total of 921 records were retrieved from database searches and
imported into alocal citation database via Zotero 6.0. After de-duplication,
it yielded a list of 427 citations. Following an initial screening of titles and
abstracts, 133 citations were excluded due to irrelevance. Among the
remaining 294 full-text articles, 210 were excluded because of non-public
health outcomes ( = 84) or incorrect data type (n = 126; specific reasons
for exclusion are presented in Figure 1). Ultimately, 84 articles met the
inclusion criteria and were included in the final review. A narrative and
numerical summary of study characteristics was presented and tabulated
in the Appendix Table 2. Four key themes with important implications
emerged from our review of mobile phone data applications in pandemic
control-related research.

Tracking population mobility

A total of 25 studies (30%) focused on analyzing mobility
patterns using mobile phone data. Jia and colleagues were the first to
use real-time mobile phone data to assess the spatio-temporal
dynamics of the COVID-19 spread in China (12). Using national
aggregated mobile operator data, Lu et al. established the correlation
between population mobility and disease transmission (1). Luo et al.
analyzed the mobility patterns among different populations and how
they influence the risks of disease transmission (13). Aside from
China, an extensive list of research used mobile phone signaling data
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in public health research exists, analyzing the associations between
human mobility and coronavirus spread in the US (14-19), Latin
America (20), Ireland (4), Spain (6, 21), Brazil (22), Ecuador (23),
Japan (24), Finland (25), and globally (26). However, in the later
stages of the pandemic, the association between mobility metrics
derived from mobile phone data and COVID-19 incidence growth
rates gradually weakened following the lifting of initial stay-at-home
orders (27). Other studies explored the socioeconomic impacts of
mobility changes, linking mobility data with demographic
characteristics (21, 28), economic distress (16), and health outcome
indicators (29).

Evaluation of non-pharmaceutical
interventions

Thirty-six studies (43%) evaluated the effectiveness of multiple
NPIs using mobile phone data, which were adapted as primary
measures to restrain the spread of COVID-19 globally before the
introduction of effective vaccinations. Many studies assessed social
distancing (30-39) and lockdown policies (40-46) across different
countries, highlighting their role in mitigating the spread of COVID-
19. Research also showed that less aggressive interventions, such as
remote working and closures of non-essential businesses, had varied
impacts depending on the country (47-54). Notably, a study covering
135 countries found significant reductions in mobility due to travel
restrictions during the first wave of the pandemic (55); however, other
studies emphasized spontaneous reductions in mobility that occurred
regardless of government actions and a ‘floor’ phenomenon (19).

Predictive modeling of disease
transmission

Incorporating mobility parameters—either tuned or estimated from
mobile phone data—into epidemiological models enhances their ability
to simulate outbreak dynamics under varying conditions. A total of 23
studies (27%) integrated mobile phone data into epidemiological models
to predict disease spread. These models helped simulate outbreak

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1728985
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Cheng et al. 10.3389/fpubh.2025.1728985
)
Records identified through database searching in
- MEDLINE, PubMed, ScienceDirect, Web of
£ Science (n=921)
8
b=
5
o] Duplicates removed (n=494)
N—
Initial records for primary screening (n=427)
)
&0 Records excluded after title and abstract screening (n=133)
'E -Not original research (n=17)
g »  -Irrelevant to mobility patterns (n=64)
n -Irrelevant to Covid/Pandemic (n=19)
-Theoritical studies without empirical applicating (n=33)
N—
TN Full-text articles assessed for eligibility (n=294)
g Records excluded after full-text screening (n=210)
= -Non-public health outcomes (n=84)
én -Incorrect data type (n=126)
-Only App-based data (n=68)
-Only GPS data (n=25)
\ ) -Only mHealth data (n=2)
-Using survey data (n=18)
) -Non-mobile phone generated data (n=13)
Y
= . . . .
e Final records included in the review (n=84)
% -Articles on mobility trends: 33
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FIGURE 1
PRISMA flowchart of the literature search process.

trajectories in various regions, including Chinese cities and worldwide
(56-69). A notable study combined mobile phone data with genomics to
track coronavirus variants in Bangladesh, revealing how large-scale
human migration from urban to rural areas influenced viral diversity (70).
Social factors, such as sociodemographic characteristics, were also
examined, showing how mobility differences contributed to infection
rates in disadvantaged groups (56, 71). Other researchers highlighted that
socioeconomic factors, such as education, household size, and the
proportion of the Latinx population, have consistent positive relationships
with COVID-19 prevalence over time (72).

Implications for health equity
A sheer body of studies highlighted the potential of mobile phone

data to analyze health inequality issues. Research on gender-specific
mobility patterns (73), age-group mobility (74-76), and socioeconomic
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status (SES) (77-79) revealed disparities in COVID-19 transmission risks.
Studies also showed that NPIs affected populations and communities
differently based on SES, influencing the mobility responses and,
consequently, infection rates (44, 80, 81). For instance, using mobility
measures derived from mobile phone data, Carranza et al. showed that
the impact of NPIs on mobility varied widely across communities,
depending on their socioeconomic levels, which also contributes to
disparities in infection rates between high- and low-income areas (53).

Discussion

Our scoping review highlights the emerging role of mobile phone
signaling data as a valuable alternative for population mobility analysis in
public health. The aggregation and analysis of such large-scale, routinely
generated data represent a major advancement in digital epidemiology
(38). Mobile phone data have increasingly been adopted in modeling
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population flows, simulating the spatiotemporal transmission dynamics,
thereby enhancing the accuracy of risk assessments and informing public
health response strategies. More importantly, our review underscores
several key considerations and challenges that must be aware to fully
realize the potential of mobile phone data in public health.

Measurement of mobility

Mobile phone data enable the measurement of human mobility
through diverse metrics, supporting multidisciplinary research. As
illustrated in the Sankey diagram (Figure 2), we summarize mobility
metrics into four major categories. Population flow metrics, such as
origin-destination flow indicators, can track the movement of
infected individuals across regions, revealing transmission pathways
(1, 6, 62). Population density metrics, including the number of visits
or hourly population density to POIs, help evaluate the
implementation and effectiveness of pandemic control policies
across different population groups (56, 82). Geographical movement
indicators, such as the radius of gyration or entropy of movement,
can be used to refine epidemiological models and simulate disease
transmission (9, 59). Time- or distance-related metrics—such as
duration spent at specific locations, distance traveled, travel
frequency, and activity space—capture behavioral response to
public health interventions (31, 40, 48). Additional information is
presented in Appendix Table 3.

However, the diversity of mobility metrics also introduces challenges.
Comparisons between studies become complicated, and the predictive

10.3389/fpubh.2025.1728985

power of different mobility indicators in empirical models varied
substantially across regions and time period (15, 83). The reliability of
mobility metrics derived from mobile phone data as proxies for disease
transmission is inconsistent, temporally and geographically. For instance,
the correlation between alternative mobility metrics and the effective
reproductive number of the coronavirus fluctuated during the early stages
of COVID-19 (59). These findings underscore the importance for
researchers of carefully selecting appropriate mobility indicators and
ensuring their robustness when interpreting results or informing
health policymaking.

Lack of transparency in data generation

The procedures and algorithms used to collect and process
mobile phone raw data are often opaque to public health and
social science researchers. Many studies do not provide a detailed
description of how the raw data is generated. For example, the
frequency of mobile signal pings used to define a device’s
location (e.g., every 5 min versus every 10 min) can significantly
impact mobility estimates and the inferred effect of interventions
(59). Data generation is also influenced by factors such as cell
tower distribution and the types of mobile applications used,
which can vary from urban to rural areas and across countries
(35). This complexity and lack of transparency in data generation
hinder the ability to link mobility data to human behavior (59),
which may reduce the reliability and trustworthiness of
subsequent analyses.

Theme Mobili

Mobility trends

33

NPIs
28

Epidemiological modeling
2

—

FIGURE 2

Sankey diagram illustrating the distribution of included studies from research themes (left) through mobility metric classes (middle) to main outcome
domains (right). Link widths are proportional to the number of studies. We categorized mobility metrics into four non-exclusive classes: Population
flow, Population density, Geographical movement, and Distance/Time. Because individual studies often used multiple classes, we applied fractional
counting: if a study used k classes, each Theme-to-Metric link received a weight of 1/k. Duplicates within the same class were counted once per study.
For transparency, a full-counting version of metric co-usage is provided in Appendix Table 2.

metrics Outcome

Population flow metrics
4.5

Epidemiological Outcomes

Mobility & Behavior Outcomes
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Data privacy

As the large-scale use of mobile phone data becomes more
common, protecting individual privacy remains a central concern
(84). To minimize privacy risks, data providers often aggregate and
preprocess data through methods such as statistical thresholds,
differential privacy, and appropriate security controls (35), providing
researchers with spatially and temporally aggregated datasets. While
these approaches safeguard privacy, they reduce data granularity and
can introduce uncertainties in data quality (7), which may limit the
comparability and generalizability of results across studies.

Representativeness and equity implications

Mobile phone data enable rapid, large-scale, and context-specific data
collection (85), but representativeness requires careful consideration.
Representativeness of mobile phone data depends on market share, user
demographics, and geographic coverage. Data from a single operator or
regions with uneven network coverage may systematically underrepresent
children, older adults, and rural or low-income populations, limiting the
generalizability of results and potentially biasing conclusions about
behavioral responses to NPIs (84-86). During the COVID-19 pandemic,
mobility reductions were found to be smaller in low-income communities
due to occupational and structural constraints, suggesting that operator
coverage biases may distort inferences on health equity and assessments
of policy effectiveness (53, 80). To mitigate these issues, recent studies
have recommended corrective strategies such as reweighting using census
covariates, small-area estimation to improve spatial representativeness,
and integrating multiple mobility and demographic data sources (14, 84,
85, 87). Strengthening such representativeness adjustments is crucial to
ensure that mobility-derived evidence makes a meaningful contribution
to equity-oriented public health research.

Time and spatial scales for aggregation

Selecting the appropriate spatial and temporal scales is critical for
striking a balance between privacy protection and analytical utility.
Spatial units may include grids or an administrative area, which
should reflect population density differences between urban and rural
regions. Temporal scales should align with study designs and research
objectives; for example, daily measures can better indicate short-term
disease transmission, whereas weekly measures can better reflect
seasonal or migration patterns (35). Flexible aggregation ensures
mobility metrics are informative, actionable, and ethically responsible.

Future research directions

Our review shows that mobile phone data have been extensively
used to measure population mobility, model disease transmission, and
guide and assess public health interventions for pandemic control.
These data offer near-real-time insights into large-scale population
behavior, and hold promise for both retrospective and prospective
public health analyses (88). However, practical challenges highlighted
in our review and previous study (84) underscore the need for
cautious and informed application. The following directions may help
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better harness these data for public health outcomes of interest,
enabling a more effective understanding of population behaviors and
responses in rapidly changing situations.

Understanding the data generation process

A major challenge is the limited understanding of how these data are
collected, processed, and transformed into usable metrics. Current
preprocessing methods for mobile phone mobility data often operate as
black boxes for researchers, which may lead to biases in analyses with
ambiguous directions (84). Researchers must critically examine the
assumptions underlying default conditions and thoroughly understand
the critical decision rules (35), such as the spatial boundaries of PO, the
minimum interactions required to register activity, and the criteria
defining “stay” or “pass-by” actions. Transparent reporting of these
technical details is crucial for replicating, validating, and scaling findings
across academia, industry, and policy contexts. A list of recommended
reporting items is in Appendix Table 4.

Exploring more granular data

Current uses of mobile phone datasets are typically anonymized
and aggregated to preserve privacy. Although useful for broad
mobility trends, such aggregates may be insufficient for targeted public
health responses, especially in the post-pandemic era, where sustained
surveillance is required (84, 85). In addition, there is a growing need
to access finer, sub-population-level mobility data to capture the
heterogeneous transmission patterns and disproportionate epidemic
burdens, as our review identified. Therefore, there is a need to bolster
open discussions and collaborations among mobile operators,
policymakers, and researchers to develop frameworks that ensure
privacy while enabling legally compliant extraction of detailed,
actionable mobility information.

Linkage with other data sources

A new and growing body of literature explores the integration of
mobile phone data with complementary datasets, such as census
demographics (20, 21, 79), social media (33, 82), internet search
volume (16), or genomics (70). With its extensive coverage and
spatiotemporal scale, integrating mobile phone data with other data
sources can overcome user-based selection bias, provide a more
comprehensive picture of population activity (84), and enhance
understanding of the profound social and health equity implications.
Linking mobility data with socioeconomic and behavioral information
at an appropriate geographic scale (e.g., census block group level)
enables a more comprehensive view of transmission patterns,
disparities, and intervention effectiveness (7), supporting more
effective and informed public health decision-making.

Limitations

This review has three main limitations. First, it focuses primarily on
the use of mobile phone data for pandemic control, potentially

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1728985
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Cheng et al.

overlooking applications in other public health areas such as influenza or
tuberculosis control. Second, the review is limited to English-language
health literature, excluding studies published in languages other than
English or in engineering and technical fields. Third, mobile phone data
also has significant analytical value in other research fields, such as urban
planning, emergency evacuation, and economic resilience and forecasting
(84), while our review concentrates on public health applications.

Conclusion

Mobile phone data have become an increasingly valuable tool for
studying human mobility across multidisciplinary research and
practices, as evidenced by the expanding body of literature referring to
this data. Our review shows that these data are primarily used to
characterize spatial and temporal mobility patterns, assess the role of
human movement in disease spread, and perform simulation and
predictive modeling of outbreaks. Despite their substantial potential,
as we reviewed, challenges remain in ensuring inclusive, transparent,
and sustainable use (9). Critical information on user demographics,
population coverage, device usage differences, and data processing
remains incomplete (59), complicating comparisons across studies and
settings. Future work should prioritize validation, standardized
frameworks for data curation, and transparent reporting of processing
algorithms to strengthen the interpretability and reliability of mobility
metrics in public health research.
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