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Mobile phone data provide high-resolution, near real-time measurements of 
population mobility and have become an increasingly valuable source for public 
health research, enabling rapid evaluation of policy impacts on human movement 
and pandemic control. However, the methodological challenges surrounding the 
extraction, governance, and validation of mobile phone data for the public health 
community remain insufficiently explored. Following the PRISMA-ScR framework, 
we conduct a scoping review to synthesize major research themes, opportunities, 
and challenges in the use of mobile phone data for public health, particularly 
pandemic-related studies. Our findings highlight limitations in the empirical use of 
these datasets, including demographic and population coverage, representativeness, 
and equity issues, as well as the transparency of data extraction and processing. 
We also provide guidance for future research, including the development of 
standardized frameworks for data curation and validation, a clear understanding 
of algorithms that extract mobility information, and rigorous interpretation of 
mobility metrics.
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Introduction

Human mobility, the movement of human beings across space and time, is a fundamental 
determinant of disease transmission and public health dynamics (1, 2). However, measuring and 
monitoring human mobility has traditionally been challenging due to limited data availability 
and granularity (3). The widespread use of mobile phones and advances in big data technologies 
have transformed this landscape, enabling large-scale, near-real-time tracking of human mobility 
(4), offering insights that were previously unattainable (5). Capturing location information at 
high spatial and temporal resolutions (6), mobile phone data allows continuous, rapid, and 
detailed analysis of human behavior far beyond the capacity of traditional survey data (3).

In recent years, mobile phone data have attracted significant attention within the public 
health community, as they provide valuable information for assessing the impact of health 
policies and understanding transmission dynamics of infectious diseases (4, 7). They support 
surveillance, forecasting, and evaluation of pandemics and have been widely used to analyze 
the effects of Non-Pharmaceutical Interventions (NPIs) on population mobility (8). Diverse 
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analytical perspectives and models have been developed to study 
human behavior based on spatiotemporal features extracted from 
various types of mobile phone data, facilitating research on mobility 
patterns, social networks, disease transmission, and the evaluation of 
control strategies (5). Despite these advances in mobile phone data, 
concerns regarding personal privacy, data governance, and 
methodological challenges persist, alongside the potential for misuse 
of the data (5, 9).

Mobile phone generated data can be broadly categorized into two 
types based on the source and the method of collection: signaling data 
(and call detail records, CDRs) generated by phones during 
communication with cell towers, and GPS/App-based data generated 
by mobile Apps (Table 1). Mobile phones frequently ping nearby cell 
towers, leaving a record of the signal data that can be used to 
triangulate the phone’s location based on antenna connections (10). A 
key advantage of mobile phone signaling data is that it provides 
location information as long as the mobile phone is switched on, even 
if it is not actively being used. CDRs typically contain the user ID, 
timestamp, and cell tower location associated with calls, texts, or other 
activities tied to the SIM card (7). In another way, GPS/App-based 
data generated by Apps such as Google Maps and Baidu Maps, often 
use global positioning system (GPS) services to record a device’s 
location over time. GPS/App-based data offer greater accuracy in 
terms of spatial precision and provide more frequent observations 
than mobile signaling data (7). However, these data are usually 
aggregated for privacy protection, often presented as population-level 
data at specific point-of-interest (POIs) or locations. While GPS/
App-based data provide finer location details than mobile phone 
signaling data, the latter is more representative of the broader 
population since it is not limited to users of specific applications.

Despite the growing interest in and utilization of mobile phone 
data in public health, significant methodological challenges are 
associated with data extraction, data governance, and data quality for 
mobile phone signaling data (3, 6). While there has been extensive 
research using mobile phone data, no comprehensive review has 
focused specifically on the empirical use of mobile phone signaling 
data in public health. To address this gap, this article conducts a 
scoping review on the use of mobile phone signaling data in public 
health. Our review focuses on the mobile phone signaling data, while 
the GPS/App-based mobile phone data warrants a separate review. We 
have curated an extensive list of publications on the use of mobile 
phone data in public health, synthesizing key themes, highlighting 
both the opportunities and challenges of its application in pandemic 
response efforts, and suggesting avenues for future research.

Methods

Overview

The scoping review follows the PRISMA-ScR (Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses Extension for 

Scoping Reviews) guidelines and adopts the Arksey and O’Malley 
methodology framework (11).

Identifying the research question

The primary aim of this review was to examine the classification, 
application, and methodological, societal, and data-related challenges 
and opportunities of the empirical use of mobile phone data in public 
health. The core research questions are:

	(1)	 How have mobile phone data been used in public health 
research, specifically for pandemic control?

	(2)	 What are the key opportunities and challenges associated with 
the use of mobile phone data for public health research?

Identifying relevant studies

The search strategy was developed by WJ, XC, and ZC. We 
conducted a search across four major citation databases: 
MEDLINE, PubMed, ScienceDirect, and Web of Science, covering 
publications in English from January 1, 2012, to June 30, 2024. 
The search strategy combined keywords related to mobile phone 
data (“Cell phone” OR “Mobile Phone”) and mobility terms 
(“Mobility” OR “Flow”) along with the pandemic (“COVID” OR 
“Pandemic”). The search strategy was refined to ensure 
comprehensive coverage of relevant themes (see Appendix Table 1 
for details).

Study selection

Inclusion criteria of the review were: (1) studies focused on 
population mobility, human movement, or related patterns; (2) studies 
clearly described the applications of mobile phone data for illustrating 
or measuring mobility patterns; (3) studies provided empirical 
evidence in the context of the pandemic. Two reviewers (XC and WJ) 
independently conducted the blind review process, screening titles 
and abstracts to exclude studies that did not pertain to mobility, 
pandemics, or healthcare utilization, secondary studies (e.g., review 
articles), theoretical studies without empirical applications, and 
studies lacking details on data sources. The full texts were assessed by 
the two reviewers based on the metrics of the mobile phone data and 
the study outcomes. Discrepancies when there was uncertainty (44%†) 
or inconsistent decisions (9%†) were resolved by a senior 
reviewer (ZC).

Charting the data

Data from the included studies were charted by two reviewers (XC 
and WJ), who identified key characteristics, including study title, 
research theme, study region, study population, data source, mobility 
metrics, main outcomes, and study findings. According to scoping 
review guidelines, no studies were excluded based on quality, as the 
aim was to identify gaps in the literature rather than assess 
methodological rigor (11).

Abbreviations: NPIs, Non-Pharmaceutical Interventions; PRISMA-ScR, Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping 

Reviews; CDRs, Call Detail Records; GPS, Global Positioning System; POI, Point-

of-Interest; SES, Socioeconomic Status.
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Collating, summarizing, and reporting the 
findings

A PRISMA flowchart (Figure 1) was developed to track the 
selection process. The findings were synthesized to identify key 
patterns and relationships across studies, and a Sankey diagram was 
used to visualize the distribution of research themes, mobility metrics, 
and outcome domains.

Results

Overview

A total of 921 records were retrieved from database searches and 
imported into a local citation database via Zotero 6.0. After de-duplication, 
it yielded a list of 427 citations. Following an initial screening of titles and 
abstracts, 133 citations were excluded due to irrelevance. Among the 
remaining 294 full-text articles, 210 were excluded because of non-public 
health outcomes (n = 84) or incorrect data type (n = 126; specific reasons 
for exclusion are presented in Figure 1). Ultimately, 84 articles met the 
inclusion criteria and were included in the final review. A narrative and 
numerical summary of study characteristics was presented and tabulated 
in the Appendix Table 2. Four key themes with important implications 
emerged from our review of mobile phone data applications in pandemic 
control-related research.

Tracking population mobility

A total of 25 studies (30%) focused on analyzing mobility 
patterns using mobile phone data. Jia and colleagues were the first to 
use real-time mobile phone data to assess the spatio-temporal 
dynamics of the COVID-19 spread in China (12). Using national 
aggregated mobile operator data, Lu et al. established the correlation 
between population mobility and disease transmission (1). Luo et al. 
analyzed the mobility patterns among different populations and how 
they influence the risks of disease transmission (13). Aside from 
China, an extensive list of research used mobile phone signaling data 

in public health research exists, analyzing the associations between 
human mobility and coronavirus spread in the US (14–19), Latin 
America (20), Ireland (4), Spain (6, 21), Brazil (22), Ecuador (23), 
Japan (24), Finland (25), and globally (26). However, in the later 
stages of the pandemic, the association between mobility metrics 
derived from mobile phone data and COVID-19 incidence growth 
rates gradually weakened following the lifting of initial stay-at-home 
orders (27). Other studies explored the socioeconomic impacts of 
mobility changes, linking mobility data with demographic 
characteristics (21, 28), economic distress (16), and health outcome 
indicators (29).

Evaluation of non-pharmaceutical 
interventions

Thirty-six studies (43%) evaluated the effectiveness of multiple 
NPIs using mobile phone data, which were adapted as primary 
measures to restrain the spread of COVID-19 globally before the 
introduction of effective vaccinations. Many studies assessed social 
distancing (30–39) and lockdown policies (40–46) across different 
countries, highlighting their role in mitigating the spread of COVID-
19. Research also showed that less aggressive interventions, such as 
remote working and closures of non-essential businesses, had varied 
impacts depending on the country (47–54). Notably, a study covering 
135 countries found significant reductions in mobility due to travel 
restrictions during the first wave of the pandemic (55); however, other 
studies emphasized spontaneous reductions in mobility that occurred 
regardless of government actions and a ‘floor’ phenomenon (19).

Predictive modeling of disease 
transmission

Incorporating mobility parameters—either tuned or estimated from 
mobile phone data—into epidemiological models enhances their ability 
to simulate outbreak dynamics under varying conditions. A total of 23 
studies (27%) integrated mobile phone data into epidemiological models 
to predict disease spread. These models helped simulate outbreak 

TABLE 1  Comparing different types of mobile phone generated data.

Type Subtype Description Providers Pros Cons

Mobile phone 

data

Mobile phone 

signaling data

Continuous location 

information about the cell 

tower that a handset is 

connected to as long as it is 

switched on

Mobile service 

operators

	•	 Substantial coverage 

of population

	•	 Passive continuous 

connectivity logs without 

user consent permission

	•	 Limited spatial and temporal 

granularity of data

	•	 Duplicate identification in multi-SIM 

user scenarios

Call detail records 

(CDRs)

Duration, timestamp and 

location information of user 

communication activities

Mobile service 

operators

	•	 Cost-effectiveness and 

high availability

	•	 With population 

representativeness

	•	 SIM card event-driven records 

with discontinuity

	•	 Duplicate identification issues for 

multi-SIM users

	•	 Limited spatiotemporal resolution

GPS/App-

based data

GPS related data 

from location 

intelligence firms

GPS data collected and 

aggregated from smartphone 

applications

Major Tech firms 

(such as Google, 

Twitter, Baidu)

	•	 Precise location 

information

	•	 Lack of transparency in data generation

	•	 Lack of representativeness

	•	 Restricted outputs indexes
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trajectories in various regions, including Chinese cities and worldwide 
(56–69). A notable study combined mobile phone data with genomics to 
track coronavirus variants in Bangladesh, revealing how large-scale 
human migration from urban to rural areas influenced viral diversity (70). 
Social factors, such as sociodemographic characteristics, were also 
examined, showing how mobility differences contributed to infection 
rates in disadvantaged groups (56, 71). Other researchers highlighted that 
socioeconomic factors, such as education, household size, and the 
proportion of the Latinx population, have consistent positive relationships 
with COVID-19 prevalence over time (72).

Implications for health equity

A sheer body of studies highlighted the potential of mobile phone 
data to analyze health inequality issues. Research on gender-specific 
mobility patterns (73), age-group mobility (74–76), and socioeconomic 

status (SES) (77–79) revealed disparities in COVID-19 transmission risks. 
Studies also showed that NPIs affected populations and communities 
differently based on SES, influencing the mobility responses and, 
consequently, infection rates (44, 80, 81). For instance, using mobility 
measures derived from mobile phone data, Carranza et al. showed that 
the impact of NPIs on mobility varied widely across communities, 
depending on their socioeconomic levels, which also contributes to 
disparities in infection rates between high- and low-income areas (53).

Discussion

Our scoping review highlights the emerging role of mobile phone 
signaling data as a valuable alternative for population mobility analysis in 
public health. The aggregation and analysis of such large-scale, routinely 
generated data represent a major advancement in digital epidemiology 
(38). Mobile phone data have increasingly been adopted in modeling 

FIGURE 1

PRISMA flowchart of the literature search process.
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population flows, simulating the spatiotemporal transmission dynamics, 
thereby enhancing the accuracy of risk assessments and informing public 
health response strategies. More importantly, our review underscores 
several key considerations and challenges that must be aware to fully 
realize the potential of mobile phone data in public health.

Measurement of mobility

Mobile phone data enable the measurement of human mobility 
through diverse metrics, supporting multidisciplinary research. As 
illustrated in the Sankey diagram (Figure 2), we summarize mobility 
metrics into four major categories. Population flow metrics, such as 
origin–destination flow indicators, can track the movement of 
infected individuals across regions, revealing transmission pathways 
(1, 6, 62). Population density metrics, including the number of visits 
or hourly population density to POIs, help evaluate the 
implementation and effectiveness of pandemic control policies 
across different population groups (56, 82). Geographical movement 
indicators, such as the radius of gyration or entropy of movement, 
can be used to refine epidemiological models and simulate disease 
transmission (9, 59). Time- or distance-related metrics—such as 
duration spent at specific locations, distance traveled, travel 
frequency, and activity space—capture behavioral response to 
public health interventions (31, 40, 48). Additional information is 
presented in Appendix Table 3.

However, the diversity of mobility metrics also introduces challenges. 
Comparisons between studies become complicated, and the predictive 

power of different mobility indicators in empirical models varied 
substantially across regions and time period (15, 83). The reliability of 
mobility metrics derived from mobile phone data as proxies for disease 
transmission is inconsistent, temporally and geographically. For instance, 
the correlation between alternative mobility metrics and the effective 
reproductive number of the coronavirus fluctuated during the early stages 
of COVID-19 (59). These findings underscore the importance for 
researchers of carefully selecting appropriate mobility indicators and 
ensuring their robustness when interpreting results or informing 
health policymaking.

Lack of transparency in data generation

The procedures and algorithms used to collect and process 
mobile phone raw data are often opaque to public health and 
social science researchers. Many studies do not provide a detailed 
description of how the raw data is generated. For example, the 
frequency of mobile signal pings used to define a device’s 
location (e.g., every 5 min versus every 10 min) can significantly 
impact mobility estimates and the inferred effect of interventions 
(59). Data generation is also influenced by factors such as cell 
tower distribution and the types of mobile applications used, 
which can vary from urban to rural areas and across countries 
(35). This complexity and lack of transparency in data generation 
hinder the ability to link mobility data to human behavior (59), 
which may reduce the reliability and trustworthiness of 
subsequent analyses.

FIGURE 2

Sankey diagram illustrating the distribution of included studies from research themes (left) through mobility metric classes (middle) to main outcome 
domains (right). Link widths are proportional to the number of studies. We categorized mobility metrics into four non-exclusive classes: Population 
flow, Population density, Geographical movement, and Distance/Time. Because individual studies often used multiple classes, we applied fractional 
counting: if a study used k classes, each Theme-to-Metric link received a weight of 1/k. Duplicates within the same class were counted once per study. 
For transparency, a full-counting version of metric co-usage is provided in Appendix Table 2.
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Data privacy

As the large-scale use of mobile phone data becomes more 
common, protecting individual privacy remains a central concern 
(84). To minimize privacy risks, data providers often aggregate and 
preprocess data through methods such as statistical thresholds, 
differential privacy, and appropriate security controls (35), providing 
researchers with spatially and temporally aggregated datasets. While 
these approaches safeguard privacy, they reduce data granularity and 
can introduce uncertainties in data quality (7), which may limit the 
comparability and generalizability of results across studies.

Representativeness and equity implications

Mobile phone data enable rapid, large-scale, and context-specific data 
collection (85), but representativeness requires careful consideration. 
Representativeness of mobile phone data depends on market share, user 
demographics, and geographic coverage. Data from a single operator or 
regions with uneven network coverage may systematically underrepresent 
children, older adults, and rural or low-income populations, limiting the 
generalizability of results and potentially biasing conclusions about 
behavioral responses to NPIs (84–86). During the COVID-19 pandemic, 
mobility reductions were found to be smaller in low-income communities 
due to occupational and structural constraints, suggesting that operator 
coverage biases may distort inferences on health equity and assessments 
of policy effectiveness (53, 80). To mitigate these issues, recent studies 
have recommended corrective strategies such as reweighting using census 
covariates, small-area estimation to improve spatial representativeness, 
and integrating multiple mobility and demographic data sources (14, 84, 
85, 87). Strengthening such representativeness adjustments is crucial to 
ensure that mobility-derived evidence makes a meaningful contribution 
to equity-oriented public health research.

Time and spatial scales for aggregation

Selecting the appropriate spatial and temporal scales is critical for 
striking a balance between privacy protection and analytical utility. 
Spatial units may include grids or an administrative area, which 
should reflect population density differences between urban and rural 
regions. Temporal scales should align with study designs and research 
objectives; for example, daily measures can better indicate short-term 
disease transmission, whereas weekly measures can better reflect 
seasonal or migration patterns (35). Flexible aggregation ensures 
mobility metrics are informative, actionable, and ethically responsible.

Future research directions

Our review shows that mobile phone data have been extensively 
used to measure population mobility, model disease transmission, and 
guide and assess public health interventions for pandemic control. 
These data offer near-real-time insights into large-scale population 
behavior, and hold promise for both retrospective and prospective 
public health analyses (88). However, practical challenges highlighted 
in our review and previous study (84) underscore the need for 
cautious and informed application. The following directions may help 

better harness these data for public health outcomes of interest, 
enabling a more effective understanding of population behaviors and 
responses in rapidly changing situations.

Understanding the data generation process

A major challenge is the limited understanding of how these data are 
collected, processed, and transformed into usable metrics. Current 
preprocessing methods for mobile phone mobility data often operate as 
black boxes for researchers, which may lead to biases in analyses with 
ambiguous directions (84). Researchers must critically examine the 
assumptions underlying default conditions and thoroughly understand 
the critical decision rules (35), such as the spatial boundaries of POI, the 
minimum interactions required to register activity, and the criteria 
defining “stay” or “pass-by” actions. Transparent reporting of these 
technical details is crucial for replicating, validating, and scaling findings 
across academia, industry, and policy contexts. A list of recommended 
reporting items is in Appendix Table 4.

Exploring more granular data

Current uses of mobile phone datasets are typically anonymized 
and aggregated to preserve privacy. Although useful for broad 
mobility trends, such aggregates may be insufficient for targeted public 
health responses, especially in the post-pandemic era, where sustained 
surveillance is required (84, 85). In addition, there is a growing need 
to access finer, sub-population-level mobility data to capture the 
heterogeneous transmission patterns and disproportionate epidemic 
burdens, as our review identified. Therefore, there is a need to bolster 
open discussions and collaborations among mobile operators, 
policymakers, and researchers to develop frameworks that ensure 
privacy while enabling legally compliant extraction of detailed, 
actionable mobility information.

Linkage with other data sources

A new and growing body of literature explores the integration of 
mobile phone data with complementary datasets, such as census 
demographics (20, 21, 79), social media (33, 82), internet search 
volume (16), or genomics (70). With its extensive coverage and 
spatiotemporal scale, integrating mobile phone data with other data 
sources can overcome user-based selection bias, provide a more 
comprehensive picture of population activity (84), and enhance 
understanding of the profound social and health equity implications. 
Linking mobility data with socioeconomic and behavioral information 
at an appropriate geographic scale (e.g., census block group level) 
enables a more comprehensive view of transmission patterns, 
disparities, and intervention effectiveness (7), supporting more 
effective and informed public health decision-making.

Limitations

This review has three main limitations. First, it focuses primarily on 
the use of mobile phone data for pandemic control, potentially 
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overlooking applications in other public health areas such as influenza or 
tuberculosis control. Second, the review is limited to English-language 
health literature, excluding studies published in languages other than 
English or in engineering and technical fields. Third, mobile phone data 
also has significant analytical value in other research fields, such as urban 
planning, emergency evacuation, and economic resilience and forecasting 
(84), while our review concentrates on public health applications.

Conclusion

Mobile phone data have become an increasingly valuable tool for 
studying human mobility across multidisciplinary research and 
practices, as evidenced by the expanding body of literature referring to 
this data. Our review shows that these data are primarily used to 
characterize spatial and temporal mobility patterns, assess the role of 
human movement in disease spread, and perform simulation and 
predictive modeling of outbreaks. Despite their substantial potential, 
as we reviewed, challenges remain in ensuring inclusive, transparent, 
and sustainable use (9). Critical information on user demographics, 
population coverage, device usage differences, and data processing 
remains incomplete (59), complicating comparisons across studies and 
settings. Future work should prioritize validation, standardized 
frameworks for data curation, and transparent reporting of processing 
algorithms to strengthen the interpretability and reliability of mobility 
metrics in public health research.
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