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Background: Frailty is a public health concern linked to falls, disability, and 
mortality. Early screening and tailored interventions can mitigate adverse 
outcomes, but community settings require tools that are accurate and 
explainable. Korea is entering a super-aged phase, yet few approaches have 
used nationally representative survey data.
Objective: This study aimed to identify key predictors of frailty risk using the 
K-FRAIL scale using explainable machine learning (ML), based on data from the 
2023 National Survey of Older Koreans (NSOK). It also sought to develop and 
internally validate prediction models. To demonstrate the potential applicability 
of these models in community public health and clinical practice, a web-based 
application was implemented.
Methods: Data from 10,078 older adults were analyzed, with frailty defined by 
the K-FRAIL scale (robust = 0, pre-frail = 1–2, and frail = 3–5). A total of 132 
candidate variables were constructed through selection and derivation. Using 
CatBoost with out-of-fold (OOF) SHapley Additive exPlanations (SHAP, a game-
theoretic approach to quantify feature contributions), 15 key predictors were 
identified and applied across 10 algorithms under nested cross-validation (CV). 
Model performance was evaluated using receiver operating characteristic–
area under the curve (ROC-AUC), precision–recall area under the curve (PR-
AUC), F1-score, balanced accuracy, and the Brier score. To assess feasibility, a 
single-page bilingual web application was developed, integrating the CatBoost 
inference pipeline for offline use.
Results: SHAP analysis identified depression score, age, instrumental activities 
of daily living (IADL) count, sleep quality, and cognition as the leading predictors, 
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followed by smartphone use, number of medications, province, driving status, 
hospital use, physical activity, osteoporosis, eating alone, digital adaptation 
difficulty, and sex, yielding 15 key predictors across the mental, functional, 
lifestyle, social, and digital domains. Using these predictors, boosting models 
outperformed other algorithms, with CatBoost achieving the best performance 
(ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).
Conclusion: An explainable machine learning model with strong discrimination 
performance and adequate calibration was developed, accompanied by a 
lightweight web application for potential use in community and clinical settings. 
However, external validation, recalibration, and subgroup fairness assessments 
are needed to ensure generalizability and clinical adoption.
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frailty, explainable AI, machine learning, SHAP, prediction model, digital health

1 Introduction

Frailty is a clinical and public health condition characterized by 
reduced physiological reserve and diminished resistance to stress, 
leading to increased risks of falls, hospitalization, disability, and 
mortality (1–4). With the acceleration of global population aging, the 
burden of frailty is steadily rising, highlighting the need for early 
screening and preventive interventions at both national and regional 
levels (5, 6).

However, large-scale surveys and clinical data are inherently 
complex, often exhibiting non-linearity, interactions, missingness, and 
heterogeneity. Such characteristics limit the predictive accuracy and 
interpretability of traditional linear models (7, 8). Machine learning 
methods can capture these complex structures, yet their limited 
explainability has constrained their acceptance in public health and 
clinical practice.

Explainable artificial intelligence has emerged as a promising 
approach to address this gap. Among these methods, SHapley Additive 
exPlanations is a game-theoretic technique that quantifies the 
contribution of each variable to model predictions and enables the 
intuitive interpretation of results (9–11). By providing transparency at 
global and individual levels, it enhances the trustworthiness of 
predictive models.

In imbalanced binary classification problems, receiver operating 
characteristic metrics alone are insufficient. The precision–recall curves 
and the precision–recall area under the curve (PR-AUC), which 
summarize the balance between precision and recall across thresholds, 
provide complementary information, and the Youden index can guide 
threshold selection (12–14). Moreover, the Brier score, the mean squared 
difference between predicted probabilities and observed outcomes with 
lower values indicating better calibration, should be reported to support 
the clinical interpretability of probability predictions (15, 16).

Reducing bias in internal validation also requires an appropriate 
cross-validation design. Nested cross-validation, a two-layer 
procedure in which the inner loop performs model selection while the 
outer loop yields an unbiased performance estimate, is recommended 
to separate these processes and ensure robust evaluation (17, 18).

In this study, data from the 2023 Korean National Survey of Older 
Koreans were used to develop a binary classifier that distinguishes 
robust (0) from pre-frail (1–2)/frail (3–5) individuals. A globally fixed 
set of the top  15 features was selected using out-of-fold SHapley 
Additive exPlanations and applied consistently across 10 algorithms. 

Performance was evaluated within a nested cross-validation 
framework. The results on discrimination, calibration, and 
explainability are reported, and a web-based application is further 
proposed to demonstrate practical implementation (9, 10, 15, 17–28).

2 Methods

2.1 Data source/study population

A cross-sectional study was conducted using the 2023 NSOK (29, 
30). The Ministry of Health and Welfare and the Korea Institute for 
Health and Social Affairs led the survey (29). The NSOK targets all 
Koreans aged ≥65 years living in general households, excluding island 
enumeration areas (EAs), collective facilities (e.g., dormitories and 
nursing homes), tourist hotels, foreigner EAs, and non-household 
residents (e.g., overseas residents, active-duty military, and incarcerated 
people). Sampling used explicit three-stage stratification—17 
provinces, urbanicity (dong vs. eup/myeon), and EA type (apartment 
vs. general)—followed by probability-proportional-to-size (PPS) 
selection of EAs, systematic sampling of households within selected 
EAs, and full enumeration of all eligible residents ≥65 years within 
sampled households (30–32). Trained interviewers collected data via 
tablet-assisted personal interviews during home visits.

The final sample included 10,078 participants, comprising 6,324 
robust (62.7%), 3,313 pre-frail (32.9%), and 441 frail (4.4%) individuals. 
Design, non-response, within-household, and post-stratification 
adjustments (region × sex × age) were used to construct final sampling 
weights; however, weights were not applied for model development, and 
descriptive statistics reflected the unweighted sample distribution (33, 
34). Given the relatively small prevalence of the frail group, population 
estimates for this subgroup should be interpreted cautiously, and our 
primary inference concerns predictive performance within the sample.

The dataset consisted of de-identified, nationally approved 
statistics. The study was exempted from institutional review board 
review (exemption ID: PNU IRB/2025_161_HR).

2.2 Variables and feature engineering

From 661 raw survey variables, 132 predictors aligned with the 
study objectives were constructed. Domains included 
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sociodemographics; physical health (32 physician-diagnosed chronic 
conditions, anthropometrics, number of medications, hospital use, falls, 
health checkups, and unmet medical needs); health behaviors (smoking, 
alcohol, physical activity, diet, and sleep); mental health (15-item 
depression scale and suicidal ideation); cognition (total score); activities 
of daily living (ADL/IADL as binary indicators and counts); medical 
and care use; social activity and life satisfaction; and digital capacity 
(35–39). Variables directly or indirectly defining K-FRAIL items or the 
frailty target were excluded to prevent information leakage (40).

“Not applicable/no response” and unrealistic special codes (e.g., 
9,998, and 99,999) were recoded as missing according to the official 
codebook, and cognitive scores were converted to the numeric type. 
ADL/IADL limitations were binarized, and limitation counts were 
computed. Body mass index (BMI) was derived from height and 
weight. After these derivations, the final predictor set comprised 132 
variables (118 original and derived variables such as ADL_Count, 
IADL_Count, and BMI), all of which were used for model 
development (Supplementary Table S3).

2.3 Preprocessing

All preprocessing for model training was implemented within a 
single pipeline to avoid information leakage during cross-validation. 
Missing values were imputed independently within each training fold: 
continuous variables with the median and categorical variables with 
the mode. Categorical predictors were defined according to an a priori 
codebook and treated as either ordinal or nominal. Ordinal variables 
were encoded with preserved order using OrdinalEncoder, whereas 
nominal variables were encoded with OneHotEncoder after 
imputation. Continuous variables (e.g., age, BMI, income, cognitive 
score, and depression score) were standardized using StandardScaler. 
Ordinal variables were encoded but not scaled because their rank 
information was preserved directly. Scaling was thus restricted to 
continuous inputs and applied only for algorithms sensitive to feature 
magnitude (e.g., support vector machine (SVM), k-nearest neighbors 
(KNN), multilayer perceptron (MLP), and logistic regression). Tree-
based methods (random forest, gradient boosting, XGBoost, 
LightGBM, and CatBoost) were trained without scaling. Class 
imbalance was addressed within each training fold by applying the 
Synthetic Minority Over-sampling Technique for Nominal and 
Continuous (SMOTENC) features using the categorical feature indices.

2.4 Outcome definition

The outcome was based on the K-FRAIL scale, which sums five 
items—fatigue, difficulty climbing stairs, difficulty walking 300 m, 
number of chronic diseases, and weight loss—each coded 0/1 to yield 
a score of 0–5 (41, 42). The primary analysis was binary classification 
(robust = 0 vs. pre-frail/frail = 1–5). For descriptive comparisons, three 
groups were also defined: robust (0), pre-frail (1–2), and frail (3–5).

In the original FRAIL scale, the weight-loss item is defined as a 
loss of 5% or more of body weight over the prior 12 months, and the 
K-FRAIL adopted this criterion. In the 2023 survey, however, no 
variable measuring a 12-month 5% weight loss was available. Instead, 
a variable capturing unintentional weight change of 5 kg or more 
during the prior 6 months was available. Accordingly, this 6-month 

weight-change variable (loss or gain) was used as a proxy for the 
original item. This operational difference from the standard definition 
should be taken into account when interpreting the results.

2.5 Explainability analysis

SHapley Additive exPlanations (SHAP), which estimates feature 
contributions based on cooperative game theory, was applied, and 
out-of-fold (OOF) SHAP was performed using a single CatBoost 
classifier to support feature selection and interpretability (9, 10, 23). 
Stratified k-fold (default 5-fold) cross-validation was used, and SHAP 
values were computed on each fold’s validation data and then 
aggregated at the out-of-fold (OOF) level (9, 10, 17, 18). Features were 
ranked by mean absolute SHAP. In exploration, the top 15 features were 
selected once from the full-sample OOF-SHAP. This set was then fixed 
globally for all algorithms and across all nested cross-validation steps 
(17, 18). Global summary bar plots and local beeswarm plots were 
generated. The OOF-SHAP matrix and the final top 15 list were saved 
for reproducibility (Figures 1, 2) (9, 10).

2.6 Machine learning models and training

A binary classifier was built to distinguish robust (0) from 
pre-frail/frail (1). We implemented ten supervised learning algorithms, 
representing major categories of machine learning: linear (logistic 
regression), kernel-based (support vector machine with radial basis 
function (RBF) kernel), instance-based (k-nearest neighbors), neural 
network (multilayer perceptron), and tree-based ensemble methods 
(random forest, gradient boosting, histogram-based gradient 
boosting, XGBoost, LightGBM, and CatBoost) (21–28).

To ensure unbiased performance estimation, nested cross-
validation with an outer stratified 10-fold split and an inner stratified 
5-fold split was used (17, 18). Model hyperparameters were optimized 
in the inner loop using the ROC-AUC as the selection criterion. For 
each outer fold, the configuration yielding the highest ROC-AUC was 
chosen. For some algorithms (e.g., logistic regression, random forest, 
and boosting methods), the class_weight parameter (none vs. 
balanced) was additionally searched.

For each outer fold, the optimal classification threshold was 
selected based on the inner cross-validation results by maximizing 
Youden’s J index (sensitivity + specificity − 1). The fold-specific 
threshold was then applied to the corresponding outer test fold, and 
final performance metrics were aggregated across folds (13, 14). To 
ensure reproducibility, random_state was set to 42.

Primary metrics were accuracy, sensitivity, specificity, precision, 
F1 score, balanced accuracy, PR-AUC, ROC-AUC, and the Brier score. 
Outer-fold results were summarized as mean ± SD. A 95% CI for 
ROC-AUC was computed from 2,000 bootstrap samples using all 
OOF probabilities (43). Calibration was assessed using decile-based 
calibration plots (15).

2.7 Web application implementation

To assess field feasibility, a single-page web application was built. 
The application integrates the trained CatBoost inference pipeline 

https://doi.org/10.3389/fpubh.2025.1698062
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Kim et al.� 10.3389/fpubh.2025.1698062

Frontiers in Public Health 04 frontiersin.org

with a bilingual (Korean/English) questionnaire schema. It 
standardizes responses according to the codebook, with categorical 
variables integer-coded and continuous variables converted to 
numeric type, aligns inputs to the model’s feature set, and treats 
missing entries as missing (29). The CatBoost classifier outputs the 
predicted probability for the positive (frailty) class and assigns a final 
label by comparing the probability with a predefined or user-adjustable 
threshold (13, 14). All inference is executed locally without server 
connection, and predictions together with metadata (timestamp, 
probability, threshold, and label) are stored in local files (CSV/XLSX).

3 Results

3.1 Baseline characteristics of participants

Data from 10,078 participants were included (robust: 62.7%, 
pre-frail: 32.9%, and frail: 4.4%; Table 1). The majority of continuous 
variables differed significantly across groups (age, number of 
medications, depression score, cognitive score, and household income; 
all p < 0.001), while the BMI showed a smaller but significant 
difference (p = 0.031). The majority of categorical variables also 
showed significant differences (sex, age group, self-rated health, ADL/
IADL dependency, physical activity, hospital use, health checkups, fall 
experience, smartphone use, and digital adaptation difficulty; mostly 

a p-value of < 0.001). For interpretability, categories were reordered so 
that higher numeric values corresponded to worse clinical meaning 
for items such as self-rated health, sleep quality, and digital adaptation 
difficulty. Because the frail group represented only 4.4% of the sample, 
some category estimates may remain unstable, and descriptive 
interpretations are presented conservatively. See Table  1 and 
Supplementary Table S1 for details.

3.2 Explainability analysis

The CatBoost OOF-SHAP top 15 ranked the 15-item depression 
score as the most important predictor by mean absolute SHAP, 
followed by age, IADL count, sleep quality, and total cognition score 
(Figure 1). Other contributing features included smartphone use, 
number of medications, province, driving, hospital use, physical 
activity, osteoporosis, eating alone, digital adaptation difficulty, and 
sex. The SHAP beeswarm plot (Figure  2) showed that higher 
depression scores, older age, more IADL limitations, poorer sleep 
quality, and lower cognition were strongly associated with increased 
frailty risk. Additional risk was linked to not using a smartphone, 
polypharmacy, eating alone, greater difficulty with digital 
adaptation, and being female. In contrast, higher cognition, physical 
activity, and absence of IADL limitations were associated with 
lower risk.

FIGURE 1

SHAP feature importance.
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3.3 Model performance

The globally fixed top  15 features derived from the CatBoost 
OOF-SHAP analysis were consistently applied across all algorithms 
and outer folds. Nested cross-validation (outer 10-fold and inner 
5-fold) demonstrated that tree-based ensemble models achieved the 
best overall performance (Figures 3, 4, Table 2).

Among ensemble models, CatBoost achieved the highest 
discrimination (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ±  
0.019) and the best calibration (specificity = 0.771 ± 0.032; 
Brier = 0.165 ± 0.006). XGBoost showed the highest balanced overall 
performance (balanced accuracy = 0.736 ± 0.019; accuracy = 0.744 ±  
0.020; and F1-score = 0.672 ± 0.023). LightGBM achieved the highest 
sensitivity (0.707 ± 0.040) with balanced overall metrics 
(accuracy = 0.740 ± 0.015 and specificity = 0.759 ± 0.027). Random 
forest demonstrated stable and low-variance performance (balanced 
accuracy = 0.733 ± 0.012; accuracy = 0.742 ± 0.013; and 
Brier = 0.168 ± 0.004). Gradient boosting and HistGradientBoosting 
yielded comparable results, with ROC-AUC values of 0.807–0.808 
and PR-AUC approximately 0.740.

In contrast, simpler models, such as the logistic regression analysis, 
SVM, and KNN, achieved moderate performance (ROC-AUC = 0.791–
0.803 and PR-AUC = 0.711–0.736), while MLP showed the  
lowest overall performance (balanced accuracy = 0.692 ± 0.016; 
ROC-AUC = 0.760 ± 0.013; and Brier = 0.212 ± 0.009).

Overall, ensemble models demonstrated similar discrimination, 
with ROC-AUC ranging from 0.807 to 0.813 and PR-AUC ranging 
from 0.738 to 0.748. Brier scores ranged from 0.165 to 0.181, 
indicating generally good probability calibration. Calibration curves 
(Supplementary Figure S1) were closely aligned with the diagonal 
across models, although the MLP showed larger deviations at low and 
high predicted probabilities.

The CatBoost OOF confusion matrix (Supplementary Figure S2) 
showed TN = 5,385, FP = 939, FN = 1,490, and TP = 2,264, 
corresponding to sensitivity = 0.603, specificity = 0.852, and balanced 
accuracy = 0.728. These OOF-level metrics were comparable to the 
nested CV averages in Table 2, confirming consistency between OOF 
and cross-validation results.

3.4 Web application implementation

The CatBoost-based trained pipeline and globally fixed top 15 
features were implemented in a single-page bilingual (Korean/English) 
web application (Figure 5). The interface consists of three components: 
(i) administrative information, (ii) health and lifestyle questionnaire 
items corresponding to the top 15 predictors, and (iii) probability 
output with visualization.

In the design, the administrative information fields (e.g., 
respondent type, age, sex, and residential area) are used to record 

FIGURE 2

SHAP beeswarm plot.
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TABLE 1  Baseline characteristics of participants by frailty group.

Variable Total (N = 10,078, 
100%)

Robust (n = 6,324, 
62.7%)

Pre-frail 
(n = 3,313, 32.9%)

Frail (n = 441, 
4.4%)

p-value

Continuous variables (mean ± SD)

Age 74.13 ± 6.81 72.35 ± 6.01 76.89 ± 7.04 78.83 ± 6.66 <0.001

BMI 23.63 ± 2.63 23.68 ± 2.41 23.54 ± 2.93 23.53 ± 3.29 0.031

Number of medications 2.05 ± 1.62 1.72 ± 1.42 2.48 ± 1.72 3.48 ± 1.97 <0.001

Depression score 3.06 ± 3.23 2.23 ± 2.59 4.05 ± 3.44 7.42 ± 4.21 <0.001

Cognitive score 24.50 ± 4.77 25.57 ± 4.20 22.87 ± 5.01 21.07 ± 5.55 <0.001

Household income 3251.7 ± 3412.9 3617.4 ± 3509.4 2702.9 ± 3238.1 2131.5 ± 2327.3 <0.001

Categorical variables (n, %)

Sex <0.001

Male 3,872 (38.4) 2,710 (42.9) 1,047 (31.6) 115 (26.1)

Female 6,206 (61.6) 3,614 (57.1) 2,266 (68.4) 326 (73.9)

Age group <0.001

65–69 3,249 (32.2) 2,580 (40.8) 623 (18.8) 46 (10.4)

70–74 2,482 (24.6) 1739 (27.5) 666 (20.1) 77 (17.5)

75–79 1950 (19.3) 1,091 (17.3) 763 (23.0) 96 (21.8)

80–84 1,544 (15.3) 655 (10.4) 758 (22.9) 131 (29.7)

85–89 668 (6.6) 217 (3.4) 383 (11.6) 68 (15.4)

≥90 185 (1.8) 42 (0.7) 120 (3.6) 23 (5.2)

Self-rated health <0.001

Excellent 240 (2.4) 209 (3.3) 31 (0.9) 0 (0.0)

Good 3,873 (38.4) 3,052 (48.3) 790 (23.8) 31 (7.0)

Fair 3,445 (34.2) 2,277 (36.0) 1,099 (33.2) 69 (15.6)

Poor 2,107 (20.9) 738 (11.7) 1,139 (34.4) 230 (52.2)

Very poor 286 (2.8) 30 (0.5) 158 (4.8) 98 (22.2)

Missing 127 (1.3) 18 (0.3) 96 (2.9) 13 (2.9)

ADL dependency <0.001

Yes 820 (8.1) 151 (2.4) 502 (15.2) 167 (37.9)

No 9,258 (91.9) 6,173 (97.6) 2,811 (84.8) 274 (62.1)

IADL dependency <0.001

Yes 1762 (17.5) 503 (8.0) 1,001 (30.2) 258 (58.5)

No 8,316 (82.5) 5,821 (92.0) 2,312 (69.8) 183 (41.5)

Physical activity <0.001

Yes 5,376 (53.3) 3,717 (58.8) 1,512 (45.6) 147 (33.3)

No 4,702 (46.7) 2,607 (41.2) 1801 (54.4) 294 (66.7)

Hospital use (past year) <0.001

Yes 6,982 (69.3) 4,042 (63.9) 2,563 (77.4) 377 (85.5)

No 3,096 (30.7) 2,282 (36.1) 750 (22.6) 64 (14.5)

Health checkup <0.001

Yes 7,920 (78.6) 5,203 (82.3) 2,389 (72.1) 328 (74.4)

No 2,158 (21.4) 1,121 (17.7) 924 (27.9) 113 (25.6)

Fall experience <0.001

Yes 639 (6.3) 209 (3.3) 338 (10.2) 92 (20.9)

No 9,439 (93.7) 6,115 (96.7) 2,975 (89.8) 349 (79.1)

(Continued)
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participant characteristics. Since some of these overlap with the top 15 
predictors, they can be streamlined or replaced so that the information 
is directly reflected in the model input, ensuring consistency between 
the questionnaire and prediction pipeline. User inputs are standardized 
according to the official codebook (e.g., integer coding for categorical 
variables and numeric casting for continuous variables) and aligned 

with the model’s feature set. Missing values are handled as defined 
during training.

After submission, the classifier outputs the predicted frailty 
probability for robust and at-risk categories and assigns a label using 
a default threshold of 0.50, which can be adjusted by the user. The 
results are visualized as bar charts showing class probabilities and final 

TABLE 1  (Continued)

Variable Total (N = 10,078, 
100%)

Robust (n = 6,324, 
62.7%)

Pre-frail 
(n = 3,313, 32.9%)

Frail (n = 441, 
4.4%)

p-value

Owns smartphone <0.001

Yes 7,499 (74.4) 5,264 (83.2) 2021 (61.0) 214 (48.5)

No 2,579 (25.6) 1,060 (16.8) 1,292 (39.0) 227 (51.5)

Uses smartphone <0.001

Yes 6,432 (63.8) 4,723 (74.7) 1,561 (47.1) 148 (33.6)

No 3,646 (36.2) 1,601 (25.3) 1752 (52.9) 293 (66.4)

Digital adaptation difficulty <0.001

Very easy 61 (0.6) 47 (0.7) 14 (0.4) 0 (0.0)

Easy 640 (6.4) 498 (7.9) 133 (4.0) 9 (2.0)

Moderate 2,319 (23.0) 1771 (28.0) 512 (15.5) 36 (8.2)

Difficult 4,075 (40.4) 2,720 (43.0) 1,245 (37.6) 110 (24.9)

Very difficult 2,856 (28.3) 1,270 (20.1) 1,313 (39.6) 273 (61.9)

Missing 127 (1.3) 18 (0.3) 96 (2.9) 13 (2.9)

Continuous variables were compared using a one-way ANOVA or the Kruskal–Wallis test depending on normality, and categorical variables were compared using the chi-squared (χ2) test.

FIGURE 3

ROC curves of 10 models.

https://doi.org/10.3389/fpubh.2025.1698062
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Kim et al.� 10.3389/fpubh.2025.1698062

Frontiers in Public Health 08 frontiersin.org

risk classification. The application also stores inputs, predictions, and 
metadata (time, threshold, and label) using browser localStorage and 
client-side file download (CSV/XLSX), enabling cumulative tracking. 
This design supports rapid screening, intuitive communication of risk, 
and community-level monitoring, bridging explainable machine 
learning models with practical public health applications.

4 Discussion

4.1 Model performance and calibration

Ensemble learning approaches consistently demonstrated superior 
discrimination compared with traditional classifiers, consistent with 
prior studies showing that tree-based boosting algorithms effectively 
learn non-linear relationships in complex data (21–24). The narrow 
range of ROC-AUC values (0.807–0.813) across CatBoost, XGBoost, 
and LightGBM indicates stable performance among ensemble 
methods, suggesting that proper variable representation and 
calibration are more critical than the specific boosting framework itself.

In contrast, linear and kernel-based classifiers such as logistic 
regression and SVM achieved moderate discrimination 
(ROC-AUC = 0.791–0.803), indicating limited ability to capture the 
complexity and heterogeneity of frailty-related health determinants 
(21–24).

Low Brier scores (0.165–0.181) and calibration curves closely 
aligned with the diagonal (Supplementary Figure S1) indicate reliable 
probability estimation (15, 16). CatBoost, in particular, achieved the 

highest discrimination (ROC-AUC = 0.813 ± 0.014) and the best 
calibration performance (Brier = 0.165 ± 0.006), demonstrating that 
explainable ensemble models can simultaneously achieve high 
predictive accuracy and interpretable probability estimates when 
applied to large-scale survey and community health datasets (9, 10, 
15, 16, 21–24).

4.2 Explainability and interpretation

The SHAP-based interpretation demonstrates that frailty is a 
multidimensional construct resulting from interactions among 
mental, functional, social, and digital domains. Core predictors such 
as depression, cognitive function, sleep quality, and IADL limitations 
highlight how psychological and functional decline jointly contribute 
to physical vulnerability (9, 10, 35–37, 44, 45). This aligns with 
previous evidence that frailty is not merely a physiological condition 
but a complex syndrome shaped by multiple interdependent factors.

In addition, social and digital factors—including smartphone use, 
eating alone, and difficulty adapting to technology—underscore the 
evolving relevance of social connectivity and digital capacity in aging 
populations (38, 39, 46–50). These variables illustrate how modern 
forms of exclusion, both social and digital, can amplify vulnerability 
among older adults.

Together, these findings expand upon the multidimensional 
framework of frailty proposed in earlier studies (1, 2, 35–37, 44–47), 
emphasizing that frailty should be understood as a cumulative state of 
vulnerability across psychological, functional, social, and digital 

FIGURE 4

PR curves of 10 models.
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dimensions. From a public health perspective, this multidomain 
understanding highlights the importance of integrating mental, 
physical, and social support systems within community-based 
aging policies.

4.3 Clinical and public health implications

This study demonstrated that the majority of the major predictors 
of frailty risk identified by the model are actionable factors. 
Depression, poor sleep quality, and polypharmacy emerged as leading 
predictors, suggesting that routine mental health screening, sleep 
hygiene education, and systematic medication review should 
be  incorporated into primary care and community-based aging 
programs (35, 44, 45). In addition, promotion of physical activity and 
cognitive training may represent practical strategies to mitigate the 
progression of frailty (36, 46, 47).

Beyond the individual level, social and behavioral factors such as 
eating alone (48, 49), digital adaptation difficulty, and medical 
conditions such as osteoporosis (50) were also associated with frailty 
risk, reflecting structural and clinical challenges faced by aging 
societies. These findings indicate that frailty prediction can 
be meaningfully linked to broader public health approaches, including 
digital literacy programs for older adults, social participation 
initiatives, and targeted support for vulnerable groups (37, 51). 
Difficulty in digital adaptation emerged as an indicator closely linked 
to health equity, as it may exacerbate disparities in healthcare access 
and information utilization (37, 51). Ensuring digital equity should 
therefore be regarded as an important public health priority in the 
management of aging populations (5, 6).

Finally, the lightweight web application developed in this study 
enables frontline health providers to rapidly identify high-risk 
individuals and intuitively communicate results, thereby bridging 
technical outputs with practical counseling and community health 
planning. Such an approach aligns with the WHO and United Nations 
Decade of Healthy Ageing 2021–2030 initiatives (52, 53) and illustrates 
the potential for international scalability of explainable frailty 
prediction models.

4.4 Strengths

Using national-scale survey data, SHAP-based analysis was 
applied to select candidates, and a globally fixed feature set was 
constructed (9, 10). With this set, ten algorithms were compared using 
nested CV to ensure fairness, improve reproducibility, and assess both 
discrimination and calibration (Table 2) (17, 18, 54). Global and local 
interpretability were presented with SHAP (Figures 1, 2) (9, 10). A 
lightweight model was also embedded in a web environment to 
demonstrate field applicability (Figure 5).

4.5 Limitations

First, the cross-sectional design precludes causal inference; 
associations are predictive correlations (1,2,6). Second, self-reported 
mental health, behaviors, and digital capacity may suffer from 
measurement error and social desirability bias (32). Third, the frail T
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group was only 4.4%, which can inflate uncertainty; residual bias may 
remain despite SMOTENC (19, 20). Fourth, although the NSOK is 
nationally representative by design, sampling weights were not applied 
in model estimation, and descriptive statistics were unweighted. 
Consequently, the results should not be interpreted as population-
level estimates; they reflect predictive performance in the observed 
sample. Fifth, selecting and fixing features once with full-sample 
OOF-SHAP improves reproducibility but risks underestimating fold- 
or algorithm-specific features (17, 18). Sixth, subgroup performance 
and fairness (sex, age strata, socioeconomic status, and digital divide) 
were not comprehensively assessed (51). Seventh, the FRAIL/K-
FRAIL weight-loss item is defined as a reduction of 5% or more of 
body weight over the preceding 12 months. As this variable was not 
collected in the 2023 NSOK, we  substituted a proxy measure of 
unintentional weight change of 5 kg or more within the prior 
6 months. This modification should be considered when comparing 
our results with studies using the original definition.

4.6 Future directions

This study demonstrated the feasibility of explainable AI for frailty 
risk prediction using nationally representative survey data. However, 
several steps are required to advance toward robust and implementable 
systems. First, external validation across multiple sites and time 
periods is essential to assess generalizability. Such research should 
incorporate sampling weights to ensure population representativeness 
and apply recalibration strategies when transportability gaps are 
identified. Second, because frailty is a dynamic process, future research 
should adopt survival or longitudinal designs (e.g., Cox proportional 
hazards models, landmarking, and joint models) to evaluate predictive 
stability over time. Third, decision thresholds should move beyond 
conventional metrics and be optimized through cost–benefit analyses, 
with threshold selection guided by approaches such as the Youden 
index (13, 14), thereby linking predictions to real-world intervention 
trade-offs. Fourth, systematic assessment of subgroup fairness 

(considering factors such as sex, age, and socioeconomic status) and 
bias mitigation strategies is needed. Additionally, user acceptance 
testing should be  conducted to determine whether explainability 
outputs genuinely improve trust and clinical decision-making (51). 
Finally, integration of wearable devices, electronic health records, and 
personal health records may enable continuous and personalized 
frailty risk monitoring, supporting adaptive interventions in public 
health and primary care (5, 6, 55).

5 Conclusion

This study developed and internally validated an explainable 
artificial intelligence (XAI) framework for frailty risk prediction using 
nationally representative survey data. By integrating SHAP-based 
feature interpretation with ensemble algorithm comparison, the 
framework demonstrated that predictive performance and 
interpretability can be  achieved concurrently in a population-
based context.

The findings suggest that frailty risk is shaped by interrelated 
medical, functional, psychological, social, and digital factors rather 
than by chronological aging alone. These results underscore the 
importance of incorporating multidomain information into future 
frailty screening and prevention strategies. The lightweight web 
application developed in this study serves as a proof of concept for 
translating explainable AI models into accessible tools for use in 
community and primary care settings.

Although limited by its cross-sectional design, relatively small 
frail subgroup, and lack of external validation, this study presents a 
reproducible and transparent framework for applying explainable 
machine learning to public-health data. Future research should build 
upon this research by conducting external and longitudinal validation, 
assessing recalibration needs, and optimizing thresholds to enhance 
model generalizability and clinical applicability.

Overall, this study contributes to the growing body of evidence 
that explainable AI is a feasible and interpretable approach for 

FIGURE 5

Web-based frailty prediction application interface.
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population-level frailty research and prevention, aligning with the 
goals of the WHO and United Nations Decade of Healthy Ageing 
2021–2030 initiatives (52, 53).
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