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Background: Frailty is a public health concern linked to falls, disability, and
mortality. Early screening and tailored interventions can mitigate adverse
outcomes, but community settings require tools that are accurate and
explainable. Korea is entering a super-aged phase, yet few approaches have
used nationally representative survey data.

Objective: This study aimed to identify key predictors of frailty risk using the
K-FRAIL scale using explainable machine learning (ML), based on data from the
2023 National Survey of Older Koreans (NSOK). It also sought to develop and
internally validate prediction models. To demonstrate the potential applicability
of these models in community public health and clinical practice, a web-based
application was implemented.

Methods: Data from 10,078 older adults were analyzed, with frailty defined by
the K-FRAIL scale (robust = 0, pre-frail = 1-2, and frail = 3-5). A total of 132
candidate variables were constructed through selection and derivation. Using
CatBoost with out-of-fold (OOF) SHapley Additive exPlanations (SHAP, a game-
theoretic approach to quantify feature contributions), 15 key predictors were
identified and applied across 10 algorithms under nested cross-validation (CV).
Model performance was evaluated using receiver operating characteristic—
area under the curve (ROC-AUC), precision—recall area under the curve (PR-
AUC), Fl-score, balanced accuracy, and the Brier score. To assess feasibility, a
single-page bilingual web application was developed, integrating the CatBoost
inference pipeline for offline use.

Results: SHAP analysis identified depression score, age, instrumental activities
of daily living (IADL) count, sleep quality, and cognition as the leading predictors,
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followed by smartphone use, number of medications, province, driving status,
hospital use, physical activity, osteoporosis, eating alone, digital adaptation
difficulty, and sex, yielding 15 key predictors across the mental, functional,
lifestyle, social, and digital domains. Using these predictors, boosting models
outperformed other algorithms, with CatBoost achieving the best performance
(ROC-AUC = 0.813 + 0.014; PR-AUC = 0.748 + 0.019).

Conclusion: An explainable machine learning model with strong discrimination
performance and adequate calibration was developed, accompanied by a
lightweight web application for potential use in community and clinical settings.
However, external validation, recalibration, and subgroup fairness assessments
are needed to ensure generalizability and clinical adoption.
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1 Introduction

Frailty is a clinical and public health condition characterized by
reduced physiological reserve and diminished resistance to stress,
leading to increased risks of falls, hospitalization, disability, and
mortality (1-4). With the acceleration of global population aging, the
burden of frailty is steadily rising, highlighting the need for early
screening and preventive interventions at both national and regional
levels (5, 6).

However, large-scale surveys and clinical data are inherently
complex, often exhibiting non-linearity, interactions, missingness, and
heterogeneity. Such characteristics limit the predictive accuracy and
interpretability of traditional linear models (7, 8). Machine learning
methods can capture these complex structures, yet their limited
explainability has constrained their acceptance in public health and
clinical practice.

Explainable artificial intelligence has emerged as a promising
approach to address this gap. Among these methods, SHapley Additive
exPlanations is a game-theoretic technique that quantifies the
contribution of each variable to model predictions and enables the
intuitive interpretation of results (9-11). By providing transparency at
global and individual levels, it enhances the trustworthiness of
predictive models.

In imbalanced binary classification problems, receiver operating
characteristic metrics alone are insufficient. The precision-recall curves
and the precision-recall area under the curve (PR-AUC), which
summarize the balance between precision and recall across thresholds,
provide complementary information, and the Youden index can guide
threshold selection (12-14). Moreover, the Brier score, the mean squared
difference between predicted probabilities and observed outcomes with
lower values indicating better calibration, should be reported to support
the clinical interpretability of probability predictions (15, 16).

Reducing bias in internal validation also requires an appropriate
cross-validation design. Nested cross-validation, a two-layer
procedure in which the inner loop performs model selection while the
outer loop yields an unbiased performance estimate, is recommended
to separate these processes and ensure robust evaluation (17, 18).

In this study, data from the 2023 Korean National Survey of Older
Koreans were used to develop a binary classifier that distinguishes
robust (0) from pre-frail (1-2)/frail (3-5) individuals. A globally fixed
set of the top 15 features was selected using out-of-fold SHapley
Additive exPlanations and applied consistently across 10 algorithms.
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Performance was evaluated within a nested cross-validation
framework. The results on discrimination, calibration, and
explainability are reported, and a web-based application is further
proposed to demonstrate practical implementation (9, 10, 15, 17-28).

2 Methods
2.1 Data source/study population

A cross-sectional study was conducted using the 2023 NSOK (29,
30). The Ministry of Health and Welfare and the Korea Institute for
Health and Social Affairs led the survey (29). The NSOK targets all
Koreans aged >65 years living in general households, excluding island
enumeration areas (EAs), collective facilities (e.g., dormitories and
nursing homes), tourist hotels, foreigner EAs, and non-household
residents (e.g., overseas residents, active-duty military, and incarcerated
people). Sampling used explicit three-stage stratification—17
provinces, urbanicity (dong vs. eup/myeon), and EA type (apartment
vs. general)—followed by probability-proportional-to-size (PPS)
selection of EAs, systematic sampling of households within selected
EAs, and full enumeration of all eligible residents >65 years within
sampled households (30-32). Trained interviewers collected data via
tablet-assisted personal interviews during home visits.

The final sample included 10,078 participants, comprising 6,324
robust (62.7%), 3,313 pre-frail (32.9%), and 441 frail (4.4%) individuals.
Design, non-response, within-household, and post-stratification
adjustments (region x sex x age) were used to construct final sampling
weights; however, weights were not applied for model development, and
descriptive statistics reflected the unweighted sample distribution (33,
34). Given the relatively small prevalence of the frail group, population
estimates for this subgroup should be interpreted cautiously, and our
primary inference concerns predictive performance within the sample.

The dataset consisted of de-identified, nationally approved
statistics. The study was exempted from institutional review board
review (exemption ID: PNU IRB/2025_161_HR).

2.2 Variables and feature engineering

From 661 raw survey variables, 132 predictors aligned with the
study  objectives were constructed. Domains included
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sociodemographics; physical health (32 physician-diagnosed chronic
conditions, anthropometrics, number of medications, hospital use, falls,
health checkups, and unmet medical needs); health behaviors (smoking,
alcohol, physical activity, diet, and sleep); mental health (15-item
depression scale and suicidal ideation); cognition (total score); activities
of daily living (ADL/IADL as binary indicators and counts); medical
and care use; social activity and life satisfaction; and digital capacity
(35-39). Variables directly or indirectly defining K-FRAIL items or the
frailty target were excluded to prevent information leakage (40).

“Not applicable/no response” and unrealistic special codes (e.g.,
9,998, and 99,999) were recoded as missing according to the official
codebook, and cognitive scores were converted to the numeric type.
ADL/IADL limitations were binarized, and limitation counts were
computed. Body mass index (BMI) was derived from height and
weight. After these derivations, the final predictor set comprised 132
variables (118 original and derived variables such as ADL_Count,
TIADL_Count, and BMI), all of which were used for model
development (Supplementary Table S3).

2.3 Preprocessing

All preprocessing for model training was implemented within a
single pipeline to avoid information leakage during cross-validation.
Missing values were imputed independently within each training fold:
continuous variables with the median and categorical variables with
the mode. Categorical predictors were defined according to an a priori
codebook and treated as either ordinal or nominal. Ordinal variables
were encoded with preserved order using OrdinalEncoder, whereas
nominal variables were encoded with OneHotEncoder after
imputation. Continuous variables (e.g., age, BMI, income, cognitive
score, and depression score) were standardized using StandardScaler.
Ordinal variables were encoded but not scaled because their rank
information was preserved directly. Scaling was thus restricted to
continuous inputs and applied only for algorithms sensitive to feature
magnitude (e.g., support vector machine (SVM), k-nearest neighbors
(KNN), multilayer perceptron (MLP), and logistic regression). Tree-
based methods (random forest, gradient boosting, XGBoost,
LightGBM, and CatBoost) were trained without scaling. Class
imbalance was addressed within each training fold by applying the
Synthetic Minority Over-sampling Technique for Nominal and
Continuous (SMOTENC) features using the categorical feature indices.

2.4 Outcome definition

The outcome was based on the K-FRAIL scale, which sums five
items—fatigue, difficulty climbing stairs, difficulty walking 300 m,
number of chronic diseases, and weight loss—each coded 0/1 to yield
a score of 0-5 (41, 42). The primary analysis was binary classification
(robust = 0 vs. pre-frail/frail = 1-5). For descriptive comparisons, three
groups were also defined: robust (0), pre-frail (1-2), and frail (3-5).

In the original FRAIL scale, the weight-loss item is defined as a
loss of 5% or more of body weight over the prior 12 months, and the
K-FRAIL adopted this criterion. In the 2023 survey, however, no
variable measuring a 12-month 5% weight loss was available. Instead,
a variable capturing unintentional weight change of 5 kg or more
during the prior 6 months was available. Accordingly, this 6-month
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weight-change variable (loss or gain) was used as a proxy for the
original item. This operational difference from the standard definition
should be taken into account when interpreting the results.

2.5 Explainability analysis

SHapley Additive exPlanations (SHAP), which estimates feature
contributions based on cooperative game theory, was applied, and
out-of-fold (OOF) SHAP was performed using a single CatBoost
classifier to support feature selection and interpretability (9, 10, 23).
Stratified k-fold (default 5-fold) cross-validation was used, and SHAP
values were computed on each fold’s validation data and then
aggregated at the out-of-fold (OOF) level (9, 10, 17, 18). Features were
ranked by mean absolute SHAP. In exploration, the top 15 features were
selected once from the full-sample OOF-SHAP. This set was then fixed
globally for all algorithms and across all nested cross-validation steps
(17, 18). Global summary bar plots and local beeswarm plots were
generated. The OOF-SHAP matrix and the final top 15 list were saved
for reproducibility (Figures 1, 2) (9, 10).

2.6 Machine learning models and training

A binary classifier was built to distinguish robust (0) from
pre-frail/frail (1). We implemented ten supervised learning algorithms,
representing major categories of machine learning: linear (logistic
regression), kernel-based (support vector machine with radial basis
function (RBF) kernel), instance-based (k-nearest neighbors), neural
network (multilayer perceptron), and tree-based ensemble methods
(random forest, gradient boosting, histogram-based gradient
boosting, XGBoost, LightGBM, and CatBoost) (21-28).

To ensure unbiased performance estimation, nested cross-
validation with an outer stratified 10-fold split and an inner stratified
5-fold split was used (17, 18). Model hyperparameters were optimized
in the inner loop using the ROC-AUC as the selection criterion. For
each outer fold, the configuration yielding the highest ROC-AUC was
chosen. For some algorithms (e.g., logistic regression, random forest,
and boosting methods), the class_weight parameter (none vs.
balanced) was additionally searched.

For each outer fold, the optimal classification threshold was
selected based on the inner cross-validation results by maximizing
Youden’s J index (sensitivity + specificity — 1). The fold-specific
threshold was then applied to the corresponding outer test fold, and
final performance metrics were aggregated across folds (13, 14). To
ensure reproducibility, random_state was set to 42.

Primary metrics were accuracy, sensitivity, specificity, precision,
F1 score, balanced accuracy, PR-AUC, ROC-AUC, and the Brier score.
Outer-fold results were summarized as mean + SD. A 95% CI for
ROC-AUC was computed from 2,000 bootstrap samples using all
OOF probabilities (43). Calibration was assessed using decile-based
calibration plots (15).

2.7 Web application implementation

To assess field feasibility, a single-page web application was built.
The application integrates the trained CatBoost inference pipeline
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FIGURE 1
SHAP feature importance.

0.10 0.15 0.20 0.25 030
mean(|SHAP value|) (average impact on model output magnitude)

with a bilingual (Korean/English) questionnaire schema. It
standardizes responses according to the codebook, with categorical
variables integer-coded and continuous variables converted to
numeric type, aligns inputs to the models feature set, and treats
missing entries as missing (29). The CatBoost classifier outputs the
predicted probability for the positive (frailty) class and assigns a final
label by comparing the probability with a predefined or user-adjustable
threshold (13, 14). All inference is executed locally without server
connection, and predictions together with metadata (timestamp,
probability, threshold, and label) are stored in local files (CSV/XLSX).

3 Results
3.1 Baseline characteristics of participants

Data from 10,078 participants were included (robust: 62.7%,
pre-frail: 32.9%, and frail: 4.4%; Table 1). The majority of continuous
variables differed significantly across groups (age, number of
medications, depression score, cognitive score, and household income;
all p<0.001), while the BMI showed a smaller but significant
difference (p =0.031). The majority of categorical variables also
showed significant differences (sex, age group, self-rated health, ADL/
IADL dependency, physical activity, hospital use, health checkups, fall
experience, smartphone use, and digital adaptation difficulty; mostly

Frontiers in Public Health

a p-value of < 0.001). For interpretability, categories were reordered so
that higher numeric values corresponded to worse clinical meaning
for items such as self-rated health, sleep quality, and digital adaptation
difficulty. Because the frail group represented only 4.4% of the sample,
some category estimates may remain unstable, and descriptive
interpretations are presented conservatively. See Table 1 and
Supplementary Table S1 for details.

3.2 Explainability analysis

The CatBoost OOF-SHAP top 15 ranked the 15-item depression
score as the most important predictor by mean absolute SHAP,
followed by age, IADL count, sleep quality, and total cognition score
(Figure 1). Other contributing features included smartphone use,
number of medications, province, driving, hospital use, physical
activity, osteoporosis, eating alone, digital adaptation difficulty, and
sex. The SHAP beeswarm plot (Figure 2) showed that higher
depression scores, older age, more IADL limitations, poorer sleep
quality, and lower cognition were strongly associated with increased
frailty risk. Additional risk was linked to not using a smartphone,
polypharmacy, eating alone, greater difficulty with digital
adaptation, and being female. In contrast, higher cognition, physical
activity, and absence of IADL limitations were associated with
lower risk.
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3.3 Model performance

The globally fixed top 15 features derived from the CatBoost
OOF-SHAP analysis were consistently applied across all algorithms
and outer folds. Nested cross-validation (outer 10-fold and inner
5-fold) demonstrated that tree-based ensemble models achieved the
best overall performance (Figures 3, 4, Table 2).

Among ensemble models, CatBoost achieved the highest
discrimination (ROC-AUC =0.813 +0.014; PR-AUC=0.748 +
0.019) and the best calibration (specificity =0.771 + 0.032;
Brier = 0.165 + 0.006). XGBoost showed the highest balanced overall
performance (balanced accuracy = 0.736 + 0.019; accuracy = 0.744 +
0.020; and F1-score = 0.672 + 0.023). LightGBM achieved the highest
sensitivity  (0.707 £ 0.040) with balanced overall metrics
(accuracy = 0.740 + 0.015 and specificity = 0.759 + 0.027). Random
forest demonstrated stable and low-variance performance (balanced
accuracy = 0.733 £0.012; accuracy = 0.742 + 0.013; and
Brier = 0.168 + 0.004). Gradient boosting and HistGradientBoosting
yielded comparable results, with ROC-AUC values of 0.807-0.808
and PR-AUC approximately 0.740.

In contrast, simpler models, such as the logistic regression analysis,
SVM, and KNN, achieved moderate performance (ROC-AUC = 0.791-
0.803 and PR-AUC=0.711-0.736), while MLP showed the
lowest overall performance (balanced accuracy =0.692 + 0.016;
ROC-AUC = 0.760 + 0.013; and Brier = 0.212 + 0.009).

Frontiers in Public Health

Overall, ensemble models demonstrated similar discrimination,
with ROC-AUC ranging from 0.807 to 0.813 and PR-AUC ranging
from 0.738 to 0.748. Brier scores ranged from 0.165 to 0.181,
indicating generally good probability calibration. Calibration curves
(Supplementary Figure S1) were closely aligned with the diagonal
across models, although the MLP showed larger deviations at low and
high predicted probabilities.

The CatBoost OOF confusion matrix (Supplementary Figure 52)
showed TN =5,385, FP =939, FN=1,490, and TP =2,264,
corresponding to sensitivity = 0.603, specificity = 0.852, and balanced
accuracy = 0.728. These OOF-level metrics were comparable to the
nested CV averages in Table 2, confirming consistency between OOF
and cross-validation results.

3.4 Web application implementation

The CatBoost-based trained pipeline and globally fixed top 15
features were implemented in a single-page bilingual (Korean/English)
web application (Figure 5). The interface consists of three components:
(i) administrative information, (ii) health and lifestyle questionnaire
items corresponding to the top 15 predictors, and (iii) probability
output with visualization.

In the design, the administrative information fields (e.g.,
respondent type, age, sex, and residential area) are used to record
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TABLE 1 Baseline characteristics of participants by frailty group.

Variable

Total (N = 10,078,

100%)

Robust (n = 6,324,

62.7%)

Pre-frail

(n = 3,313, 32.9%)

10.3389/fpubh.2025.1698062

Frail (n = 441,

4.4%)

p-value

Continuous variables (mean + SD)

Frontiers in Public Health
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Age 74.13 £6.81 72.35+6.01 76.89 +7.04 78.83 £ 6.66 <0.001
BMI 23.63 £2.63 23.68 £2.41 23.54+2.93 23.53+3.29 0.031
Number of medications 2.05+1.62 1.72+1.42 248+1.72 3.48+1.97 <0.001
Depression score 3.06 +£3.23 2.23 £2.59 4.05+3.44 7.42 +4.21 <0.001
Cognitive score 24.50 £4.77 25.57 £4.20 22.87 +£5.01 21.07 £ 5.55 <0.001
Household income 3251.7 £ 34129 3617.4 + 3509.4 2702.9 +3238.1 2131.5+£2327.3 <0.001
Categorical variables (n, %)
Sex <0.001
Male 3,872 (38.4) 2,710 (42.9) 1,047 (31.6) 115 (26.1)
Female 6,206 (61.6) 3,614 (57.1) 2,266 (68.4) 326 (73.9)
Age group <0.001
65-69 3,249 (32.2) 2,580 (40.8) 623 (18.8) 46 (10.4)
70-74 2,482 (24.6) 1739 (27.5) 666 (20.1) 77 (17.5)
75-79 1950 (19.3) 1,091 (17.3) 763 (23.0) 96 (21.8)
80-84 1,544 (15.3) 655 (10.4) 758 (22.9) 131 (29.7)
85-89 668 (6.6) 217 (3.4) 383 (11.6) 68 (15.4)
>90 185 (1.8) 42(0.7) 120 (3.6) 23(5.2)
Self-rated health <0.001
Excellent 240 (2.4) 209 (3.3) 31(0.9) 0(0.0)
Good 3,873 (38.4) 3,052 (48.3) 790 (23.8) 31(7.0)
Fair 3,445 (34.2) 2,277 (36.0) 1,099 (33.2) 69 (15.6)
Poor 2,107 (20.9) 738 (11.7) 1,139 (34.4) 230 (52.2)
Very poor 286 (2.8) 30 (0.5) 158 (4.8) 98 (22.2)
Missing 127 (1.3) 18 (0.3) 96 (2.9) 13 (2.9)
ADL dependency <0.001
Yes 820 (8.1) 151 (2.4) 502 (15.2) 167 (37.9)
No 9,258 (91.9) 6,173 (97.6) 2,811 (84.8) 274 (62.1)
IADL dependency <0.001
Yes 1762 (17.5) 503 (8.0) 1,001 (30.2) 258 (58.5)
No 8,316 (82.5) 5,821 (92.0) 2,312 (69.8) 183 (41.5)
Physical activity <0.001
Yes 5,376 (53.3) 3,717 (58.8) 1,512 (45.6) 147 (33.3)
No 4,702 (46.7) 2,607 (41.2) 1801 (54.4) 294 (66.7)
Hospital use (past year) <0.001
Yes 6,982 (69.3) 4,042 (63.9) 2,563 (77.4) 377 (85.5)
No 3,096 (30.7) 2,282 (36.1) 750 (22.6) 64 (14.5)
Health checkup <0.001
Yes 7,920 (78.6) 5,203 (82.3) 2,389 (72.1) 328 (74.4)
No 2,158 (21.4) 1,121 (17.7) 924 (27.9) 113 (25.6)
Fall experience <0.001
Yes 639 (6.3) 209 (3.3) 338(10.2) 92 (20.9)
No 9,439 (93.7) 6,115 (96.7) 2,975 (89.8) 349 (79.1)

(Continued)
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TABLE 1 (Continued)

10.3389/fpubh.2025.1698062

Variable Total (N = 10,078, Robust (n = 6,324, Pre-frail Frail (n = 441, p-value
100%) 62.7%) (n = 3,313, 32.9%) 4.4%)

Owns smartphone <0.001

Yes 7,499 (74.4) 5,264 (83.2) 2021 (61.0) 214 (48.5)

No 2,579 (25.6) 1,060 (16.8) 1,292 (39.0) 227 (51.5)

Uses smartphone <0.001

Yes 6,432 (63.8) 4,723 (74.7) 1,561 (47.1) 148 (33.6)

No 3,646 (36.2) 1,601 (25.3) 1752 (52.9) 293 (66.4)

Digital adaptation difficulty <0.001

Very easy 61 (0.6) 47 (0.7) 14 (0.4) 0(0.0)

Easy 640 (6.4) 498 (7.9) 133 (4.0) 9(2.0)

Moderate 2,319 (23.0) 1771 (28.0) 512 (15.5) 36 (8.2)

Difficult 4,075 (40.4) 2,720 (43.0) 1,245 (37.6) 110 (24.9)

Very difficult 2,856 (28.3) 1,270 (20.1) 1,313 (39.6) 273 (61.9)

Missing 127 (1.3) 18 (0.3) 96 (2.9) 13 (2.9)

Continuous variables were compared using a one-way ANOVA or the Kruskal-Wallis test depending on normality, and categorical variables were compared using the chi-squared (?) test.

ROC Curves (10 Models, Binary_Top15)
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FIGURE 3
ROC curves of 10 models.

0.6 0.8 1.0

False Positive Rate

participant characteristics. Since some of these overlap with the top 15
predictors, they can be streamlined or replaced so that the information
is directly reflected in the model input, ensuring consistency between
the questionnaire and prediction pipeline. User inputs are standardized
according to the official codebook (e.g., integer coding for categorical
variables and numeric casting for continuous variables) and aligned
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with the model’s feature set. Missing values are handled as defined
during training.

After submission, the classifier outputs the predicted frailty
probability for robust and at-risk categories and assigns a label using
a default threshold of 0.50, which can be adjusted by the user. The
results are visualized as bar charts showing class probabilities and final
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FIGURE 4
PR curves of 10 models.

risk classification. The application also stores inputs, predictions, and
metadata (time, threshold, and label) using browser localStorage and
client-side file download (CSV/XLSX), enabling cumulative tracking.
This design supports rapid screening, intuitive communication of risk,
and community-level monitoring, bridging explainable machine
learning models with practical public health applications.

4 Discussion
4.1 Model performance and calibration

Ensemble learning approaches consistently demonstrated superior
discrimination compared with traditional classifiers, consistent with
prior studies showing that tree-based boosting algorithms effectively
learn non-linear relationships in complex data (21-24). The narrow
range of ROC-AUC values (0.807-0.813) across CatBoost, XGBoost,
and LightGBM indicates stable performance among ensemble
methods, suggesting that proper variable representation and
calibration are more critical than the specific boosting framework itself.

In contrast, linear and kernel-based classifiers such as logistic
regression and SVM achieved moderate discrimination
(ROC-AUC = 0.791-0.803), indicating limited ability to capture the
complexity and heterogeneity of frailty-related health determinants
(21-24).

Low Brier scores (0.165-0.181) and calibration curves closely
aligned with the diagonal (Supplementary Figure S1) indicate reliable
probability estimation (15, 16). CatBoost, in particular, achieved the
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highest discrimination (ROC-AUC = 0.813 £ 0.014) and the best
calibration performance (Brier = 0.165 + 0.006), demonstrating that
explainable ensemble models can simultaneously achieve high
predictive accuracy and interpretable probability estimates when
applied to large-scale survey and community health datasets (9, 10,
15, 16, 21-24).

4.2 Explainability and interpretation

The SHAP-based interpretation demonstrates that frailty is a
multidimensional construct resulting from interactions among
mental, functional, social, and digital domains. Core predictors such
as depression, cognitive function, sleep quality, and IADL limitations
highlight how psychological and functional decline jointly contribute
to physical vulnerability (9, 10, 35-37, 44, 45). This aligns with
previous evidence that frailty is not merely a physiological condition
but a complex syndrome shaped by multiple interdependent factors.

In addition, social and digital factors—including smartphone use,
eating alone, and difficulty adapting to technology—underscore the
evolving relevance of social connectivity and digital capacity in aging
populations (38, 39, 46-50). These variables illustrate how modern
forms of exclusion, both social and digital, can amplify vulnerability
among older adults.

Together, these findings expand upon the multidimensional
framework of frailty proposed in earlier studies (1, 2, 35-37, 44-47),
emphasizing that frailty should be understood as a cumulative state of
vulnerability across psychological, functional, social, and digital
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dimensions. From a public health perspective, this multidomain
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progression of frailty (36, 46, 47).
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FIGURE 5
Web-based frailty prediction application interface.

group was only 4.4%, which can inflate uncertainty; residual bias may
remain despite SMOTENC (19, 20). Fourth, although the NSOK is
nationally representative by design, sampling weights were not applied
in model estimation, and descriptive statistics were unweighted.
Consequently, the results should not be interpreted as population-
level estimates; they reflect predictive performance in the observed
sample. Fifth, selecting and fixing features once with full-sample
OOF-SHAP improves reproducibility but risks underestimating fold-
or algorithm-specific features (17, 18). Sixth, subgroup performance
and fairness (sex, age strata, socioeconomic status, and digital divide)
were not comprehensively assessed (51). Seventh, the FRAIL/K-
FRAIL weight-loss item is defined as a reduction of 5% or more of
body weight over the preceding 12 months. As this variable was not
collected in the 2023 NSOK, we substituted a proxy measure of
unintentional weight change of 5kg or more within the prior
6 months. This modification should be considered when comparing
our results with studies using the original definition.

4.6 Future directions

This study demonstrated the feasibility of explainable Al for frailty
risk prediction using nationally representative survey data. However,
several steps are required to advance toward robust and implementable
systems. First, external validation across multiple sites and time
periods is essential to assess generalizability. Such research should
incorporate sampling weights to ensure population representativeness
and apply recalibration strategies when transportability gaps are
identified. Second, because frailty is a dynamic process, future research
should adopt survival or longitudinal designs (e.g., Cox proportional
hazards models, landmarking, and joint models) to evaluate predictive
stability over time. Third, decision thresholds should move beyond
conventional metrics and be optimized through cost-benefit analyses,
with threshold selection guided by approaches such as the Youden
index (13, 14), thereby linking predictions to real-world intervention
trade-offs. Fourth, systematic assessment of subgroup fairness
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(considering factors such as sex, age, and socioeconomic status) and
bias mitigation strategies is needed. Additionally, user acceptance
testing should be conducted to determine whether explainability
outputs genuinely improve trust and clinical decision-making (51).
Finally, integration of wearable devices, electronic health records, and
personal health records may enable continuous and personalized
frailty risk monitoring, supporting adaptive interventions in public
health and primary care (5, 6, 55).

5 Conclusion

This study developed and internally validated an explainable
artificial intelligence (XAI) framework for frailty risk prediction using
nationally representative survey data. By integrating SHAP-based
feature interpretation with ensemble algorithm comparison, the
framework demonstrated that predictive performance and
interpretability can be achieved concurrently in a population-
based context.

The findings suggest that frailty risk is shaped by interrelated
medical, functional, psychological, social, and digital factors rather
than by chronological aging alone. These results underscore the
importance of incorporating multidomain information into future
frailty screening and prevention strategies. The lightweight web
application developed in this study serves as a proof of concept for
translating explainable AI models into accessible tools for use in
community and primary care settings.

Although limited by its cross-sectional design, relatively small
frail subgroup, and lack of external validation, this study presents a
reproducible and transparent framework for applying explainable
machine learning to public-health data. Future research should build
upon this research by conducting external and longitudinal validation,
assessing recalibration needs, and optimizing thresholds to enhance
model generalizability and clinical applicability.

Overall, this study contributes to the growing body of evidence
that explainable Al is a feasible and interpretable approach for
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population-level frailty research and prevention, aligning with the
goals of the WHO and United Nations Decade of Healthy Ageing
2021-2030 initiatives (52, 53).
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