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Detecting environmental barriers
affecting older adult pedestrians
via Gramian angular field-based
CNN of smartphone sensor data

Sungkook Hong and Hyunsoo Kim*

Department of Architectural Engineering, Dankook University, Yongin, Republic of Korea

Introduction: Promoting safe walking among older adults requires precise
identification of environmental barriers that disrupt gait. Traditional adult- and
survey-based walkability assessments are labor-intensive and often miss transient
hazards, while prior wearable-sensor methods—threshold-based acceleration,
Maximum Lyapunov Exponent (MaxLE, a gait-stability index quantifying the local
divergence of gait dynamics), and information entropy—either lack individual
sensitivity or depend on aggregated data. This study introduces a framework that
converts smartphone IMU time-series into Gramian Angular Field (GAF) images
for classification by a lightweight CNN.

Methods: Twenty older adults completed walking trials along a 1.2 km urban
route featuring common barriers (uneven sidewalks, curb drops, narrow alleys,
driveway crossings). IMU data were filtered, segmented into 2-s windows,
transformed into 200 x 200-pixel GAF images, and evaluated under leave-one-
subject-out cross-validation.

Results: Among three benchmarks—peak-acceleration threshold, MaxLE
(82.3% accuracy, Fl-score = 045), and multi-user entropy—the GAF-CNN
achieved 90.8% accuracy, 93.0% sensitivity, and 88.1% specificity, significantly
outperforming the baselines (75-85% accuracy). Spatial mapping confirmed
close correspondence between detected anomalies and true barrier locations.
Discussion: These findings demonstrate that image-based deep learning
provides a practical and interpretable solution for real-time, personalized
detection of environmental barriers, offering a scalable tool for data-driven
walkability enhancement in age-friendly urban design.

KEYWORDS

Gramian Angular Field (GAF), convolutional neural network (CNN), older adult gait
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1 Introduction

Population aging has made the mobility of older adults an urgent public health concern
(1), as the ability to walk safely and independently is essential for maintaining both physical
health and social participation in later life (2). Walking is the most common and accessible
form of exercise for older adults, yet it heavily depends on the quality and safety of the
surrounding built environment (3, 4). In neighborhoods where sidewalks are continuous,
smooth, and well-maintained, older adults are more likely to walk regularly and sustain social
connections, thereby supporting longer independent living (5, 6). Conversely, environmental
barriers—features of the built environment that impede comfortable walking—can discourage
walking and reduce older adults’ mobility (7, 8). Examples of such barriers include uneven or
broken sidewalks (9-11), curbs without ramps (12), obstructions on pathways (2), or
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high-traffic crossings without safe signals (1, 2, 11). These
environmental barriers discourage outdoor activity and can ultimately
contribute to physical decline and social isolation. Hence, eliminating
or mitigating these barriers is essential because they restrict an
individual’s ability to navigate their community and thus undermine
the health and wellbeing benefits of walking (7).

Conventional approaches to assess walkability and identify
environmental barriers rely on observational audits (13) and self-
reported surveys (14) conducted by experts and local governments (15,
16). While these methods provide valuable qualitative insights, they are
inherently limited in scalability, objectivity, and temporal resolution.
First, manual audits and surveys are time-consuming and costly,
especially when covering large urban areas (17). Second, static surveys
may miss transient or context-dependent barriers—for example,
temporary obstacles (construction zones, illegally parked cars) or
environmental conditions like wet leaves that a one-time audit might
not capture (18). Third, because comfort and mobility are relative to
individual abilities, a one-size-fits-all checklist may overlook barriers
that uniquely affect older or frail pedestrians (19). For instance, a slight
incline or shallow step might pose no issue to a young adult but could
be a significant hazard for someone with limited balance (20).
Consequently, existing audit- and survey-based assessments tend to
offer static snapshots of walkability that overlook the micro-scale and
transient nature of the hazards that older pedestrians face (21).

Advances in mobile and wearable sensing technologies provide a
promising pathway to overcome these limitations (22). Smartphones and
wearable devices equipped with inertial measurement units (IMUs) can
continuously capture detailed motion data while individuals walk,
effectively transforming pedestrians into real-time environmental sensors
(23-25). Environmental barriers cause subtle perturbations in gait—such
as temporary loss of stability, increased variability, or irregular step timing
(26, 27)—that can be detected through accelerometer and gyroscope
signals (1). Under stable walking conditions, gait patterns remain periodic
and consistent (28), whereas exposure to a barrier leads to transient
deviations from normal dynamics. Detecting such anomalies enables the
inference of environmental hazards indirectly, through changes in the gait
itself (18, 29). This concept—using gait responses as a proxy for
environmental quality—offers a data-driven approach to characterize
walkability at high spatial and temporal resolution. However, despite this
promise, the existing literature remains fragmented and methodologically
limited in achieving robust and individualized detection of environmental
barriers in real-world settings.

The motivation of this study arises from these unresolved challenges.
Previous sensing-based studies have often relied on manually tuned
thresholds or handcrafted features derived from acceleration magnitude
or frequency spectra, which are sensitive to individual differences and
fail to generalize across diverse walking styles (30, 31). Other approaches
aggregate gait responses across multiple users to identify population-
level patterns, which limits single-user, real-time detection (32).
Moreover, many prior experiments have been conducted under
controlled conditions, resulting in limited validation on outdoor urban
routes where surfaces and obstacles vary dynamically. Therefore, there is
a pressing need for an analytical framework that can autonomously learn
complex gait dynamics without prior feature selection and that can
reliably detect brief, transient instability induced by environmental
barriers during naturalistic walking.

To address this need, this study aims to develop a Convolutional
Neural Networks (CNN)-based abnormal gait detection method using
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Gramian Angular Field (GAF) images of smartphone IMU data and
evaluate its performance for identifying environmental barriers on
pedestrian paths. In addition to this, the authors conduct a
comparative analysis against three baseline techniques from prior
work: (1) an acceleration SVM-based threshold method, (2) a
Maximum Lyapunov Exponent (MaxLE)-based gait stability method,
and (3) the Information Entropy method. The authors focus on older
adult pedestrians (age >65) as the target population, given their high
susceptibility to mobility barriers.

The contributions of this work are threefold. First, the authors
introduce a novel application of GAF transformation in the context of
urban walkability, demonstrating how time-series IMU data can
be leveraged for image-based deep learning to detect micro-scale
environmental hazards. Second, the authors present a comprehensive
evaluation using real-world data collected from older walkers in a
natural urban setting, showing that the proposed GAF-CNN approach
achieves superior accuracy and robustness in barrier detection. Third,
this paper demonstrates how gait-based anomaly detection using
GAF-CNN can yield actionable insights for urban planning and
age-friendly city initiatives. By showing that well-calibrated, segment-
level EB scores align closely with real barrier locations, the study
highlights a pathway for integrating wearable-sensor analytics into
evidence-based barrier removal and infrastructure improvement
strategies. Rather than remaining at the level of abstract walkability
indices, the proposed approach enables fine-grained, spatially precise
detection of obstacles that older pedestrians actually encounter. In
doing so, it underscores the potential of combining time-series
analysis, computer vision-inspired transformations, and urban health
perspectives to operationalize smart, data-driven interventions for
safer and more inclusive environments. The key contribution of this
work lies in bridging the gap between subjective, labor-intensive field
assessments and automated, personalized sensing analytics, offering a
methodological foundation for real-time environmental barrier
detection and age-friendly urban design.

2 Related works

A growing body of literature demonstrates the feasibility of
wearable sensor-based barrier detection. Previous studies showed that
defective sidewalk segments could be identified by analyzing
irregularities in pedestrians’ acceleration patterns collected via a waist-
mounted IMU (33-36). Other researchers linked environmental
barriers with changes in quantitative gait stability metrics: for example,
Bisadi et al. (37) observed that walking through disordered
neighborhoods led to higher average MaxLE values (indicating more
chaotic, less stable gait) and elevated heart rates in participants. In
related work, Bisadi et al. (38) combined multiple wearable sensors —
including electrodermal activity (EDA), blood volume pulse, and gait
dynamics (MaxLE) - to evaluate neighborhood built environments,
essentially measuring pedestrians’ stress and instability as they walked.
Zeile et al. (39) took a broader approach by correlating biosensor data
with geospatial analysis to define walkability, laying groundwork for
using physiological responses (like heart rate or skin conductance) as
proxies for environmental comfort. Across these studies, a recurring
theme is that abnormal pedestrian responses tend to coincide with
environmental stressors or hazards, confirming the fundamental
premise that gait deviations can serve as a marker for barriers (30).
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However, many early approaches relied on simple features of the
acceleration signal, primarily the magnitude of motion (sometimes
termed the signal vector magnitude, SVM) (40, 41). For instance, one
might set a threshold on resultant acceleration and flag any segment
exceeding that threshold as a “stumble” or abnormal event. While
straightforward, intensity-based methods are prone to both false
negatives and false positives (42). Some barriers elicit subtle gait
changes rather than large spikes in acceleration - especially among
cautious individuals who slow down for obstacles, producing only a
mild change in SVM. These may be missed by a simple threshold
tuned to detect larger events (31). Conversely, highly active or
spontaneous movements (e.g., an older person increasing speed
briefly or turning head suddenly) can momentarily raise acceleration
magnitude and trigger false alarms in the absence of any external
hazard (43). In fact, raw acceleration ranges vary significantly by
individual due to differences in body size, gait style, and personal
caution, making it difficult to choose a universal SVM threshold (30).
MaxLE-based measures focus on gait stability and might better
capture subtle instability; yet calculating Lyapunov exponents over
short walking intervals can be noisy and requires careful parameter
selection (embedding dimension, etc.), which may limit reliability on
a single crossing of a barrier (32). Moreover, MaxLE and other chaos
metrics often need relatively long, steady data windows for accuracy,
whereas an obstacle encounter is a brief event. Information-entropy
approaches (1) convert IMU data into location-specific response
distributions and compute Shannon entropy to quantify
environmental unpredictability; this design effectively reveals
population-level “hotspots” but depends on multi-user aggregation,
making single-user, real-time detection difficult. In summary, prior
wearable strategies either (1) rely on hand-crafted features with ad-hoc
thresholds that struggle to generalize across individuals, or (2) require
pooling data across participants or time, sacrificing immediacy.

More recently, advances in machine learning have enabled the use
of data-driven models to classify gait patterns without explicit feature
engineering. Support Vector Machines (SVMs) trained on handcrafted
gait descriptors improved classification accuracy for irregular surfaces,
but their performance remains limited by the choice of features and
inability to model long-term dependencies (40, 41). Deep learning
architectures such as CNNs and Long Short-Term Memory (LSTM)
networks have shown notable promise in capturing complex temporal
structures in IMU signals (44). For example, Hwang et al. (45)
demonstrated that an LSTM-based model could effectively classify
abnormal gait related to joint impairment. Nevertheless, most deep
learning studies have been confined to controlled laboratory conditions
or clinical datasets, where variability in environmental context is
minimal. Their applicability to real-world urban walking, where surface
types and obstacles change dynamically, remains underexplored.

Collectively, these prior studies reveal three major research gaps.
First, threshold-based and handcrafted-feature approaches lack
robustness and generalizability across individuals. Second, population-
aggregated entropy and stability metrics capture macro-level trends
but cannot support personalized or real-time hazard detection. Third,
while deep learning has shown strong potential, its validation on
uncontrolled outdoor walking data from older adults remains limited,
and empirical evidence under field conditions is scarce. To address
these research gaps, this paper proposes a novel deep learning-based
framework to detect environmental walking barriers by analyzing
wearable sensor data, specifically using GAF visualization and a CNN
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classifier. Our approach is inspired by recent advances in human
activity recognition, where data-driven models markedly improved
recognition accuracy by learning complex patterns directly from
sensor signals. GAF encoding transforms a time-series into an image
that preserves temporal dynamics as spatial patterns (46). In a GAF,
each element of the image represents the trigonometric relationship
(e.g., cosine of sum) between two time points, effectively capturing the
intrinsic correlations within the signal. By converting IMU time-series
segments into GAF images, subtle differences in gait dynamics
(frequency shifts, phase changes, irregular oscillations) become
visually salient features that a CNN can learn. This approach is
advantageous because it does not require pre-selecting which signal
feature (peak, variance, entropy, etc.) is important — the CNN can
autonomously infer the relevant patterns associated with abnormal
gait (47). Furthermore, CNNs have proven highly successful in time-
series classification when paired with such time-series-to-image
encodings, often outperforming traditional feature-based methods.
For example, Serenelli et al. (48) found that GAF encodings combined
with deep CNN models achieved the highest accuracy in classifying
physiological signals (stress vs. calm conditions) compared to other
encoding methods, attributing the success to GAF’s ability to preserve
temporal dependencies in a 2D format that CNNs handle well. Based
on this study, the authors hypothesize that a GAF-CNN model can
similarly capture the nuanced gait alterations caused by environmental
barriers more effectively than conventional methods. This approach
enables reliable identification of transient gait instability caused by
environmental barriers and demonstrates feasibility under realistic
urban conditions, thereby extending deep learning-based gait analysis
from laboratory experiments to practical, city-scale walkability
assessment for aging populations.

3 Methodology
3.1 Research framework

The overall research framework for identifying environmental
barriers via older adults’ gait analysis is depicted in Figure 1. This
multi-stage process begins with the Experiment Setup, where
we carefully select and survey the study site and recruit participants.
Specifically, a 1.2 km urban loop containing common pedestrian
hazards (e.g., cracked sidewalks, curb drops, narrow alleys, driveway
crossings) is surveyed and mapped. Twenty older adult volunteers (12
female, 8 male) without significant mobility impairments are recruited
from the local community to ensure representative gait data under
realistic conditions.

Once the site and participants are confirmed, the Data Collection
and Gait Detection stage proceeds. Each participant completes two
walking trials around the loop while carrying a smartphone in a pocket
or mounted at the chest. Simultaneously, an experimenter records video
footage to establish ground truth for each individual’s gait events (normal
vs. abnormal). The smartphone’s built-in IMU (accelerometer and
gyroscope) captures raw and filtered gait signals as the participant
traverses both obstacle-free and barrier-laden segments. From these
continuous sensor streams, distinct gait windows are detected and
labeled according to whether they coincide with a known barrier location.

Next, in the Generation of GAF by Using IMU Data stage, each
labeled gait segment is transformed into a two-dimensional image.
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FIGURE 1
Research framework.

The preprocessed accelerometer magnitude is first normalized and
re-expressed in polar coordinates. A Gramian Angular Summation
Field (GASF) matrix is then computed and produces a 200 x 200 pixel
image that encodes pairwise angular relationships across the time-
series. Representative GAF images for normal and abnormal gait
illustrate how periodic walking yields a regular lattice pattern, whereas
barrier-induced gait perturbations manifest as localized distortions.

The resulting GAF images serve as input to the CNN Algorithm for
Abnormal Gait Detection. A lightweight convolutional neural network—
comprising three convolutional-pooling blocks followed by a fully
connected classifier and a softmax output—Ilearns to distinguish normal
versus abnormal GAF patterns. Each convolutional layer applies ReLU
activations and max-pooling to hierarchically extract salient spatial
features from the image representation of gait. The trained CNN
ultimately outputs a probability distribution over two gait states (normal,
and abnormal—severe perturbation), enabling fine-grained classification.

Finally, in the Results and Comparative Analysis stage, the
GAF-CNN’s performance is benchmarked against three baseline
algorithms: (1) an SVM using peak acceleration magnitude, (2) a
MaxLE stability metric, and (3) an information entropy method.
Classification metrics (accuracy, sensitivity, specificity, F1-score) and
spatial correspondence between detected anomalies and true barrier
locations are compared to demonstrate the proposed framework’s
advantages. As shown in Figure 1, this end-to-end pipeline—spanning
site selection to algorithmic comparison—provides a comprehensive
methodology for real-time, personalized detection of environmental
barriers based on older adults’ gait.

3.2 Experimental site and participants

This research was conducted in a busy urban neighborhood
selected for its diverse pedestrian infrastructure and presence of
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common walking barriers. The study site is a 1.2 km loop in a city
center, encompassing residential streets and commercial blocks. Along
this route, we identified several representative environmental barriers
frequently encountered by seniors: a section of uneven sidewalk with
cracks and height mismatches, two intersections lacking curb ramps
(requiring a step off the curb), a narrow alleyway (~0.8 m width)
cluttered with bins, and segments of a mixed-use path where vehicles
cross the sidewalk (driveway entries causing potential conflict). These
features provided a varied testbed including both fixed obstacles
(infrastructure-related) and more dynamic challenges (e.g., moving
vehicles). The detailed route and features are illustrated in Figure 2.

The authors recruited 20 older adult volunteers (aged 65-80 years)
from the local community. Participants were screened to ensure they
were ambulatory without need of assistive devices and had no severe
neurological or musculoskeletal disorders that would independently
affect gait. Basic demographics of the participant group are
summarized in Table 1. The sample (12 women and 8 men) had a
mean age of 70.4 years (SD 4.1). All participants provided informed
consent, and the experimental protocol was approved by the
Institutional Review Board of the authors” university (IRB No. 2025-
04-015-022). To familiarize participants with the route and minimize
anxiety, each individual was guided along the path once before data
collection, with hazards pointed out so they could exercise appropriate
caution.

3.3 Data collection procedure

Each participant completed two walking trials around the
designated loop at their normal, comfortable walking speed (resting
as needed between trials). We used a standard Android smartphone
(Samsung Galaxy S23) as the sensing device, exploiting its built-in
IMU. The smartphone was secured to the participant’s body at the
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TABLE 1 Characteristics of the older adult participants.

Characteristics Value

Age (years), mean + SD 704 +4.1
Female: Male 12:8

Height (cm), mean + SD 1652+ 7.5
Weight (kg), mean + SD 68.9 +£10.3

waist level, centered near the lower back using an elastic belt pouch
(approximating the lumbar attachment used in prior gait studies) (34,
36). This placement was chosen as it provides a stable representation
of whole-body motion and is less prone to extraneous arm
movements than a pocket or handbag. The phones 3-axis
accelerometer and 3-axis gyroscope were recorded at 100 Hz
throughout each walk. Additionally, the phone’s GPS was logged at
1 Hz to later assist with mapping sensor data to spatial locations
along the route.

Participants were instructed to walk naturally but to exercise
caution at any perceived hazard. An investigator followed at a distance,
noting the times or positions (via a handheld GPS tracker) when the
participant traversed each predefined barrier location. These
observations served as ground truth markers for analysis. It should
be noted that not every participant was affected by each barrier in the
same way—some navigated an obstacle smoothly, while others slowed
down markedly or stumbled slightly. This inter-subject variability in
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responses is expected and indeed is the rationale for using sensitive
detection methods beyond simple threshold triggers.

3.4 Data preprocessing and segmentation

Raw sensor data were exported from the smartphone and
preprocessed in MATLAB and Python. First, we applied a low-pass
Butterworth filter (4th order, cutoff 5 Hz) to the accelerometer and
gyroscope signals to remove high-frequency noise and sensor jitter
(49). This cutoft preserves the frequency content of normal gait
(typically 1-2 Hz step frequency plus harmonics) while attenuating
sudden spikes that do not reflect actual body motion (such as phone
micro-vibrations). The filtered accelerometer readings were then
resolved into a single composite magnitude: for each time sample,
we computed the resultant acceleration as Equation 1.

Signal Vector Magnitude(SVM )= \/(xm )2 +(Vace )2 +(Zace )2 1)

This signal vector magnitude collapses the 3-axis data into one
dimension representing overall movement intensity, making the
analysis orientation-invariant. Past research indicates that acceleration
magnitude is a reliable measure of gait intensity and can capture
events like trips or stumbles regardless of phone orientation (41).

Next, the continuous data stream for each trial was segmented
into short windows for analysis. The author used a fixed sliding
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window of 2.0 s duration (with 50% overlap between consecutive
windows). At the average walking speed of participants (~1.0-
1.2 m/s), a 2-s window corresponds to roughly 2-3 stride cycles,
which is short enough to localize an event (e.g., crossing a crack) yet
long enough to capture a representative pattern of gait dynamics
before, during, and after the event. Each window was labeled as either
“normal” or “abnormal” gait based on whether it encompassed an
environmental barrier encounter.

To assign labels, the author used the timestamped log of barrier
locations from the observer notes: any window in which the
participant was within ~ + 1 m (spatially) of a known barrier point
was labeled as an abnormal gait segment (since the act of negotiating
the barrier occurs in that window). Windows occurring on straight,
even sidewalk with no obstacles were labeled normal gait. By this
method, we obtained a set of labeled segments for each participant’s
trials. On average, each walk generated about 50-60 windows, of
which ~10 were abnormal (depending on how many barriers the
participant actually experienced; for example, if a participant walked
very cautiously over a crack without any perturbation, that segment
might not show any clear abnormality but was still labeled abnormal
due to the presence of the barrier). To minimize ambiguity,
we excluded a few borderline cases from training - e.g., if a participant
stopped to talk (unrelated to a barrier) or if two barriers occurred in
one short span (none did in our design). After segmentation and
labeling, the data from all participants were aggregated, yielding a
balanced dataset of 780 segments (400 normal vs. 380 abnormal).

3.5 Gramian Angular Field (GAF) image
generation

After filtering and windowing the smartphone IMU signals, each
2's gait segment is converted into an image representation that
preserves its temporal dynamics. Figure 3 contrasts the procedure for
a segment traversed without an environmental barrier (left, yellow
panel) and one with a barrier (right, blue panel). For every sensor
channel—three axis acceleration (Acc_X, Acc_Y, Acc_Z), three-axis
angular velocity (Gyro_X, Gyro_Y, Gyro_Z), and the derived signal-
vector-magnitude curves (SVM_Acc, SVM_Gyro)—the raw values x;
are first min-max normalized to [—1, 1]. Each normalized point is
then mapped to polar coordinates as Equation 2.

0 = arccos(xt),rt :% (2)

where L is the window length. Forming all pairwise angular sums
yields the Gramian Angular Summation Field as following Equation 3.

GAF; =cos(6;+6;).i,je[LL] 3)

which is rendered as a 200 x 200 pixel matrix. The eight channels
are processed in parallel, producing a sequence of single-channel GAF
images that can be later be combined for CNN input.

The left column of Figure 3 shows that normal, obstacle-free
walking generates highly regular GAF lattices—periodic cross-hatch
patterns reflecting consistent stride-to-stride correlations. In contrast,
segments containing a barrier (right column) display pronounced
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distortions: phase shifts, amplitude spikes and irregular streaks appear
in both the time-series plots and the corresponding GAF images.
These visual disruptions capture subtle gait compensations such as
hesitation, shuffling or a sudden jolt that may not be evident from a
single scalar feature. Because the GAF encodes all temporal
relationships within the window, it provides a rich 2-D texture that a
CNN can exploit, enabling data-driven detection of abnormal gait
events without hand-crafted thresholds.

3.6 CNN model architecture and training

The authors implemented a relatively lightweight yet sufficiently
expressive convolutional neural network to classify each Gramian
Angular Field (GAF) image as either normal or abnormal gait. A single-
channel 200 x 200 GAF image enters the network and first passes
through a convolutional layer with 16 filters of size 5 x 5 (stride = 1)
followed by a ReLU activation and 2 x 2 max-pooling. The second
convolutional block doubles the filter count to 32 with 3 x 3 kernels,
again followed by ReLU and 2 x 2 pooling. A third convolutional layer,
also with 32 filters of 3 x 3, applies ReLU activation but omits further
pooling so that finer spatial detail is preserved. The resulting feature
maps are flattened into a one-dimensional vector and fed to a fully
connected layer containing 64 neurons with ReLU activation, after
which a two-unit soft-max layer outputs the probabilities that the
segment represents normal or abnormal gait. In total, the model
comprises roughly 100,000 trainable parameters—large enough to learn
nuanced patterns yet small enough for efficient training on our dataset.
Coding was performed in Python with TensorFlow/Keras.

To enhance generalization, the author applied modest data
augmentation: each training image was occasionally rotated by +5
degrees or shifted a few pixels, simulating natural variability in phone
orientation and walking speed. Optimization employed the Adam
algorithm with a learning rate of 0.001 and binary cross-entropy loss;
training ran for up to 50 epochs with early stopping after five epochs
of stagnant validation loss. Generalizability was assessed via leave-
one-subject-out cross-validation: for every fold the network was
trained on data from 19 participants and tested on the remaining
participant, ensuring that performance reflects subject-independent
prediction. Hyperparameters such as filter size, depth and dense-layer
width were tuned on an internal validation split through grid search.
Finally, to quantify the benefit of the GAF representation, we also
trained a comparable one-dimensional CNN that ingests the raw
200-sample acceleration sequence; its results are reported alongside
the proposed model in Section 3 (Results).

3.6.1 Hyperparameter tuning and model selection

To make model selection explicit and reproducible, we adopted a
nested procedure within each leave-one-subject-out (LOSO) fold. The
19-subject training split was further partitioned into an inner
validation set (subject-stratified, 20% of training windows) for
hyperparameter search. We performed a coarse-to-fine grid search
over the ranges in Table 2. The primary selection criterion was
window-level AUC-PR (given class imbalance), with ECE (Expected
Calibration Error) as a secondary tie-breaker to favor better-calibrated
models. The finally selected configuration was then retrained on the
entire 19-subject training split and evaluated on the held-out subject
as per LOSO.
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FIGURE 3
IMU time series and Gramian Angular Field (GAF) visualizations of older adults’ gait: comparison of segments without and with environmental barriers.

For completeness, baseline methods were also tuned on the same
inner validation split: SVM penalty (C) and RBF kernel width (y) via
logarithmic grids; MaxLE embedding parameters and decision
threshold via grid and Youden’s J; and entropy histogram binning as
specified below. All searches used the same early stopping and
patience rules as the CNN training to avoid overfitting and ensure
fair comparison.

3.6.2 Representation-level ablation analysis

To assess the contribution of individual components to the
proposed model, an input-level ablation was conducted. Because the
GAF transformation converts one-dimensional IMU sequences into
two-dimensional images, an exact structural ablation using identical
convolutional kernels was not applicable. Instead, we compared the
proposed GAF-CNN, which performs two-dimensional convolutions
on GAF images, with a raw 1D CNN that uses one-dimensional
convolutions directly on time-series data but shares the same depth,
optimizer, learning rate, batch size, and early-stopping policy.

This comparison isolates the representational effect of the GAF
transformation. When the same CNN framework was trained without
GAF encoding, performance consistently degraded across metrics:
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precision-recall decreased by roughly six percentage points, the
expected calibration error increased by about 0.02, and the false-
positive rate nearly doubled. These results demonstrate that the GAF
representation plays a pivotal role in improving both discriminative
power and calibration stability by spatially encoding temporal
correlations among IMU channels.

During hyperparameter tuning, we also observed that removing
regularization and calibration components—dropout, L2 weight
decay, and label smoothing—led to a moderate decline in validation
AUC-PR and higher calibration error, suggesting that these elements
stabilize the model without increasing complexity. Together, these
analyses indicate that the observed improvements stem primarily
from the representational richness of the GAF encoding and the
complementary effect of lightweight regularization, rather than from
architectural depth or parameter scale.

3.7 Baseline comparative methods

The final goal of every algorithm in this study is not simply to label
individual 2 s gait windows, but to discover which 5 m path segments
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TABLE 2 Hyperparameters for proposed framework.

Component Hyperparameter Selected
Window length (s) 2.0
Window overlap 50%
Input and GAF GAF type GASF
Image size 200 x 200
Normalization Min-max
Rotation (°) +5
Augmentation Translation (px) +3
Flips/shears off
Convl1 kernel/filters 5x5/16
Conv2 kernel/filters 3 x3/32
Conv3 kernel/filters 3 x3/32
Conv blocks
Pooling max (2 X 2)
Activation ReLU
Padding/stride Same/1
Dense units 64
Classifier
Dropout (conv/dense) 0.25/0.50
Optimizer Adam
Learning rate le-3
Optimization Batch size 32
Weight decay (L2) le-4
Early stopping patience 5
Label smoothing 0.05
Loss and calibration Class weighting e
~balanced)
Init/seed He-normal; seed 42
SVM (RBF) C 10
SVM (RBF) y le-2
MaxLE (m, t) m=6,71=5
Baselines
MaxLE threshold J-optimal
Entropy bins (H) 40
Entropy smoothing € le-6

contain an environmental barrier (EB). All four approaches—
GAF-CNN, SVM (peak acceleration), MaxLE (dynamic stability
index) and Multi-user Information Entropy—therefore share the same
two-stage pipeline as follows:

o [Stage 1] Window classification or scoring: Each 2 s window is
assigned either a binary label (normal vs. abnormal; SVM,
MaxLE) or calibrated probability p, of abnormality (GAF-
CNN). For the entropy method, no window lable is produced.
Instead, a location-level dispersion statistic is computed in
stage 2.

[Stage 2] Spatial aggregation to produce a segment-level
EB-score: The walking route is 240 non-overlapping 5 m
segments s. For GAF-CNN, SVM and MaxLE, the authors
aggregate all windows that start inside segment s and compute by
using Equation 4. For the entropy baseline, the authors follow Lee
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etal. (1) by pooling every participant’s normalized acceleration
magnitudes inside s, constructing a 40-bin histogram and taking
the Shannon entropy Hy. H is min-max normalized to [0,1] so
that it can be treated as an EB-score as well.

EBscore(s) = x Z [abnormal(w)} (4)

S wes
where [abnormal (w)} = p,, for CNN, and 1/0 for SVM/MaxLE.

4 Results

4.1 Window-level classification
performance

Figure 4 illustrates the window-level classification results for
environmental barrier (EB) detection across the five methods. The
proposed GAF-CNN achieved the highest overall accuracy with
90.8% and F1 score (x0.86 for the EB class), outperforming the raw
1-D CNN (88.9% accuracy, F1 ~ 0.81) and the classical approaches.
The SVM classifier with handcrafted gait features obtained 87.7%
accuracy (F1 ~ 0.78), consistent with prior work where SVM was
identified as an effective model for irregular surface detection (50).
Simpler single-metric baselines yielded lower performance: the
MaxLE-based detector reached ~82% accuracy (F1 = 0.75) and the
entropy method ~81% (F1 & 0.70). These results reflect that while
gait stability metrics like MaxLE can distinguish broadly between
good vs. poor surfaces (51), they are less discriminative on a
per-window basis compared to learned models. Notably, GAF-CNN’s
accuracy is on par with state-of-the-art deep learning approaches
[e.g., an LSTM-based model reported ~95% accuracy on a similar
task (45), demonstrating competitive performance using a simpler
CNN architecture]. The GAF-CNN’s advantage is evident in its ROC
and precision-recall curves (Figure 4), which dominate those of the
other methods. In particular, GAF-CNN maintains a higher true
positive rate at low false positive rates and achieves substantially
better precision at high recall, indicating more effective detection of
the rare EB events. The GAF-CNN (blue) shows the highest TPR for
a given FPR and the greatest area under the PR curve, highlighting
its superior ability to detect the rare positive (EB) instances.
Comparatively, the raw 1-D CNN (orange) and SVM (green) have
lower curves, and the simple MaxLE (red) and entropy (purple)
methods perform worst. These curves illustrate the benefit of the
GAF transformation, which enables CNN to extract discriminative
gait features from time-series data.

In addition to accuracy, calibration metrics were evaluated to
assess the reliability of predicted probabilities. As shown in Table 3,
GAF-CNN produced well-calibrated outputs, with a low ECE (4.1%)
and Brier score (0.058). This indicates that the predicted likelihoods
of an environmental barrier closely reflected the true odds, which is
important for practical use (e.g., if the model predicts a 10% EB risk,
roughly 1 in 10 of those cases are actual barriers). The raw CNN was
slightly less calibrated (ECE 6.2%), and the traditional methods
showed higher ECE (8~ 11%), suggesting they tended to
be overconfident despite lower accuracy.
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(a) Receiver operating characteristic (ROC) curves and (b) precision-recall (PR) curves for window-level EB classification using different methods.

TABLE 3 Window-level classification performance for environmental barrier detection (per 2-s window).

Method Accuracy F1-score (EB) ECE Brier score
GAF-CNN 0.908 +0.01 0.63 0.041 0.058
Raw 1-D CNN 0.889 +0.01 0.58 0.062 0.071
SVM (gait features) 0.877 +0.02 0.55 0.081 0.083
MaxLE (threshold) 0.823 0.45 0.103 0.116
Entropy (threshold) 0.810 0.40 0.109 0.128
mid-range prediction probabilities (e.g., 40-60%), the actual
occurrence of EBs was lower than predicted, indicating overestimation
vor - 'Gdii'éi,; 0 of risk in that range. At the high end (bins with predicted >0.8), the
~¥ RewLDGNN raw CNN also slightly underestimates the true EB frequency (e.g.,
mean predicted ~0.95 vs. actual ~0.99 in the top bin), reflecting minor
0.8 under-confidence for the most obvious cases. Overall, the GAF-CNN
displays excellent calibration and the lowest uncertainty in its
>
£ 06 predictions. This suggests that converting the time-series into GAF
g images not only improved classification performance but also
% mitigated the over-confidence often seen in deep networks, yielding
§ oal more reliable probability estimates.
s
02} 4.2 Segment-level detection and
localization
0.or At the segment level (aggregating multiple windows along a path
0.0 0.2 %4 . b056| 0.8 1.0 segment), the GAF-CNN approach also proved most effective in
Predicted Probabilit
redicied Frobeblly detecting the presence of environmental barriers. Table 4 presents the
::'thgE St ot for the GAF-CNN (circlos. blue () " segment-level performance metrics for each method, including area
alipration plots ror the - circles, blue line) versus the raw ..
1-D CNN (squares, orange line) on window-level EB classification. under the Precision-Recall curve (AUC-PR), area under ROC (AUC-
ROC), Precision@5, Recall@5, mean Intersection-over-Union (mIoU)

Figure 5 provides a reliability diagram comparing the GAF-CNN
and the uncalibrated raw CNN. The GAF-CNN’s curve lies very near
the diagonal ideal line, meaning across all probability bins the fraction
of windows truly containing an EB almost equals the predicted
probability. In contrast, the raw 1-D CNN shows greater deviation: for
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with ground truth barrier segments, and false positives per kilometer
(FP/km). Overall, GAF-CNN achieved the highest AUC-PR (~0.90)
and AUC-ROC (~0.95) among the models, indicating excellent ability
to rank segments by barrier risk. In particular, the AUC-PR of 0.903
for GAF-CNN substantially exceeds that of the next-best raw CNN
(0.847) and is far above the traditional metrics-based detectors
(MaxLE and entropy, which yielded poor PR curves). This gap
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TABLE 4 Window-level classification performance for environmental barrier detection (per 2-s window).

Method AUC-PR AUC-ROC Precision@5 Recall@5 mioU FP/km
GAF-CNN 0.903 0.954 0.81 0.52 0.64 25
Raw 1-D CNN 0.847 0.942 0.63 0.33 0.49 45
SVM 0.801 0.929 0.45 0.19 0.42 6.0
MaxLE 0.495 0.880 0.22 0.13 030 95
Entropy 0.403 0.855 0.19 0.09 0.25 13.0

underscores the importance of using learned spatio-temporal features
for pinpointing the sparse barrier segments. In contrast, the
AUC-ROC values are all relatively high (>0.92 for learned models),
which is expected because ROC can be less informative under extreme
class imbalance.

The authors therefore focus on the PR curve and ranking-based
metrics as more indicative of real performance in this imbalanced
scenario. Notably, Precision@5 for GAF-CNN was 0.81 (versus only
0.63 for raw CNN and 0.45 for SVM). The corresponding Recall@5
for GAF-CNN was 0.52, indicating that it recovered 50% of all true
barrier segments by investigating the top-5 high-risk segments. The
mloU metric further shows that GAF-CNN’s detected segments
overlap the true barrier segments by a larger fraction (mean
IoU ~ 0.64), suggesting it identifies the correct locations more
precisely. In comparison, SVM and others have IoUs in the 0.3-0.5
range, often indicating only partial overlap or misaligned detections.

Crucially, the GAF-CNN achieved this detection power while
minimizing false alarms. It incurred about 2.5 false positive segment
flags per km, significantly lower than the SVM’s 6.0 FP/km and the
entropy detector’s 13.0 FP/km. In practical terms, an inspector using
the GAF-CNN’s output would encounter under 3 spurious alerts over
a kilometer of walking, whereas relying on raw threshold methods
could lead to 6 to 13 unnecessary checks per km. This improves
efficiency for real-world deployment. The low FP rate of GAF-CNN
can be attributed to its robust feature learning and the smoothing
effect of segment-level probability averaging. In results of this study,
GAF-CNN correctly identified 10 out of 12 true barrier segments
(83% recall) with only 5 false positives across 2 km of walks (2.5 FP/
km). By contrast, the raw CNN found 8/12 barriers with 9 false
positives (4.5 FP/km), and the SVM found 7/12 with 12 false alerts
(6.0 FP/km). The entropy and MaxLE methods raised many spurious
warnings, marking large portions of the route as “at risk” incorrectly,
which is reflected in their low precision and high FP/km. These
outcomes reinforce that the learning-based models are far superior for
segment-level EB detection, and among them the GAF-CNN is the
most reliable.

5 Discussion

5.1 Comparative performance of GAF-CNN
and baseline approaches

The comparative evaluation of the proposed GAF-CNN
framework against baseline classifiers demonstrates several important
insights into the modeling of gait dynamics. Traditional classifiers,
including support vector machines (SVMs) and entropy-based
thresholds, exhibited reasonable performance when the gait signals
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were relatively clean and the abnormality was pronounced. However,
their reliance on handcrafted features and rigid thresholding schemes
limited their adaptability across heterogeneous datasets. For example,
SVM performance deteriorated when confronted with gait sequences
characterized by subtle abnormalities, such as minor hesitation or
lateral sway, which are more prevalent among older adult participants.
Entropy-based methods, though computationally efficient, often
overestimated abnormal gait ratios in environments with noise or
irregular walking aids.

In contrast, the raw 1-D CNN improved upon classical methods
by automatically extracting temporal patterns from the gait signal, yet
its lack of spatial encoding restricted its ability to model long-range
dependencies. The result was moderate improvements in accuracy, but
with notable calibration deficiencies, as indicated by the higher
Expected Calibration Error (ECE = 0.062) and Brier score (0.071).
These findings align with prior literature, which suggests that deep
networks applied directly to time-series data frequently exhibit
overconfidence and instability in probability estimation.

By comparison, the GAF-CNN introduced a substantial
methodological advance. The transformation of gait signals into
Gramian Angular Field images provided a structured two-dimensional
representation that preserved both temporal dependencies and
amplitude correlations. This enabled the convolutional filters to
exploit spatial locality in ways that 1-D kernels could not, yielding
superior recognition of subtle gait anomalies. Quantitatively, the
GAF-CNN achieved the highest accuracy (0.908 + 0.01), the best
F1-score for environmental barrier (EB) classification (0.63), and the
lowest uncertainty measures (ECE = 0.041, Brier score = 0.058).
Beyond the metrics, the calibration curve revealed that GAF-CNN
predictions aligned closely with the ideal diagonal, indicating that the
probability estimates were trustworthy across all bins. Together, these
results confirm that encoding gait dynamics into GAF images not only
enhances classification accuracy but also produces models with
significantly improved reliability—an aspect that is critical for
decision-making in health and urban applications.

Meanwhile, recent advances in wearable human activity
recognition have introduced highly complex architectures such as
Transformer-based IMU models (52), which represent the current
state of the art in deep-learning-based motion analysis. These
approaches demonstrate excellent accuracy on large-scale benchmark
datasets but typically require extensive computational resources,
multi-stage pretraining, and a large number of tunable parameters. In
contrast, the present study focused on developing a compact and
interpretable framework that can be feasibly deployed in long-term
public health monitoring of older adults. The proposed GAF-CNN
achieved comparable performance to existing deep-learning baselines
while preserving the interpretability of GAF images and minimizing
computational demand. By benchmarking against representative
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conventional and deep-learning baselines (1D CNN, SVM, MaxLE,
and Entropy), this work demonstrates that meaningful gait anomaly
detection can be achieved without relying on heavily parameterized
transformer or hybrid attention mechanisms. Therefore, although the
proposed model is not intended to outperform the latest SOTA
architectures in generic activity recognition benchmarks, it offers a
practical and explainable alternative optimized for real-world
deployment and clinical in

interpretability geriatric

mobility monitoring.

5.2 Environmental barrier identification via
gait abnormality clustering

The practical significance of the GAF-CNN framework extends
beyond classification performance to the identification of
environmental barriers. Mapping gait abnormalities onto spatial grids
revealed clear clusters at specific locations, strongly coinciding with
known EB sites such as uneven flooring, narrow corridors, and abrupt
changes in elevation. The ability of the framework to uncover these
spatial patterns validates the underlying assumption that abnormal
gait is a proxy for environmental challenge. Importantly, the
localization accuracy of EB hotspots was more consistent when
abnormal gait sequences were classified using GAF-CNN, compared
to the noisier and more diffuse clusters obtained from
baseline methods.

This outcome provides an important methodological contribution:
it demonstrates how human-centered mobility data can be repurposed
as a sensor for environmental conditions. Instead of relying solely on
manual inspection or direct sensor instrumentation of the built
environment, the proposed approach leverages gait as an indirect but
highly sensitive indicator. This paradigm is particularly relevant for
aging societies where older adult pedestrians are disproportionately
affected by environmental obstacles. Gait-based EB identification thus
offers a scalable and unobtrusive solution to support inclusive design
and urban accessibility assessments.

The results also highlight the interpretability benefits of spatial
visualization. By overlaying abnormal gait ratios on floor plans or
geographic maps, stakeholders can readily identify high-risk zones,
prioritize barrier removal, and evaluate the effectiveness of accessibility
interventions. Compared with baseline methods, the sharper spatial
clustering achieved by the GAF-CNN reduces false positives and
ensures that interventions are more accurately targeted. Moreover,
since the system does not require intrusive sensing infrastructure, it
can be deployed using existing wearable devices or smartphone
sensors, making it a cost-effective alternative for large-scale urban
accessibility audits.

5.3 Practical implications, limitations, and
future directions

The methodological and practical contributions of the GAF-CNN
framework hold several broader implications. First, the reduced
calibration error means that predicted probabilities can be used with
greater confidence in downstream applications, such as adaptive
navigation aids or automated reporting of urban barrier conditions.
Second, the system’s reliance on automatically extracted features
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eliminates the need for extensive human intervention in designing gait
descriptors, significantly lowering the barrier for deployment across
diverse settings. Third, the GAF representation provides a flexible
platform that can potentially be extended to multimodal integration,
such as combining gait signals with accelerometry, inertial sensors, or
contextual visual information.

Nonetheless, the study has limitations that should inform future
work. The dataset was constructed under controlled experimental
conditions with binary EB labels, which may oversimplify the wide
spectrum of environmental challenges encountered in real-world
contexts. Complex environments often present barriers with
varying levels of severity—such as mildly uneven pavement versus
severely damaged flooring—which the current binary classification
cannot fully capture. Furthermore, gait variability attributable to
personal health conditions, fatigue, or the use of assistive devices
was not explicitly modeled, potentially confounding the
interpretation of abnormal gait. The discretization of space into
uniform grids, while computationally convenient, may also obscure
fine-grained spatial nuances such as curvature of hallways or
localized surface irregularities.

Future research should therefore pursue several directions.
Future research should therefore pursue several directions. First,
the labeling scheme can be extended from the current binary EB
definition to multi-level severity grading, enabling a more
continuous assessment of environmental difficulty and adaptive
thresholding of alerts. Second, incorporating temporal modeling of
intra-individual gait variability—for example through sequence-
based or memory-augmented architectures—could capture
day-to-day fluctuations and reduce false positives. Third, large-scale
field deployments across heterogeneous urban environments,
including crowded transportation hubs and residential areas, are
needed to validate scalability and generalizability under real-world
noise and sensor drift. Fourth, the framework may be integrated
with Internet-of-Things (IoT) infrastructures and digital-twin
platforms, allowing bidirectional information flow between
personal mobility monitoring and urban barrier mapping. Finally,
interdisciplinary collaboration among engineers, clinicians, urban
planners, and policymakers will be essential to translate these
algorithmic advances into sustainable public-health interventions
and inclusive urban design guidelines. These directions highlight
the pathway from methodological development toward deployment-
ready systems that can inform evidence-based barrier-free policy.

6 Conclusion

This study proposed and validated a novel framework that
combines Gramian Angular Field (GAF) transformation of
smartphone inertial signals with a lightweight Convolutional Neural
Network (CNN) to detect environmental barriers (EBs) through older
adults’ gait analysis. Comparative evaluations against conventional
approaches—including SVM, Maximum Lyapunov Exponent
(MaxLE), and information entropy—demonstrated that the
GAF-CNN consistently achieved superior performance in both
window-level gait classification and segment-level barrier localization.
It attained higher accuracy and F1-scores, lower calibration errors
(ECE, Brier score), and stronger spatial correspondence with ground-
truth EB locations. Importantly, the approach was able to highlight
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barrier hotspots with fewer false alarms per kilometer than competing
methods, thereby increasing the feasibility of real-world deployment.

The findings have several implications for walkability research and
urban planning. First, the threshold-free and data-driven nature of the
GAF-CNN mitigates the limitations of handcrafted or aggregation-
based methods, allowing personalized detection that adapts to diverse
gait styles and health conditions. Second, the spatial mapping of
abnormal gait ratios provides interpretable outputs that can directly
inform accessibility interventions, such as targeted infrastructure
repairs or barrier-free design initiatives. Third, the lightweight
architecture of the model and reliance on widely available smartphone
sensors indicate that the framework can be readily scaled for large-
area monitoring, making it a practical tool for age-friendly
city development.

Nevertheless, certain limitations must be acknowledged. The
dataset used in this study was collected under controlled
conditions with binary EB labels, which may not capture the full
complexity of real-world barrier severity. Moreover, inter-
individual variability in gait due to health, fatigue, or use of
assistive devices was not explicitly modeled, and spatial
discretization into uniform grids may have oversimplified
environmental geometries. These constraints suggest that future
research should (i) expand the labeling scheme to multi-class EB
severity levels, (ii) incorporate temporal and longitudinal
variability in gait, (iii) validate the framework in more diverse
urban environments and populations, and (iv) explore integration
with multi-modal data sources such as vision or IoT sensor
streams. Such advancements will be essential to ensure scalability,
robustness, and policy relevance.

In conclusion, this work contributes to the growing body of
evidence that human gait can serve as a sensitive, scalable sensor of
environmental quality. By demonstrating the advantages of
GAF-based CNN analysis for EB detection, it bridges the gap between
subjective walkability audits and objective, data-driven sensing. The
proposed approach provides an important methodological
foundation for developing continuous, real-time barrier mapping
systems that can support urban planners, public health practitioners,
and policymakers in creating safer, more inclusive environments for
older adults. With further refinement, GAF-CNN-based gait
monitoring could become a cornerstone of age-friendly smart city
initiatives, enabling proactive detection and remediation of micro-
scale hazards that compromise mobility, independence, and quality
of life.
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