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Detecting environmental barriers 
affecting older adult pedestrians 
via Gramian angular field-based 
CNN of smartphone sensor data
Sungkook Hong  and Hyunsoo Kim *

Department of Architectural Engineering, Dankook University, Yongin, Republic of Korea

Introduction: Promoting safe walking among older adults requires precise 
identification of environmental barriers that disrupt gait. Traditional adult- and 
survey-based walkability assessments are labor-intensive and often miss transient 
hazards, while prior wearable-sensor methods—threshold-based acceleration, 
Maximum Lyapunov Exponent (MaxLE, a gait-stability index quantifying the local 
divergence of gait dynamics), and information entropy—either lack individual 
sensitivity or depend on aggregated data. This study introduces a framework that 
converts smartphone IMU time-series into Gramian Angular Field (GAF) images 
for classification by a lightweight CNN.
Methods: Twenty older adults completed walking trials along a 1.2 km urban 
route featuring common barriers (uneven sidewalks, curb drops, narrow alleys, 
driveway crossings). IMU data were filtered, segmented into 2-s windows, 
transformed into 200 × 200-pixel GAF images, and evaluated under leave-one-
subject-out cross-validation.
Results: Among three benchmarks—peak-acceleration threshold, MaxLE 
(82.3% accuracy, F1-score = 0.45), and multi-user entropy—the GAF-CNN 
achieved 90.8% accuracy, 93.0% sensitivity, and 88.1% specificity, significantly 
outperforming the baselines (75–85% accuracy). Spatial mapping confirmed 
close correspondence between detected anomalies and true barrier locations.
Discussion: These findings demonstrate that image-based deep learning 
provides a practical and interpretable solution for real-time, personalized 
detection of environmental barriers, offering a scalable tool for data-driven 
walkability enhancement in age-friendly urban design.
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1 Introduction

Population aging has made the mobility of older adults an urgent public health concern 
(1), as the ability to walk safely and independently is essential for maintaining both physical 
health and social participation in later life (2). Walking is the most common and accessible 
form of exercise for older adults, yet it heavily depends on the quality and safety of the 
surrounding built environment (3, 4). In neighborhoods where sidewalks are continuous, 
smooth, and well-maintained, older adults are more likely to walk regularly and sustain social 
connections, thereby supporting longer independent living (5, 6). Conversely, environmental 
barriers—features of the built environment that impede comfortable walking—can discourage 
walking and reduce older adults’ mobility (7, 8). Examples of such barriers include uneven or 
broken sidewalks (9–11), curbs without ramps (12), obstructions on pathways (2), or 
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high-traffic crossings without safe signals (1, 2, 11). These 
environmental barriers discourage outdoor activity and can ultimately 
contribute to physical decline and social isolation. Hence, eliminating 
or mitigating these barriers is essential because they restrict an 
individual’s ability to navigate their community and thus undermine 
the health and wellbeing benefits of walking (7).

Conventional approaches to assess walkability and identify 
environmental barriers rely on observational audits (13) and self-
reported surveys (14) conducted by experts and local governments (15, 
16). While these methods provide valuable qualitative insights, they are 
inherently limited in scalability, objectivity, and temporal resolution. 
First, manual audits and surveys are time-consuming and costly, 
especially when covering large urban areas (17). Second, static surveys 
may miss transient or context-dependent barriers—for example, 
temporary obstacles (construction zones, illegally parked cars) or 
environmental conditions like wet leaves that a one-time audit might 
not capture (18). Third, because comfort and mobility are relative to 
individual abilities, a one-size-fits-all checklist may overlook barriers 
that uniquely affect older or frail pedestrians (19). For instance, a slight 
incline or shallow step might pose no issue to a young adult but could 
be  a significant hazard for someone with limited balance (20). 
Consequently, existing audit- and survey-based assessments tend to 
offer static snapshots of walkability that overlook the micro-scale and 
transient nature of the hazards that older pedestrians face (21).

Advances in mobile and wearable sensing technologies provide a 
promising pathway to overcome these limitations (22). Smartphones and 
wearable devices equipped with inertial measurement units (IMUs) can 
continuously capture detailed motion data while individuals walk, 
effectively transforming pedestrians into real-time environmental sensors 
(23–25). Environmental barriers cause subtle perturbations in gait—such 
as temporary loss of stability, increased variability, or irregular step timing 
(26, 27)—that can be detected through accelerometer and gyroscope 
signals (1). Under stable walking conditions, gait patterns remain periodic 
and consistent (28), whereas exposure to a barrier leads to transient 
deviations from normal dynamics. Detecting such anomalies enables the 
inference of environmental hazards indirectly, through changes in the gait 
itself (18, 29). This concept—using gait responses as a proxy for 
environmental quality—offers a data-driven approach to characterize 
walkability at high spatial and temporal resolution. However, despite this 
promise, the existing literature remains fragmented and methodologically 
limited in achieving robust and individualized detection of environmental 
barriers in real-world settings.

The motivation of this study arises from these unresolved challenges. 
Previous sensing-based studies have often relied on manually tuned 
thresholds or handcrafted features derived from acceleration magnitude 
or frequency spectra, which are sensitive to individual differences and 
fail to generalize across diverse walking styles (30, 31). Other approaches 
aggregate gait responses across multiple users to identify population-
level patterns, which limits single-user, real-time detection (32). 
Moreover, many prior experiments have been conducted under 
controlled conditions, resulting in limited validation on outdoor urban 
routes where surfaces and obstacles vary dynamically. Therefore, there is 
a pressing need for an analytical framework that can autonomously learn 
complex gait dynamics without prior feature selection and that can 
reliably detect brief, transient instability induced by environmental 
barriers during naturalistic walking.

To address this need, this study aims to develop a Convolutional 
Neural Networks (CNN)-based abnormal gait detection method using 

Gramian Angular Field (GAF) images of smartphone IMU data and 
evaluate its performance for identifying environmental barriers on 
pedestrian paths. In addition to this, the authors conduct a 
comparative analysis against three baseline techniques from prior 
work: (1) an acceleration SVM-based threshold method, (2) a 
Maximum Lyapunov Exponent (MaxLE)-based gait stability method, 
and (3) the Information Entropy method. The authors focus on older 
adult pedestrians (age ≥65) as the target population, given their high 
susceptibility to mobility barriers.

The contributions of this work are threefold. First, the authors 
introduce a novel application of GAF transformation in the context of 
urban walkability, demonstrating how time-series IMU data can 
be  leveraged for image-based deep learning to detect micro-scale 
environmental hazards. Second, the authors present a comprehensive 
evaluation using real-world data collected from older walkers in a 
natural urban setting, showing that the proposed GAF-CNN approach 
achieves superior accuracy and robustness in barrier detection. Third, 
this paper demonstrates how gait-based anomaly detection using 
GAF-CNN can yield actionable insights for urban planning and 
age-friendly city initiatives. By showing that well-calibrated, segment-
level EB scores align closely with real barrier locations, the study 
highlights a pathway for integrating wearable-sensor analytics into 
evidence-based barrier removal and infrastructure improvement 
strategies. Rather than remaining at the level of abstract walkability 
indices, the proposed approach enables fine-grained, spatially precise 
detection of obstacles that older pedestrians actually encounter. In 
doing so, it underscores the potential of combining time-series 
analysis, computer vision-inspired transformations, and urban health 
perspectives to operationalize smart, data-driven interventions for 
safer and more inclusive environments. The key contribution of this 
work lies in bridging the gap between subjective, labor-intensive field 
assessments and automated, personalized sensing analytics, offering a 
methodological foundation for real-time environmental barrier 
detection and age-friendly urban design.

2 Related works

A growing body of literature demonstrates the feasibility of 
wearable sensor-based barrier detection. Previous studies showed that 
defective sidewalk segments could be  identified by analyzing 
irregularities in pedestrians’ acceleration patterns collected via a waist-
mounted IMU (33–36). Other researchers linked environmental 
barriers with changes in quantitative gait stability metrics: for example, 
Bisadi et  al. (37) observed that walking through disordered 
neighborhoods led to higher average MaxLE values (indicating more 
chaotic, less stable gait) and elevated heart rates in participants. In 
related work, Bisadi et al. (38) combined multiple wearable sensors – 
including electrodermal activity (EDA), blood volume pulse, and gait 
dynamics (MaxLE) – to evaluate neighborhood built environments, 
essentially measuring pedestrians’ stress and instability as they walked. 
Zeile et al. (39) took a broader approach by correlating biosensor data 
with geospatial analysis to define walkability, laying groundwork for 
using physiological responses (like heart rate or skin conductance) as 
proxies for environmental comfort. Across these studies, a recurring 
theme is that abnormal pedestrian responses tend to coincide with 
environmental stressors or hazards, confirming the fundamental 
premise that gait deviations can serve as a marker for barriers (30).
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However, many early approaches relied on simple features of the 
acceleration signal, primarily the magnitude of motion (sometimes 
termed the signal vector magnitude, SVM) (40, 41). For instance, one 
might set a threshold on resultant acceleration and flag any segment 
exceeding that threshold as a “stumble” or abnormal event. While 
straightforward, intensity-based methods are prone to both false 
negatives and false positives (42). Some barriers elicit subtle gait 
changes rather than large spikes in acceleration – especially among 
cautious individuals who slow down for obstacles, producing only a 
mild change in SVM. These may be missed by a simple threshold 
tuned to detect larger events (31). Conversely, highly active or 
spontaneous movements (e.g., an older person increasing speed 
briefly or turning head suddenly) can momentarily raise acceleration 
magnitude and trigger false alarms in the absence of any external 
hazard (43). In fact, raw acceleration ranges vary significantly by 
individual due to differences in body size, gait style, and personal 
caution, making it difficult to choose a universal SVM threshold (30). 
MaxLE-based measures focus on gait stability and might better 
capture subtle instability; yet calculating Lyapunov exponents over 
short walking intervals can be noisy and requires careful parameter 
selection (embedding dimension, etc.), which may limit reliability on 
a single crossing of a barrier (32). Moreover, MaxLE and other chaos 
metrics often need relatively long, steady data windows for accuracy, 
whereas an obstacle encounter is a brief event. Information-entropy 
approaches (1) convert IMU data into location-specific response 
distributions and compute Shannon entropy to quantify 
environmental unpredictability; this design effectively reveals 
population-level “hotspots” but depends on multi-user aggregation, 
making single-user, real-time detection difficult. In summary, prior 
wearable strategies either (1) rely on hand-crafted features with ad-hoc 
thresholds that struggle to generalize across individuals, or (2) require 
pooling data across participants or time, sacrificing immediacy.

More recently, advances in machine learning have enabled the use 
of data-driven models to classify gait patterns without explicit feature 
engineering. Support Vector Machines (SVMs) trained on handcrafted 
gait descriptors improved classification accuracy for irregular surfaces, 
but their performance remains limited by the choice of features and 
inability to model long-term dependencies (40, 41). Deep learning 
architectures such as CNNs and Long Short-Term Memory (LSTM) 
networks have shown notable promise in capturing complex temporal 
structures in IMU signals (44). For example, Hwang et  al. (45) 
demonstrated that an LSTM-based model could effectively classify 
abnormal gait related to joint impairment. Nevertheless, most deep 
learning studies have been confined to controlled laboratory conditions 
or clinical datasets, where variability in environmental context is 
minimal. Their applicability to real-world urban walking, where surface 
types and obstacles change dynamically, remains underexplored.

Collectively, these prior studies reveal three major research gaps. 
First, threshold-based and handcrafted-feature approaches lack 
robustness and generalizability across individuals. Second, population-
aggregated entropy and stability metrics capture macro-level trends 
but cannot support personalized or real-time hazard detection. Third, 
while deep learning has shown strong potential, its validation on 
uncontrolled outdoor walking data from older adults remains limited, 
and empirical evidence under field conditions is scarce. To address 
these research gaps, this paper proposes a novel deep learning-based 
framework to detect environmental walking barriers by analyzing 
wearable sensor data, specifically using GAF visualization and a CNN 

classifier. Our approach is inspired by recent advances in human 
activity recognition, where data-driven models markedly improved 
recognition accuracy by learning complex patterns directly from 
sensor signals. GAF encoding transforms a time-series into an image 
that preserves temporal dynamics as spatial patterns (46). In a GAF, 
each element of the image represents the trigonometric relationship 
(e.g., cosine of sum) between two time points, effectively capturing the 
intrinsic correlations within the signal. By converting IMU time-series 
segments into GAF images, subtle differences in gait dynamics 
(frequency shifts, phase changes, irregular oscillations) become 
visually salient features that a CNN can learn. This approach is 
advantageous because it does not require pre-selecting which signal 
feature (peak, variance, entropy, etc.) is important – the CNN can 
autonomously infer the relevant patterns associated with abnormal 
gait (47). Furthermore, CNNs have proven highly successful in time-
series classification when paired with such time-series-to-image 
encodings, often outperforming traditional feature-based methods. 
For example, Serenelli et al. (48) found that GAF encodings combined 
with deep CNN models achieved the highest accuracy in classifying 
physiological signals (stress vs. calm conditions) compared to other 
encoding methods, attributing the success to GAF’s ability to preserve 
temporal dependencies in a 2D format that CNNs handle well. Based 
on this study, the authors hypothesize that a GAF-CNN model can 
similarly capture the nuanced gait alterations caused by environmental 
barriers more effectively than conventional methods. This approach 
enables reliable identification of transient gait instability caused by 
environmental barriers and demonstrates feasibility under realistic 
urban conditions, thereby extending deep learning–based gait analysis 
from laboratory experiments to practical, city-scale walkability 
assessment for aging populations.

3 Methodology

3.1 Research framework

The overall research framework for identifying environmental 
barriers via older adults’ gait analysis is depicted in Figure 1. This 
multi-stage process begins with the Experiment Setup, where 
we carefully select and survey the study site and recruit participants. 
Specifically, a 1.2 km urban loop containing common pedestrian 
hazards (e.g., cracked sidewalks, curb drops, narrow alleys, driveway 
crossings) is surveyed and mapped. Twenty older adult volunteers (12 
female, 8 male) without significant mobility impairments are recruited 
from the local community to ensure representative gait data under 
realistic conditions.

Once the site and participants are confirmed, the Data Collection 
and Gait Detection stage proceeds. Each participant completes two 
walking trials around the loop while carrying a smartphone in a pocket 
or mounted at the chest. Simultaneously, an experimenter records video 
footage to establish ground truth for each individual’s gait events (normal 
vs. abnormal). The smartphone’s built-in IMU (accelerometer and 
gyroscope) captures raw and filtered gait signals as the participant 
traverses both obstacle-free and barrier-laden segments. From these 
continuous sensor streams, distinct gait windows are detected and 
labeled according to whether they coincide with a known barrier location.

Next, in the Generation of GAF by Using IMU Data stage, each 
labeled gait segment is transformed into a two-dimensional image. 
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The preprocessed accelerometer magnitude is first normalized and 
re-expressed in polar coordinates. A Gramian Angular Summation 
Field (GASF) matrix is then computed and produces a 200 × 200 pixel 
image that encodes pairwise angular relationships across the time-
series. Representative GAF images for normal and abnormal gait 
illustrate how periodic walking yields a regular lattice pattern, whereas 
barrier-induced gait perturbations manifest as localized distortions.

The resulting GAF images serve as input to the CNN Algorithm for 
Abnormal Gait Detection. A lightweight convolutional neural network—
comprising three convolutional-pooling blocks followed by a fully 
connected classifier and a softmax output—learns to distinguish normal 
versus abnormal GAF patterns. Each convolutional layer applies ReLU 
activations and max-pooling to hierarchically extract salient spatial 
features from the image representation of gait. The trained CNN 
ultimately outputs a probability distribution over two gait states (normal, 
and abnormal—severe perturbation), enabling fine-grained classification.

Finally, in the Results and Comparative Analysis stage, the 
GAF-CNN’s performance is benchmarked against three baseline 
algorithms: (1) an SVM using peak acceleration magnitude, (2) a 
MaxLE stability metric, and (3) an information entropy method. 
Classification metrics (accuracy, sensitivity, specificity, F1-score) and 
spatial correspondence between detected anomalies and true barrier 
locations are compared to demonstrate the proposed framework’s 
advantages. As shown in Figure 1, this end-to-end pipeline—spanning 
site selection to algorithmic comparison—provides a comprehensive 
methodology for real-time, personalized detection of environmental 
barriers based on older adults’ gait.

3.2 Experimental site and participants

This research was conducted in a busy urban neighborhood 
selected for its diverse pedestrian infrastructure and presence of 

common walking barriers. The study site is a 1.2 km loop in a city 
center, encompassing residential streets and commercial blocks. Along 
this route, we identified several representative environmental barriers 
frequently encountered by seniors: a section of uneven sidewalk with 
cracks and height mismatches, two intersections lacking curb ramps 
(requiring a step off the curb), a narrow alleyway (~0.8 m width) 
cluttered with bins, and segments of a mixed-use path where vehicles 
cross the sidewalk (driveway entries causing potential conflict). These 
features provided a varied testbed including both fixed obstacles 
(infrastructure-related) and more dynamic challenges (e.g., moving 
vehicles). The detailed route and features are illustrated in Figure 2.

The authors recruited 20 older adult volunteers (aged 65–80 years) 
from the local community. Participants were screened to ensure they 
were ambulatory without need of assistive devices and had no severe 
neurological or musculoskeletal disorders that would independently 
affect gait. Basic demographics of the participant group are 
summarized in Table 1. The sample (12 women and 8 men) had a 
mean age of 70.4 years (SD 4.1). All participants provided informed 
consent, and the experimental protocol was approved by the 
Institutional Review Board of the authors’ university (IRB No. 2025–
04–015-022). To familiarize participants with the route and minimize 
anxiety, each individual was guided along the path once before data 
collection, with hazards pointed out so they could exercise appropriate  
caution.

3.3 Data collection procedure

Each participant completed two walking trials around the 
designated loop at their normal, comfortable walking speed (resting 
as needed between trials). We used a standard Android smartphone 
(Samsung Galaxy S23) as the sensing device, exploiting its built-in 
IMU. The smartphone was secured to the participant’s body at the 

FIGURE 1

Research framework.
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waist level, centered near the lower back using an elastic belt pouch 
(approximating the lumbar attachment used in prior gait studies) (34, 
36). This placement was chosen as it provides a stable representation 
of whole-body motion and is less prone to extraneous arm 
movements than a pocket or handbag. The phone’s 3-axis 
accelerometer and 3-axis gyroscope were recorded at 100 Hz 
throughout each walk. Additionally, the phone’s GPS was logged at 
1 Hz to later assist with mapping sensor data to spatial locations 
along the route.

Participants were instructed to walk naturally but to exercise 
caution at any perceived hazard. An investigator followed at a distance, 
noting the times or positions (via a handheld GPS tracker) when the 
participant traversed each predefined barrier location. These 
observations served as ground truth markers for analysis. It should 
be noted that not every participant was affected by each barrier in the 
same way—some navigated an obstacle smoothly, while others slowed 
down markedly or stumbled slightly. This inter-subject variability in 

responses is expected and indeed is the rationale for using sensitive 
detection methods beyond simple threshold triggers.

3.4 Data preprocessing and segmentation

Raw sensor data were exported from the smartphone and 
preprocessed in MATLAB and Python. First, we applied a low-pass 
Butterworth filter (4th order, cutoff 5 Hz) to the accelerometer and 
gyroscope signals to remove high-frequency noise and sensor jitter 
(49). This cutoff preserves the frequency content of normal gait 
(typically 1–2 Hz step frequency plus harmonics) while attenuating 
sudden spikes that do not reflect actual body motion (such as phone 
micro-vibrations). The filtered accelerometer readings were then 
resolved into a single composite magnitude: for each time sample, 
we computed the resultant acceleration as Equation 1.

	
( ) ( ) ( ) ( )= + +2 2 2  acc acc accSignal Vector Magnitude SVM x y z

	(1)

This signal vector magnitude collapses the 3-axis data into one 
dimension representing overall movement intensity, making the 
analysis orientation-invariant. Past research indicates that acceleration 
magnitude is a reliable measure of gait intensity and can capture 
events like trips or stumbles regardless of phone orientation (41).

Next, the continuous data stream for each trial was segmented 
into short windows for analysis. The author used a fixed sliding 

FIGURE 2

Experiment site overview.

TABLE 1  Characteristics of the older adult participants.

Characteristics Value

Age (years), mean ± SD 70.4 ± 4.1

Female: Male 12: 8

Height (cm), mean ± SD 165.2 ± 7.5

Weight (kg), mean ± SD 68.9 ± 10.3
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window of 2.0 s duration (with 50% overlap between consecutive 
windows). At the average walking speed of participants (~1.0–
1.2 m/s), a 2-s window corresponds to roughly 2–3 stride cycles, 
which is short enough to localize an event (e.g., crossing a crack) yet 
long enough to capture a representative pattern of gait dynamics 
before, during, and after the event. Each window was labeled as either 
“normal” or “abnormal” gait based on whether it encompassed an 
environmental barrier encounter.

To assign labels, the author used the timestamped log of barrier 
locations from the observer notes: any window in which the 
participant was within ~ ± 1 m (spatially) of a known barrier point 
was labeled as an abnormal gait segment (since the act of negotiating 
the barrier occurs in that window). Windows occurring on straight, 
even sidewalk with no obstacles were labeled normal gait. By this 
method, we obtained a set of labeled segments for each participant’s 
trials. On average, each walk generated about 50–60 windows, of 
which ~10 were abnormal (depending on how many barriers the 
participant actually experienced; for example, if a participant walked 
very cautiously over a crack without any perturbation, that segment 
might not show any clear abnormality but was still labeled abnormal 
due to the presence of the barrier). To minimize ambiguity, 
we excluded a few borderline cases from training – e.g., if a participant 
stopped to talk (unrelated to a barrier) or if two barriers occurred in 
one short span (none did in our design). After segmentation and 
labeling, the data from all participants were aggregated, yielding a 
balanced dataset of 780 segments (400 normal vs. 380 abnormal).

3.5 Gramian Angular Field (GAF) image 
generation

After filtering and windowing the smartphone IMU signals, each 
2 s gait segment is converted into an image representation that 
preserves its temporal dynamics. Figure 3 contrasts the procedure for 
a segment traversed without an environmental barrier (left, yellow 
panel) and one with a barrier (right, blue panel). For every sensor 
channel—three axis acceleration (Acc_X, Acc_Y, Acc_Z), three-axis 
angular velocity (Gyro_X, Gyro_Y, Gyro_Z), and the derived signal-
vector-magnitude curves (SVM_Acc, SVM_Gyro)—the raw values tx  
are first min-max normalized to [−1, 1]. Each normalized point is 
then mapped to polar coordinates as Equation 2.

	
( )θ = =arccos ,t t t

tx r
L 	

(2)

where L is the window length. Forming all pairwise angular sums 
yields the Gramian Angular Summation Field as following Equation 3.

	 ( )θ θ= + ∈  cos , , 1,ij i jGAF i j L
	 (3)

which is rendered as a 200 × 200 pixel matrix. The eight channels 
are processed in parallel, producing a sequence of single-channel GAF 
images that can be later be combined for CNN input.

The left column of Figure  3 shows that normal, obstacle-free 
walking generates highly regular GAF lattices—periodic cross-hatch 
patterns reflecting consistent stride-to-stride correlations. In contrast, 
segments containing a barrier (right column) display pronounced 

distortions: phase shifts, amplitude spikes and irregular streaks appear 
in both the time-series plots and the corresponding GAF images. 
These visual disruptions capture subtle gait compensations such as 
hesitation, shuffling or a sudden jolt that may not be evident from a 
single scalar feature. Because the GAF encodes all temporal 
relationships within the window, it provides a rich 2-D texture that a 
CNN can exploit, enabling data-driven detection of abnormal gait 
events without hand-crafted thresholds.

3.6 CNN model architecture and training

The authors implemented a relatively lightweight yet sufficiently 
expressive convolutional neural network to classify each Gramian 
Angular Field (GAF) image as either normal or abnormal gait. A single-
channel 200 × 200 GAF image enters the network and first passes 
through a convolutional layer with 16 filters of size 5 × 5 (stride = 1) 
followed by a ReLU activation and 2 × 2 max-pooling. The second 
convolutional block doubles the filter count to 32 with 3 × 3 kernels, 
again followed by ReLU and 2 × 2 pooling. A third convolutional layer, 
also with 32 filters of 3 × 3, applies ReLU activation but omits further 
pooling so that finer spatial detail is preserved. The resulting feature 
maps are flattened into a one-dimensional vector and fed to a fully 
connected layer containing 64 neurons with ReLU activation, after 
which a two-unit soft-max layer outputs the probabilities that the 
segment represents normal or abnormal gait. In total, the model 
comprises roughly 100,000 trainable parameters—large enough to learn 
nuanced patterns yet small enough for efficient training on our dataset. 
Coding was performed in Python with TensorFlow/Keras.

To enhance generalization, the author applied modest data 
augmentation: each training image was occasionally rotated by ±5 
degrees or shifted a few pixels, simulating natural variability in phone 
orientation and walking speed. Optimization employed the Adam 
algorithm with a learning rate of 0.001 and binary cross-entropy loss; 
training ran for up to 50 epochs with early stopping after five epochs 
of stagnant validation loss. Generalizability was assessed via leave-
one-subject-out cross-validation: for every fold the network was 
trained on data from 19 participants and tested on the remaining 
participant, ensuring that performance reflects subject-independent 
prediction. Hyperparameters such as filter size, depth and dense-layer 
width were tuned on an internal validation split through grid search. 
Finally, to quantify the benefit of the GAF representation, we also 
trained a comparable one-dimensional CNN that ingests the raw 
200-sample acceleration sequence; its results are reported alongside 
the proposed model in Section 3 (Results).

3.6.1 Hyperparameter tuning and model selection
To make model selection explicit and reproducible, we adopted a 

nested procedure within each leave-one-subject-out (LOSO) fold. The 
19-subject training split was further partitioned into an inner 
validation set (subject-stratified, 20% of training windows) for 
hyperparameter search. We performed a coarse-to-fine grid search 
over the ranges in Table  2. The primary selection criterion was 
window-level AUC-PR (given class imbalance), with ECE (Expected 
Calibration Error) as a secondary tie-breaker to favor better-calibrated 
models. The finally selected configuration was then retrained on the 
entire 19-subject training split and evaluated on the held-out subject 
as per LOSO.
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For completeness, baseline methods were also tuned on the same 
inner validation split: SVM penalty (C) and RBF kernel width (γ) via 
logarithmic grids; MaxLE embedding parameters and decision 
threshold via grid and Youden’s J; and entropy histogram binning as 
specified below. All searches used the same early stopping and 
patience rules as the CNN training to avoid overfitting and ensure 
fair comparison.

3.6.2 Representation-level ablation analysis
To assess the contribution of individual components to the 

proposed model, an input-level ablation was conducted. Because the 
GAF transformation converts one-dimensional IMU sequences into 
two-dimensional images, an exact structural ablation using identical 
convolutional kernels was not applicable. Instead, we compared the 
proposed GAF-CNN, which performs two-dimensional convolutions 
on GAF images, with a raw 1D CNN that uses one-dimensional 
convolutions directly on time-series data but shares the same depth, 
optimizer, learning rate, batch size, and early-stopping policy.

This comparison isolates the representational effect of the GAF 
transformation. When the same CNN framework was trained without 
GAF encoding, performance consistently degraded across metrics: 

precision–recall decreased by roughly six percentage points, the 
expected calibration error increased by about 0.02, and the false-
positive rate nearly doubled. These results demonstrate that the GAF 
representation plays a pivotal role in improving both discriminative 
power and calibration stability by spatially encoding temporal 
correlations among IMU channels.

During hyperparameter tuning, we also observed that removing 
regularization and calibration components—dropout, L2 weight 
decay, and label smoothing—led to a moderate decline in validation 
AUC-PR and higher calibration error, suggesting that these elements 
stabilize the model without increasing complexity. Together, these 
analyses indicate that the observed improvements stem primarily 
from the representational richness of the GAF encoding and the 
complementary effect of lightweight regularization, rather than from 
architectural depth or parameter scale.

3.7 Baseline comparative methods

The final goal of every algorithm in this study is not simply to label 
individual 2 s gait windows, but to discover which 5 m path segments 

FIGURE 3

IMU time series and Gramian Angular Field (GAF) visualizations of older adults’ gait: comparison of segments without and with environmental barriers.
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contain an environmental barrier (EB). All four approaches—
GAF-CNN, SVM (peak acceleration), MaxLE (dynamic stability 
index) and Multi-user Information Entropy—therefore share the same 
two-stage pipeline as follows:

	•	 [Stage 1] Window classification or scoring: Each 2 s window is 
assigned either a binary label (normal vs. abnormal; SVM, 
MaxLE) or calibrated probability wp  of abnormality (GAF-
CNN). For the entropy method, no window lable is produced. 
Instead, a location-level dispersion statistic is computed in 
stage 2.

	•	 [Stage 2] Spatial aggregation to produce a segment-level 
EB-score: The walking route is 240 non-overlapping 5 m 
segments s. For GAF-CNN, SVM and MaxLE, the authors 
aggregate all windows that start inside segment s and compute by 
using Equation 4. For the entropy baseline, the authors follow Lee 

et al. (1) by pooling every participant’s normalized acceleration 
magnitudes inside s, constructing a 40-bin histogram and taking 
the Shannon entropy sH . sH  is min-max normalized to [0,1] so 
that it can be treated as an EB-score as well.

	
( ) ( )

∈

 =  ∑1

s w s
EBscore s abnormal w

N 	
(4)

where ( )  =  wabnormal w p  for CNN, and 1/0 for SVM/MaxLE.

4 Results

4.1 Window-level classification 
performance

Figure  4 illustrates the window-level classification results for 
environmental barrier (EB) detection across the five methods. The 
proposed GAF-CNN achieved the highest overall accuracy with 
90.8% and F1 score (≈0.86 for the EB class), outperforming the raw 
1-D CNN (88.9% accuracy, F1 ≈ 0.81) and the classical approaches. 
The SVM classifier with handcrafted gait features obtained 87.7% 
accuracy (F1 ≈ 0.78), consistent with prior work where SVM was 
identified as an effective model for irregular surface detection (50). 
Simpler single-metric baselines yielded lower performance: the 
MaxLE-based detector reached ~82% accuracy (F1 ≈ 0.75) and the 
entropy method ~81% (F1 ≈ 0.70). These results reflect that while 
gait stability metrics like MaxLE can distinguish broadly between 
good vs. poor surfaces (51), they are less discriminative on a 
per-window basis compared to learned models. Notably, GAF-CNN’s 
accuracy is on par with state-of-the-art deep learning approaches 
[e.g., an LSTM-based model reported ~95% accuracy on a similar 
task (45), demonstrating competitive performance using a simpler 
CNN architecture]. The GAF-CNN’s advantage is evident in its ROC 
and precision-recall curves (Figure 4), which dominate those of the 
other methods. In particular, GAF-CNN maintains a higher true 
positive rate at low false positive rates and achieves substantially 
better precision at high recall, indicating more effective detection of 
the rare EB events. The GAF-CNN (blue) shows the highest TPR for 
a given FPR and the greatest area under the PR curve, highlighting 
its superior ability to detect the rare positive (EB) instances. 
Comparatively, the raw 1-D CNN (orange) and SVM (green) have 
lower curves, and the simple MaxLE (red) and entropy (purple) 
methods perform worst. These curves illustrate the benefit of the 
GAF transformation, which enables CNN to extract discriminative 
gait features from time-series data.

In addition to accuracy, calibration metrics were evaluated to 
assess the reliability of predicted probabilities. As shown in Table 3, 
GAF-CNN produced well-calibrated outputs, with a low ECE (4.1%) 
and Brier score (0.058). This indicates that the predicted likelihoods 
of an environmental barrier closely reflected the true odds, which is 
important for practical use (e.g., if the model predicts a 10% EB risk, 
roughly 1 in 10 of those cases are actual barriers). The raw CNN was 
slightly less calibrated (ECE 6.2%), and the traditional methods 
showed higher ECE (8 ~ 11%), suggesting they tended to 
be overconfident despite lower accuracy.

TABLE 2  Hyperparameters for proposed framework.

Component Hyperparameter Selected

Input and GAF

Window length (s) 2.0

Window overlap 50%

GAF type GASF

Image size 200 × 200

Normalization Min–max

Augmentation

Rotation (°) ±5

Translation (px) ±3

Flips/shears off

Conv blocks

Conv1 kernel/filters 5 × 5/16

Conv2 kernel/filters 3 × 3/32

Conv3 kernel/filters 3 × 3/32

Pooling max (2 × 2)

Activation ReLU

Padding/stride Same/1

Classifier
Dense units 64

Dropout (conv/dense) 0.25/0.50

Optimization

Optimizer Adam

Learning rate 1e-3

Batch size 32

Weight decay (L2) 1e-4

Early stopping patience 5

Loss and calibration

Label smoothing 0.05

Class weighting
None (dataset 

~balanced)

Init/seed He-normal; seed 42

Baselines

SVM (RBF) C 10

SVM (RBF) γ 1e-2

MaxLE (m, τ) m = 6, τ = 5

MaxLE threshold J-optimal

Entropy bins (H) 40

Entropy smoothing ε 1e-6
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Figure 5 provides a reliability diagram comparing the GAF-CNN 
and the uncalibrated raw CNN. The GAF-CNN’s curve lies very near 
the diagonal ideal line, meaning across all probability bins the fraction 
of windows truly containing an EB almost equals the predicted 
probability. In contrast, the raw 1-D CNN shows greater deviation: for 

mid-range prediction probabilities (e.g., 40–60%), the actual 
occurrence of EBs was lower than predicted, indicating overestimation 
of risk in that range. At the high end (bins with predicted >0.8), the 
raw CNN also slightly underestimates the true EB frequency (e.g., 
mean predicted ~0.95 vs. actual ~0.99 in the top bin), reflecting minor 
under-confidence for the most obvious cases. Overall, the GAF-CNN 
displays excellent calibration and the lowest uncertainty in its 
predictions. This suggests that converting the time-series into GAF 
images not only improved classification performance but also 
mitigated the over-confidence often seen in deep networks, yielding 
more reliable probability estimates.

4.2 Segment-level detection and 
localization

At the segment level (aggregating multiple windows along a path 
segment), the GAF-CNN approach also proved most effective in 
detecting the presence of environmental barriers. Table 4 presents the 
segment-level performance metrics for each method, including area 
under the Precision-Recall curve (AUC-PR), area under ROC (AUC-
ROC), Precision@5, Recall@5, mean Intersection-over-Union (mIoU) 
with ground truth barrier segments, and false positives per kilometer 
(FP/km). Overall, GAF-CNN achieved the highest AUC-PR (≈0.90) 
and AUC-ROC (~0.95) among the models, indicating excellent ability 
to rank segments by barrier risk. In particular, the AUC-PR of 0.903 
for GAF-CNN substantially exceeds that of the next-best raw CNN 
(0.847) and is far above the traditional metrics-based detectors 
(MaxLE and entropy, which yielded poor PR curves). This gap 

FIGURE 4

(a) Receiver operating characteristic (ROC) curves and (b) precision-recall (PR) curves for window-level EB classification using different methods.

FIGURE 5

Calibration plots for the GAF-CNN (circles, blue line) versus the raw 
1-D CNN (squares, orange line) on window-level EB classification.

TABLE 3  Window-level classification performance for environmental barrier detection (per 2-s window).

Method Accuracy F1-score (EB) ECE Brier score

GAF-CNN 0.908 ± 0.01 0.63 0.041 0.058

Raw 1-D CNN 0.889 ± 0.01 0.58 0.062 0.071

SVM (gait features) 0.877 ± 0.02 0.55 0.081 0.083

MaxLE (threshold) 0.823 0.45 0.103 0.116

Entropy (threshold) 0.810 0.40 0.109 0.128
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underscores the importance of using learned spatio-temporal features 
for pinpointing the sparse barrier segments. In contrast, the 
AUC-ROC values are all relatively high (>0.92 for learned models), 
which is expected because ROC can be less informative under extreme 
class imbalance.

The authors therefore focus on the PR curve and ranking-based 
metrics as more indicative of real performance in this imbalanced 
scenario. Notably, Precision@5 for GAF-CNN was 0.81 (versus only 
0.63 for raw CNN and 0.45 for SVM). The corresponding Recall@5 
for GAF-CNN was 0.52, indicating that it recovered 50% of all true 
barrier segments by investigating the top-5 high-risk segments. The 
mIoU metric further shows that GAF-CNN’s detected segments 
overlap the true barrier segments by a larger fraction (mean 
IoU ~ 0.64), suggesting it identifies the correct locations more 
precisely. In comparison, SVM and others have IoUs in the 0.3–0.5 
range, often indicating only partial overlap or misaligned detections.

Crucially, the GAF-CNN achieved this detection power while 
minimizing false alarms. It incurred about 2.5 false positive segment 
flags per km, significantly lower than the SVM’s 6.0 FP/km and the 
entropy detector’s 13.0 FP/km. In practical terms, an inspector using 
the GAF-CNN’s output would encounter under 3 spurious alerts over 
a kilometer of walking, whereas relying on raw threshold methods 
could lead to 6 to 13 unnecessary checks per km. This improves 
efficiency for real-world deployment. The low FP rate of GAF-CNN 
can be attributed to its robust feature learning and the smoothing 
effect of segment-level probability averaging. In results of this study, 
GAF-CNN correctly identified 10 out of 12 true barrier segments 
(83% recall) with only 5 false positives across 2 km of walks (2.5 FP/
km). By contrast, the raw CNN found 8/12 barriers with 9 false 
positives (4.5 FP/km), and the SVM found 7/12 with 12 false alerts 
(6.0 FP/km). The entropy and MaxLE methods raised many spurious 
warnings, marking large portions of the route as “at risk” incorrectly, 
which is reflected in their low precision and high FP/km. These 
outcomes reinforce that the learning-based models are far superior for 
segment-level EB detection, and among them the GAF-CNN is the 
most reliable.

5 Discussion

5.1 Comparative performance of GAF-CNN 
and baseline approaches

The comparative evaluation of the proposed GAF-CNN 
framework against baseline classifiers demonstrates several important 
insights into the modeling of gait dynamics. Traditional classifiers, 
including support vector machines (SVMs) and entropy-based 
thresholds, exhibited reasonable performance when the gait signals 

were relatively clean and the abnormality was pronounced. However, 
their reliance on handcrafted features and rigid thresholding schemes 
limited their adaptability across heterogeneous datasets. For example, 
SVM performance deteriorated when confronted with gait sequences 
characterized by subtle abnormalities, such as minor hesitation or 
lateral sway, which are more prevalent among older adult participants. 
Entropy-based methods, though computationally efficient, often 
overestimated abnormal gait ratios in environments with noise or 
irregular walking aids.

In contrast, the raw 1-D CNN improved upon classical methods 
by automatically extracting temporal patterns from the gait signal, yet 
its lack of spatial encoding restricted its ability to model long-range 
dependencies. The result was moderate improvements in accuracy, but 
with notable calibration deficiencies, as indicated by the higher 
Expected Calibration Error (ECE = 0.062) and Brier score (0.071). 
These findings align with prior literature, which suggests that deep 
networks applied directly to time-series data frequently exhibit 
overconfidence and instability in probability estimation.

By comparison, the GAF-CNN introduced a substantial 
methodological advance. The transformation of gait signals into 
Gramian Angular Field images provided a structured two-dimensional 
representation that preserved both temporal dependencies and 
amplitude correlations. This enabled the convolutional filters to 
exploit spatial locality in ways that 1-D kernels could not, yielding 
superior recognition of subtle gait anomalies. Quantitatively, the 
GAF-CNN achieved the highest accuracy (0.908 ± 0.01), the best 
F1-score for environmental barrier (EB) classification (0.63), and the 
lowest uncertainty measures (ECE = 0.041, Brier score = 0.058). 
Beyond the metrics, the calibration curve revealed that GAF-CNN 
predictions aligned closely with the ideal diagonal, indicating that the 
probability estimates were trustworthy across all bins. Together, these 
results confirm that encoding gait dynamics into GAF images not only 
enhances classification accuracy but also produces models with 
significantly improved reliability—an aspect that is critical for 
decision-making in health and urban applications.

Meanwhile, recent advances in wearable human activity 
recognition have introduced highly complex architectures such as 
Transformer-based IMU models (52), which represent the current 
state of the art in deep-learning-based motion analysis. These 
approaches demonstrate excellent accuracy on large-scale benchmark 
datasets but typically require extensive computational resources, 
multi-stage pretraining, and a large number of tunable parameters. In 
contrast, the present study focused on developing a compact and 
interpretable framework that can be feasibly deployed in long-term 
public health monitoring of older adults. The proposed GAF-CNN 
achieved comparable performance to existing deep-learning baselines 
while preserving the interpretability of GAF images and minimizing 
computational demand. By benchmarking against representative 

TABLE 4  Window-level classification performance for environmental barrier detection (per 2-s window).

Method AUC-PR AUC-ROC Precision@5 Recall@5 mIoU FP/km

GAF-CNN 0.903 0.954 0.81 0.52 0.64 2.5

Raw 1-D CNN 0.847 0.942 0.63 0.33 0.49 4.5

SVM 0.801 0.929 0.45 0.19 0.42 6.0

MaxLE 0.495 0.880 0.22 0.13 0.30 9.5

Entropy 0.403 0.855 0.19 0.09 0.25 13.0
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conventional and deep-learning baselines (1D CNN, SVM, MaxLE, 
and Entropy), this work demonstrates that meaningful gait anomaly 
detection can be achieved without relying on heavily parameterized 
transformer or hybrid attention mechanisms. Therefore, although the 
proposed model is not intended to outperform the latest SOTA 
architectures in generic activity recognition benchmarks, it offers a 
practical and explainable alternative optimized for real-world 
deployment and clinical interpretability in geriatric 
mobility monitoring.

5.2 Environmental barrier identification via 
gait abnormality clustering

The practical significance of the GAF-CNN framework extends 
beyond classification performance to the identification of 
environmental barriers. Mapping gait abnormalities onto spatial grids 
revealed clear clusters at specific locations, strongly coinciding with 
known EB sites such as uneven flooring, narrow corridors, and abrupt 
changes in elevation. The ability of the framework to uncover these 
spatial patterns validates the underlying assumption that abnormal 
gait is a proxy for environmental challenge. Importantly, the 
localization accuracy of EB hotspots was more consistent when 
abnormal gait sequences were classified using GAF-CNN, compared 
to the noisier and more diffuse clusters obtained from 
baseline methods.

This outcome provides an important methodological contribution: 
it demonstrates how human-centered mobility data can be repurposed 
as a sensor for environmental conditions. Instead of relying solely on 
manual inspection or direct sensor instrumentation of the built 
environment, the proposed approach leverages gait as an indirect but 
highly sensitive indicator. This paradigm is particularly relevant for 
aging societies where older adult pedestrians are disproportionately 
affected by environmental obstacles. Gait-based EB identification thus 
offers a scalable and unobtrusive solution to support inclusive design 
and urban accessibility assessments.

The results also highlight the interpretability benefits of spatial 
visualization. By overlaying abnormal gait ratios on floor plans or 
geographic maps, stakeholders can readily identify high-risk zones, 
prioritize barrier removal, and evaluate the effectiveness of accessibility 
interventions. Compared with baseline methods, the sharper spatial 
clustering achieved by the GAF-CNN reduces false positives and 
ensures that interventions are more accurately targeted. Moreover, 
since the system does not require intrusive sensing infrastructure, it 
can be  deployed using existing wearable devices or smartphone 
sensors, making it a cost-effective alternative for large-scale urban 
accessibility audits.

5.3 Practical implications, limitations, and 
future directions

The methodological and practical contributions of the GAF-CNN 
framework hold several broader implications. First, the reduced 
calibration error means that predicted probabilities can be used with 
greater confidence in downstream applications, such as adaptive 
navigation aids or automated reporting of urban barrier conditions. 
Second, the system’s reliance on automatically extracted features 

eliminates the need for extensive human intervention in designing gait 
descriptors, significantly lowering the barrier for deployment across 
diverse settings. Third, the GAF representation provides a flexible 
platform that can potentially be extended to multimodal integration, 
such as combining gait signals with accelerometry, inertial sensors, or 
contextual visual information.

Nonetheless, the study has limitations that should inform future 
work. The dataset was constructed under controlled experimental 
conditions with binary EB labels, which may oversimplify the wide 
spectrum of environmental challenges encountered in real-world 
contexts. Complex environments often present barriers with 
varying levels of severity—such as mildly uneven pavement versus 
severely damaged flooring—which the current binary classification 
cannot fully capture. Furthermore, gait variability attributable to 
personal health conditions, fatigue, or the use of assistive devices 
was not explicitly modeled, potentially confounding the 
interpretation of abnormal gait. The discretization of space into 
uniform grids, while computationally convenient, may also obscure 
fine-grained spatial nuances such as curvature of hallways or 
localized surface irregularities.

Future research should therefore pursue several directions. 
Future research should therefore pursue several directions. First, 
the labeling scheme can be extended from the current binary EB 
definition to multi-level severity grading, enabling a more 
continuous assessment of environmental difficulty and adaptive 
thresholding of alerts. Second, incorporating temporal modeling of 
intra-individual gait variability—for example through sequence-
based or memory-augmented architectures—could capture 
day-to-day fluctuations and reduce false positives. Third, large-scale 
field deployments across heterogeneous urban environments, 
including crowded transportation hubs and residential areas, are 
needed to validate scalability and generalizability under real-world 
noise and sensor drift. Fourth, the framework may be integrated 
with Internet-of-Things (IoT) infrastructures and digital-twin 
platforms, allowing bidirectional information flow between 
personal mobility monitoring and urban barrier mapping. Finally, 
interdisciplinary collaboration among engineers, clinicians, urban 
planners, and policymakers will be  essential to translate these 
algorithmic advances into sustainable public-health interventions 
and inclusive urban design guidelines. These directions highlight 
the pathway from methodological development toward deployment-
ready systems that can inform evidence-based barrier-free policy.

6 Conclusion

This study proposed and validated a novel framework that 
combines Gramian Angular Field (GAF) transformation of 
smartphone inertial signals with a lightweight Convolutional Neural 
Network (CNN) to detect environmental barriers (EBs) through older 
adults’ gait analysis. Comparative evaluations against conventional 
approaches—including SVM, Maximum Lyapunov Exponent 
(MaxLE), and information entropy—demonstrated that the 
GAF-CNN consistently achieved superior performance in both 
window-level gait classification and segment-level barrier localization. 
It attained higher accuracy and F1-scores, lower calibration errors 
(ECE, Brier score), and stronger spatial correspondence with ground-
truth EB locations. Importantly, the approach was able to highlight 
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barrier hotspots with fewer false alarms per kilometer than competing 
methods, thereby increasing the feasibility of real-world deployment.

The findings have several implications for walkability research and 
urban planning. First, the threshold-free and data-driven nature of the 
GAF-CNN mitigates the limitations of handcrafted or aggregation-
based methods, allowing personalized detection that adapts to diverse 
gait styles and health conditions. Second, the spatial mapping of 
abnormal gait ratios provides interpretable outputs that can directly 
inform accessibility interventions, such as targeted infrastructure 
repairs or barrier-free design initiatives. Third, the lightweight 
architecture of the model and reliance on widely available smartphone 
sensors indicate that the framework can be readily scaled for large-
area monitoring, making it a practical tool for age-friendly 
city development.

Nevertheless, certain limitations must be acknowledged. The 
dataset used in this study was collected under controlled 
conditions with binary EB labels, which may not capture the full 
complexity of real-world barrier severity. Moreover, inter-
individual variability in gait due to health, fatigue, or use of 
assistive devices was not explicitly modeled, and spatial 
discretization into uniform grids may have oversimplified 
environmental geometries. These constraints suggest that future 
research should (i) expand the labeling scheme to multi-class EB 
severity levels, (ii) incorporate temporal and longitudinal 
variability in gait, (iii) validate the framework in more diverse 
urban environments and populations, and (iv) explore integration 
with multi-modal data sources such as vision or IoT sensor 
streams. Such advancements will be essential to ensure scalability, 
robustness, and policy relevance.

In conclusion, this work contributes to the growing body of 
evidence that human gait can serve as a sensitive, scalable sensor of 
environmental quality. By demonstrating the advantages of 
GAF-based CNN analysis for EB detection, it bridges the gap between 
subjective walkability audits and objective, data-driven sensing. The 
proposed approach provides an important methodological 
foundation for developing continuous, real-time barrier mapping 
systems that can support urban planners, public health practitioners, 
and policymakers in creating safer, more inclusive environments for 
older adults. With further refinement, GAF-CNN-based gait 
monitoring could become a cornerstone of age-friendly smart city 
initiatives, enabling proactive detection and remediation of micro-
scale hazards that compromise mobility, independence, and quality 
of life.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

Ethical review and approval was not required for the study on 
human participants in accordance with the local legislation and 
institutional requirements. Written informed consent for participation 
in this study was provided by the participants' legal guardians/
next of kin.

Author contributions

SH: Writing – original draft, Writing – review & editing. HK: 
Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This study was carried out 
with the support of ‘R&D Program for Forest Science Technology 
(Project No. RS-2023-KF002500)’ provided by Korea Forest Service 
(Korea Forestry Promotion Institute).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
	1.	Lee B, Hwang S, Kim H. The feasibility of information-entropy-based Behavioral 

analysis for detecting environmental barriers. Int J Environ Res Public Health. (2021) 
18:11727. doi: 10.3390/ijerph182111727

	2.	Lee B, Kim H. Two-step k-means clustering based information  
entropy for detecting environmental barriers using wearable sensor. Int J  
Environ Res Public Health. (2022) 19:704. doi: 10.3390/ 
ijerph19020704

	3.	Kim Y, Yeo H, Lim L. Sustainable, walkable cities for the elderly: identification of 
the built environment for walkability by activity purpose. Sustain Cities Soc. (2024) 
100:105004. doi: 10.1016/j.scs.2023.105004

	4.	Van Holle V, Deforche B, Van Cauwenberg J, Goubert L, Maes L, Van de Weghe N, 
et al. Relationship between the physical environment and different domains of physical 
activity in European adults: a systematic review. BMC Public Health. (2012) 12:807. doi: 
10.1186/1471-2458-12-807

https://doi.org/10.3389/fpubh.2025.1697589
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.3390/ijerph182111727
https://doi.org/10.3390/ijerph19020704
https://doi.org/10.3390/ijerph19020704
https://doi.org/10.1016/j.scs.2023.105004
https://doi.org/10.1186/1471-2458-12-807


Hong and Kim� 10.3389/fpubh.2025.1697589

Frontiers in Public Health 13 frontiersin.org

	5.	Moran M, Van Cauwenberg J, Hercky-Linnewiel R, Cerin E, Deforche B, Plaut P. 
Understanding the relationships between the physical environment and physical activity 
in older adults: a systematic review of qualitative studies. Int J Behav Nutr Phys Act. 
(2014) 11:79. doi: 10.1186/1479-5868-11-79

	6.	Panter J, Guell C, Humphreys D, Ogilvie D. Can changing the physical environment 
promote walking and cycling? A systematic review of what works and how. Health Place. 
(2019) 58:102161. doi: 10.1016/j.healthplace.2019.102161

	7.	Clarke P, Ailshire JA, Bader M, Morenoff JD, House JS. Mobility disability and the 
urban built environment. Am J Epidemiol. (2008) 168:506–13. doi: 10.1093/aje/kwn185

	8.	Mou Y, Qin Y, Niu S. ‘I go outdoors for activities every day’: go-along with seniors 
with slow walking speeds to explore environmental factors influencing mobility. Int J 
Public Health. (2024) 69:1607033. doi: 10.3389/ijph.2024.1607033

	9.	Dawson J, Hillsdon M, Boller I, Foster C. Perceived barriers to walking in the 
Neighborhood environment: a survey of middle-aged and older adults. J Aging Phys Act. 
(2007) 15:318–35. doi: 10.1123/japa.15.3.318

	10.	Rantakokko M, Iwarsson S, Mänty M, Leinonen R, Rantanen T. Perceived barriers 
in the outdoor environment and development of walking difficulties in older people. Age 
Ageing. (2012) 41:118–21. doi: 10.1093/ageing/afr136

	11.	Rantakokko M, Portegijs E, Viljanen A, Iwarsson S, Kauppinen M, Rantanen T. 
Perceived environmental barriers to outdoor mobility and changes in sense of autonomy 
in participation outdoors among older people: a prospective two-year cohort study. 
Aging Ment Health. (2017) 21:805–9. doi: 10.1080/13607863.2016.1159281

	12.	Kim H. Feasibility of DRNN for identifying built environment barriers to 
walkability using wearable sensor data from pedestrians’ gait. Appl Sci. (2022) 12:4384. 
doi: 10.3390/app12094384

	13.	Knapskog M, Hagen OH, Tennøy A, Rynning MK. Exploring ways of measuring 
walkability. Transp Res Procedia. (2019) 41:264–82. doi: 10.1016/j.trpro.2019.09.047

	14.	Rosenberg D, Ding D, Sallis JF, Kerr J, Norman GJ, Durant N, et al. Neighborhood 
environment walkability scale for youth (NEWS-Y): reliability and relationship with 
physical activity. Prev Med. (2009) 49:213–8. doi: 10.1016/j.ypmed.2009.07.011

	15.	Boardman JD. Stress and physical health: the role of Neighborhoods as mediating 
and moderating mechanisms. Soc Sci Med. (2004) 58:2473–83. doi: 
10.1016/j.socscimed.2003.09.029

	16.	Pfeiffer D, Ehlenz MM, Andrade R, Cloutier S, Larson KL. Do Neighborhood 
walkability, transit, and parks relate to residents’ life satisfaction?: insights from Phoenix. 
J Am Plan Assoc. (2020) 86:171–87. doi: 10.1080/01944363.2020.1715824

	17.	on behalf of the Council on Environment and Physical Activity (CEPA) – Older 
Adults working groupCerin E, Nathan A, Van Cauwenberg J, Barnett DW, Barnett A. 
The neighbourhood physical environment and active travel in older adults: a systematic 
review and Meta-analysis. Int J Behav Nutr Phys Act. (2017) 14:15. doi: 
10.1186/s12966-017-0471-5

	18.	Kim H, Ahn CR, Yang K. A people-centric sensing approach to detecting sidewalk 
defects. Adv Eng Inform. (2016) 30:660–71. doi: 10.1016/j.aei.2016.09.001

	19.	Amaya V, Moulaert T, Gwiazdzinski L, Vuillerme N. Assessing and qualifying 
Neighborhood walkability for older adults: construction and initial testing of a 
multivariate spatial accessibility model. Int J Environ Res Public Health. (2022) 19:1808. 
doi: 10.3390/ijerph19031808

	20.	Shumway-Cook A, Patla A, Stewart A, Ferrucci L, Ciol MA, Guralnik JM. 
Environmental components of mobility disability in community-living older persons. J 
Am Geriatr Soc. (2003) 51:393–8. doi: 10.1046/j.1532-5415.2003.51114.x

	21.	Suzuki R, Blackwood J, Webster NJ, Shah S. Functional limitations and perceived 
Neighborhood walkability among urban dwelling older adults. Front Public Health. 
(2021) 9:675799. doi: 10.3389/fpubh.2021.675799

	22.	Lakshmi SG, Poulose A. From wrist to ankle: understanding IMU sensor 
placement in human activity recognition In: 2025 emerging technologies for intelligent 
systems (ETIS) (2025). 1–6. doi: 10.1109/etis64005.2025.10961378

	23.	Boutaayamou M, Schwartz C, Stamatakis J, Denoël V, Maquet D, Forthomme B, 
et al. Development and validation of an accelerometer-based method for quantifying 
gait events. Med Eng Phys. (2015) 37:226–32. doi: 10.1016/j.medengphy.2015.01.001

	24.	Stack E, Agarwal V, King R, Burnett M, Tahavori F, Janko B, et al. Identifying 
balance impairments in people with Parkinson’s disease using video and wearable 
sensors. Gait Posture. (2018) 62:321–6. doi: 10.1016/j.gaitpost.2018.03.047

	25.	Tao W, Liu T, Zheng R, Feng H. Gait analysis using wearable sensors. Sensors. 
(2012) 12:2255–83. doi: 10.3390/s120202255

	26.	Bozdog IA, Daniel-Nicusor T, Antal M, Antal C, Cioara T, Anghel C, et al. (2021). 
Human behavior and anomaly detection using machine learning and wearable sensors. 
2021 IEEE 17th International Conference on Intelligent Computer Communication and 
Processing (ICCP), 383–390.

	27.	Kim T, Kim S, Lee M, Kang Y, Hwang S. Assessing human emotional experience 
in pedestrian environments using wearable sensing and machine learning with anomaly 
detection. Transport Res F: Traffic Psychol Behav. (2025) 109:540–55. doi: 
10.1016/j.trf.2024.12.031

	28.	Hausdorff JM. Gait dynamics, fractals and falls: finding meaning in the stride-to-
stride fluctuations of human walking. Hum Mov Sci. (2007) 26:555–89. doi: 
10.1016/j.humov.2007.05.003

	29.	Lee G, Choi B, Jebelli H, Ahn CR, Lee SH. Wearable biosensor and collective 
sensing–based approach for detecting older adults’ environmental barriers. J Comput 
Civ Eng. (2020) 34:04020002. doi: 10.1061/(ASCE)CP.1943-5487.0000879

	30.	Bleser G, Steffen D, Reiss A, Weber M, Hendeby G, Fradet L. Personalized physical 
activity monitoring using wearable sensors In: A Holzinger, C Röcker and M Ziefle, 
editors. Smart health, vol. 8700: Lecture Notes in Computer Science. Cham: Springer 
International Publishing (2015)

	31.	den Hartog D, Harlaar J, Smit G. The Stumblemeter: design and validation of a 
system that detects and classifies stumbles during gait. Sensors. (2021) 21:6636. doi: 
10.3390/s21196636

	32.	Dingwell JB, Cusumano JP. Re-interpreting detrended fluctuation analyses of 
stride-to-stride variability in human walking. Gait Posture. (2010) 32:348–53. doi: 
10.1016/j.gaitpost.2010.06.004

	33.	Caramia Carlotta, Bernabucci Ivan, Conforto Silvia, De Marchis Cristiano, Proto 
Antonino, Schmid Maurizio. (2016). Spatio-temporal gait parameters as estimated from 
wearable sensors placed at different waist levels. IEEE EMBS Conference on Biomedical 
Engineering and Sciences (IECBES), 727–730.

	34.	Morrow MMB, Hurd WJ, Fortune E, Lugade V, Kaufman KR. Accelerations of the 
waist and lower extremities over a range of gait velocities to aid in activity monitor 
selection for field-based studies. J Appl Biomech. (2014) 30:581–5. doi: 
10.1123/jab.2013-0264

	35.	Soaz C, Diepold K. Step detection and parameterization for gait assessment using 
a single waist-worn accelerometer. IEEE Trans Biomed Eng. (2016) 63:933–42. doi: 
10.1109/tbme.2015.2480296

	36.	Storm FA, Buckley CJ, Mazzà C. Gait event detection in laboratory and real life 
settings: accuracy of ankle and waist sensor based methods. Gait Posture. (2016) 
50:42–6. doi: 10.1016/j.gaitpost.2016.08.012

	37.	Bisadi M, Kim H, Ahn CR, Nam Y. Effects of physical disorders in Neighborhoods 
on pedestrians’ physiological responses. Comput Civil Engineer. Geotechnical Special 
Publication, No. 282 (2017):183–90. doi: 10.1061/9780784480847.023

	38.	Bisadi Mohammad, Kim Hyunsoo, Ahn Changbum R., Nam Yunwoo. 
Transportation Research Board. Washington DC. (2017). Using pedestrians’ 
physiological responses to assess a Neighborhood’s physical disorder.

	39.	Zeile P, Resch B, Dörrzapf L, Exner J-P, Sagl G, Summa A, et al. (2015). Urban 
emotions–tools of integrating people’s perception into urban planning. REAL 
CORP 2015. PLAN TOGETHER–RIGHT NOW–OVERALL. From Vision to Reality 
for Vibrant Cities and Regions. Proceedings of 20th International Conference on Urban 
Planning, Regional Development and Information Society, 905–912.

	40.	Kwapisz JR, Weiss GM, Moore SA. Activity recognition using cell phone accelerometers. 
ACM SIGKDD Explor Newsl. (2011) 12:74–82. doi: 10.1145/1964897.1964918

	41.	Wang J, Chen Y, Hao S, Peng X, Hu L. Deep learning for sensor-based activity 
recognition: a survey. Pattern Recognit Lett. (2019) 119:3–11. doi: 10.1016/j.patrec.2018.02.010

	42.	Kelly D, Condell J, Gillespie J, Munoz Esquivel K, Barton J, Tedesco S, et al. 
Improved screening of fall risk using free-living based accelerometer data. J Biomed 
Inform. (2022) 131:104116. doi: 10.1016/j.jbi.2022.104116

	43.	Chheng C, Wilson D. Abnormal gait detection using wearable hall-effect sensors. 
Sensors. (2021) 21:1206. doi: 10.3390/s21041206

	44.	Ronald M, Poulose A, Han DS. Isplinception: an inception-resnet deep learning 
architecture for human activity recognition. IEEE Access. (2021) 9:68985–9001. doi: 
10.1109/ACCESS.2021.3078184

	45.	Hwang S, Kim J, Yang S, Moon H-J, Cho K-H, Youn I, et al. Machine learning 
based abnormal gait classification with IMU considering joint impairment. Sensors. 
(2024) 24:5571. doi: 10.3390/s24175571

	46.	Hong S, Yoon J, Ham Y, Lee B, Kim H. Monitoring safety Behaviors of scaffolding 
workers using Gramian angular field convolution neural network based on IMU sensing 
data. Autom Constr. (2023) 148:104748. doi: 10.1016/j.autcon.2023.104748

	47.	Wang Zhiguang, Yan Weizhong, Oates Tim. (2017). Time series classification from 
scratch with deep neural networks: a strong baseline. 2017 International Joint 
Conference on Neural Networks (IJCNN), 1578–1585.

	48.	Serenelli Marco, Quadrini Michela, Óskarsdóttir Maria, Loreti Michele. (2022). 
Encoding methods comparison for stress detection. Available online at: https://ceur-ws.
org/Vol-3880/paper27.pdf (Accessed August, 2025).

	49.	Karantonis DM, Narayanan MR, Mathie M, Lovell NH, Celler BG. Implementation 
of a real-time human movement classifier using a triaxial accelerometer for ambulatory 
monitoring. IEEE Trans Inf Technol Biomed. (2006) 10:156–67. doi: 10.1109/ 
TITB.2005.856864

	50.	Saboor A, Kask T, Kuusik A, Alam MM, Le Moullec Y, Niazi IK, et al. Latest 
research trends in gait analysis using wearable sensors and machine learning: a 
systematic review. IEEE Access. (2020) 8:167830–64. doi: 10.1109/ACCESS.2020.3022818

	51.	Bruijn SM, Meijer OG, Beek PJ, van Dieën JH. Assessing the stability of human 
locomotion: a review of current measures. J R Soc Interface. (2013) 10:20120999. doi: 
10.1098/rsif.2012.0999

	52.	Leite Clayton Souza, Mauranen Henry, Zhanabatyrova Aziza, Yu Xiao. (2024). 
Transformer-based approaches for sensor-based human activity recognition: 
opportunities and challenges. [Epubh ahead of preprint]. doi: 10.48550/arXiv.2410.13605

https://doi.org/10.3389/fpubh.2025.1697589
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1186/1479-5868-11-79
https://doi.org/10.1016/j.healthplace.2019.102161
https://doi.org/10.1093/aje/kwn185
https://doi.org/10.3389/ijph.2024.1607033
https://doi.org/10.1123/japa.15.3.318
https://doi.org/10.1093/ageing/afr136
https://doi.org/10.1080/13607863.2016.1159281
https://doi.org/10.3390/app12094384
https://doi.org/10.1016/j.trpro.2019.09.047
https://doi.org/10.1016/j.ypmed.2009.07.011
https://doi.org/10.1016/j.socscimed.2003.09.029
https://doi.org/10.1080/01944363.2020.1715824
https://doi.org/10.1186/s12966-017-0471-5
https://doi.org/10.1016/j.aei.2016.09.001
https://doi.org/10.3390/ijerph19031808
https://doi.org/10.1046/j.1532-5415.2003.51114.x
https://doi.org/10.3389/fpubh.2021.675799
https://doi.org/10.1109/etis64005.2025.10961378
https://doi.org/10.1016/j.medengphy.2015.01.001
https://doi.org/10.1016/j.gaitpost.2018.03.047
https://doi.org/10.3390/s120202255
https://doi.org/10.1016/j.trf.2024.12.031
https://doi.org/10.1016/j.humov.2007.05.003
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000879
https://doi.org/10.3390/s21196636
https://doi.org/10.1016/j.gaitpost.2010.06.004
https://doi.org/10.1123/jab.2013-0264
https://doi.org/10.1109/tbme.2015.2480296
https://doi.org/10.1016/j.gaitpost.2016.08.012
https://doi.org/10.1061/9780784480847.023
https://doi.org/10.1145/1964897.1964918
https://doi.org/10.1016/j.patrec.2018.02.010
https://doi.org/10.1016/j.jbi.2022.104116
https://doi.org/10.3390/s21041206
https://doi.org/10.1109/ACCESS.2021.3078184
https://doi.org/10.3390/s24175571
https://doi.org/10.1016/j.autcon.2023.104748
https://ceur-ws.org/Vol-3880/paper27.pdf
https://ceur-ws.org/Vol-3880/paper27.pdf
https://doi.org/10.1109/TITB.2005.856864
https://doi.org/10.1109/TITB.2005.856864
https://doi.org/10.1109/ACCESS.2020.3022818
https://doi.org/10.1098/rsif.2012.0999
https://doi.org/10.48550/arXiv.2410.13605

	Detecting environmental barriers affecting older adult pedestrians via Gramian angular field-based CNN of smartphone sensor data
	1 Introduction
	2 Related works
	3 Methodology
	3.1 Research framework
	3.2 Experimental site and participants
	3.3 Data collection procedure
	3.4 Data preprocessing and segmentation
	3.5 Gramian Angular Field (GAF) image generation
	3.6 CNN model architecture and training
	3.6.1 Hyperparameter tuning and model selection
	3.6.2 Representation-level ablation analysis
	3.7 Baseline comparative methods

	4 Results
	4.1 Window-level classification performance
	4.2 Segment-level detection and localization

	5 Discussion
	5.1 Comparative performance of GAF-CNN and baseline approaches
	5.2 Environmental barrier identification via gait abnormality clustering
	5.3 Practical implications, limitations, and future directions

	6 Conclusion

	References

