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Oral microbiome dysbiosis is
associated with chronic
respiratory diseases: evidence
from a population-based study
and a hospital cohort
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Jun Ren?, Guixin Li?, Xianjie Zheng' and Sen Yang'*

!Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, China,
2Department of Respiratory Medicine and Critical Care Medicine, Suining Central Hospital, Suining,
Sichuan, China

Background: The oral microbiome has been increasingly recognized for
its role in systemic health through the oral-lung axis. However, population-
level evidence linking oral microbial diversity and composition with chronic
respiratory diseases (CRD) remains limited.

Methods: We analyzed data from 4,384 adults in the 2009-2012 National Health
and Nutrition Examination Survey (NHANES), defining CRD by self-reported
chronic obstructive pulmonary disease (COPD), asthma, emphysema, or chronic
bronchitis. Oral rinse samples underwent 16S ribosomal RNA (16S rRNA) V1-V3
sequencing. Alpha diversity, including observed amplicon sequence variants
(ASVs), Faith's phylogenetic diversity (Faith’s PD), Shannon—-Weiner index, and
Simpson index, and beta diversity, including Bray—Curtis, weighted UniFrac,
and unweighted UniFrac distances, were assessed. Associations with CRD
were examined using weighted logistic regression and restricted cubic splines
(RCS). Differential genus abundance was identified by Wilcoxon tests with false
discovery rate correction. A random forest model integrated microbial and
clinical features. An independent hospital cohort was additionally profiled by
16S rRNA sequencing, and genus-level differences were assessed with linear
discriminant analysis effect size (LEfSe) to validate NHANES findings.

Results: Higher alpha diversity was inversely associated with CRD risk; each
standard deviation increase in observed ASVs and Faith’s PD reduced CRD
odds by 19 and 17%, respectively (p < 0.05). Beta diversity showed significant
community-level separation by CRD status (p = 0.01). Several genera, including
Rothia and Veillonella, were enriched in CRD, whereas Prevotella, Haemophilus,
and Neisseria were more abundant in non-CRD individuals. The random forest
model achieved an area under the curve (AUC) of 0.65. In the hospital cohort,
compositional shifts were consistent with NHANES findings, and LEfSe confirmed
the depletion of Alloprevotella and Peptostreptococcus in CRD patients.
Conclusion: Oral microbial diversity and composition were significantly
associated with CRD across both a representative U. S. population and a
hospital cohort. Select genera and diversity indices may serve as non-invasive
biomarkers for respiratory health, warranting further validation in longitudinal
and mechanistic studies.
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1 Introduction

The oral cavity harbors a complex ecosystem of microorganisms—
including bacteria, fungi, protozoa, mycoplasmas, and viruses—
alongside teeth, gingiva, tongue, mucosa, and saliva (1). These
microbes often form biofilms that support immune regulation,
epithelial defense, and microbial homeostasis (2-4).

When this balance is disrupted, pathogenic species may cross
local barriers and spread via the airway, bloodstream, or digestive
tract, influencing systemic health (5). Oral pathogens have been
implicated in cardiovascular disease, diabetes, endocarditis,
atherosclerosis, rheumatoid arthritis, and cancers (6-10). In recent
years, the concept of an “oral-lung axis” has drawn attention. Oral
microorganisms can reach the lower respiratory tract through
aspiration or mucosal migration and may contribute to chronic
respiratory diseases (CRD), such as chronic obstructive pulmonary
disease (COPD) and asthma (11). Indeed, genera such as Veillonella,
Prevotella, and Rothia—common in the oral cavity—are frequently
enriched in sputum and bronchoalveolar lavage fluid of COPD
patients (12).

CRD, including COPD, asthma, chronic bronchitis, and
emphysema, are major causes of morbidity and mortality worldwide,
with disproportionate impact in low- and middle-income countries
(13, 14). Known risk factors such as smoking, air pollution, and
occupational exposures play important roles, but their predictive value
for early detection remains limited (15). Novel biomarkers,
particularly those linked to the oral microbiome, may enhance CRD
risk assessment and prevention. However, despite growing evidence,
population-based studies directly linking oral microbial diversity to
aggregated CRD outcomes remain scarce.

Previous studies have suggested enrichment of oral bacteria in
lung samples from CRD patients. However, most focused on single
diseases, yielding inconsistent findings, while in clinical practice these
conditions frequently overlap. Our study uniquely addresses this gap
by aggregating COPD, asthma, chronic bronchitis, and emphysema
into a unified CRD outcome, thereby reflecting real-world comorbidity
and improving statistical power. To our knowledge, this is the first
study to integrate a nationally representative cohort (NHANES) with
a hospital-based cohort to investigate the association between oral
microbial diversity and aggregated CRD outcomes. This two-stage
design strengthens epidemiologic evidence and highlights potential
microbial biomarkers with implications for both public health and
clinical care.

2 Materials and methods

2.1 NHANES study

NHANES is a continuous, nationally representative cross-sectional
study that uses a stratified, multistage probability sampling method to
assess the health of the non-institutionalized U. S. population (16). The
study protocol was approved by the National Center for Health Statistics
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Ethics Review Board, and all participants provided written informed
consent. This study followed the STROBE reporting guidelines (17). For
the present analysis, we combined data from the 2009-2010 and 2011-
2012 NHANES cycles. Among 20,293 participants initially enrolled,
those without oral microbiome sequencing data (n = 10,945), missing
CRD status (n = 11), or incomplete covariate information (n = 4,953)
were excluded. Missing covariate data included periodontal measures
(n =4,053), poverty income ratio (n =437), alcohol use (n=401),
diabetes status (n = 34), body mass index (BMI) (n = 18), marital status
(n=4), smoking status (n=2), education level (n=3), and
hypertension diagnosis (n=1). A total of 4,384 participants were
included in the final analytic sample (Figure 1).

Oral rinse samples collected during the 2009-2010 and 2011-
2012 cycles were used for oral microbiome profiling. Genomic DNA
was extracted and amplified targeting the V1-V3 regions of the 16S
ribosomal RNA (rRNA) gene, followed by high-throughput sequencing.
Raw sequence reads underwent standard quality control procedures to
generate amplicon sequence variants (ASVs), with taxonomic
classification assigned from phylum to genus levels using curated
reference databases. Alpha diversity was assessed using Observed
ASVs, Faith’s phylogenetic diversity (Faith’s PD), Shannon-Weiner
index, and Simpson index, calculated from rarefied datasets normalized
to 10,000 reads per sample. Each metric was averaged across 10
independent subsamplings to enhance stability (18). Beta diversity was
evaluated using Bray-Curtis dissimilarity (19), unweighted UniFrac,
and weighted UniFrac distances to capture between-sample variation.

The CRD were defined as having at least one of the following
conditions: COPD, asthma, emphysema, or chronic bronchitis. COPD
was identified based on either a self-reported medical diagnosis or a
post-bronchodilator FEV,/FVC ratio <0.70 from spirometry testing.
Asthma, emphysema, and chronic bronchitis were defined using
participants’ responses to structured questionnaire items indicating
whether a healthcare professional had ever diagnosed them with these
conditions. Covariates included both continuous (age, BMI) and
categorical variables (sex, race/ethnicity, education level, marital
status, and poverty income ratio [<1.3, 1.3-3.5, >3.5]). Smoking status
was categorized as never, former, or current; alcohol use was classified
as never, former, mild, moderate, or heavy; and physical activity was
divided into low (<500 MET-min/week) and high (>500 MET-min/
week), according to NHANES recommendations (20). Hypertension,
diabetes, and hyperlipidemia were defined based on a combination of
self-reported diagnoses, physical examination findings, and laboratory
results (Supplementary Table SI). Oral health-related covariates
included periodontitis severity, categorized using CDC/AAP criteria
based on clinical attachment loss (CAL) and probing depth (PD) (21),
as well as oral hygiene practices such as dental floss and mouthwash
use in the past 7 days (yes/no).

2.2 Clinical research

Consecutive adult outpatients were recruited from the
Department of Respiratory Medicine at Suining Central Hospital
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Participants of NHANES 2009-2012
(N =20293)

»|Oral microbiome data incomplete

Analytic sample (N = 9348)

(N =10945)

Analytic sample (N =9337)

>[Missing data of CRD (N =11)

Excluded covariates : Missing periodontal data
(N =4053); Missing marital status (N = 4); Missing
PRI (N =437); Missing education (N = 3); Missing

Analytic sample (N = 4384)

FIGURE 1

7 drinking status (N = 401); Missing somking status
(N =2); Missing BMI (N = 18); Missing DM (N =
34); Missing hypertension(N = 1)

Flowchart depicting participant inclusion and exclusion criteria for the study in the NHANES.

between August and September 2025. Eligible participants were aged
30 years or older and provided written informed consent. Participants
were divided into two groups: the CRD group (n = 49), comprising
patients with a clinical diagnosis of COPD, asthma, chronic bronchitis,
or emphysema; and the control group (n=46), consisting of
outpatients without a history of chronic respiratory diseases. The
study was approved by the Ethics Committee of Suining Central
Hospital (approval number KYLLKS20250140). Exclusion criteria
were: (1) use of antibiotics within the past month; (2) acute oral
disease at the time of recruitment; and (3) presence of severe
systemic illnesses.

The following data were recorded: (1) Demographic data: age, sex,
occupation, height, weight, and BMI; (2) Lifestyle factors: smoking
and drinking history, oral hygiene behaviors (e.g., use of dental floss
and mouthwash); (3) Medical history: comorbidities and medication
use; (4) Clinical examination: pulmonary function testing, disease
diagnosis, and periodontal status. Saliva samples (10-15 mL) were
collected from each participant and immediately stored at
—80 °C. Microbial DNA was extracted, and the V3-V4 regions of the
bacterial 16S rRNA gene were amplified and subjected to high-
throughput sequencing. Sequencing data were processed using
standard quality control pipelines to generate microbial taxonomic
profiles and diversity measures.

2.3 Statistical analysis

All analyses were conducted using R software (version 4.4.3).
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For the NHANES data, complex survey design weights were
incorporated following analytic guidelines. A two-sided p-value < 0.05
was considered statistically significant. Continuous variables were
summarized as means + standard deviations (SD) and compared
between CRD and non-CRD groups using weighted t-tests.
Categorical variables were reported as frequencies with weighted
percentages and compared using the Rao-Scott chi-square test.
Weighted logistic regression was applied to examine associations
between alpha diversity indices and prevalence of CRD, with results
expressed as odds ratios (ORs) and 95% confidence intervals (Cls) per
SD increase. Tertile-based analyses and tests for trend were also
conducted. Restricted cubic spline (RCS) models were used to
evaluate dose-response relationships and potential nonlinearity.
Subgroup analyses were performed for Observed ASVs and Faith’s PD
across age, sex, race/ethnicity, BMI, and smoking status, with
interaction terms to assess effect modification. Beta diversity was
evaluated using principal coordinates analysis (PCoA) and
PERMANOVA based on Bray-Curtis, unweighted UniFrac, and
weighted UniFrac distances. At the genus level, genera with <5%
prevalence were excluded, and differentially abundant genera were
identified using Wilcoxon tests with false discovery rate (FDR)
correction. Key results were visualized with heatmaps and boxplots.
A random forest model was constructed using the top 10 differentially
abundant genera, alpha diversity indices, and selected clinical
variables to classify CRD status, with performance assessed by receiver
operating characteristic (ROC) curves and area under the curve
(AUCQ). Sensitivity analyses excluded participants who had recently
used antibiotics, and an additional analysis was performed
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incorporating HEI-2015 (diet quality) as a covariate in the
regression models.

For the hospital cohort, baseline characteristics between CRD and
non-CRD participants were compared using the independent sample
t-test for continuous variables and the chi-square test for categorical
variables. a-diversity indices (Observed species, Chaol, Shannon, and
Simpson) were calculated in R (v4.4.3) based on rarefied ASV tables.
Group differences in a-diversity were evaluated using the Wilcoxon
rank-sum test. B-diversity was assessed using R (v4.4.3) based on
Bray-Curtis and Jaccard distance metrics. Principal coordinates
analysis (PCoA) was performed to visualize community dissimilarities,
and PERMANOVA (999 permutations) was applied to test for
significance between CRD and non-CRD groups. At the genus level,
taxa with a prevalence <5% across samples were excluded from
analysis. Relative abundances were compared between groups using
the Wilcoxon rank-sum test, with false discovery rate (FDR)
correction applied for multiple testing. Differentially abundant taxa
were further identified using linear discriminant analysis effect size
(LEfSe) with an LDA score threshold of 2.0. Taxonomic cladograms
were generated to illustrate taxa enriched in CRD or non-CRD
participants. Microbial co-occurrence networks were constructed at
multiple taxonomic levels using SparCC correlation analysis, and
network modules were visualized to

explore potential

ecological interactions.

3 Results
3.1 Baseline characteristics

In the NHANES analysis, among an estimated 93,587,279
U. S. adults, the prevalence of CRD was 19.7% (Table 1). Compared
with those without CRD, affected individuals were slightly older
(49.12 £ 11.03 vs. 47.56 £ 10.61), more likely to be non-Hispanic
White (73.89% vs. 67.56%), and had higher rates of divorce,
widowhood, or separation (22.89% vs. 17.42%). They also showed
greater obesity prevalence (BMI > 30: 43.24% vs. 36.63%), lower
income (PIR < 1.3: 20.43% vs. 17.71%), and higher smoking rates
(29.39% vs. 16.70%). The CRD group additionally exhibited a higher
prevalence of moderate-to-severe periodontitis (35.26% vs. 30.08%),
hypertension (43.23% vs. 34.41%), and hyperlipidemia (78.44% vs.
72.96%). No significant differences were found in sex, education,
diabetes, physical activity, or oral hygiene behaviors (all p > 0.05).
Importantly, participants with CRD had significantly lower oral
microbial diversity across Observed ASVs, Faith’s phylogenetic
diversity, and the Shannon index (all p < 0.05).

In the hospital-based cohort, 95 participants were enrolled,
including 49 with CRD and 46 without CRD (Table 2). Patients with
CRD were older (62.94 +9.58 vs. 50.63 + 12.11), more likely to
be current smokers (46.94% vs. 21.74%), and more frequently lived in
rural areas (73.47% vs. 47.83%). They also had a higher prevalence of
periodontitis (48.98% vs. 17.39%), whereas no significant group
differences were observed for BMI, sex, alcohol use, marital status,
education, diabetes, hypertension, hyperlipidemia, flossing, or
mouthwash behaviors (all p > 0.05). Similar to NHANES, the CRD
group demonstrated significantly lower alpha diversity indices,
including Observed species richness, Chaol, Shannon, and Simpson
indices (all p < 0.001).
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3.2 Association of oral microbial alpha
diversity with CRD

In the NHANES cohort (Table 3), individuals with higher Observed
ASVs had lower odds of CRD. Specifically, each SD increase in
Observed ASVs was associated with OR =0.82 (95% CI: 0.74-0.90,
p <0.001) in the unadjusted model and OR = 0.81 (95% CI: 0.70-0.93,
p =0.009) after adjusting for covariates. Participants in the highest
tertile (Q3) had OR = 0.65 (95% CI: 0.46-0.92, p = 0.023) compared
with the lowest tertile (Q1), with a significant trend across tertiles (p for
trend = 0.022). Faith’s Phylogenetic Diversity showed similar
associations (fully adjusted OR per SD = 0.83, 95% CI: 0.71-0.96,
p=0.019; Q3 vs. Q1 OR =0.65, 95% CI: 0.46-0.93, p = 0.025, p for
trend = 0.020). For the Shannon-Weiner index, the fully adjusted OR
per SD was 0.89 (95% CI: 0.79-1.01, p =0.071), and no significant
association was observed for the Simpson index (OR per SD = 0.97, 95%
CI: 0.88-1.08, p = 0.574). Dose-response curves using restricted cubic
splines confirmed linear inverse associations for Observed ASVs and
Faith’s PD, while Shannon and Simpson indices exhibited non-linear
patterns (Figures 2A-D). Subgroup analyses showed consistent inverse
associations across age, sex, race/ ethnicity, education, smokjng status,
physical activity, BMI, and periodontitis severity (Figures 3A,B).

In the hospital cohort, rarefaction curves confirmed sufficient
sequencing depth (Figure 4A). Alpha diversity was significantly lower
in CRD patients compared with non-CRD participants, including
Chaol (p=1.1x107°), Observed species (p =7.9 x 107°), Shannon
(p=6.7 x107), and Simpson (p = 6.2 x 10~°) indices (Figure 4B). RCS
analysis, adjusted for age, smoking status, and periodontitis, indicated
linear negative associations between CRD and the Observed species,
Chao 1, and Shannon indices (all p <0.05), while no significant
association was observed for the Simpson index (p = 0.105) (Figure 4C).

3.3 Beta diversity analysis

Beta diversity analyses were conducted to compare overall
microbial community composition between participants with and
without CRD in both the NHANES and hospital-based cohorts. In the
NHANES cohort, principal coordinates analysis (PCoA) and
PERMANOVA using Bray-Curtis dissimilarity, unweighted UniFrac,
and weighted UniFrac distances showed significant differences in
community structure after adjusting for demographic and lifestyle
factors (Bray-Curtis: R*=7.95%, p =0.01; Unweighted UniFrac:
R*=5.34%, p=0.01; Weighted UniFrac: R*=5.93%, p=0.01)
(Figures 5A-C). Similarly, in the hospital cohort, Bray-Curtis and
Jaccard-based PCoA revealed partial separation between CRD and
non-CRD participants, with PC1 and PC2 explaining 13.6 and 11.0%
of variance for Bray-Curtis, and 9.0 and 7.3% for Jaccard
(Figures 5D,E). PERMANOVA confirmed significant differences in
microbial community structure (Bray—Curtis: R* = 2.38%, p = 0.003;
Jaccard: R* = 1.98%, p = 0.002).

3.4 Genus-level differential abundance and
predictive modeling of CRD in the NHANES

To identify microbial features linked to CRD, we conducted genus-
level differential abundance analysis followed by predictive modeling.
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TABLE 1 Baseline characteristics of participants by CRD status.

10.3389/fpubh.2025.1696041

Characteristic Overall Without CRD With CRD
N = 93,587,279* N = 75,154,453! N = 18,432,826

Age (years) 47.87 £10.71 47.56 +10.61 49.12 £11.03 0.004

Observed ASVs 126.14 + 40.25 127.58 + 40.94 120.28 + 36.71 <0.001

Faith’s phylogenetic diversity 14.21+£3.19 14.31£3.22 13.81 £3.02 <0.001

Shannon-Weiner index 4.59 +0.65 4.61 +0.66 4.53 £0.62 0.027

Simpson index 0.90 + 0.06 0.90 £ 0.06 0.90 £ 0.06 0.785

Sex 0.103
Male 2,254 (51.38%) 1,867 (52.27%) 387 (47.75%)

Female 2,130 (48.62%) 1,690 (47.73%) 440 (52.25%)

Race/ethnicity <0.001

Non-Hispanic White 1,775 (68.81%) 1,374 (67.56%) 401 (73.89%)
Non-Hispanic Black 998 (11.11%) 785 (10.87%) 213 (12.07%)
Mexican American 710 (8.22%) 642 (9.38%) 68 (3.49%)
Other Hispanic 448 (5.23%) 366 (5.39%) 82 (4.57%)

Other Race 453 (6.64%) 390 (6.80%) 63 (5.98%)

Marital status <0.001
Married/Living with Partner 2,880 (70.33%) 2,397 (71.74%) 483 (64.59%)
Widowed/Divorced/Separated 954 (18.50%) 727 (17.42%) 227 (22.89%)

Never married 550 (11.17%) 433 (10.84%) 117 (12.52%)

BMI 0.013
<25 1,103 (26.38%) 900 (26.69%) 203 (25.11%)

25-29.9 1,508 (35.69%) 1,264 (36.68%) 244 (31.65%)
>30 1,773 (37.93%) 1,393 (36.63%) 380 (43.24%)

Education 0.355
Below high school 407 (4.64%) 353 (4.90%) 54 (3.60%)

High school 1,552 (30.38%) 1,248 (30.28%) 304 (30.79%)
Above high school 2,425 (64.98%) 1,956 (64.82%) 469 (65.62%)

PIR 0.012
<13 1,327 (18.24%) 1,027 (17.71%) 300 (20.43%)
1.3-3.5 1,501 (32.71%) 1,224 (31.86%) 277 (36.21%)
>3.5 1,556 (49.04%) 1,306 (50.44%) 250 (43.36%)

Smoking status <0.001
Never 2,427 (55.58%) 2,069 (58.47%) 358 (43.81%)

Former 1,013 (25.22%) 812 (24.83%) 201 (26.80%)
Now 944 (19.20%) 676 (16.70%) 268 (29.39%)

Alcohol intake 0.053
Never 498 (8.38%) 428 (8.98%) 70 (5.97%)

Former 733 (14.15%) 589 (13.79%) 144 (15.63%)
Mild 1,501 (38.47%) 1,220 (38.98%) 281 (36.39%)
Moderate 716 (18.81%) 578 (18.55%) 138 (19.86%)
Heavy 936 (20.18%) 742 (19.70%) 194 (22.15%)

Physical activity 0.257
Low 741 (16.53%) 590 (16.17%) 151 (18.02%)

High 3,643 (83.47%) 2,967 (83.83%) 676 (81.98%)
(Continued)
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TABLE 1 (Continued)

10.3389/fpubh.2025.1696041

Characteristic Overall Without CRD With CRD
N = 93,587,279* N = 75,154,453! N = 18,432,826!

Flossing behavior 0.365
No 1,427 (28.60%) 1,152 (29.02%) 275 (26.92%)
Yes 2,957 (71.40%) 2,405 (70.98%) 552 (73.08%)

Mouthwash behavior 0.484
No 1,869 (46.59%) 1,517 (46.24%) 352 (48.05%)
Yes 2,515 (53.41%) 2,040 (53.76%) 475 (51.95%)

Periodontitis 0.009
No/Mild periodontitis 2,710 (68.90%) 2,201 (69.92%) 509 (64.74%)
Moderate/Severe periodontitis 1,674 (31.10%) 1,356 (30.08%) 318 (35.26%)

Hypertension <0.001
No 2,637 (63.85%) 2,211 (65.59%) 426 (56.77%)
Yes 1,747 (36.15%) 1,346 (34.41%) 401 (43.23%)

Diabetes 0.051
No 3,620 (87.45%) 2,967 (88.12%) 653 (84.73%)
Yes 764 (12.55%) 590 (11.88%) 174 (15.27%)

Hyperlipidemia 0.026
No 1,190 (25.96%) 986 (27.04%) 204 (21.56%)
Yes 3,194 (74.04%) 2,571 (72.96%) 623 (78.44%)

'n (unweighted) (%).
*Design-based t-test; Pearson’s XA2: Rao and Scott adjustment.

After FDR correction (FDR < 0.05), 385 genera showed significant
differences in relative abundance between CRD and non-CRD groups.
To ensure biological relevance, we further selected genera present in at
least 5% of participants, yielding 42 representative genera for
hierarchical clustering. The heatmap revealed distinct microbial
composition patterns between the two groups (Figure 6A). Among the
top 10 differentially abundant genera, Rothia, Veillonella, and
Atopobium were enriched in the CRD group. In contrast, Haemophilus,
Prevotella, Neisseria, Alloprevotella, Porphyromonas, Aggregatibacter,
and Peptostreptococcus were more abundant in the non-CRD group.
These genera spanned major phyla such as Actinobacteria, Firmicutes,
Bacteroidetes, and Proteobacteria. Boxplots clearly showed the distinct
abundance patterns of these genera between groups (Figure 6B).

We then incorporated the 10 genera, two alpha diversity indices
(Observed ASVs and Faith’s PD), and seven key clinical variables
(age, sex, smoking status, hypertension, alcohol use, BMI, and
periodontal status) into a random forest classification model. Variable
importance analysis showed that both microbial genera and diversity
indices played significant roles in model accuracy (Figure 6C). The
receiver operating characteristic (ROC) curve of this combined
model yielded an area under the curve (AUC) of 0.652, indicating
moderate ability to distinguish between CRD and non-CRD
participants (Figure 6D).

3.5 Genus-level compositional differences
in the hospital cohort

At the genus level, distinct shifts in microbial composition were
observed between CRD and non-CRD groups (Figures 7A,B). In the
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non-CRD group, genera such as Alloprevotella, Prevotella, and
Veillonella were more abundant, whereas the CRD group was enriched
in potential pathogenic taxa including Fusobacterium, Leptotrichia,
and Porphyromonas.

LEfSe analysis (LDA score > 2) identified taxa that
discriminated between the two groups (Figure 7C). Genera such
as Alloprevotella and Peptostreptococcus were enriched in the
non-CRD group, while Fusobacterium and Leptotrichia were
significantly associated with CRD.

Boxplot analysis confirmed significant differences in the relative
abundances of the identified genera (Figure 7D). Alloprevotella
showed higher relative abundance in the non-CRD group (p < 0.05),
whereas Fusobacterium and Leptotrichia were markedly enriched in
the CRD group (p < 0.01).

Phylogenetic analysis further demonstrated that taxa enriched in
the non-CRD group clustered into coherent modules, including
genera such as Alloprevotella, Megasphaera, Parvimonas, and
Peptostreptococcus (Figure 7E). In contrast, CRD-enriched taxa,
represented by Escherichia-Shigella, were relatively isolated within the
phylogenetic tree.

3.6 Sensitivity analysis in the NHANES

In the NHANES cohort, sensitivity analyses excluding
participants who reported recent antibiotic use, with HEI-2015
additionally included as a covariate, showed results consistent with
the main S1-54  and

analyses  (Supplementary  Figures

Supplementary Table S2).
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TABLE 2 Associations between oral microbial alpha diversity indices and CRD in unadjusted and fully adjusted logistic regression models.

Model 1 Model 2 Model 3

OR (95% Cl) P-value OR (95% ClI) P-value OR (95% ClI) P-value
Observed ASVs
Per SD increase 0.82 (0.74, 0.90) <0.001 0.84 (0.75, 0.94) 0.004 0.81 (0.70, 0.93) 0.009
Q1 Ref Ref Ref
Q2 0.77 (0.59, 1.02) 0.064 0.81 (0.60,1.07) 0.133 0.81 (0.57, 1.16) 0.205
Q3 0.67 (0.52, 0.87) 0.003 0.71 (0.53, 0.95) 0.021 0.65 (0.46, 0.92) 0.023
P for trend 0.003 0.021 0.022
Faith’'s phylogenetic diversity
Per SD increase 0.84 (0.77, 0.93) <0.001 0.86 (0.77,0.97) 0.016 0.83 (0.71, 0.96) 0.019
Q1 Ref Ref Ref
Q2 0.81 (0.64, 1.03) 0.086 0.83 (0.64, 1.07) 0.135 0.80 (0.57, 1.11) 0.141
Q3 0.70 (0.55, 0.88) 0.004 0.73 (0.55, 0.98) 0.033 0.65 (0.46, 0.93) 0.025
P for trend 0.029 0.027 0.020
Shannon-Weiner index
Per SD increase 0.89 (0.81, 0.99) 0.026 0.91 (0.82, 1.01) 0.082 0.89 (0.79, 1.01) 0.071
Q1 Ref Ref Ref
Q2 0.87 (0.67, 1.14) 0.307 0.91 (0.69, 1.20) 0.487 0.93 (0.66, 1.31) 0.633
Q3 0.72 (0.55, 0.95) 0.021 0.75(0.57, 1.01) 0.061 0.72 (0.50, 1.03) 0.069
P for trend 0.018 0.054 0.060
Simpson index
Per SD increase 0.99 (0.90, 1.08) 0.781 0.99 (0.90, 1.09) 0.838 0.97 (0.88, 1.08) 0.574
Q1 Ref Ref Ref
Q2 1.04 (0.77, 1.41) 0.791 1.05 (0.75, 1.45) 0.781 1.01 (0.69, 1.49) 0.886
Q3 0.79 (0.60, 1.04) 0.093 0.78 (0.59, 1.05) 0.099 0.76 (0.53,1.07) 0.095
P for trend 0.089 0.096 0.086

Results are presented as odds ratios (ORs) with 95% confidence intervals (CIs).
Model 1 is unadjusted.
Model 2 is adjusted for age, sex, race/ethnicity, marital status, PIR, education and BMI.

Model 3 is further adjusted for smoking status, physical activity, alcohol intake, Flossing behavior, mouthwash behavior, hypertension, DM, hyperlipidemia and periodontitis.

4 Discussion

Across both the population-based NHANES analysis and our
hospital cohort, higher oral microbial alpha diversity was consistently
associated with lower odds of CRD. This association remained
significant after adjusting for multiple potential confounders, and the
relationship appeared linear across different diversity metrics. Beta
diversity analyses further revealed clear separation between CRD and
non-CRD participants, suggesting global alterations in community
composition. At the genus level, specific taxa were differentially
enriched in CRD versus non-CRD individuals, reflecting disease-
related microbial dysbiosis. Collectively, the concordant findings from
two independent cohorts strengthen the evidence for a robust
association between reduced oral microbial diversity and increased
CRD risk.

In the NHANES analysis, weighted logistic regression models
showed that higher oral a-diversity was associated with lower CRD
risk. Each standard deviation increase in Observed ASVs and Faith’s
PD corresponded to 19 and 17% reductions in CRD risk, respectively,
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while the Shannon index was only weakly associated with reduced
risk. These findings indicate that greater microbial richness and
evenness might be linked to resilience against chronic respiratory
inflammation. Importantly, the inverse associations remained robust
in subgroup analyses, particularly among non-Hispanic White and
Mexican American populations. This observation is consistent with
prior reports of racial differences in oral microbial diversity (22-27).
Regarding f-diversity, both PCoA and PERMANOVA analyses
revealed significant structural differences in the oral microbiome
between CRD and non-CRD individuals using Bray-Curtis, weighted
UniFrac, and unweighted UniFrac distances (all p<0.01),
underscoring the presence of microbial dysbiosis (28-31).

At the genus level, Rothia and Veillonella were enriched in CRD
cases, whereas Haemophilus, Prevotella, and Neisseria were more
common in non-CRD participants. These distribution patterns align
with prior studies showing that common oral genera, including
Veillonella, Prevotella, Fusobacterium, and Actinomyces, can migrate
to the lower respiratory tract and potentially influence respiratory
health (24, 32, 33), which is consistent with the hypothesis that the
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TABLE 3 Baseline characteristics of participants in the hospital-based cohort according to CRD status.

Variables Without CRD Without CRD
(n = 46) (n = 49)
Age, mean + SD 56.98 + 12.46 50.63 £12.11 62.94 +9.58 <0.001
BMI, mean + SD 23.77 £4.10 24.03 £3.79 23.53 +£4.39 0.554
Observed, mean + SD 137.97 + 47.96 159.74 + 41.46 117.53 + 44.86 <0.001
Chaol, mean + SD 140.00 + 49.25 162.16 + 42.50 119.19 + 46.31 <0.001
Shannon, mean + SD 3.61+0.58 3.86 £0.49 3.37+0.57 <0.001
Simpson, mean + SD 0.93 +0.05 0.95+0.03 0.91 +£0.06 <0.001
Sex, n (%) 0.130
Female 34 (35.79) 20 (43.48) 14 (28.57)
Male 61 (64.21) 26 (56.52) 35(71.43)
Smoking, 1 (%) 0.010
No 62 (65.26) 36 (78.26) 26 (53.06)
Yes 33 (34.74) 10 (21.74) 23 (46.94)
Drinking, n (%) 0.658
No 64 (67.37) 32(69.57) 32(65.31)
Yes 31 (32.63) 14 (30.43) 17 (34.69)
Marital status, n (%) 0.052
No 8(8.42) 7(15.22) 1(2.04)
Yes 87 (91.58) 39 (84.78) 48 (97.96)
Education, n (%) 0.232
High school or lower 78 (82.11) 40 (86.96) 38 (77.55)
Above high school 17 (17.89) 6(13.04) 11 (22.45)
Residence, n (%) 0.010
Rural 58 (61.05) 22 (47.83) 36 (73.47)
Urban 37 (38.95) 24 (52.17) 13 (26.53)
DM, n (%) 0.138
No 88 (92.63) 45 (97.83) 43 (87.76)
Yes 7(7.37) 1(2.17) 6 (12.24)
Hypertension, 1 (%) 0.082
No 83 (87.37) 43 (93.48) 40 (81.63)
Yes 12 (12.63) 3(6.52) 9(18.37)
Hyperlipidemia, n (%) 0.259
No 76 (80.00) 39 (84.78) 37 (75.51)
Yes 19 (20.00) 7(15.22) 12 (24.49)
Flossing behavior, 1 (%) 0.948
No 72 (75.79) 35(76.09) 37 (75.51)
Yes 23 (24.21) 11(23.91) 12 (24.49)
Mouthwash behavior, 1 (%) 0.973
No 68 (71.58) 33 (71.74) 35(71.43)
Yes 27 (28.42) 13 (28.26) 14 (28.57)
Periodontitis, n (%) 0.001
No 63 (66.32) 38 (82.61) 25 (51.02)
Yes 32(33.68) 8(17.39) 24 (48.98)

Continuous variables are presented as mean + standard deviation (SD) and were compared using independent-sample ¢-tests. Categorical variables are presented as counts and percentages (1,
%) and were compared using chi-square tests. CRD was defined as a clinical diagnosis of COPD, asthma, chronic bronchitis, or emphysema. BMI, body mass index; DM, diabetes mellitus.
p-values indicate the statistical significance of differences between participants with and without CRD.

Frontiers in Public Health 08 frontiersin.org


https://doi.org/10.3389/fpubh.2025.1696041
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Jiaetal.

10.3389/fpubh.2025.1696041

2.0

QOdds ratio (95% CI)

o
n

o
o

P for overall < 0.001
P for nonlinear = 0.380

2.0

1.5

QOdds ratio (95% CI)

50 100 150 200 250 300
Observed ASVs

P for overall = 0.001
P for nonlinear = 0.019

0.0

FIGURE 2

3 4 5 6 7
Shannon

B
23 P for overall < 0.001
P for nonlinear = 0.726
= 2.0
©]
S
g§ 1.5
g
1.0
34
3
0.5
0.0 5 10 15 20 30
Faith PD
D
1.5
P for overall = 0.008
P for nonlinear = 0.006
C
= -
v
S
g
g
3
bS]
@)
0.0
0.4 0.5 0.6 0.7 1.0
Simpson

Dose-response relationships between oral microbial alpha diversity indices and CRD risk assessed by restricted cubic spline models in the NHANES.
(A) Observed ASVs; (B) Faith's Phylogenetic Diversity; (C) Shannon index; (D) Simpson index.

A

Characteristic OR (95% CI) P for interaction

Age 0.826
<60 0.81(0.74 , 0.89) -
>60 0.79 (0.66 ,0.94)  +—=—i

Sex 0.882
Male 0.79(0.70, 0.89) ——
Female 0.82(0.73,0.92) ———

Race 0.626
Non-Hispanic White 0.83(0.73, 0.94) ——
Non-Hispanic Black 0.84 (0.73, 0.98) ——
Mexican American 0.62 (0.48 , 0.80) «—=—
Other Hispanic 0.76 (0.57,1.00) +H—=—
Other Race 0.88(0.65, 1.19) —_——

Education 0.591
Below high school 0.77 (0.58 , 1.03)  +—s—ri
High school 0.82(0.72,0.93) ——
Above high school 0.80 (0.71, 0.90) ———

PIR 0.964
<13 0.77 (0.67, 0.89) ——
1.3-35 0.86 (0.75, 0.98) ——
>35 0.79 (0.67,0.92)  F—=—i

Smoking status 0.518
Never 0.76 (0.67 , 0.86) ———
Former 0.84 (0.70, 1.01) ——
Now 0.84 (0.73, 0.96) ——

Physical Activity 0.073
Low 0.89 (0.74 , 1.07) ——
High 0.79(0.72, 0.87) e

BMI 0.218
<25 0.88(0.75, 1.03) ——
25-29.9 0.74 (0.64,0.86)  +—=—i
230 0.81(0.72,0.91) ==

Periodontitis 0.773
No/Mild periodontitis 0.81(0.72,0.91) =
Moderate/Severe periodontitis 0.80 (0.71, 0.90) ———

T
0.5 1 15
Low Risk High Risk
FIGURE 3

Characteristic
Age
<60
260
Sex
Male
Female
Race
Non-Hispanic White
Non-Hispanic Black
Mexican American
Other Hispanic
Other Race
Education
Below high school
High school
Above high school
PIR
<1.3
1.3-35
>3.5
Smoking status
Never
Former
Now
Physical Activity
Low
High
BMI
<25
25-29.9
230
Periodontitis
No/Mild periodontitis

OR (95% CI)

0.84 (0.76 , 0.92)
0.78 (0.65 , 0.93)

0.81(0.72,0.91)
0.84(0.75 , 0.95)

0.85(0.75, 0.97)
0.85 (0.73 , 0.98)

0.65 (052, 0.83) +—e—ri

0.84 (063, 1.12)
0.85 (062, 1.16)

0.77 (059, 1.01)
0.82(0.72, 0.94)
0.83(0.74, 0.94)

0.77 (0.66 , 0.88)
0.90 (0.78 , 1.03)
0.81(0.70 , 0.94)

0.80 (0.71, 0.91)
0.83 (0.69 , 1.00)
0.84 (0.73, 0.97)

0.93(0.77, 1.12)
0.80 (0.73 , 0.88)

0.90 (0.77 , 1.05)
0.74 (0.64 , 0.86)
0.84 (0.74, 0.95)

0.79(0.70, 0.89)

Moderate/Severe periodontitis 0.85 (0.76 , 0.96)

0.5

P for interaction
0.835

0.745

0.615

0.484

0.803

0.723

0.077

0.212

0.36

15

Subgroup analyses of associations between alpha diversity indices and CRD risk in the NHANES. (A) Observed ASVs; (B) Faith’s phylogenetic diversity.

Frontiers in Public Health

09

frontiersin.org



https://doi.org/10.3389/fpubh.2025.1696041
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Jiaetal.

10.3389/fpubh.2025.1696041

CRD Group = No CRD == CRD CRD Group B NoCRD ES CRD
Chaol Observed
2001 300 4 300
. p4 1.1e-05 P& 7.96-06
9} 2004 2004
+H. 150 ¢
» 100 4 o 1004 uy |
5 = ]
<< 'E 04 04
g 100 2
% 2 Shannon Simpson
S 5 5 p.=6.76-06 1.0 =6 2e-05
s 501 < 4 ‘T 0.9 * *
o) (] \
= 34 0.8
o] 5 0.7 4
0.64 ]
o] 3000 6000 9000 14
Sequencing Depth No CRD CRD No CRD CRD
CRD Status
14 14
P for overall = 0,022 P for overall = 0.024
P for nonlinear = 0.230 P for nonlinear = 0.223
12 12
10 10
5 3
= 8 s 8
by by
g 2
E g
% 6 z 6
3 3
4 4
2 2
50 100 150 200 250 50 100 150 200 250
Observed Chaol
7 12
P for overall = 0.037 P for overall = 0.105
P for nonlinear = 0.168 P for nonlinear = 0.284
6
10
5
8
5} g
4 s
S ES
2 26
23 H
2 E
[} (=]
4
25 3.0 35 4.0 45 g 0 0.85 0.90 0.95 1.00
Shannon Simpson
FIGURE 4
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oral cavity serves as a microbial reservoir for respiratory disease.
Consistent with NHANES, the hospital cohort also showed that
Fusobacterium, Leptotrichia, and Rothia were enriched in CRD
patients, whereas Prevotella, Neisseria, and
Alloprevotella were more abundant in non-CRD individuals. These
overlapping patterns reinforce the robustness of these taxa as potential
microbial markers associated with CRD. However, the LEfSe analysis
yielded partially different results. Only two genera in the non-CRD
group—Alloprevotella and Peptostreptococcus—overlapped with the

NHANES findings. This discrepancy may reflect methodological

Haemophilus,
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differences: NHANES emphasized abundant and clearly differentially
expressed genera, whereas LEfSe integrates features across multiple
taxonomic ranks (phylum, class, order, family, and genus), thereby
attenuating genus-level signals.

Additionally, the random forest model showed moderate
predictive performance. This likely reflects the study population,
which is drawn from a general, mostly healthy cohort. In such
population-based settings, differences between CRD and non-CRD
individuals are subtler than in hospital cohorts or case-control studies,
making prediction inherently more challenging. Despite this, the
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(E) PCoA based on Jaccard distances.

Principal coordinates analysis (PCoA) plots of beta diversity metrics comparing oral microbial community structure between CRD and non-CRD
groups. (A) Bray—Curtis dissimilarity; (B) unweighted UniFrac distance; (C) weighted UniFrac distance. (D) PCoA based on Bray—Curtis distances.

model still identifies relevant microbial and clinical features,
supporting the epidemiological relevance of the findings. Moreover,
predictive performance could potentially be improved in future
studies by incorporating additional features, such as lifestyle factors
or multi-omics data.

Nevertheless, both methods consistently highlighted
Alloprevotella and Peptostreptococcus as being depleted in the CRD
group across cohorts. This convergence suggests their possible
involvement in respiratory health rather than a definitive protective
role. The oral microbiome serves as an important reservoir of
respiratory pathogens. Bacteria from dental plaque, periodontal
pockets, and saliva can be aspirated into the lower respiratory tract,
where they may trigger or exacerbate conditions such as aspiration
pneumonia and COPD. The pathogenic mechanisms involve immune
modulation, particularly the balance between Th1 and Th2 responses.
Oral pathogens can stimulate airway epithelial cells to produce
pro-inflammatory cytokines (e.g., TNF-a, IL-1f, and IL-6) and
regulate mucus secretion (34, 35). In addition, microbial enzymes
and cellular products from the oral microbiome can disrupt the
respiratory mucosal barrier, facilitating pathogen colonization and
increasing the risk of infection (36, 37). Emerging evidence also
highlights complex interactions between commensal oral microbes
and respiratory pathogens, with some species enhancing virulence
and others producing inhibitory substances that limit pathogen
growth (38, 39).
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In this context, Alloprevotella may contribute to mucosal
barrier maintenance and inflammation modulation through the
production of short-chain fatty acids (SCFAs), such as acetate and
succinate. SCFAs have also been shown to regulate Th17-mediated
pathways, which are strongly implicated in COPD and asthma
(40). Similarly, Peptostreptococcus may regulate microbial
community balance and modulate host immunity via metabolic
cross-feeding interactions with other commensals. By stabilizing
the oral ecosystem, it may indirectly limit the expansion of
pathobionts such as Rothia and Fusobacterium, which were
enriched in CRD patients (41). Their reduction may reflect
ecological shifts that compromise mucosal defense and promote
inflammation, but causality remains uncertain, ultimately
increasing susceptibility to chronic respiratory inflammation.
These mechanistic explanations are speculative and should
be further examined in longitudinal and experimental studies.
Moreover, recent evidence suggests that the interaction between
the microbiome and host vitamin D metabolism plays an
important role in modulating immune responses, including
autoimmunity and chronic inflammation. Vitamin D influences
both innate and adaptive immunity by regulating antimicrobial
peptide expression and promoting immune tolerance. Alterations
in oral microbial composition could therefore affect vitamin D-
mediated mucosal immunity along the oral-lung axis. Conversely,
vitamin D deficiency has been associated with dysbiosis and
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impaired epithelial barrier function, which may exacerbate
respiratory inflammation. These findings, as discussed by
Murdaca et al. (42-44), highlight the complex bidirectional
interplay between vitamin D signaling and the microbiome in
shaping systemic and respiratory immune responses.

This study, based on a nationally representative NHANES sample
and an independent hospital cohort, is the first to systematically assess
the association between the oral microbiome and CRD, identifying
key genera and exploring potential biological mechanisms. The use of
two complementary cohorts enhances the robustness and
generalizability of the findings.

However, several limitations should be noted. First, both cohorts
were cross-sectional in nature, which limits causal inference and
precludes assessment of temporal changes in the oral microbiome
during disease progression. Second, although the NHANES sample
offers broad population representativeness, it was restricted to only two
cycles, while the hospital cohort—although valuable for validation—had
a more limited sample size and may be subject to selection bias. Third,
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although mouthwash samples are widely used in oral microbiome
studies and can capture overall microbial diversity (45, 46), they may not
fully reflect microbial communities in specific oral niches such as
subgingival or tongue dorsum areas. Finally, due to the lack of lung
microbiome data, this study could not directly validate the biological
pathways linking the oral and pulmonary systems (“oral-lung axis”) in
CRD, and mechanistic interpretations remain largely based on
prior evidence.

In addition, the moderate predictive performance of the
random forest model and the reliance on LEfSe for differential
abundance analysis should be acknowledged when interpreting the
findings. LEfSe was chosen due to its wide use in oral microbiome
studies and its suitability for validating NHANES findings in our
hospital cohort, whereas methods such as DESeq2 or ANCOM
may be limited by the smaller sample size. Future studies could
enhance prediction by incorporating additional variables,
complementary differential abundance methods, or multi-
omics data.
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FIGURE 7
Genus-level composition and differential analysis of the oral microbiota in CRD and non-CRD groups in the hospital cohort. (A,B) Stacked bar plots of
the relative abundance of predominant genera in non-CRD and CRD participants. (C) Linear discriminant analysis (LDA) scores of taxa identified by
LEfSe (LDA > 2). (D) Boxplots showing relative abundance of representative differential genera. (E) Cladogram illustrating the phylogenetic relationships
of taxa with significant differences between groups.

5 Conclusion

In this study, using both a nationally representative NHANES
sample and an independent hospital cohort, we observed a
consistent association between the oral microbiome and
CRD. CRD patients exhibited reduced a-diversity, distinct
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B-diversity patterns, and differential enrichment of specific
bacterial genera. Notably, the depletion of Alloprevotella and
Peptostreptococcus was consistent across cohorts, highlighting
robust microbial signatures associated with CRD and supporting
the relevance of the oral microbiome and the “oral-lung axis” in
respiratory health.
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