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Oral microbiome dysbiosis is 
associated with chronic 
respiratory diseases: evidence 
from a population-based study 
and a hospital cohort
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Background: The oral microbiome has been increasingly recognized for 
its role in systemic health through the oral–lung axis. However, population-
level evidence linking oral microbial diversity and composition with chronic 
respiratory diseases (CRD) remains limited.
Methods: We analyzed data from 4,384 adults in the 2009–2012 National Health 
and Nutrition Examination Survey (NHANES), defining CRD by self-reported 
chronic obstructive pulmonary disease (COPD), asthma, emphysema, or chronic 
bronchitis. Oral rinse samples underwent 16S ribosomal RNA (16S rRNA) V1–V3 
sequencing. Alpha diversity, including observed amplicon sequence variants 
(ASVs), Faith’s phylogenetic diversity (Faith’s PD), Shannon–Weiner index, and 
Simpson index, and beta diversity, including Bray–Curtis, weighted UniFrac, 
and unweighted UniFrac distances, were assessed. Associations with CRD 
were examined using weighted logistic regression and restricted cubic splines 
(RCS). Differential genus abundance was identified by Wilcoxon tests with false 
discovery rate correction. A random forest model integrated microbial and 
clinical features. An independent hospital cohort was additionally profiled by 
16S rRNA sequencing, and genus-level differences were assessed with linear 
discriminant analysis effect size (LEfSe) to validate NHANES findings.
Results: Higher alpha diversity was inversely associated with CRD risk; each 
standard deviation increase in observed ASVs and Faith’s PD reduced CRD 
odds by 19 and 17%, respectively (p < 0.05). Beta diversity showed significant 
community-level separation by CRD status (p = 0.01). Several genera, including 
Rothia and Veillonella, were enriched in CRD, whereas Prevotella, Haemophilus, 
and Neisseria were more abundant in non-CRD individuals. The random forest 
model achieved an area under the curve (AUC) of 0.65. In the hospital cohort, 
compositional shifts were consistent with NHANES findings, and LEfSe confirmed 
the depletion of Alloprevotella and Peptostreptococcus in CRD patients.
Conclusion: Oral microbial diversity and composition were significantly 
associated with CRD across both a representative U. S. population and a 
hospital cohort. Select genera and diversity indices may serve as non-invasive 
biomarkers for respiratory health, warranting further validation in longitudinal 
and mechanistic studies.
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1 Introduction

The oral cavity harbors a complex ecosystem of microorganisms—
including bacteria, fungi, protozoa, mycoplasmas, and viruses—
alongside teeth, gingiva, tongue, mucosa, and saliva (1). These 
microbes often form biofilms that support immune regulation, 
epithelial defense, and microbial homeostasis (2–4).

When this balance is disrupted, pathogenic species may cross 
local barriers and spread via the airway, bloodstream, or digestive 
tract, influencing systemic health (5). Oral pathogens have been 
implicated in cardiovascular disease, diabetes, endocarditis, 
atherosclerosis, rheumatoid arthritis, and cancers (6–10). In recent 
years, the concept of an “oral–lung axis” has drawn attention. Oral 
microorganisms can reach the lower respiratory tract through 
aspiration or mucosal migration and may contribute to chronic 
respiratory diseases (CRD), such as chronic obstructive pulmonary 
disease (COPD) and asthma (11). Indeed, genera such as Veillonella, 
Prevotella, and Rothia—common in the oral cavity—are frequently 
enriched in sputum and bronchoalveolar lavage fluid of COPD 
patients (12).

CRD, including COPD, asthma, chronic bronchitis, and 
emphysema, are major causes of morbidity and mortality worldwide, 
with disproportionate impact in low- and middle-income countries 
(13, 14). Known risk factors such as smoking, air pollution, and 
occupational exposures play important roles, but their predictive value 
for early detection remains limited (15). Novel biomarkers, 
particularly those linked to the oral microbiome, may enhance CRD 
risk assessment and prevention. However, despite growing evidence, 
population-based studies directly linking oral microbial diversity to 
aggregated CRD outcomes remain scarce.

Previous studies have suggested enrichment of oral bacteria in 
lung samples from CRD patients. However, most focused on single 
diseases, yielding inconsistent findings, while in clinical practice these 
conditions frequently overlap. Our study uniquely addresses this gap 
by aggregating COPD, asthma, chronic bronchitis, and emphysema 
into a unified CRD outcome, thereby reflecting real-world comorbidity 
and improving statistical power. To our knowledge, this is the first 
study to integrate a nationally representative cohort (NHANES) with 
a hospital-based cohort to investigate the association between oral 
microbial diversity and aggregated CRD outcomes. This two-stage 
design strengthens epidemiologic evidence and highlights potential 
microbial biomarkers with implications for both public health and 
clinical care.

2 Materials and methods

2.1 NHANES study

NHANES is a continuous, nationally representative cross-sectional 
study that uses a stratified, multistage probability sampling method to 
assess the health of the non-institutionalized U. S. population (16). The 
study protocol was approved by the National Center for Health Statistics 

Ethics Review Board, and all participants provided written informed 
consent. This study followed the STROBE reporting guidelines (17). For 
the present analysis, we combined data from the 2009–2010 and 2011–
2012 NHANES cycles. Among 20,293 participants initially enrolled, 
those without oral microbiome sequencing data (n = 10,945), missing 
CRD status (n = 11), or incomplete covariate information (n = 4,953) 
were excluded. Missing covariate data included periodontal measures 
(n = 4,053), poverty income ratio (n = 437), alcohol use (n = 401), 
diabetes status (n = 34), body mass index (BMI) (n = 18), marital status 
(n = 4), smoking status (n = 2), education level (n = 3), and 
hypertension diagnosis (n = 1). A total of 4,384 participants were 
included in the final analytic sample (Figure 1).

Oral rinse samples collected during the 2009–2010 and 2011–
2012 cycles were used for oral microbiome profiling. Genomic DNA 
was extracted and amplified targeting the V1–V3 regions of the 16S 
ribosomal RNA (rRNA) gene, followed by high-throughput sequencing. 
Raw sequence reads underwent standard quality control procedures to 
generate amplicon sequence variants (ASVs), with taxonomic 
classification assigned from phylum to genus levels using curated 
reference databases. Alpha diversity was assessed using Observed 
ASVs, Faith’s phylogenetic diversity (Faith’s PD), Shannon–Weiner 
index, and Simpson index, calculated from rarefied datasets normalized 
to 10,000 reads per sample. Each metric was averaged across 10 
independent subsamplings to enhance stability (18). Beta diversity was 
evaluated using Bray–Curtis dissimilarity (19), unweighted UniFrac, 
and weighted UniFrac distances to capture between-sample variation.

The CRD were defined as having at least one of the following 
conditions: COPD, asthma, emphysema, or chronic bronchitis. COPD 
was identified based on either a self-reported medical diagnosis or a 
post-bronchodilator FEV₁/FVC ratio <0.70 from spirometry testing. 
Asthma, emphysema, and chronic bronchitis were defined using 
participants’ responses to structured questionnaire items indicating 
whether a healthcare professional had ever diagnosed them with these 
conditions. Covariates included both continuous (age, BMI) and 
categorical variables (sex, race/ethnicity, education level, marital 
status, and poverty income ratio [<1.3, 1.3–3.5, ≥3.5]). Smoking status 
was categorized as never, former, or current; alcohol use was classified 
as never, former, mild, moderate, or heavy; and physical activity was 
divided into low (<500 MET-min/week) and high (≥500 MET-min/
week), according to NHANES recommendations (20). Hypertension, 
diabetes, and hyperlipidemia were defined based on a combination of 
self-reported diagnoses, physical examination findings, and laboratory 
results (Supplementary Table S1). Oral health–related covariates 
included periodontitis severity, categorized using CDC/AAP criteria 
based on clinical attachment loss (CAL) and probing depth (PD) (21), 
as well as oral hygiene practices such as dental floss and mouthwash 
use in the past 7 days (yes/no).

2.2 Clinical research

Consecutive adult outpatients were recruited from the 
Department of Respiratory Medicine at Suining Central Hospital 
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between August and September 2025. Eligible participants were aged 
30 years or older and provided written informed consent. Participants 
were divided into two groups: the CRD group (n = 49), comprising 
patients with a clinical diagnosis of COPD, asthma, chronic bronchitis, 
or emphysema; and the control group (n = 46), consisting of 
outpatients without a history of chronic respiratory diseases. The 
study was approved by the Ethics Committee of Suining Central 
Hospital (approval number KYLLKS20250140). Exclusion criteria 
were: (1) use of antibiotics within the past month; (2) acute oral 
disease at the time of recruitment; and (3) presence of severe 
systemic illnesses.

The following data were recorded: (1) Demographic data: age, sex, 
occupation, height, weight, and BMI; (2) Lifestyle factors: smoking 
and drinking history, oral hygiene behaviors (e.g., use of dental floss 
and mouthwash); (3) Medical history: comorbidities and medication 
use; (4) Clinical examination: pulmonary function testing, disease 
diagnosis, and periodontal status. Saliva samples (10–15 mL) were 
collected from each participant and immediately stored at 
−80 °C. Microbial DNA was extracted, and the V3–V4 regions of the 
bacterial 16S rRNA gene were amplified and subjected to high-
throughput sequencing. Sequencing data were processed using 
standard quality control pipelines to generate microbial taxonomic 
profiles and diversity measures.

2.3 Statistical analysis

All analyses were conducted using R software (version 4.4.3).

For the NHANES data, complex survey design weights were 
incorporated following analytic guidelines. A two-sided p-value < 0.05 
was considered statistically significant. Continuous variables were 
summarized as means ± standard deviations (SD) and compared 
between CRD and non-CRD groups using weighted t-tests. 
Categorical variables were reported as frequencies with weighted 
percentages and compared using the Rao–Scott chi-square test. 
Weighted logistic regression was applied to examine associations 
between alpha diversity indices and prevalence of CRD, with results 
expressed as odds ratios (ORs) and 95% confidence intervals (CIs) per 
SD increase. Tertile-based analyses and tests for trend were also 
conducted. Restricted cubic spline (RCS) models were used to 
evaluate dose–response relationships and potential nonlinearity. 
Subgroup analyses were performed for Observed ASVs and Faith’s PD 
across age, sex, race/ethnicity, BMI, and smoking status, with 
interaction terms to assess effect modification. Beta diversity was 
evaluated using principal coordinates analysis (PCoA) and 
PERMANOVA based on Bray–Curtis, unweighted UniFrac, and 
weighted UniFrac distances. At the genus level, genera with <5% 
prevalence were excluded, and differentially abundant genera were 
identified using Wilcoxon tests with false discovery rate (FDR) 
correction. Key results were visualized with heatmaps and boxplots. 
A random forest model was constructed using the top 10 differentially 
abundant genera, alpha diversity indices, and selected clinical 
variables to classify CRD status, with performance assessed by receiver 
operating characteristic (ROC) curves and area under the curve 
(AUC). Sensitivity analyses excluded participants who had recently 
used antibiotics, and an additional analysis was performed 

FIGURE 1

Flowchart depicting participant inclusion and exclusion criteria for the study in the NHANES.
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incorporating HEI-2015 (diet quality) as a covariate in the 
regression models.

For the hospital cohort, baseline characteristics between CRD and 
non-CRD participants were compared using the independent sample 
t-test for continuous variables and the chi-square test for categorical 
variables. α-diversity indices (Observed species, Chao1, Shannon, and 
Simpson) were calculated in R (v4.4.3) based on rarefied ASV tables. 
Group differences in α-diversity were evaluated using the Wilcoxon 
rank-sum test. β-diversity was assessed using R (v4.4.3) based on 
Bray–Curtis and Jaccard distance metrics. Principal coordinates 
analysis (PCoA) was performed to visualize community dissimilarities, 
and PERMANOVA (999 permutations) was applied to test for 
significance between CRD and non-CRD groups. At the genus level, 
taxa with a prevalence <5% across samples were excluded from 
analysis. Relative abundances were compared between groups using 
the Wilcoxon rank-sum test, with false discovery rate (FDR) 
correction applied for multiple testing. Differentially abundant taxa 
were further identified using linear discriminant analysis effect size 
(LEfSe) with an LDA score threshold of 2.0. Taxonomic cladograms 
were generated to illustrate taxa enriched in CRD or non-CRD 
participants. Microbial co-occurrence networks were constructed at 
multiple taxonomic levels using SparCC correlation analysis, and 
network modules were visualized to explore potential 
ecological interactions.

3 Results

3.1 Baseline characteristics

In the NHANES analysis, among an estimated 93,587,279 
U. S. adults, the prevalence of CRD was 19.7% (Table 1). Compared 
with those without CRD, affected individuals were slightly older 
(49.12 ± 11.03 vs. 47.56 ± 10.61), more likely to be  non-Hispanic 
White (73.89% vs. 67.56%), and had higher rates of divorce, 
widowhood, or separation (22.89% vs. 17.42%). They also showed 
greater obesity prevalence (BMI ≥ 30: 43.24% vs. 36.63%), lower 
income (PIR < 1.3: 20.43% vs. 17.71%), and higher smoking rates 
(29.39% vs. 16.70%). The CRD group additionally exhibited a higher 
prevalence of moderate-to-severe periodontitis (35.26% vs. 30.08%), 
hypertension (43.23% vs. 34.41%), and hyperlipidemia (78.44% vs. 
72.96%). No significant differences were found in sex, education, 
diabetes, physical activity, or oral hygiene behaviors (all p > 0.05). 
Importantly, participants with CRD had significantly lower oral 
microbial diversity across Observed ASVs, Faith’s phylogenetic 
diversity, and the Shannon index (all p < 0.05).

In the hospital-based cohort, 95 participants were enrolled, 
including 49 with CRD and 46 without CRD (Table 2). Patients with 
CRD were older (62.94 ± 9.58 vs. 50.63 ± 12.11), more likely to 
be current smokers (46.94% vs. 21.74%), and more frequently lived in 
rural areas (73.47% vs. 47.83%). They also had a higher prevalence of 
periodontitis (48.98% vs. 17.39%), whereas no significant group 
differences were observed for BMI, sex, alcohol use, marital status, 
education, diabetes, hypertension, hyperlipidemia, flossing, or 
mouthwash behaviors (all p > 0.05). Similar to NHANES, the CRD 
group demonstrated significantly lower alpha diversity indices, 
including Observed species richness, Chao1, Shannon, and Simpson 
indices (all p < 0.001).

3.2 Association of oral microbial alpha 
diversity with CRD

In the NHANES cohort (Table 3), individuals with higher Observed 
ASVs had lower odds of CRD. Specifically, each SD increase in 
Observed ASVs was associated with OR = 0.82 (95% CI: 0.74–0.90, 
p < 0.001) in the unadjusted model and OR = 0.81 (95% CI: 0.70–0.93, 
p = 0.009) after adjusting for covariates. Participants in the highest 
tertile (Q3) had OR = 0.65 (95% CI: 0.46–0.92, p = 0.023) compared 
with the lowest tertile (Q1), with a significant trend across tertiles (p for 
trend = 0.022). Faith’s Phylogenetic Diversity showed similar 
associations (fully adjusted OR per SD = 0.83, 95% CI: 0.71–0.96, 
p = 0.019; Q3 vs. Q1 OR = 0.65, 95% CI: 0.46–0.93, p = 0.025, p for 
trend = 0.020). For the Shannon–Weiner index, the fully adjusted OR 
per SD was 0.89 (95% CI: 0.79–1.01, p = 0.071), and no significant 
association was observed for the Simpson index (OR per SD = 0.97, 95% 
CI: 0.88–1.08, p = 0.574). Dose–response curves using restricted cubic 
splines confirmed linear inverse associations for Observed ASVs and 
Faith’s PD, while Shannon and Simpson indices exhibited non-linear 
patterns (Figures 2A–D). Subgroup analyses showed consistent inverse 
associations across age, sex, race/ethnicity, education, smoking status, 
physical activity, BMI, and periodontitis severity (Figures 3A,B).

In the hospital cohort, rarefaction curves confirmed sufficient 
sequencing depth (Figure 4A). Alpha diversity was significantly lower 
in CRD patients compared with non-CRD participants, including 
Chao1 (p = 1.1 × 10−5), Observed species (p = 7.9 × 10−6), Shannon 
(p = 6.7 × 10−6), and Simpson (p = 6.2 × 10−5) indices (Figure 4B). RCS 
analysis, adjusted for age, smoking status, and periodontitis, indicated 
linear negative associations between CRD and the Observed species, 
Chao 1, and Shannon indices (all p < 0.05), while no significant 
association was observed for the Simpson index (p = 0.105) (Figure 4C).

3.3 Beta diversity analysis

Beta diversity analyses were conducted to compare overall 
microbial community composition between participants with and 
without CRD in both the NHANES and hospital-based cohorts. In the 
NHANES cohort, principal coordinates analysis (PCoA) and 
PERMANOVA using Bray–Curtis dissimilarity, unweighted UniFrac, 
and weighted UniFrac distances showed significant differences in 
community structure after adjusting for demographic and lifestyle 
factors (Bray–Curtis: R2 = 7.95%, p = 0.01; Unweighted UniFrac: 
R2 = 5.34%, p = 0.01; Weighted UniFrac: R2 = 5.93%, p = 0.01) 
(Figures 5A–C). Similarly, in the hospital cohort, Bray–Curtis and 
Jaccard-based PCoA revealed partial separation between CRD and 
non-CRD participants, with PC1 and PC2 explaining 13.6 and 11.0% 
of variance for Bray–Curtis, and 9.0 and 7.3% for Jaccard 
(Figures 5D,E). PERMANOVA confirmed significant differences in 
microbial community structure (Bray–Curtis: R2 = 2.38%, p = 0.003; 
Jaccard: R2 = 1.98%, p = 0.002).

3.4 Genus-level differential abundance and 
predictive modeling of CRD in the NHANES

To identify microbial features linked to CRD, we conducted genus-
level differential abundance analysis followed by predictive modeling. 
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TABLE 1  Baseline characteristics of participants by CRD status.

Characteristic Overall
N = 93,587,2791

Without CRD
N = 75,154,4531

With CRD
N = 18,432,8261

P-value2

Age (years) 47.87 ± 10.71 47.56 ± 10.61 49.12 ± 11.03 0.004

Observed ASVs 126.14 ± 40.25 127.58 ± 40.94 120.28 ± 36.71 <0.001

Faith’s phylogenetic diversity 14.21 ± 3.19 14.31 ± 3.22 13.81 ± 3.02 <0.001

Shannon-Weiner index 4.59 ± 0.65 4.61 ± 0.66 4.53 ± 0.62 0.027

Simpson index 0.90 ± 0.06 0.90 ± 0.06 0.90 ± 0.06 0.785

Sex 0.103

 � Male 2,254 (51.38%) 1,867 (52.27%) 387 (47.75%)

 � Female 2,130 (48.62%) 1,690 (47.73%) 440 (52.25%)

Race/ethnicity <0.001

 � Non-Hispanic White 1,775 (68.81%) 1,374 (67.56%) 401 (73.89%)

 � Non-Hispanic Black 998 (11.11%) 785 (10.87%) 213 (12.07%)

 � Mexican American 710 (8.22%) 642 (9.38%) 68 (3.49%)

 � Other Hispanic 448 (5.23%) 366 (5.39%) 82 (4.57%)

 � Other Race 453 (6.64%) 390 (6.80%) 63 (5.98%)

Marital status <0.001

 � Married/Living with Partner 2,880 (70.33%) 2,397 (71.74%) 483 (64.59%)

 � Widowed/Divorced/Separated 954 (18.50%) 727 (17.42%) 227 (22.89%)

 � Never married 550 (11.17%) 433 (10.84%) 117 (12.52%)

BMI 0.013

 � <25 1,103 (26.38%) 900 (26.69%) 203 (25.11%)

 � 25–29.9 1,508 (35.69%) 1,264 (36.68%) 244 (31.65%)

 � ≥30 1,773 (37.93%) 1,393 (36.63%) 380 (43.24%)

Education 0.355

 � Below high school 407 (4.64%) 353 (4.90%) 54 (3.60%)

 � High school 1,552 (30.38%) 1,248 (30.28%) 304 (30.79%)

 � Above high school 2,425 (64.98%) 1,956 (64.82%) 469 (65.62%)

PIR 0.012

 � <1.3 1,327 (18.24%) 1,027 (17.71%) 300 (20.43%)

 � 1.3–3.5 1,501 (32.71%) 1,224 (31.86%) 277 (36.21%)

 � >3.5 1,556 (49.04%) 1,306 (50.44%) 250 (43.36%)

Smoking status <0.001

 � Never 2,427 (55.58%) 2,069 (58.47%) 358 (43.81%)

 � Former 1,013 (25.22%) 812 (24.83%) 201 (26.80%)

 � Now 944 (19.20%) 676 (16.70%) 268 (29.39%)

Alcohol intake 0.053

 � Never 498 (8.38%) 428 (8.98%) 70 (5.97%)

 � Former 733 (14.15%) 589 (13.79%) 144 (15.63%)

 � Mild 1,501 (38.47%) 1,220 (38.98%) 281 (36.39%)

 � Moderate 716 (18.81%) 578 (18.55%) 138 (19.86%)

 � Heavy 936 (20.18%) 742 (19.70%) 194 (22.15%)

Physical activity 0.257

 � Low 741 (16.53%) 590 (16.17%) 151 (18.02%)

 � High 3,643 (83.47%) 2,967 (83.83%) 676 (81.98%)

(Continued)
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After FDR correction (FDR < 0.05), 385 genera showed significant 
differences in relative abundance between CRD and non-CRD groups. 
To ensure biological relevance, we further selected genera present in at 
least 5% of participants, yielding 42 representative genera for 
hierarchical clustering. The heatmap revealed distinct microbial 
composition patterns between the two groups (Figure 6A). Among the 
top  10 differentially abundant genera, Rothia, Veillonella, and 
Atopobium were enriched in the CRD group. In contrast, Haemophilus, 
Prevotella, Neisseria, Alloprevotella, Porphyromonas, Aggregatibacter, 
and Peptostreptococcus were more abundant in the non-CRD group. 
These genera spanned major phyla such as Actinobacteria, Firmicutes, 
Bacteroidetes, and Proteobacteria. Boxplots clearly showed the distinct 
abundance patterns of these genera between groups (Figure 6B).

We then incorporated the 10 genera, two alpha diversity indices 
(Observed ASVs and Faith’s PD), and seven key clinical variables 
(age, sex, smoking status, hypertension, alcohol use, BMI, and 
periodontal status) into a random forest classification model. Variable 
importance analysis showed that both microbial genera and diversity 
indices played significant roles in model accuracy (Figure 6C). The 
receiver operating characteristic (ROC) curve of this combined 
model yielded an area under the curve (AUC) of 0.652, indicating 
moderate ability to distinguish between CRD and non-CRD 
participants (Figure 6D).

3.5 Genus-level compositional differences 
in the hospital cohort

At the genus level, distinct shifts in microbial composition were 
observed between CRD and non-CRD groups (Figures 7A,B). In the 

non-CRD group, genera such as Alloprevotella, Prevotella, and 
Veillonella were more abundant, whereas the CRD group was enriched 
in potential pathogenic taxa including Fusobacterium, Leptotrichia, 
and Porphyromonas.

LEfSe analysis (LDA score > 2) identified taxa that 
discriminated between the two groups (Figure 7C). Genera such 
as Alloprevotella and Peptostreptococcus were enriched in the 
non-CRD group, while Fusobacterium and Leptotrichia were 
significantly associated with CRD.

Boxplot analysis confirmed significant differences in the relative 
abundances of the identified genera (Figure  7D). Alloprevotella 
showed higher relative abundance in the non-CRD group (p < 0.05), 
whereas Fusobacterium and Leptotrichia were markedly enriched in 
the CRD group (p < 0.01).

Phylogenetic analysis further demonstrated that taxa enriched in 
the non-CRD group clustered into coherent modules, including 
genera such as Alloprevotella, Megasphaera, Parvimonas, and 
Peptostreptococcus (Figure  7E). In contrast, CRD-enriched taxa, 
represented by Escherichia–Shigella, were relatively isolated within the 
phylogenetic tree.

3.6 Sensitivity analysis in the NHANES

In the NHANES cohort, sensitivity analyses excluding 
participants who reported recent antibiotic use, with HEI-2015 
additionally included as a covariate, showed results consistent with 
the main analyses (Supplementary Figures S1–S4 and 
Supplementary Table S2).

TABLE 1  (Continued)

Characteristic Overall
N = 93,587,2791

Without CRD
N = 75,154,4531

With CRD
N = 18,432,8261

P-value2

Flossing behavior 0.365

 � No 1,427 (28.60%) 1,152 (29.02%) 275 (26.92%)

 � Yes 2,957 (71.40%) 2,405 (70.98%) 552 (73.08%)

Mouthwash behavior 0.484

 � No 1,869 (46.59%) 1,517 (46.24%) 352 (48.05%)

 � Yes 2,515 (53.41%) 2,040 (53.76%) 475 (51.95%)

Periodontitis 0.009

 � No/Mild periodontitis 2,710 (68.90%) 2,201 (69.92%) 509 (64.74%)

 � Moderate/Severe periodontitis 1,674 (31.10%) 1,356 (30.08%) 318 (35.26%)

Hypertension <0.001

 � No 2,637 (63.85%) 2,211 (65.59%) 426 (56.77%)

 � Yes 1,747 (36.15%) 1,346 (34.41%) 401 (43.23%)

Diabetes 0.051

 � No 3,620 (87.45%) 2,967 (88.12%) 653 (84.73%)

 � Yes 764 (12.55%) 590 (11.88%) 174 (15.27%)

Hyperlipidemia 0.026

 � No 1,190 (25.96%) 986 (27.04%) 204 (21.56%)

 � Yes 3,194 (74.04%) 2,571 (72.96%) 623 (78.44%)

1n (unweighted) (%).
2Design-based t-test; Pearson’s X^2: Rao and Scott adjustment.
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4 Discussion

Across both the population-based NHANES analysis and our 
hospital cohort, higher oral microbial alpha diversity was consistently 
associated with lower odds of CRD. This association remained 
significant after adjusting for multiple potential confounders, and the 
relationship appeared linear across different diversity metrics. Beta 
diversity analyses further revealed clear separation between CRD and 
non-CRD participants, suggesting global alterations in community 
composition. At the genus level, specific taxa were differentially 
enriched in CRD versus non-CRD individuals, reflecting disease-
related microbial dysbiosis. Collectively, the concordant findings from 
two independent cohorts strengthen the evidence for a robust 
association between reduced oral microbial diversity and increased 
CRD risk.

In the NHANES analysis, weighted logistic regression models 
showed that higher oral α-diversity was associated with lower CRD 
risk. Each standard deviation increase in Observed ASVs and Faith’s 
PD corresponded to 19 and 17% reductions in CRD risk, respectively, 

while the Shannon index was only weakly associated with reduced 
risk. These findings indicate that greater microbial richness and 
evenness might be  linked to resilience against chronic respiratory 
inflammation. Importantly, the inverse associations remained robust 
in subgroup analyses, particularly among non-Hispanic White and 
Mexican American populations. This observation is consistent with 
prior reports of racial differences in oral microbial diversity (22–27). 
Regarding β-diversity, both PCoA and PERMANOVA analyses 
revealed significant structural differences in the oral microbiome 
between CRD and non-CRD individuals using Bray–Curtis, weighted 
UniFrac, and unweighted UniFrac distances (all p < 0.01), 
underscoring the presence of microbial dysbiosis (28–31).

At the genus level, Rothia and Veillonella were enriched in CRD 
cases, whereas Haemophilus, Prevotella, and Neisseria were more 
common in non-CRD participants. These distribution patterns align 
with prior studies showing that common oral genera, including 
Veillonella, Prevotella, Fusobacterium, and Actinomyces, can migrate 
to the lower respiratory tract and potentially influence respiratory 
health (24, 32, 33), which is consistent with the hypothesis that the 

TABLE 2  Associations between oral microbial alpha diversity indices and CRD in unadjusted and fully adjusted logistic regression models.

CRD Model 1 Model 2 Model 3

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Observed ASVs

Per SD increase 0.82 (0.74, 0.90) <0.001 0.84 (0.75, 0.94) 0.004 0.81 (0.70, 0.93) 0.009

Q1 Ref Ref Ref

Q2 0.77 (0.59, 1.02) 0.064 0.81 (0.60,1.07) 0.133 0.81 (0.57, 1.16) 0.205

Q3 0.67 (0.52, 0.87) 0.003 0.71 (0.53, 0.95) 0.021 0.65 (0.46, 0.92) 0.023

P for trend 0.003 0.021 0.022

Faith’s phylogenetic diversity

Per SD increase 0.84 (0.77, 0.93) <0.001 0.86 (0.77, 0.97) 0.016 0.83 (0.71, 0.96) 0.019

Q1 Ref Ref Ref

Q2 0.81 (0.64, 1.03) 0.086 0.83 (0.64, 1.07) 0.135 0.80 (0.57, 1.11) 0.141

Q3 0.70 (0.55, 0.88) 0.004 0.73 (0.55, 0.98) 0.033 0.65 (0.46, 0.93) 0.025

P for trend 0.029 0.027 0.020

Shannon-Weiner index

Per SD increase 0.89 (0.81, 0.99) 0.026 0.91 (0.82, 1.01) 0.082 0.89 (0.79, 1.01) 0.071

Q1 Ref Ref Ref

Q2 0.87 (0.67, 1.14) 0.307 0.91 (0.69, 1.20) 0.487 0.93 (0.66, 1.31) 0.633

Q3 0.72 (0.55, 0.95) 0.021 0.75 (0.57, 1.01) 0.061 0.72 (0.50, 1.03) 0.069

P for trend 0.018 0.054 0.060

Simpson index

Per SD increase 0.99 (0.90, 1.08) 0.781 0.99 (0.90, 1.09) 0.838 0.97 (0.88, 1.08) 0.574

Q1 Ref Ref Ref

Q2 1.04 (0.77, 1.41) 0.791 1.05 (0.75, 1.45) 0.781 1.01 (0.69, 1.49) 0.886

Q3 0.79 (0.60, 1.04) 0.093 0.78 (0.59, 1.05) 0.099 0.76 (0.53, 1.07) 0.095

P for trend 0.089 0.096 0.086

Results are presented as odds ratios (ORs) with 95% confidence intervals (CIs).
Model 1 is unadjusted.
Model 2 is adjusted for age, sex, race/ethnicity, marital status, PIR, education and BMI.
Model 3 is further adjusted for smoking status, physical activity, alcohol intake, Flossing behavior, mouthwash behavior, hypertension, DM, hyperlipidemia and periodontitis.
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TABLE 3  Baseline characteristics of participants in the hospital-based cohort according to CRD status.

Variables Total
(n = 95)

Without CRD
(n = 46)

Without CRD
(n = 49)

P-value

Age, mean ± SD 56.98 ± 12.46 50.63 ± 12.11 62.94 ± 9.58 <0.001

BMI, mean ± SD 23.77 ± 4.10 24.03 ± 3.79 23.53 ± 4.39 0.554

Observed, mean ± SD 137.97 ± 47.96 159.74 ± 41.46 117.53 ± 44.86 <0.001

Chao1, mean ± SD 140.00 ± 49.25 162.16 ± 42.50 119.19 ± 46.31 <0.001

Shannon, mean ± SD 3.61 ± 0.58 3.86 ± 0.49 3.37 ± 0.57 <0.001

Simpson, mean ± SD 0.93 ± 0.05 0.95 ± 0.03 0.91 ± 0.06 <0.001

Sex, n (%) 0.130

 � Female 34 (35.79) 20 (43.48) 14 (28.57)

 � Male 61 (64.21) 26 (56.52) 35 (71.43)

Smoking, n (%) 0.010

 � No 62 (65.26) 36 (78.26) 26 (53.06)

 � Yes 33 (34.74) 10 (21.74) 23 (46.94)

Drinking, n (%) 0.658

 � No 64 (67.37) 32 (69.57) 32 (65.31)

 � Yes 31 (32.63) 14 (30.43) 17 (34.69)

Marital status, n (%) 0.052

 � No 8 (8.42) 7 (15.22) 1 (2.04)

 � Yes 87 (91.58) 39 (84.78) 48 (97.96)

Education, n (%) 0.232

 � High school or lower 78 (82.11) 40 (86.96) 38 (77.55)

 � Above high school 17 (17.89) 6 (13.04) 11 (22.45)

Residence, n (%) 0.010

 � Rural 58 (61.05) 22 (47.83) 36 (73.47)

 � Urban 37 (38.95) 24 (52.17) 13 (26.53)

DM, n (%) 0.138

 � No 88 (92.63) 45 (97.83) 43 (87.76)

 � Yes 7 (7.37) 1 (2.17) 6 (12.24)

Hypertension, n (%) 0.082

 � No 83 (87.37) 43 (93.48) 40 (81.63)

 � Yes 12 (12.63) 3 (6.52) 9 (18.37)

Hyperlipidemia, n (%) 0.259

 � No 76 (80.00) 39 (84.78) 37 (75.51)

 � Yes 19 (20.00) 7 (15.22) 12 (24.49)

Flossing behavior, n (%) 0.948

 � No 72 (75.79) 35 (76.09) 37 (75.51)

 � Yes 23 (24.21) 11 (23.91) 12 (24.49)

Mouthwash behavior, n (%) 0.973

 � No 68 (71.58) 33 (71.74) 35 (71.43)

 � Yes 27 (28.42) 13 (28.26) 14 (28.57)

Periodontitis, n (%) 0.001

 � No 63 (66.32) 38 (82.61) 25 (51.02)

 � Yes 32 (33.68) 8 (17.39) 24 (48.98)

Continuous variables are presented as mean ± standard deviation (SD) and were compared using independent-sample t-tests. Categorical variables are presented as counts and percentages (n, 
%) and were compared using chi-square tests. CRD was defined as a clinical diagnosis of COPD, asthma, chronic bronchitis, or emphysema. BMI, body mass index; DM, diabetes mellitus. 
p-values indicate the statistical significance of differences between participants with and without CRD.
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FIGURE 2

Dose–response relationships between oral microbial alpha diversity indices and CRD risk assessed by restricted cubic spline models in the NHANES. 
(A) Observed ASVs; (B) Faith’s Phylogenetic Diversity; (C) Shannon index; (D) Simpson index.

FIGURE 3

Subgroup analyses of associations between alpha diversity indices and CRD risk in the NHANES. (A) Observed ASVs; (B) Faith’s phylogenetic diversity.
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oral cavity serves as a microbial reservoir for respiratory disease. 
Consistent with NHANES, the hospital cohort also showed that 
Fusobacterium, Leptotrichia, and Rothia were enriched in CRD 
patients, whereas Prevotella, Haemophilus, Neisseria, and 
Alloprevotella were more abundant in non-CRD individuals. These 
overlapping patterns reinforce the robustness of these taxa as potential 
microbial markers associated with CRD. However, the LEfSe analysis 
yielded partially different results. Only two genera in the non-CRD 
group—Alloprevotella and Peptostreptococcus—overlapped with the 
NHANES findings. This discrepancy may reflect methodological 

differences: NHANES emphasized abundant and clearly differentially 
expressed genera, whereas LEfSe integrates features across multiple 
taxonomic ranks (phylum, class, order, family, and genus), thereby 
attenuating genus-level signals.

Additionally, the random forest model showed moderate 
predictive performance. This likely reflects the study population, 
which is drawn from a general, mostly healthy cohort. In such 
population-based settings, differences between CRD and non-CRD 
individuals are subtler than in hospital cohorts or case–control studies, 
making prediction inherently more challenging. Despite this, the 

FIGURE 4

Alpha diversity between individuals with and without CRD in the hospital cohort. (A) Rarefaction curves showing observed ASVs by sequencing depth. 
(B) α-diversity indices (Chao1, Observed ASVs, Shannon, Simpson) comparing CRD and non-CRD groups. (C) Alpha diversity and CRD risk based on 
RCS models.
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model still identifies relevant microbial and clinical features, 
supporting the epidemiological relevance of the findings. Moreover, 
predictive performance could potentially be  improved in future 
studies by incorporating additional features, such as lifestyle factors 
or multi-omics data.

Nevertheless, both methods consistently highlighted 
Alloprevotella and Peptostreptococcus as being depleted in the CRD 
group across cohorts. This convergence suggests their possible 
involvement in respiratory health rather than a definitive protective 
role. The oral microbiome serves as an important reservoir of 
respiratory pathogens. Bacteria from dental plaque, periodontal 
pockets, and saliva can be aspirated into the lower respiratory tract, 
where they may trigger or exacerbate conditions such as aspiration 
pneumonia and COPD. The pathogenic mechanisms involve immune 
modulation, particularly the balance between Th1 and Th2 responses. 
Oral pathogens can stimulate airway epithelial cells to produce 
pro-inflammatory cytokines (e.g., TNF-α, IL-1β, and IL-6) and 
regulate mucus secretion (34, 35). In addition, microbial enzymes 
and cellular products from the oral microbiome can disrupt the 
respiratory mucosal barrier, facilitating pathogen colonization and 
increasing the risk of infection (36, 37). Emerging evidence also 
highlights complex interactions between commensal oral microbes 
and respiratory pathogens, with some species enhancing virulence 
and others producing inhibitory substances that limit pathogen 
growth (38, 39).

In this context, Alloprevotella may contribute to mucosal 
barrier maintenance and inflammation modulation through the 
production of short-chain fatty acids (SCFAs), such as acetate and 
succinate. SCFAs have also been shown to regulate Th17-mediated 
pathways, which are strongly implicated in COPD and asthma 
(40). Similarly, Peptostreptococcus may regulate microbial 
community balance and modulate host immunity via metabolic 
cross-feeding interactions with other commensals. By stabilizing 
the oral ecosystem, it may indirectly limit the expansion of 
pathobionts such as Rothia and Fusobacterium, which were 
enriched in CRD patients (41). Their reduction may reflect 
ecological shifts that compromise mucosal defense and promote 
inflammation, but causality remains uncertain, ultimately 
increasing susceptibility to chronic respiratory inflammation. 
These mechanistic explanations are speculative and should 
be  further examined in longitudinal and experimental studies. 
Moreover, recent evidence suggests that the interaction between 
the microbiome and host vitamin D metabolism plays an 
important role in modulating immune responses, including 
autoimmunity and chronic inflammation. Vitamin D influences 
both innate and adaptive immunity by regulating antimicrobial 
peptide expression and promoting immune tolerance. Alterations 
in oral microbial composition could therefore affect vitamin D–
mediated mucosal immunity along the oral–lung axis. Conversely, 
vitamin D deficiency has been associated with dysbiosis and 

FIGURE 5

Principal coordinates analysis (PCoA) plots of beta diversity metrics comparing oral microbial community structure between CRD and non-CRD 
groups. (A) Bray–Curtis dissimilarity; (B) unweighted UniFrac distance; (C) weighted UniFrac distance. (D) PCoA based on Bray–Curtis distances. 
(E) PCoA based on Jaccard distances.
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impaired epithelial barrier function, which may exacerbate 
respiratory inflammation. These findings, as discussed by 
Murdaca et  al. (42–44), highlight the complex bidirectional 
interplay between vitamin D signaling and the microbiome in 
shaping systemic and respiratory immune responses.

This study, based on a nationally representative NHANES sample 
and an independent hospital cohort, is the first to systematically assess 
the association between the oral microbiome and CRD, identifying 
key genera and exploring potential biological mechanisms. The use of 
two complementary cohorts enhances the robustness and 
generalizability of the findings.

However, several limitations should be noted. First, both cohorts 
were cross-sectional in nature, which limits causal inference and 
precludes assessment of temporal changes in the oral microbiome 
during disease progression. Second, although the NHANES sample 
offers broad population representativeness, it was restricted to only two 
cycles, while the hospital cohort—although valuable for validation—had 
a more limited sample size and may be subject to selection bias. Third, 

although mouthwash samples are widely used in oral microbiome 
studies and can capture overall microbial diversity (45, 46), they may not 
fully reflect microbial communities in specific oral niches such as 
subgingival or tongue dorsum areas. Finally, due to the lack of lung 
microbiome data, this study could not directly validate the biological 
pathways linking the oral and pulmonary systems (“oral–lung axis”) in 
CRD, and mechanistic interpretations remain largely based on 
prior evidence.

In addition, the moderate predictive performance of the 
random forest model and the reliance on LEfSe for differential 
abundance analysis should be acknowledged when interpreting the 
findings. LEfSe was chosen due to its wide use in oral microbiome 
studies and its suitability for validating NHANES findings in our 
hospital cohort, whereas methods such as DESeq2 or ANCOM 
may be limited by the smaller sample size. Future studies could 
enhance prediction by incorporating additional variables, 
complementary differential abundance methods, or multi-
omics data.

FIGURE 6

Genus-level differential abundance and predictive modeling of CRD in the NHANES. (A) Boxplots of top 10 differentially abundant genera between 
CRD and non-CRD groups. (B) Variable importance plot from random forest classification model. (C) Receiver operating characteristic (ROC) curve 
assessing model performance. (D) Receiver operating characteristic (ROC) curve assessing model performance.
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5 Conclusion

In this study, using both a nationally representative NHANES 
sample and an independent hospital cohort, we  observed a 
consistent association between the oral microbiome and 
CRD. CRD patients exhibited reduced α-diversity, distinct 

β-diversity patterns, and differential enrichment of specific 
bacterial genera. Notably, the depletion of Alloprevotella and 
Peptostreptococcus was consistent across cohorts, highlighting 
robust microbial signatures associated with CRD and supporting 
the relevance of the oral microbiome and the “oral–lung axis” in 
respiratory health.

FIGURE 7

Genus-level composition and differential analysis of the oral microbiota in CRD and non-CRD groups in the hospital cohort. (A,B) Stacked bar plots of 
the relative abundance of predominant genera in non-CRD and CRD participants. (C) Linear discriminant analysis (LDA) scores of taxa identified by 
LEfSe (LDA > 2). (D) Boxplots showing relative abundance of representative differential genera. (E) Cladogram illustrating the phylogenetic relationships 
of taxa with significant differences between groups.
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SUPPLEMENTARY FIGURE S1

Dose–response relationships between oral microbial alpha diversity indices 
and CRD risk assessed by restricted cubic spline models. (A) Observed ASVs; 
(B) Faith’s phylogenetic diversity; (C) Shannon index; (D) Simpson index.

SUPPLEMENTARY FIGURE S2

Subgroup analyses of associations between alpha diversity indices and CRD 
risk. (A) Observed ASVs; (B) Faith’s phylogenetic diversity.

SUPPLEMENTARY FIGURE S3

Principal coordinates analysis (PCoA) plots of beta diversity metrics 
comparing oral microbial community structure between CRD and non-CRD 
groups. (A) Bray–Curtis dissimilarity; (B) unweighted UniFrac distance; 
(C) weighted UniFrac distance.

SUPPLEMENTARY FIGURE S4

Genus-level differential abundance and predictive modeling of CRD. 
(A) Boxplots of top 10 differentially abundant genera between CRD and non-
CRD groups. (B) Variable importance plot from random forest classification 
model. (C) Receiver operating characteristic (ROC) curve assessing 
model performance.
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