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Association between volatile
organic compound co-exposure
and the prevalence of
rheumatoid arthritis: a
nationwide cross-sectional study
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Yufeng Yin1*, Jian Wu1* and Weichang Chen2*
1Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University,
Suzhou, Jiangsu, China, 2Department of Gastroenterology, The First Affiliated Hospital of Soochow
University, Suzhou, Jiangsu, China

Background: Environmental contaminants, especially volatile organic
compounds (VOCs) and their metabolites (mVOCs), are of significant interest
for treating autoimmune diseases due to their potential immunomodulatory
effects. This study aimed to assess the association between urinary mVOCs and
the risk of rheumatoid arthritis (RA) in U.S. adults.
Methods: A total of 4,622 adults, including 296 participants with RA, were
included in the present study utilizing data from the National Health and Nutrition
Examination Survey (NHANES) from 2005 to 2020. Sixteen mVOCs were selected
for the analysis while controlling for potential confounders. Weighted logistic
regression models were employed to assess the association between individual
mVOCs and RA risk. Least absolute shrinkage and selection operator (LASSO)
regression was used to select mVOCs and covariates most pertinent to the
prevalence of RA for further analyses. Then, weighted quantile sum (WQS)
regression and quantile g-computation (qgcomp) models were used to estimate
associations between the mVOC mixture and RA. Mediation analyses were
performed to examine the effect of inflammatory indices on these relationships.
Results: In single-pollutant models, levels of most mVOCs were greater in the
RA patients than in the patients without arthritis. Furthermore, multi-pollutant
models unveiled a positive effect of the mVOC mixture on the risk of RA in both
WQS regression (OR: 1.37; 95% CI: 1.12, 1.68; P = 0.002) and qgcomp (OR:
1.23; 95% CI: 1.07, 1.49; P = 0.034) models. This effect was notably stronger
for female participants. The lymphocyte-to-monocyte ratio (LMR), a surrogate
for inflammatory markers, mediated the association between the mVOC mixture
and the prevalence of RA with a mediated proportion of 4.65%.
Conclusions: This study supports the substantial connection between VOC co-
exposure and the risk of RA, with inflammation potentially acting as a mediator
in this relationship.
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1 Introduction

Rheumatoid arthritis (RA), is one of the most prevalent
systemic autoimmune diseases, is characterized by chronic joint
inflammation, leading to progressive joint damage and disability,
with increased mortality (1). RA has a global prevalence of
approximately 0.5% among adults, and women are 2 to 3 times
more likely than men to develop this disease (2). Although it can
manifest at any age, the most common age range for RA onset is
between 50 and 59 years old (2). The disease burden of RA extends
beyond joint disorders, with patients exhibiting an increased risk
for cardiovascular disease, infections, and psychological disorders,
underscoring its significant impact on public health and healthcare
systems worldwide (2).

The pathogenesis of RA is not fully understood; however, it
is widely accepted as a multifactorial disease in which genetic
susceptibility interacts with environmental triggers (3). Although
genetic factors contribute substantially to the risk of RA, they do not
fully account for the disease occurrence, which implies a critical role
for environmental factors (3). Among these, smoking is the most
well-documented risk factor (4). Other environmental exposures,
such as air pollution, occupational hazards, and microbial agents,
have also been associated with the onset and progression of RA (5,
6).

Volatile organic compounds (VOCs) are a diverse group
of carbon-based chemicals that readily evaporate at ambient
temperature (7). Human exposure to VOCs can occur through
various routes, including inhalation, ingestion, and dermal
absorption, originating from a wide array of sources, such as
industrial emissions, vehicular exhaust, building materials, and
use of consumer products (8). Once in the body, VOCs can be
metabolized into a range of metabolites (mVOCs), which might
exert toxic effects and have been implicated in the pathogenesis of
several diseases, especially systemic autoimmune diseases (7–9) and
joint disorders (10).

Considering the ubiquitous nature of VOCs and their potential
immunomodulatory effects, recent studies have elucidated the
intricate relationship between RA and exposure to VOCs; however,
these relationships present a complex picture. Research by Lei
et al. suggests that certain single mVOCs, such as AMCA
and HPMA, may be involved in the pathogenesis of RA (11).
On the other hand, a concurrent study by Beidelschies et al.
highlighted that environmental toxicants, including polycyclic
aromatic hydrocarbons (PAHs) but not VOCs, are associated with
an increased risk of RA (12).

Abbreviations: AAMA, N-Acetyl-S-(2-carbamoylethyl)-L-cysteine; PHGA,

Phenylglyoxylic acid; MHB3, N-Acetyl-S-(4-hydroxy-2-butenyl)-L-

cysteine;MADA, Mandelic acid; HPMM, N-Acetyl-S-(3-hydroxypropyl-

1-methyl)-L-cysteine; HPMA, N-Acetyl-S-(3-hydroxypropyl)-L-cysteine;

HPM2, N-Acetyl-S-(2-hydroxypropyl)-L-cysteine; DHBM, N-Acetyl-

S-(3,4-dihydroxybutyl)-L-cysteine; CYMA, N-Acetyl-S-(2-cyanoethyl)-

L-cysteine; CEMA, N-Acetyl-S-(2-carboxyethyl)-L-cysteine; BPMA,

N-Acetyl-S-(n-propyl)-L-cysteine; BMA, N-Acetyl-S-(benzyl)-L-cysteine;

ATCA, 2-Aminothiazoline-4-carboxylic acid; AMCA, N-Acetyl-S-(N-

methylcarbamoyl)-L-cysteine; 34MH, 3- and 4-Methylhippuric acid; 2MHA,

2-Methylhippuric acid.

While these works have significantly contributed to our
understanding of the potential impact of mVOCs on RA, several
critical questions remain to be explored to fully clarify the
role of these compounds in RA. For instance, as with most
environmental exposures, VOC exposures frequently encompass
a mixture of different VOCs that can interact with one another,
potentially leading to synergistic or interactive impacts on health
outcomes (13). Therefore, it is vital to assess the combined
effects of these co-exposures to better understand their health
impacts. Moreover, delineating the mediating factors, particularly
the role of inflammatory processes, is important for obtaining a
comprehensive understanding of how environmental exposures
contribute to the emergence and progression of RA.

Therefore, our research aims to bridge current knowledge gaps
by analyzing the cumulative impact of mVOC mixtures on RA
prevalence in a representative U.S. adult cohort. Moreover, we
aimed to analyze whether inflammatory markers act as mediators
of the correlation between the mVOC and increased risk of RA.

2 Methods

2.1 Study design

The data used were obtained from NHANES, a program
committed to assessing the health and nutritional status of the
civilian population in the U.S. This program employs a complex,
multistage sampling method and has been gathering extensive
data from a nationally representative sample biannually since
1999, covering various counties through both mobile examination
centers (MECs) and in-home interviews. The Centers for
Disease Control and Prevention (CDC) provides comprehensive
information on the NHANES methodology, design, and participant
recruitment. This investigation was conducted in adherence to
the STROBE guidelines tailored for cross-sectional studies and
received approval from the Research Ethics Review Board at the
National Center for Health Statistics (NCHS). Informed consent
was obtained from all individual participants involved in the study.

2.2 Study population

The study consolidated data across five NHANES cycles
(2005–2006, 2011–2012, 2013–2014, 2015–2016, and 2017–2020),
amounting to a total of 55,810 participants. Individuals younger
than 20 years were excluded. Those with missing mVOC values
or apparent outliers (exceeding the 99th percentile) were also
excluded from the analysis to minimize potential bias arising from
extreme data. Additional exclusions were made for missing data on
covariates, complete blood count and RA status. Following these
criteria for inclusion and exclusion, the final analytical sample
included 4,622 participants (Supplementary Figure S1).

2.3 Assessment of RA

RA status was assessed using a disease questionnaire
administered prior to the physical examination. This involved a
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computer-assisted face-to-face interview asking participants aged
>20 years the following question: “Has a doctor or other health
professional ever told you that you had arthritis?”. Those who
answered affirmatively were then asked “Which type of arthritis
was it?”, and persons who responded with RA were classified as
having RA. Participants with incomplete data regarding arthritis
and RA status, as well as those with missing information on
relevant covariates, were excluded from the analyses.

2.4 Measurements of mVOCs

Urine specimens were obtained from the participants, who
were not required to adhere to any fasting or dietary restrictions.
Each specimen was deposited into either polystyrene cryovial tubes
or polypropylene centrifuge tubes. A minimum volume of 0.25–
0.5 mL was obtained, with an assay-specific aliquot of 50 μL.
After collection, the samples were promptly chilled and transferred
to a storage facility where they were maintained at −20 ◦C
and at −70 ◦C until analysis. Urinary mVOCs were quantified
using an advanced ultra-performance liquid chromatography
(UPLC) system paired with electrospray ionization tandem mass
spectrometry (ESI-MS/MS) (14).

Data are reported in concentration units (ng/mL) and were
normalized to creatinine levels (μg/g creatinine) to account for
urine dilution variability among specimens. A comprehensive
outline of the analytical procedures utilized in the laboratory is
accessible at the CDC website via NHANES laboratory methods.
For instances in which the analyte concentrations fell below the
established lower limit of detection (LLOD), the reported values
were assigned as the LLOD divided by the square root of two
(LLOD/

√
2) (15). In NHANES, a total of 29 different urinary

mVOCs are analyzed. However, we omitted 13 mVOCs from
our analysis due to their low detection rate (50% or less) to
ensure the representativeness of the data and the reliability of
the findings. Ultimately, 16 urinary mVOCs were considered for
analysis (Supplementary Tables S1, S2).

2.5 Covariates and inflammatory markers

Covariates were selected due to their established association
with arthritis, as indicated by previous studies (10, 11, 16). Selection
of covariates included demographic details such as age, sex
(male and female), racial/ethnic background (Mexican American,
other Hispanic, Non-Hispanic White, Non-Hispanic Black, and
other/multiracial), educational attainment (ranging from less than
9th grade to college graduate or higher), marital status (categorized
as married/living with partner, widowed/divorced/separated, or
never married), family income in relation to the poverty level
as indicated by the poverty income ratio (PIR) (0–1.29, 1.3–
3.49, and ≥3.5), and status of health insurance coverage (either
insured or uninsured). Clinical parameters included body mass
index (BMI), which was defined as underweight (<18.5 kg/m2),
normal weight (18.5–24.9 kg/m2), overweight (25–29.9 kg/m2),
and obese (≥30 kg/m2), along with waist circumference (cm).
Comorbid conditions such as hypertension and diabetes were

identified through participants’ self-reported diagnoses that had
been confirmed by a physician. The inflammatory marker utilized
in the study was the lymphocyte-to-monocyte ratio (LMR), which
was calculated by dividing the number of lymphocytes in the
peripheral blood by the number of monocytes.

2.6 Statistical analyses

Baseline demographic characteristics were compiled and
summarized for the overall population, and comparisons were
drawn between groups based on the presence of RA or absence of
arthritis (RA vs. non-arthritis). Continuous variables are presented
as weighted means accompanied by standard deviations (SDs)
or, alternatively, medians paired with interquartile ranges (IQRs).
To assess differences between groups, independent t-tests and
Wilcoxon rank-sum tests were employed as appropriate for
the data distribution. Categorical variables were quantified as
counts (percentages), and chi-square tests were used to determine
the significance of differences observed between groups. All 16
mVOCs were subjected to natural logarithm (ln) transformation to
approximate a normal distribution. Following this transformation,
the data were standardized and divided into four quartiles (Q1, Q2,
Q3, and Q4) to facilitate subsequent analyses.

In single-pollutant models, weighted multivariate binary
logistic analyses were conducted to examine relationships between
individual mVOCs and the risk of RA, and odds ratios (ORs)
and 95% confidence intervals (CIs) are reported. Restricted
cubic spline (RCS) analyses (with 3 automatically selected knots)
were also conducted to investigate non-linear relationships.
Pearson correlation tests were used to examine interrelationships
between mVOCs by assessing the strength and direction of their
mutual associations.

Given the significant correlations and multicollinearity
observed among the 16 mVOCs, which can produce unstable
estimates and reduce the interpretability of traditional regression
models, we employed the least absolute shrinkage and selection
operator (LASSO) regression (17). This machine learning method
is particularly advantageous for our analysis as it performs both
variable selection and regularization simultaneously. By applying a
penalty function, LASSO shrinks the coefficients of less influential
predictors toward zero, allowing us to identify a more robust and
parsimonious subset of mVOCs and covariates for the subsequent
mixture effect analyses with WQS and qgcomp.

To assess the joint effect of the chemical mixture on RA
prevalence, the variables selected by LASSO were incorporated
into a weighted quantile sum (WQS) regression analysis. We
chose this approach to model a more realistic environmental
exposure scenario, as humans are typically exposed to multiple
chemicals simultaneously rather than in isolation. The WQS
model collapses the high-dimensional set of correlated mVOCs
into a single, empirically weighted index. A key advantage of
this method is that it not only estimates the overall effect of
the mixture but also identifies the individual components that
contribute most significantly to this association by examining their
respective weights.
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To address constraints associated with the WQS regression
approach, particularly regarding the directionality of associations,
we applied the quantile g-computation (qgcomp) model. The
adopted methodology merges the inferential framework of WQS
regression with the flexible characteristics of g-computation,
effectively sidestepping the constraints imposed by assumptions of
directional homogeneity. Notably, it separates the adjustment for
confounders from the estimation of effects, which can enhance the
clarity of the analysis. Moreover, it allows for a causal inference
perspective on the parameters estimated (18, 19). Causal mediation
analysis was performed to ascertain whether inflammatory indices
act as mediators of the relationship between the mVOC and RA
risk, including the extent of such mediation.

Statistical estimates were calibrated to accommodate the
complex sampling design of NHANES, utilizing the specific sample
weights and stratification information that accompany the survey
data. However, these same adjustments were not incorporated
into the WQS regression or the qgcomp model due to their
incompatibility with complex survey designs. Statistical analyses
were performed with R software, version 4.3.2 (R Foundation for
Statistical Computing, Vienna, Austria), and a two-sided P-value of
less than 0.05 was considered to indicate statistical significance.

3 Results

3.1 Demographic characteristics and
mVOC levels of the study participants

The study analyzed the baseline characteristics of 4,622
participants, including 2,303 females (48.77%) and 2,319 males
(51.23%), with an average age of 44.00 years. In the RA group
(n = 296), the average age was slightly older than that in the
control group, with a considerable percentage of participants
being in the ≥60 years age group. The racial distribution of
the RA group revealed a greater percentage of Non-Hispanic
White individuals. The mean BMI for the RA group was 30.86
kg/m², indicating a greater prevalence of overweight and obesity
within this subgroup. The RA group also showed different
patterns of educational attainment and health insurance coverage
than did the non-arthritic group. Moreover, the poverty income
ratio was lower in the RA individuals, indicating a potential
socioeconomic impact on RA prevalence. Smoking and alcohol
consumption rates differed slightly between the groups, with a
higher percentage of non-smokers and non-excessive drinkers
in the RA group (Table 1). Supplementary Figure S2 shows the
histogram of the mVOC distribution across the NHANES cycles.
Supplementary Table S3 summarizes the percentile distributions
and missing values (percentages) of the 16 studied mVOCs in
these cycles.

3.2 Associations of individual mVOCs with
RA

Table 2 shows the concentrations of 16 different mVOCs
stratified by the presence of RA. Participants diagnosed with RA
exhibited elevated concentrations of the majority of the mVOCs

assessed, except for BMA, BPMA, 2MHA and 34MH. The ln-
transformed values of the mVOCs according to the status of RA
are displayed in Supplementary Table S4. The association between
single mVOCs and the prevalence of RA was assessed through
weighted logistic regression analysis adjusted for covariates and is
presented in Supplementary Table S5. According to the different
models, certain mVOCs were significantly associated with the
prevalence of RA. For instance, when considering the ln-
transformed variable, AAMA showed an increasing trend in ORs
across quartiles, with a significant trend in all three models (model
1: P for trend = 0.037; model 2: P for trend = 0.003; model 3: P for
trend = 0.006). The continuous form of AAMA was also associated
with an increased prevalence of RA (all p <0.05 in the three
models), and a similar trend was found between the prevalence of
RA and other mVOCs, including AMCA, CEMA, CYMA, DHBM,
HPMA, MHB3, PHGA, and HPMM (all P-values for trend <0.05).

Figure 1 illustrates the generalized linear regression analysis
using RCS analyses to explore the dose–response relationship
between urinary mVOCs and the prevalence of RA. The RCS
models revealed specific mVOCs (such as AAMA, AMCA, BMA,
CEMA, CYMA, DHBM, HPMA, MHB3, and HPMM) to be
significantly associated with RA (P overall <0.05). Notably, several
mVOCs, including BMA and DHBM, exhibited a non-linear
relationship with RA (P non-linearly <0.05).

3.3 Correlations among individual mVOCs

Spearman correlation analysis was also conducted to evaluate
relationships between urinary mVOCs. Figure 2 presents a
correlation matrix that highlights several mVOCs with significant
positive or negative correlations. A strong correlation was identified
between mVOCs derived from identical parent compounds: 2MHA
and 34MHA (metabolites of xylene), with a correlation coefficient
(r) of 0.87, and between CEMA and HPMA (metabolites of
acrolein) (r = 0.80). In addition, our analysis revealed notable
correlations between CYMA and MHB3 (r = 0.80), between HMPA
and MHB3 (r = 0.83), between HPMA and HPMM (r = 0.85), and
between MHB3 and HPMM (r = 0.87). These strong correlations
suggest the presence of multicollinearity among these mVOCs.

3.4 Identification of mVOCs and covariates
more relevant to RA

LASSO regression, in which penalty functions are applied to
shrink less relevant mVOC coefficients toward zero, was used
to effectively select those with more substantial associations
with the risk of RA. Supplementary Figure S3 illustrates the
relationship between the partial likelihood deviance (binomial
deviance) and the log-transformed penalty parameter (λ) based
on 10-fold cross-validation in LASSO regression modeling.
Supplementary Figure S4 displays a coefficient profile plot
produced against the log (λ) sequence. In this study, optimal
values for lambda (λ) were determined at the point of minimum
deviance. Alongside λ, the selected mVOCs and covariates for
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TABLE 1 Baseline characteristics of study participants.

Characteristic Overall (n = 4,622) Non-arthritis (n = 4,326) RA (n = 296) P-value

Sex

Female 2,303 (48.77%) 2,145 (48.47%) 158 (54.79%) 0.333

Male 2,319 (51.23%) 2,181 (51.53%) 138 (45.21%)

Age (years) 44.00 (15.80) 43.34 (15.62) 57.34 (13.35) <0.001

Age group

20–60 years 3,487 (81.90%) 3,365 (83.38%) 122 (52.08%) <0.001

≥60 years 1,135 (18.10%) 961 (16.62%) 174 (47.92%)

Race/ethnicity

Mexican American 728 (8.52%) 688 (8.57%) 40 (7.63%) 0.044

Other Hispanic 403 (6.46%) 381 (6.53%) 22 (5.12%)

Non-Hispanic White 1,800 (66.01%) 1,680 (65.99%) 120 (66.40%)

Non-Hispanic Black 1,072 (11.18%) 977 (10.94%) 95 (16.11%)

Other/multiracial 619 (7.83%) 600 (7.98%) 19 (4.73%)

BMI (kg/m2) 28.74 (6.45) 28.63 (6.39) 30.86 (7.24) 0.001

BMI group

Underweight 64 (1.05%) 61 (1.07%) 3 (0.65%) 0.013

Normal 1,319 (29.72%) 1,269 (30.35%) 50 (16.99%)

Overweight 1,552 (33.69%) 1,448 (33.51%) 104 (37.42%)

Obese 1,687 (35.54%) 1,548 (35.07%) 139 (44.95%)

Waist circumference (cm) 98.70 (15.98) 98.36 (15.90) 105.47 (16.17) <0.001

Educational attainment

Less than 9th grade 354 (3.69%) 317 (3.54%) 37 (6.65%) 0.010

9–11th grade 526 (7.78%) 486 (7.72%) 40 (8.99%)

High school graduate 1,002 (21.36%) 932 (21.33%) 70 (21.95%)

Some college 1,413 (30.56%) 1,305 (30.03%) 108 (41.24%)

College graduate or above 1,327 (36.61%) 1,286 (37.37%) 41 (21.17%)

Health insurance

Insured 3,611 (81.48%) 3,345 (81.05%) 266 (90.16%) <0.001

Uninsured 1,011 (18.52%) 981 (18.95%) 30 (9.84%)

PIR 3.10 (1.64) 3.12 (1.64) 2.63 (1.66) 0.012

PIR group

0–1.29 1,281 (19.48%) 1,166 (18.91%) 115 (31.04%) 0.026

1.3–3.49 1,740 (34.69%) 1,643 (34.82%) 97 (32.14%)

≥3.5 1,601 (45.82%) 1,517 (46.27%) 84 (36.82%)

Smoking status

Non-smoker 2,765 (61%) 2,626 (61.50%) 139 (50.98%) 0.053

Smoker 1,857 (39%) 1,700 (38.50%) 157 (49.02%)

Alcohol consumption

Excessive 752 (21.46%) 711 (21.51%) 41 (20.52%) 0.743

Non-excessive 3,870 (78.54%) 3,615 (78.49%) 255 (79.48%)

Hypertension

Hypertension 1,344 (25.16%) 1,168 (24.04%) 176 (47.77%) <0.001

(Continued)
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TABLE 1 (Continued)

Characteristic Overall (n = 4,622) Non-arthritis (n = 4,326) RA (n = 296) P-value

Non-hypertension 3,278 (74.84%) 3,158 (75.96%) 120 (52.23%)

Diabetes

Diabetes 495 (8.36%) 418 (7.63%) 77 (23.03%) <0.001

Non-diabetes 4,127 (91.64%) 3,908 (92.37%) 219 (76.97%)

Continuous variables are expressed as the mean ± standard deviation (SD), while categorical variables are presented as numbers (%). All estimates were adjusted for sample weights and complex
survey designs, with means and percentages further adjusted for the survey weights of NHANES. RA, rheumatoid arthritis; BMI, body mass index; PIR, poverty income ratio.

TABLE 2 Concentrations of mVOCs according to RA status.

mVOCs (urine,
ng/mL)

Overall (n = 4,622) Non-arthritis (n = 4,326) RA (n = 296) P-value

AAMA 45.93 (24.40, 88.92) 45.60 (24.20, 87.54) 55.64 (31.74, 104.35) 0.003

AMCA 135.00 (66.70, 279.00) 132.00 (66.00, 270.00) 233.05 (99.93, 422.26) <0.001

ATCA 93.91 (42.30, 187.00) 91.65 (42.00, 186.00) 128.00 (55.32, 220.46) 0.014

BMA 5.97 (3.05, 10.70) 5.91 (3.00, 10.70) 6.40 (3.69, 9.89) 0.295

BPMA 3.42 (0.85, 9.27) 3.43 (0.85, 9.33) 2.73 (0.85, 7.93) 0.224

CEMA 85.78 (42.70, 156.00) 83.50 (42.14, 154.00) 126.00 (79.09, 213.00) <0.001

CYMA 1.51 (0.74, 4.19) 1.49 (0.73, 4.04) 1.71 (0.98, 28.80) 0.008

DHBM 280.00 (152.00, 458.28) 276.00 (151.00, 455.00) 360.67 (208.72, 504.11) <0.001

HPMA 214.00 (107.00, 413.00) 211.00 (106.00, 410.00) 256.51 (164.26, 472.36) 0.002

HPM2 28.00 (14.50, 52.59) 27.40 (14.40, 52.10) 31.93 (18.11, 61.73) 0.025

MADA 125.00 (68.40, 216.00) 125.00 (68.10, 215.00) 137.75 (82.47, 238.44) 0.023

2MHA 27.50 (12.80, 66.30) 27.50 (12.80, 66.10) 32.20 (12.51, 71.78) 0.622

34MH 178.00 (76.97, 445.00) 178.00 (75.88, 443.00) 181.34 (90.95, 544.60) 0.365

MHB3 4.41 (2.30, 9.21) 4.32 (2.28, 8.95) 6.15 (3.25, 13.70) 0.001

PHGA 183.00 (95.44, 317.00) 180.00 (93.74, 316.00) 221.00 (137.00, 328.33) <0.001

HPMM 205.06 (109.00, 382.00) 203.00 (107.00, 375.98) 241.05 (169.93, 571.00) <0.001

All values are presented as medians (IQRs). mVOCs, metabolites of volatile organic compounds; RA, rheumatoid arthritis.

each subgroup analysis are comprehensively detailed for different
populations in Supplementary Table S6.

3.5 Association of mVOC mixture with RA

The results of WQS regression modeling exploring the
combined effect of the multiple-mVOC mixture on RA
risk in different subgroups of participants are presented in
Figure 3. WQS regression revealed a positive association
across the entire cohort of participants (OR: 1.37; 95% CI:
1.12, 1.68; P = 0.002), indicating a significantly greater
likelihood of RA with increasing mVOC mixture. Stratified
analysis indicated that the association remained significant
for females (OR: 1.36; 95% CI: 1.08, 1.70; P = 0.007) and
across all age subgroups within the range of 20-60 years
(OR: 1.71; 95% CI: 1.27, 2.30; P <0.001) and ≥60 years
(OR: 1.27; 95% CI: 1.01, 1.61; P = 0.038). Conversely,
the association did not show statistical significance in the
male subgroup.

The detailed weights of these mVOCs are presented in
Supplementary Figure S5. CYMA emerged as one of the most
influential mVOCs for the prevalence of RA, with the highest
weights (0.327, 0.822, and 0.395) occurring in the overall
cohort population, females, and individuals aged >20–60 years,
respectively. This was followed closely by DHBM, CYMA, AMCA,
and HPMA in different subpopulations. All these individual
variables are significantly associated with RA according to the
binary logistic regressions (Supplementary Table S5).

The qgcomp model, which refrains from presupposing a
uniform direction for the impact of individual VOC exposures,
produced estimated exposure weights that included both positive
and negative contributions. The findings are generally consistent
with those obtained from the WQS model, suggesting that
simultaneous exposure to VOCs is significantly associated with an
increased risk of RA across the entire population (OR = 1.23; 95%
CI = 1.07, 1.49; P = 0.034) and among female participants (OR
= 1.26; 95% CI = 1.03, 1.58; P = 0.046). Notably, metabolites
such as AMCA, DHBM, CYMA, and ATCA were identified as
the main contributors to the increase in RA risk in the positive
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FIGURE 1

The dose—response relationship between ln-transformed metabolites of volatile organic compounds (mVOCs) and the risk of rheumatoid arthritis
(RA) detected using restricted cubic spline (RCS) models. (a) AAMA, (b) AMCA, (c) ATCA, (d) BMA, (e) BPMA, (f) CEMA, (g) CYMA, (h) DHBM, (i) HPMA, (j)
HPM2, (k) MADA, (l) 2MHA, (m) 34MH, (n) MHB3, (o) PHGA, and (p) HPMM. All analyses were adjusted for age, sex, race, body mass index (BMI), waist
circumference, education, health insurance, marital status, poverty income ratio (PIR), smoking status, alcohol intake, hypertension, and diabetes
status. The red line illustrates the odds ratio (OR) of RA, while the red shaded region denotes 95% confidence intervals (CIs). mVOCs, metabolites of
volatile organic compounds; RCS, restricted cubic spline; OR, odds ratio; CI, confidence interval; BMI, body mass index; PIR, poverty income ratio.

direction. The detailed positive and negative weights attributed
to each of the mVOCs and the joint effects are illustrated in
Supplementary Figures S6, S7.

3.6 Mediation analysis

To further investigate the mechanisms underlying the
relationship between mVOCs and the prevalence of RA, mediation
analysis was performed with a focus on inflammatory markers.
The LMR was used as a representative marker for inflammation.
As indicated in Table 3, the LMR played a significant role in
mediating the association between mVOCs and RA, with a
mediating proportion of 4.65% (95% CI: 4.44, 4.88) (P < 0.001)
in the overall participants. Stratified analysis showed that the
mediating proportions of LMR were 6.52% (P < 0.001), 0.77%
(P < 0.001), 3.39% (P < 0.001), and 1.82% (P < 0.001) among

females, males, individuals aged 20-60 years, and those aged 60
years and above, respectively.

4 Discussion

Our primary objective was to examine associations of
individual and multiple co-exposure events to 16 specific VOCs
and the prevalence of RA in the U.S. adult population. The key
findings of our investigation revealed a clear association, with
certain mVOCs (such as AAMA, AMCA, CEMA, CYMA, DHBM,
HPMA, MHB3, PHGA, and HPMM) being positively linked to an
increased prevalence of RA within the sampled population. Due
to the collinearity among different mVOCs, we employed LASSO
regression, which is effective at simplifying models by penalizing
large coefficients, to identify mVOCs more strongly associated with
RA prevalence. Additionally, WQS regression and the qgcomp
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FIGURE 2

The matrix displays Spearman correlation coefficients (ρ) for the ln-transformed concentrations of 16 mVOCs. Darker shades reflect stronger
correlations, with blue indicating positive relationships and red negative ones. mVOCs, metabolites of volatile organic compounds.

model showed an elevated risk of RA associated with higher levels
of a selected mVOC mixture, with CYMA having the largest
contribution to this risk. Finally, mediation analysis revealed that
the inflammatory index, as indicated by the LMR, accounted for
4.65% of the mediating effect on the association between multiple
VOC co-exposure and RA.

Recent literature has extensively documented the adverse
effects of environmental contaminants such as VOCs on human
health, linking them to oxidative stress and inflammation in
pregnancy, childhood asthma, depression, and cancer (13, 20–23).
VOCs are predominantly metabolized in the liver by cytochrome
P450 into various hydroxylated and ring-opened compounds and
are subsequently excreted in urine (24). Consequently, urinary
metabolites can serve as biomarkers for estimating exposure to

VOCs (25). To date, the link between mVOC co-exposure and
the prevalence of RA has not been thoroughly investigated. A
study based on NHANES data revealed a significant association
between individual mVOCs, including AMCC and 3HPMA, and
the risk of RA (11). However, this study has methodological
limitations, chiefly due to the lack of consideration of the statistical
collinearity among various mVOCs. Given that mVOCs represent a
broad spectrum of substances, often stemming from similar parent
compounds, these limitations might skew understanding of their
interplay with RA. In addition, it is crucial to consider the typical
scenario in which humans are exposed to a mixture of mVOCs
rather than to isolated compounds (26, 27). In general, examination
of single pollutants in isolation provides limited insight, as it fails to
capture potential synergistic or antagonistic interactions that can
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FIGURE 3

Forest plots demonstrating associations between mVOC mixture and the risk of RA according to WQS regression (a) and qgcomp (b) analyses. All
analyses were adjusted by the covariates selected by LASSO regressions previously conducted. mVOCs, metabolites of volatile organic compounds;
RA, rheumatoid arthritis; WQS, weighted quantile sum; qgcomp, quantile g-computation.

TABLE 3 Mediating effects of inflammatory factors on the association between mVOCs and the risk of RA.

Subgroup Total effect (95% CI) Mediation effect
(95% CI)

Direct effect
(95% CI)

Mediated
proportion (%)

P-value

All participates 0.0051 (0.0050, 0.0053) 0.0002 (0.0002, 0.0003) 0.0049 (0.0048, 0.0050) 4.65 (4.44, 4.88) <0.001

Female 0.0072 (0.0065, 0.0080) 0.0005 (0.0004, 0.0005) 0.0068 (0.0060, 0.0075) 6.52 (5.87, 7.11) <0.001

Male 0.0047 (0.0045, 0.0049) 0.0000 (0.0000, 0.0001) 0.0046 (0.0045, 0.0048) 0.77 (0.28, 1.22) <0.001

20–60 years 0.0039 (0.0037, 0.0041) 0.0284 (0.0230, 0.0340) 0.0037 (0.0036, 0.0039) 3.39 (2.76, 4.02) <0.001

≥60 years 0.0095 (0.0086, 0.0105) 0.0166 (0.0073, 0.0250) 0.0093 (0.0085, 0.0103) 1.82 (0.79, 2.78) <0.001

Inflammatory factor levels are represented by the lymphocyte-to-monocyte ratio (LMR). The mediation analyses were adjusted by a comprehensive set of covariates selected by LASSO
regression. ACME, average causal mediation effect; ADE, average direct effect.

occur in the pathogenesis of disorders. To address this complexity,
our study offers a more realistic and comprehensive assessment of
the association between multiple periods of mVOC co-exposure
and the risk of RA.

Our results revealed that most individual mVOCs are
significantly associated with RA, which is generally consistent
with the findings of previous studies (11). More importantly, our
findings from multiple-pollutant models also revealed positive
correlations between the prevalence of RA and mVOC mixture,
with the highest contributors being CYMA, DHBM, AMCA, and
ATCA. Stratified analyses further showed that mVOC mixture
correlates significantly with RA prevalence within particular
subpopulations, specifically females and individuals aged >20–60
years, which are the demographic groups known to have the highest
prevalence rates of RA. Furthermore, despite the lack of direct

experimental evidence for causality, our mediation analysis for the
first time suggests that inflammatory factors may serve as mediators
of the relationship between mVOCs and RA. Recognition of
inflammatory markers as mediators emphasizes the importance
of the inflammatory response in the pathophysiology of RA. This
observation is consistent with the prevailing view of RA as an
inflammation-driven disease and paves the way for additional
investigations into precise preventive approaches. Research into the
direct relationships between mVOCs and the risk of RA is relatively
scarce. In the field of other musculoskeletal disorders, Zhou et al.
reported notable correlations between urinary concentrations of
DHBM, AMCA, and ATCA and between bone mineral density
and osteoarthritis, suggesting that mVOCs might play a role in
altering the bone microenvironment, which may subsequently lead
to arthritic inflammation (10, 28, 29).
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As mentioned above, inflammation plays a central role in
the pathogenesis of RA, and environmental factors, including
VOCs, potentially exacerbate these inflammatory pathways and
contribute to the disease’s onset or progression. Acrylonitrile,
which is the precursor to CYMA, is an important monomer in
the organic synthesis industry and is widely used in production
of synthetic fibers, resins, and plastics (30). Acrylonitrile can
be detected in cigarette smoke, followed by drinking water,
food, and air, and can be absorbed through ingestion, inhalation
of vapors, or dermal contact (31). Research has shown that
acrylonitrile can induce an inflammatory response across various
cell types, including neuronal cells, testicular cells, oocytes, and
gastric mucosal cells (30, 32, 33). This response is characterized
by the production of reactive oxygen species (ROS) and the
subsequent activation of nuclear factor κB (NF-κB), which are
key elements in the cytotoxic effects of the compound observed
in vitro and eventually lead to synovitis and bone and cartilage
degradation (34). DHBM, a metabolite of 1,3-butadiene, has been
identified as a significant secondary compound associated with
RA. Among the environmental sources of 1,3-butadiene, cigarette
smoke stands out as a primary contributor, with other sources
including emissions from industrial processes, automobile exhaust,
and burning of materials such as wood, plastics, and rubber
(35). Numerous studies have investigated the deleterious effects
of 1,3-butadiene exposure on diseases involving inflammatory
components and the respiratory and cardiovascular systems (36,
37). N,N-dimethylformamide is a parent compound of AMCA,
and in addition to generating inflammation similar to the
aforementioned effects of acrylonitrile, it can induce neutrophil
infiltration and activate the NLRP3 inflammasome in the livers
of mice, potentially leading to cellular damage (38). Increased
urinary AMCA levels may cause development of inflammatory
and fibrotic lesions in the liver through an imbalance in lipid
metabolism and the inflammatory response (39). Another study
showed that an increased urinary concentration of AMCA impairs
lung function through an increased level of C-reactive protein,
a commonly used marker of inflammation (40). Cyanide (the
precursor of ATCA) is known primarily for its neurotoxic effects
(38). Beyond neurotoxicity, cyanide exposure exerts cytotoxicity in
non-neuronal cells, as evidenced by an array of damaging cellular
events and inflammatory responses (38, 41). These experimental
findings suggest a connection between mVOCs and inflammation.

Our study has several strengths. First, it draws upon data
that are both nationally representative and encompass a sizable
cohort, lending strong credibility to our conclusions. Furthermore,
we bolstered the robustness of our analysis by examining the
impact of individual VOCs and taking a holistic view of the links
between co-exposure to VOCs and RA in overall populations
and subpopulations based on sex and age. We utilized a suite of
statistical techniques, such as WQS regression, the qgcomp model
and mediation analysis, in our assessment, paving the way for
a more nuanced grasp of how VOC exposure might influence
RA prevalence.

While our study provides valuable insights into the
environmental determinants of RA, it is not without limitations.
First, self-reported RA diagnosis might introduce reporting
bias, though NHANES is known for its rigorous data collection

standards. Second, the cross-sectional nature of NHANES data
precluded us from establishing a causal relationship between
VOC exposure and RA prevalence. This one-time assessment
may not accurately reflect chronic exposure, and the possibility of
reverse causality, particularly in our mediation analysis, cannot
be ruled out. Furthermore, our findings are derived from a U.S.
population, and thus may not be generalizable to other populations
with different genetic backgrounds, lifestyles, or environmental
exposure profiles. Therefore, both longitudinal studies and
research in more diverse cohorts are warranted to confirm
these associations. Third, although our model incorporated key
predictors, we cannot dismiss the possibility that unaccounted
factors, such as other environmental air pollutants and covariates,
including genetic and occupational factors, might skew the results
(42, 43). Fourth, from an initial cohort of 55,810 participants in the
selected NHANES cycles, 51,188 were excluded primarily due to
missing data on urinary mVOCs and other key covariates, resulting
in a final analytical sample of 4,622 participants. This substantial
exclusion may have introduced selection bias, potentially limiting
the generalizability of our findings to the broader population.
Finally, the models (LASSO, WQS and qgcomp) used in this study
are not currently adapted for complex survey designs, meaning the
necessary NHANES sample weights could not be applied, which
may compromise the generalizability of our findings to the broader
U.S. population.

5 Conclusion

In summary, data from national, cross-sectional studies
corroborate the hypothesis that both individual and combined
exposures to VOCs are linked to a heightened risk of developing
RA. Furthermore, these findings emphasize the significance of
inflammatory pathways as potential intermediaries facilitating this
connection. Notably, these associations are more pronounced
among females and individuals within the young to middle-
aged demographic group. Considering the limitations inherent in
the present study, prospective cohort studies and experimental
research are necessary to verify these associations and clarify the
underlying biological mechanisms involved.
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