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Introduction: Amid escalating global efforts to address climate change and 
persistent threats to public health, evaluating the health benefits of environmental 
policies is of growing significance.
Method: This study leverages the “Green Freight Distribution Demonstration 
Project” launched in 2018 as a quasi-natural experiment. Utilizing multi-city 
panel data from China spanning 2011 to 2024, it employs both a Difference-
in-Differences (DID) model and a Double Machine Learning (DML) model to 
rigorously assess the causal impact of policies promoting new energy logistics 
vehicles on the mortality rate from respiratory diseases among residents.
Conclusion: The findings reveal that the policy significantly reduces respiratory 
disease mortality rate in pilot cities, a conclusion that remains robust across 
multiple sensitivity analyses. In terms of mechanisms, the policy directly 
increases the market penetration of new energy logistics vehicles while 
reducing the share of the secondary industry (SI). Indirectly, it facilitates the 
low-carbon transition of urban industrial structures, significantly lowering sulfur 
dioxide (SO2) concentrations and improving overall air quality, thus contributing 
to better public health outcomes. Furthermore, the health benefits demonstrate 
notable heterogeneity: the mortality reduction effect is more pronounced in 
cities characterized by lower economic development, higher initial pollution 
levels, and limited medical resources. This study not only provides empirical 
evidence for quantifying the health dividends of environmental policies but also 
offers scientific guidance for optimizing green transportation initiatives and 
achieving integrated governance of environmental and public health goals.
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1 Introduction

The health of the planet has deteriorated to a critical state, with humanity confronting a 
triple crisis: climate change, biodiversity loss, and pollution from hazardous substances such 
as plastics and per- and polyfluoroalkyl substances (PFAS). The transportation sector is a 
major contributor to global energy consumption and greenhouse gas emissions. Its exhaust 
pollutants—including fine particulate matter (PM₂.₅), nitrogen oxides (NOₓ), and sulfur 
dioxide (SO₂)—have become leading factors degrading urban air quality and endangering 
public health (1). Among transportation modes, diesel-powered logistics trucks are particularly 
problematic due to their intensive use, high mileage, and significant emission levels, making 
them a substantial source of urban pollution.

In this context, the green and low-carbon transformation of the transportation sector has 
emerged as a global imperative. In pursuit of the “dual-carbon” targets and the vision of a 
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“Beautiful China,” the Chinese government has actively promoted the 
deployment of new energy vehicles. Specifically targeting the heavily 
polluting logistics sector, the Ministry of Transport, Ministry of Public 
Security, and Ministry of Commerce jointly initiated the first batch of 
the “Green Freight Distribution Demonstration Project” (hereinafter 
referred to as the “Policy”) in 2018 (42). The Policy aims to accelerate 
the adoption of new energy logistics vehicles in pilot cities through 
comprehensive measures, including financial incentives, road access 
prioritization, and the development of supporting infrastructure (45). 
While the Policy’s direct objective is to reduce transportation-related 
pollutant emissions, an important unanswered question remains: can 
these interventions yield measurable public health benefits, 
particularly in reducing the mortality rate from respiratory diseases—a 
key health outcome linked to air pollution? (46).

To address this question, this study employs a Difference-in-
Differences (DID) model and a Double Machine Learning (DML) 
model to evaluate the long-term effects of the Policy on residents’ 
respiratory disease mortality rate. Specifically, it seeks to answer three 
core research questions: (1) Has the implementation of the Policy 
significantly reduced respiratory disease mortality in demonstration 
cities, and what is the magnitude of this effect? (2) Through which 
mechanisms does the Policy achieve its health benefits, and does 
improved air quality play a mediating role? (3) Is there heterogeneity 
in the Policy’s impact? Do its effects vary based on urban 
characteristics such as industrial structure, population density, and the 
initial development level of the new energy vehicle market?

Furthermore, the study explores potential barriers encountered 
during policy implementation and the mechanisms by which these 
constraints influence health-related outcomes. The findings aim to 
offer scientific evidence for the optimization of new energy logistics 
vehicle policies and contribute theoretical insights toward the 
low-carbon transformation of freight transportation and the 
advancement of public health (2–4).

2 Literature review and theoretical 
mechanism analysis

2.1 Literature review

Current research on energy transition predominantly emphasizes 
its economic implications. Some scholars contend that energy 
transition may suppress economic growth (5, 6), whereas others argue 
that it can stimulate economic development (7). Doytch et al. highlight 
that the effects of energy transition differ between developed and 
developing countries (8). Additional studies suggest that energy 
transition can drive technological advancement in the renewable 
energy sector, enhance green total factor productivity, and promote 
long-term economic growth through innovation (9–11). However, 
due to inherent endogeneity in the energy transition process and the 
impracticality of conducting randomized controlled trials, there is a 
notable paucity of causal research on the relationship between energy 
transition and public health (12, 13).

Traditional fuel-powered logistics vehicles are among the largest 
contributors to greenhouse gas emissions. Wu’s research projects that 
China’s light-duty vehicle ownership will reach 270–330 million units 
by 2030, and transportation accounted for approximately 10% of 
China’s total greenhouse gas emissions in 2021. The adoption of new 

energy logistics vehicles (NELVs) has been shown to effectively reduce 
emissions of nitrogen dioxide (NO₂) and fine particulate matter 
(PM₂.₅) (14). Liu’s findings suggest that the proliferation of electric 
vehicles in China has significantly decreased both energy consumption 
and greenhouse gas emissions (15). Zhou’s life-cycle assessment 
concludes that battery electric vehicles (BEVs) consume 33% less fossil 
energy and emit 19% less CO₂ than internal combustion engine 
vehicles (ICEVs) (16). Nevertheless, policy implementation still faces 
several challenges, including insufficient charging infrastructure, high 
upfront vehicle costs, and excessive dependence on fiscal subsidies. 
Despite these limitations, existing studies largely affirm that NELV 
promotion contributes positively to air quality improvements (17–19).

Traffic-related air pollution is a major global public health 
concern. Debelu conducted a systematic review highlighting its 
extensive links to diseases such as cardiovascular and respiratory 
illnesses (20, 21). Chronic lower respiratory diseases, in particular, are 
among the leading causes of morbidity and mortality worldwide (22). 
Yang’s study demonstrates a positive correlation between SO₂ and 
PM₂.₅ levels and respiratory disease mortality across regions in China 
(23). In Singapore, Quah (24) applied dose–response modeling to 
estimate the economic burden of particulate matter pollution, finding 
that health-related costs were equivalent to 4.31% of the nation’s GDP.

Accumulated evidence has firmly established air pollution as a 
critical environmental risk factor in the onset and exacerbation of 
respiratory conditions. Numerous studies have elucidated the health 
impacts and mechanisms of action of specific pollutants. For example, 
long-term exposure to PM₂.₅ significantly increases the prevalence of 
cardiovascular and respiratory diseases, particularly in low- and 
middle-income countries (25). Short-term exposure to carbon 
monoxide has been directly linked to increased hospital admissions 
for respiratory ailments (26). Urban air pollution has also been 
confirmed as a major contributor to the prevalence of chronic 
respiratory illnesses among adults (27). Mendelian randomization 
studies further provide robust causal evidence linking air pollutants 
to impaired lung function and chronic respiratory disease 
development (28). Children, due to their vulnerable physiology, are 
particularly susceptible to air pollution, which compromises their 
respiratory barrier and immune responses and significantly heightens 
their risk of respiratory infections (29). Data from large-scale Chinese 
cohorts, such as the China Health and Retirement Longitudinal Study 
(CHARLS), corroborate the extensive detrimental effects of air 
pollution on respiratory health (30). Collectively, these studies indicate 
that air pollutants damage the respiratory system via inflammatory 
responses, oxidative stress, and immune suppression, underscoring 
the urgent need for targeted public health interventions.

Empirical research by Erika Garcia and Jill Johnston on 
California’s early zero-emission vehicle (ZEV) transition reveals that 
for every additional 20 ZEVs per 1,000 residents in a ZIP code, the 
asthma-related emergency department visit rate decreased by 3.2%, 
along with a reduction in NO₂ concentrations (50). This supports the 
causal chain of “vehicle electrification → improved air quality → 
public health benefits.” A study published in Nature Sustainability on 
heavy-duty truck electrification in the United  States confirms the 
potential for reducing premature deaths from air pollution, while 
cautioning that unequal implementation may exacerbate health 
disparities between vulnerable and non-vulnerable communities (51). 
Guo et  al. (31) used integrated methods combining air quality 
modeling, epidemiology, and economics to estimate the health and 
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economic burdens of transport-related air pollution in China, finding 
that health losses in Beijing from 2004 to 2008 amounted to 
approximately 0.58% of the city’s GDP.

However, most existing studies concentrate on passenger vehicles 
or aggregate all new energy vehicles, neglecting the specific 
contribution of new energy logistics vehicles. Empirical evidence 
directly linking NELV policies to health outcomes particularly 
respiratory disease mortality remains limited. Where such 
relationships are explored, researchers often rely on simple regression 
or correlation analyses. Existing studies predominantly employ the 
traditional Difference-in-Differences (DID) model to evaluate policy 
effects. This paper adopts both DID and Double/Debiased Machine 
Learning (DML) methodologies, primarily because respiratory disease 
mortality is influenced by high-dimensional time-varying confounders 
(e.g., urban logistics demand intensity, residents’ travel habits), while 
the policy transmission pathways exhibit nonlinear associations. 
Additionally, the sample size is limited (14 treatment groups + 17 
control groups, totaling 434 observations), and city-level heterogeneity 
is significant. Traditional DID struggles to address these challenges, 
whereas the DML approach—leveraging machine learning algorithms 
like Lasso and Random Forest—can automatically select high-
dimensional control variables, capture nonlinear relationships, and 
deliver more robust unbiased estimates under small-sample conditions.

2.2 Theoretical mechanisms and research 
hypotheses

2.2.1 Impact of the NELV policy on respiratory 
disease mortality

The impact of new energy logistics vehicle (NELV) promotion 
policies on residents’ respiratory disease mortality is a complex and 
multi-dimensional process. It unfolds through several interconnected 
stages, including policy implementation, environmental improvement, 
and the eventual realization of health benefits. Governmental 
interventions such as financial subsidies, tax incentives, and road 
access privileges lower the purchase and operating costs of NELVs. 
These policy tools enhance the market competitiveness of NELVs and 
incentivize adoption by logistics enterprises and individual drivers, 
thereby accelerating their penetration within the logistics sector.

NELVs, particularly battery electric vehicles, produce no tailpipe 
emissions during operation. As their market share increases, the 
reliance on traditional fuel-powered logistics vehicles correspondingly 
declines (49), resulting in a substantial reduction in urban emissions 
of hazardous air pollutants such as PM₂.₅ and nitrogen oxides (NOₓ) 
(48). These improvements are especially pronounced in logistics hubs 
and high-traffic zones. The consequent decrease in vehicle-related 
emissions leads to measurable improvements in ambient air 
quality (28).

Improved air quality reduces residents’ exposure to harmful 
pollutants, which in turn lowers the incidence, hospitalization rates, 
and mortality associated with respiratory illnesses (43). Based on this 
theoretical transmission mechanism, this study proposes the following 
core research hypothesis:

H1: The promotion of new energy logistics vehicles significantly 
reduces the mortality rate from respiratory diseases 
among residents.

2.2.2 Mechanisms underlying the impact of the 
NELV policies on respiratory disease mortality

The promotion of new energy logistics vehicles (NELVs) 
influences public health outcomes through multiple interrelated 
mechanisms. First, policy incentives—including purchase subsidies, 
tax reductions, and road access priorities—substantially lower the 
acquisition and operational costs of NELVs. These measures accelerate 
the substitution of high-emission logistics trucks, particularly diesel-
powered vehicles, with cleaner alternatives. This replacement process 
significantly increases the market penetration of NELVs and reduces 
emissions of key pollutants such as sulfur dioxide (SO₂), nitrogen 
oxides (NOₓ), and fine particulate matter (PM₂.₅) from road 
transportation at the source (32).

Second, the implementation of NELV policies induces a broader 
“vehicle replacement effect” that indirectly promotes the low-carbon 
transformation of urban industrial structures. This shift may manifest 
in a reduced share of the secondary industry (SI) in pilot cities, 
suggesting that the policy may influence not only transportation 
emissions but also broader patterns of urban industrial activity. 
Together, these two mechanisms constitute a synergistic effect, jointly 
contributing to the reduction of urban pollution loads.

Third, the cumulative impact of these pathways significantly 
enhances urban air quality. Empirical evidence indicates that NELV 
policies are particularly effective in reducing SO₂ concentrations, 
which directly alleviates respiratory system damage and leads to 
measurable reductions in respiratory disease mortality. This supports 
the existence of a comprehensive “policy–environment–health” 
transmission chain (33–36).

Based on these mechanisms, the following hypotheses 
are proposed:

H2: NELV policies reduce residents’ respiratory disease mortality 
by increasing the penetration rate of new energy vehicles.

H3: NELV policies reduce residents’ respiratory disease mortality 
by promoting industrial structure optimization.

H4: NELV policies reduce residents’ respiratory disease mortality 
by improving air quality.

In addition to these mechanisms, the policy’s effectiveness is likely 
to exhibit heterogeneity depending on specific urban characteristics. 
Cities with a high degree of industrialization often host numerous 
industrial enterprises and experience intense logistics demand, with a 
high baseline stock of fuel-powered logistics vehicles and substantial 
traffic-related emissions (44). In regions with high population density, 
the health impacts of transportation emissions tend to be  more 
concentrated and severe, as residents face greater exposure to air 
pollutants (47). Similarly, cities characterized by lower economic 
development, more severe baseline pollution, and limited medical 
infrastructure may be  more vulnerable to air pollution and more 
responsive to policy interventions.

H5: The inhibitory effect of NELV policies on respiratory disease 
mortality is heterogeneous and more pronounced in cities with 
higher industrialization, greater population density, lower 
economic development levels, more severe initial pollution, and 
relatively limited medical resources.
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3 Research design

3.1 Data

The sample period of this study spans from 2011 to 2024, 
encompassing 14 years and covering both the pre-policy period 
(2011–2017) and the post-policy period (2018–2024). Cities in the 
sample were divided into treatment and control groups. Treatment 
group cities were identified based on the Notice on Determining the 
Pilot Cities for the Green Freight Distribution Demonstration Project 
issued jointly by the Ministry of Transport and three other ministries 
in 2018, with the policy intervention uniformly defined as 
commencing in 2018.

Following the exclusion of cities that either failed to pass the 
first-round policy approval or exhibited substantial data gaps, 14 
cities were retained as the final treatment group. To enhance the 
comparability between the treatment and control groups and 
mitigate selection bias, we  employed the Propensity Score 
Matching (PSM) method. Control group cities were selected from 
among non-demonstration cities by matching on key covariates 
measured in 2017, the year prior to policy implementation. These 
covariates include the level of urban economic development, 
industrial structure, population size, and baseline air 
pollution levels.

Through this matching process, 17 control cities with highly 
similar characteristics to the treatment group were identified. This 
approach helps to satisfy the parallel trend assumption underlying the 
Difference-in-Differences (DID) model and enhances the credibility 
of causal inference.

3.2 Variables

	 1	 Dependent variable: respiratory disease mortality rate (resp_
death), measured as the annual respiratory disease mortality 

rate among permanent urban residents (unit: per 100,000 
people). Data are mainly sourced from annual health statistical 
reports and local statistical yearbooks released by municipal 
Health Commissions and Statistics Bureaus, and cross-
validated with data from the Death Surveillance System of the 
Chinese Center for Disease Control and Prevention (CDC) and 
the “Juhui Database.”

	 2	 Core independent variable: policy dummy variable (Treat × 
Post), which is the interaction term between the treatment 
group indicator and the post-policy implementation 
time indicator.

	 3	 Mediating variables: new energy vehicle penetration rate, 
industrial structure, and urban air quality data (including Air 
Quality Index (AQI), PM2.5, SO2 etc.), sourced from the China 
Air Quality Online Monitoring and Analysis Platform and the 
official websites of local ecological environment departments.

Control variables: Urban-level control variables include economic 
development level (logarithm of real GDP per capita), medical 
development level (number of medical institution beds per 1,000 
people), vehicle ownership, and population density. These data are 
obtained from the China Urban Statistical Yearbook, provincial and 
municipal statistical yearbooks, local statistical bulletins, and various 
commercial databases. Missing data are supplemented by linear 
interpolation where necessary (Table 1).

3.3 Descriptive statistical analysis

This study conducts logarithmic transformation on variables, and 
the results of the statistical analysis are presented below. As shown in 
Table 2, the mean value of resp_death is 1.74, with a standard deviation 
of 0.23, and the range is from 0.82 to 1.99, indicating moderate 
variation, which is consistent with the characteristics of health 
indicators. The mean value of the treat_post variable is 0.23, suggesting 

TABLE 1  Definition of variables.

Variable type Variable name Variable symbol Variable definition

Dependent variable Respiratory disease mortality resp_death Respiratory disease mortality in city i in year t

Core explanatory 

variables

Policy dummy variable interaction term Policy Treati × Postt, reflecting the net policy effect

City Grouping Dummy Variable Treat Equals 1 if city i is one of the 22 demonstration cities; 0 otherwise 

(control group cities)

Policy implementation time dummy 

variable

Postt Equals 1 if year t is 2018 or later; 0 otherwise (2011–2017)

Mediating variables Annual average pm2.5 concentration PM2.5 PM2.5 concentration in city i in year t

New energy vehicle penetration rate NEV_Pr Proportion of new energy vehicle ownership in total vehicle ownership 

in city i in year t (%)

Industrial structure Industry Proportion of secondary industry added value in GDP of city i in year t 

(%)

Control variables Real gdp per capita lngdp Natural logarithm of real GDP per capita

Number of Beds per 1,000 People Beds Indicator of medical resource coverage

Population density Pop_Density Permanent population / administrative area of city i in year t (people/

km2)

Vehicle ownership Car_Owners Civil vehicle ownership in city i in year t (10,000 units)
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that approximately 23% of the samples are affected by the policy or in 
the post-treatment state.

3.4 Model specification

To precisely identify the causal effect of the new-energy logistics 
vehicle promotion policy on residents’ respiratory disease mortality 
and ensure the robustness of the conclusions, this study adopts an 
integrated empirical strategy combining the Difference-in-
Differences (DID) model with the Double/Debiased Machine 
Learning (DML) model. The two approaches complement each 
other’s strengths: DID establishes the fundamental direction and 
magnitude of the causal effect, while DML further reinforces the 
robustness of this finding. This hybrid strategy enhances the 
credibility of causal inference in this study and provides a more 
rigorous methodological framework for evaluating the health benefits 
of environmental policies.

3.4.1 Difference-in-differences analysis model
In this study, by comparing and analyzing the changes in mortality 

rates between the two groups of cities before and after policy 
implementation, factors such as economic growth that may affect 
mortality rates are excluded to focus on the effect of the policy itself. 
The basic form of the Difference-in-Differences (DID) model can be 
expressed as Equation 1:

	 ( )β β γ µ λ ε= ′+ × + + + +0 1_ i t it i t itresp death Treat Post Controls 	(1)

Where resp_death is the dependent variable, representing the 
respiratory disease mortality rate of city i in year t; Treat×Postit is the 
core independent variable, and its coefficient β1measures the net effect 
of the policy implementation, which is the focus of our attention. 

itControls  denotes a series of urban-level control variables, including 
economic development level, medical resources, population density, 
and vehicle ownership. μi is the city fixed effect, used to control for 
time-invariant inherent characteristics of cities; λt is the year fixed 
effect, used to control for time-trend shocks common to all cities. Εit 
is the random error term. It is expected that β1 will 
be significantly negative.

3.4.2 DML model
Traditional DID models are limited in the selection of control 

variables. On the one hand, omitting important time-varying 
confounding factors may lead to endogeneity issues; on the other 
hand, including excessive irrelevant control variables can reduce 
estimation efficiency. The Double Machine Learning (DML) method 
provides a powerful tool for addressing this “high-dimensional 
confounding” problem (37). Its core idea is to use the flexibility of 
machine learning to “purify” the treatment variable and outcome 
variable by eliminating the predictive information of control variables 
X, and then perform regression on the “residuals” to obtain an 
orthogonal and unbiased estimation of the core parameters. Double 
Machine Learning separates the relationships between the treatment 
variable, outcome variable, and high-dimensional control variables 
through machine learning methods, and estimates the causal effect 
after purification. Its core framework formula is as follows: Let the 
dependent variable be  itY , the core independent variable (policy 
treatment) be  irD , the control variables be  itX  and εit , ν it  be  the 
random error term. Its core framework formula is shown as 
Equations 2, 3:

	 ( )α ε= + +it it it itY D g X 	 (2)

	 ( )= +ir ir irD h X v 	 (3)

Where ( )⋅g  and ( )⋅h  are unknown nonlinear functions, which 
characterize the impact of control variables on the outcome variable 
and the treatment variable, respectively.

3.4.3 Mediation effect model
The research by Baron, R. M. laid the theoretical foundation for 

mediating effect analysis and proposed a four-step method for testing 
mediating effects, which provides a classical methodological basis for 
the construction of Equations 4, 5 (38). Hayes, A. F. systematically 
introduced the regression-based mediating effect analysis method, 
and used the Bootstrap method to replace the traditional Sobel test to 
improve estimation accuracy (39). In this study, the analysis of the 
mediating effect strictly adheres to the Baron and Kenny procedure. 
This approach is adopted to improve the accuracy of estimating the 

TABLE 2  Results of descriptive statistics.

Variables N mean sd min max

resp_death 434 1.736687 0.2347061 0.8195439 1.993436

treat_post 434 0.2258065 0.4185948 0 1

pm25 434 1.634157 0.1638736 1.230449 2.060698

NEV_Pr 434 0.0283253 0.0423647 0.0001 0.265

Industry 434 1.631639 0.0802495 1.402433 1.835691

gdp 434 4.882848 0.2122939 4.263281 5.45536

Beds 434 0.7195224 0.1685972 0.1139434 1.084934

Pop_Density 434 2.753711 0.4466239 1.361917 3.514735

Car_Owners 434 2.154719 0.291877 1.404834 2.820858
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mediating effect and guarantee the reliability of the analysis results, 
thus meeting the requirements of an academic context.

To test the three mediating mechanisms proposed in H2-H4, 
we refer to the study by Jiang (40) and construct the following model:

	 ε∗= × + +’ 1_ i tresp death c Treat Post Controls 	 (4)

	 ε∗= × + +’i 2Treatit tM a Post Controls 	 (5)

Where Mit represents mediating variables, which, respectively, 
refer to new energy vehicle penetration rate, industrial structure, and 
air quality (40).

4 Empirical analysis and results

4.1 Benchmark regression analysis

The basic regression results of the DID method are shown in 
Table 3. The results in the table indicate that there are significant 
differences in the impacts of the policy treatment effect and other 
control variables across different models. Column (1) presents the 
basic regression results without considering control variables, year 
fixed effects, or city fixed effects. The coefficient of treat_post is 
−0.153, which is significant at the 1% level, suggesting that the 
policy has a significant negative impact on the dependent variable. 
This indicates that the implementation of the NELV policies has 
significantly reduced respiratory disease mortality. Specifically, after 
the policy implementation, the respiratory disease mortality rate 
decreased by an average of approximately 15.3%. A possible reason 

is that traditional fuel-powered logistics vehicles are a major source 
of urban air pollution (such as PM2.5 and NOx), and the promotion 
of the NELV directly reduces exhaust emissions, thereby lowering 
the concentrations of harmful pollutants such as smog and ozone. 
In Column (2), after adding control variables, the coefficient of 
treat_post is −0.185, which is also significant at the 1% level, 
similarly indicating a significant negative impact of the policy on the 
dependent variable. In addition, GDP and vehicle ownership Car_
Ownership have a significant positive impact on the dependent 
variable, while population density (Pop_Density) shows a negative 
impact. Column (3) further controls for year and city fixed effects. 
The absolute value of the treat_post coefficient decreases but remains 
significant. Column (4) shows the results of the fixed effects model, 
whose coefficient is basically equivalent to that in Column (3) but 
smaller than those in Columns (1) and (2), indicating that the policy 
effect weakens but still exists after considering fixed effects. It is 
worth noting that the R-squared of Model 3 is as high as 0.929, 
suggesting that the model can better explain the variation in the 
dependent variable after incorporating year and city effects. Overall, 
the policy effect is significantly negative, and the introduction of 
control variables and fixed effects has an important impact on 
the results.

4.2 Double machine learning analysis

This study further constructs a DML model, with results 
presented in Table 4. Column (1) first establishes a partially linear 
DML model, using Lasso regression for control variable selection 
and conducting 5-fold cross-validation. It can be observed that the 
coefficient estimate of the NELV policy is −0.2167, which is 
significantly negative at the 1% level. This indicates that the NELV 
policy has significantly reduced the mortality rate of urban 
respiratory diseases. To leverage the advantages of machine learning 
in handling high-dimensional control variables and applying 
regularization techniques for model selection, Column (2) 
introduces quadratic terms of control variables on the basis of 
Column (1) to improve model fitting ability. It is found that the 
coefficient estimate of the NELV promotion policy is −0.2531, 
remaining significantly negative at the 1% level with a larger absolute 
value. Columns (3)–(4) present results from interactive models built 
using the DML method to enhance estimation unbiasedness in small 
samples, with coefficients of −0.1989 and −0.2379, respectively. It is 
evident that the estimation results of the core independent variable 
do not change significantly and remain significantly negative at the 
1% level. These findings confirm that the NELV promotion policy 
has a significant positive impact on reducing urban respiratory 
disease mortality by improving air quality. All models control for 
time fixed effects and city fixed effects, and the results are robust 
and reliable.

4.3 Mediation effect analysis

The benchmark regression confirms the significant health 
benefits of the policy. To further explore its mechanism of action, 
this section examines the three hypotheses H2–H4. We sequentially 
take air quality (PM2.5), new energy vehicle penetration rate 

TABLE 3  Benchmark regression results of the DID model.

Variables (1) (2) (3) (4)

Model 1 Model 2 Model 3 Model 4

treat_post −0.153*** −0.185*** −0.0560*** −0.0560**

(0.0353) (0.0333) (0.0128) (0.0254)

gdp 0.296*** 0.0284 0.0284

(0.0598) (0.123) (0.182)

Beds −0.0918 0.0592 0.0592

(0.0579) (0.0371) (0.0493)

Pop_Density −0.0719*** 0.0523 0.0523

(0.0214) (0.0332) (0.0823)

Car_Ownership 0.166*** 0.286 0.286

(0.0440) (0.214) (0.452)

Constant 1.771*** 0.240 0.804 0.924

(0.00995) (0.320) (0.596) (0.919)

Observations 434 434 434 434

R-squared 0.074 0.209 0.929 0.181

Year FE No No Yes Yes

City FE No No Yes Yes

Controls No Yes Yes Yes

Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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(NEV_Penetration), and industrial structure (Industry_Str) as 
mediating variables to conduct stepwise regression tests, with 
results presented in Table 5 (41). Column (1) shows the estimation 
result of the total policy effect; Column (2) presents the regression 
result of the air quality mediating variable on the independent 
variable, indicating that policy implementation can significantly 
improve air quality, thereby protecting residents’ respiratory health; 
Column (3) displays the regression result of the NELV penetration 
rate mediating variable on the independent variable, revealing that 
the optimization of transportation structure and the resulting stock 
changes driven by policy implementation have become important 
drivers of long-term health benefits; Column (4) shows the 
regression result of the industrial structure mediating variable on 
the independent variable, indicating that policy implementation has 
significantly promoted industrial structure optimization and 

facilitated the transformation of cities toward a service-oriented 
clean economic model. Therefore, it can be  concluded that the 
indirect mediation effect is valid: the Green Freight Distribution 
Demonstration Project policy can reduce residents’ respiratory 
disease mortality by reducing pollutant emissions from fuel-
powered logistics vehicles.

4.4 Heterogeneity analysis

To test whether there is group heterogeneity in the impact of the 
NELV policies on respiratory disease mortality, this study divides the 
sample into high and low groups based on the median values of urban 
economic development level (per capita GDP), initial pollution 
endowment (SO₂ concentration), and medical resource level (number 
of beds per 1,000 people), and conducts subgroup regression tests. The 
results are presented in Table 6.

	 1	 Heterogeneity in urban economic development level

This study measures urban economic development level by real 
GDP per capita and divides the sample into two groups (high and low 
economic development levels) based on its median. The specific 
results are shown in Columns (1)–(2) of Table 5. It can be observed 
that in the two groups of high and low economic development levels, 
the policy effect coefficient of the low economic level group is −0.117, 
while the effect of the high economic level group is not significant, 
and the coefficient difference between the two groups is significant. 
This indicates that in relatively economically underdeveloped regions, 
the NELV policies have a more significant positive effect on 
improving respiratory disease mortality.

	 2	 Heterogeneity in initial resource endowment

This study measures urban initial resource endowment by SO2 
pollution level and divides the sample into two groups (high and low 
pollution levels) based on its median. The specific results are shown 
in Columns (3)–(4) of Table 5. It can be seen that in the two groups 
of high and low pollution levels, the impact coefficients of initial SO2 
are −0.091 and −4.189, respectively. This suggests that in regions with 
poor environmental foundations and more urgent governance needs 
(high pollution levels), the rapid effectiveness of the NELV policies 
in improving residents’ health is more obvious.

TABLE 4  Benchmark estimation results of the DML.

Method (1) (2) (3) (4)

Partially linear model Interactive model

Eventit resp_death resp_death resp_death resp_death

−0.1489*** −0.1323*** −0.0079*** −0.0124***

(0.0017) (0.0025) (0.0017) (0.0023)

Linear terms of control variables Yes Yes Yes Yes

Quadratic terms of control variables No Yes No Yes

Time fixed effects Yes Yes Yes Yes

City fixed effects Yes Yes Yes Yes

Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 5  Results of mediation effect test.

Variables (1) (2) (3) (4)

Full 
sample

PM2.5 NEV_Pr Industry

treat_post −0.0560*** 0.0397*** −0.00482 −0.000204

(0.0128) (0.0105) (0.00316) (0.00296)

gdp 0.0284 0.105* −0.0536*** 0.125***

(0.123) (0.0625) (0.0202) (0.0273)

Beds 0.0592 0.0747* −0.00411 0.0691***

(0.0371) (0.0385) (0.0122) (0.0135)

Pop_Density 0.0523 0.0595** 0.0191 0.0169**

(0.0332) (0.0284) (0.0150) (0.00820)

Car_Ownership 0.286 0.159 −0.165** 0.115***

(0.214) (0.179) (0.0678) (0.0353)

Constant 0.804 1.033** 0.454*** 0.860***

(0.596) (0.439) (0.165) (0.147)

Observations 434 434 434 434

R-squared 0.929 0.924 0.861 0.971

Year FE Yes Yes Yes Yes

City FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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	 3	 Heterogeneity in medical resource level

This study measures the medical resource level index by the 
number of beds per 1,000 people and divides the sample into two 
groups (high and low medical levels) based on its median. The specific 
estimation results are shown in Columns (5)–(6) of Table 1. It can 
be observed that the regression coefficient of the policy in cities with 
low medical resources is −0.099, indicating that in regions with 
relatively limited medical resources, improving environmental quality 
has a more significant potential impact on reducing respiratory 
disease mortality (4).

4.5 Endogeneity test

Instrumental Variable Method Based on DML. A partially linear 
instrumental variable model of Double Machine Learning is 
constructed to control for endogeneity in the model, with the specific 
model as follows Equations 6, 7:

	 ( )= θ + +it 1 it it itdigeco event g X U
	 (6)

	 ( )= +Instrumentit m Xit Vit	 (7)

Where Instrumentit serves as the instrumental variable for eventit, 
specifically referring to the historical levels of urban pollutant 
concentrations. There may be  an endogeneity issue between the 
implementation of the NELV policies and respiratory disease 
mortality, as unobserved factors such as urban development level and 
medical conditions could simultaneously influence both policy 
implementation and residents’ health status. Historical pollution levels 
are appropriate as an instrumental variable because they are closely 
associated with the intensity of policy implementation (cities with 
severe pollution are more likely to actively promote the NELV). 
Meanwhile, after controlling current pollutant indicators (PM2.5, NO2, 
and SO2), historical pollution levels do not directly affect the current 
respiratory disease mortality through other channels.

The estimation results of the instrumental variable method based 
on DML are shown in Table 6. Columns (3)–(6) present the estimation 

results using Lasso regression, random forest, support vector machine, 
and gradient boosting tree algorithms respectively, with 5-fold cross-
validation and the introduction of quadratic terms of control variables. 
It can be observed that regardless of the estimation method adopted, 
the coefficient estimates of the policy are significantly negative.

4.6 Robustness analysis

4.6.1 Parallel trend test
The validity of the Difference-in-Differences (DID) model 

depends on the parallel trend assumption. Figure 1 presents the results 
of the parallel trend test using the event study approach. Before the 
policy implementation (t < 0), the coefficient estimates for each period 
are statistically insignificant, as their 95% confidence intervals all 
include zero. This indicates that prior to the policy implementation, 
there was no significant difference in the trends of respiratory disease 
mortality between the treatment group and the control group, thus 
confirming the validity of the parallel trend assumption. After the 
policy implementation (t ≥ 0), the coefficients begin to show 
significant negative values, and the effect tends to increase over time. 
This suggests that the policy effect is not achieved overnight but 
exhibits a certain degree of time lag and cumulative effect (Table 7).

4.6.2 Placebo test
To verify the robustness of the estimation results of the Difference-

in-Differences model, this study conducts a placebo test. Figure 2 
shows the distribution of “pseudo-policy effect” coefficients obtained 
from 1,000 random simulations. The simulation results present an 
approximately normal distribution, with the central value close to 0. 
The actual policy effect estimate of this study significantly deviates 
from the center of the random distribution and lies in the extreme tail 
of the distribution. It is proved that the policy effect is not caused by 
random factors, further verifying the reliability of the conclusion.

4.6.3 Excluding the impact of special periods 
during the pandemic

During the outbreak of the COVID-19 pandemic from 2020 to 
2022, the active prevention and control measures implemented by the 

TABLE 6  Heterogeneity analysis.

Variable Urban economic development 
level

Initial pollution endowment Medical resource level

High economic 
level (1)

Low economic 
level (2)

High pollution 
level (3)

Low pollution 
level (4)

High medical 
level (5)

Low medical 
level (6)

treat_post 0.008 −0.117** −0.091** −4.189 −0.015 −0.099*

Standard error (−0.013) (−0.041) (−0.031) (−0.009) (−0.01) (−0.04)

Control variables Yes Yes Yes Yes Yes Yes

City fixed effects Yes Yes Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes Yes Yes

Observations 217 217 226 208 217 217

R-squared 0.809 0.955 0.906 0.970 0.975 0.915

p-value for inter-group 

coefficient difference

0.137 0.563 0.201

Robust standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1. All regressions control for all control variables and two-way fixed effects.

https://doi.org/10.3389/fpubh.2025.1694186
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al.� 10.3389/fpubh.2025.1694186

Frontiers in Public Health 09 frontiersin.org

Chinese government had a systemic impact on social and economic 
activities, urban logistics, and residents’ health. On one hand, 
lockdowns led to a sharp short-term decline in traffic flow and 
industrial activities, thereby affecting air quality; on the other hand, as 
a major respiratory infectious disease, COVID-19 may have directly 
or indirectly interfered with the normal statistics of respiratory disease 
mortality. To eliminate the potential interference of this major external 
event on the estimation results of this study, we adopt a strategy of 
excluding special samples for robustness testing. First, we exclude the 
observation data from 2020 to 2022. Then, we re-run the regression 
of the benchmark DID model using the remaining sample data. The 
regression results are shown in Table 8. After excluding the samples 
during the pandemic period, the coefficient of the core independent 
variable remains significantly negative at the 5% level. This fully 
indicates that the core conclusion of this study is not driven by the 

special confounding factor of the pandemic, thus exhibiting 
strong robustness.

4.6.4 Replacing the dependent variable
Previous mechanism analysis shows that the NELV policies 

improve residents’ health by enhancing air quality. To further verify the 
reliability of this transmission path and test the policy’s environmental 
governance effect from another dimension, we adopt the method of 
replacing the dependent variable for robustness testing. We use the 
annual average of the urban Air Quality Index (AQI)—a comprehensive 
environmental indicator closely related to residents’ health and traffic 
emissions—as the new dependent variable and re-conduct the 
PSM-DID regression. A lower AQI indicates better air quality. If the 
policy indeed functions by improving air quality, we would expect its 
implementation to significantly reduce the AQI in pilot cities.

FIGURE 1

Results of parallel trend test.

TABLE 7  Regression results of instrumental variable method based on DML.

Method First stage Second 
stage

Lasso 
regression

Random 
forest

Support vector 
machine

Gradient 
boosting tree

Dependent Variable Event resp_death resp_death resp_death resp_death resp_death

rdls 0.0218***

(0.0004)

Eventit −0.0684*** 0.0022** 0.0431*** 0.0963*** 0.2411***

(0.0208) (0.0032) (0.0058) (0.0184) (0.0469)

Control Variables Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes

City Yes Yes Yes Yes Yes Yes

Kleibergen-Paap rk LM 0.000***

Cragg-Donald Wald F statistic 246.233 [16.38]

Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

https://doi.org/10.3389/fpubh.2025.1694186
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al.� 10.3389/fpubh.2025.1694186

Frontiers in Public Health 10 frontiersin.org

The regression results are presented in Table 9. The regression 
coefficient of the policy dummy variable interaction term (Policyit) on 
the annual average urban AQI is −5.214, which is significant at the 1% 
level. This indicates that policy implementation has significantly 
reduced air pollution levels in pilot cities and effectively improved 
overall air quality. This finding not only directly confirms the 
environmental benefits of the policy but also provides solid evidence 
for the core logical chain of “policy → air quality improvement → 
health benefits,” thereby enhancing the credibility of the benchmark 
regression conclusions.

4.6.5 Replacing the estimation method: PSM-DID
To minimize the selection bias caused by differences in observable 

variables and ensure higher comparability between the treatment 
group and the control group before policy implementation, we adopt 
the PSM-DID method for robustness testing, making the comparison 
baseline more equitable. The PSM-DID regression results are shown 
in Column (2) of Table 9. The coefficient of the core explanatory 
variable (Policyᵢₜ) is −7.258, which is significant at the 1% level. This 
result is highly consistent with the benchmark model (−7.797) in 
terms of sign, magnitude, and significance. It indicates that after 
optimizing and matching the samples through the PSM method to 
mitigate the selection bias of observable variables, the inhibitory effect 
of the NELV policies on respiratory disease mortality still exists stably, 
further verifying the reliability of the research conclusions in 
this paper.

5 Conclusions and policy 
recommendations

5.1 Research conclusions

This study employs a Difference-in-Differences (DID) model to 
rigorously assess the impact of China’s Green Freight Delivery 

Demonstration Project on residents’ respiratory disease mortality. The 
main findings are as follows:

	 1	 Significant health benefits of the policy: The research covered 
data over a period of 7 years (2018–2024) after the policy was 
implemented. There are signs that the policy effect is increasing 
over time, indicating that the health benefits of the policy are 
not a one-off shock but rather cumulative and continuous. As 
the penetration rate of new energy vehicles increases year by 

FIGURE 2

Placebo test graph of new energy logistics vehicle policy.

TABLE 8  Regression results after excluding samples from the pandemic 
period (2020–2022).

Variables Results

treat_post −0.052**

(−0.017)

gdp 0.134

(−0.11)

Beds 0.041

(−0.07)

Pop_Density 0.071

(−0.078)

Car_Owners~p 0.23

(−0.229)

_cons 0.691

(−0.626)

City Yes

Year Yes

R-squared 0.791

N 341

Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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year, the health dividend is also accumulating and expanding 
year by year. Therefore, the promotion policy of new energy 
logistics vehicles has indeed effectively reduced the mortality 
rate of respiratory diseases among residents in the pilot cities. 
After controlling for multiple confounding factors, this effect 
still exists steadily and has long-term utility.

	 2	 Mediation analysis confirms that improvements in urban air 
quality—particularly the significant reduction in sulfur dioxide 
(SO₂) concentrations—are the primary pathway through which 
the policy generates health benefits. This air quality channel 
accounts for approximately 16.1% of the total policy effect. It 
should be noted that SO2 is a primary and secondary pollutant. In 
contrast, for PM₂.₅, Nox and O3, apart from direct emissions, there 
are various sources such as dust, industrial emissions and 
secondary generation. The new energy vehicle policy merely 
reduces the traffic sources. Therefore, the policy has the most 
obvious effect on reducing SO2, which is almost entirely derived 
from the combustion of transportation fuel. In contrast, the short-
term mediating roles of NELV market penetration and industrial 
structure adjustment are not statistically significant, indicating that 
these macro-level impacts may require a longer period 
to materialize.

	 3	 Significant heterogeneity in policy effects: The health impact of the 
policy is not uniform across cities. It is more pronounced in cities 
characterized by lower economic development, higher baseline 
pollution levels, and greater vehicle density. From an economic 
perspective, this conforms to the principles of diminishing 
marginal returns and resource constraints. Economically 
backward regions and cities with relatively severe initial pollution 
often retain more old vehicles with high emissions. The marginal 
emission reduction effect and marginal health benefits of new 
energy vehicles replacing them are higher.

From a public health perspective, this reveals the relationship 
between “prevention” and “treatment.” In cities rich in medical resources, 
residents’ health is more dependent on the medical treatment at the back 
end, and the health benefits brought by environmental improvement are 
“buffered” by the medical system. In cities with weak medical resources, 
residents’ health is more dependent on environmental prevention at the 
front end. The implementation of policies has directly reduced those 
deaths that were previously beyond saving due to insufficient medical 
resources, and the marginal benefit to their health is extremely high.

Therefore, the health benefits of this policy are not evenly 
distributed. The biggest beneficiaries are those “vulnerable” cities with 
poor environmental infrastructure and restricted economic and 
medical resources. These findings provide critical empirical support for 
the targeted implementation of environmental policies and the efficient 
allocation of policy resources to maximize public health returns.

5.2 Policy recommendations

Based on the findings of this study, the following recommendations 
are proposed to enhance the social value and effectiveness of future 
green transportation policies: (1) Policy instruments—such as fiscal 
subsidies, tax incentives, and road access privileges—should 
be  strategically prioritized for regions with limited environmental 
carrying capacity, historically severe pollution burdens, and 
underdeveloped public health systems. This approach not only 
improves the efficiency of environmental governance but also 
contributes to promoting interregional health equity. (2) Strengthen 
coordinated governance of multiple pollutants. Environmental policy 
design and performance evaluation should move beyond reliance on 
single-pollutant indicators (e.g., PM₂.₅). Instead, a comprehensive 
governance and monitoring framework should be established to target 
a spectrum of pollutants—including SO₂, NO₂, and others—thereby 
enabling a more accurate and holistic assessment of policy impacts on 
both the environment and public health. (3) Establish an integrated 
“environment-health” linkage evaluation mechanism. In assessing the 
cost-effectiveness of environmental interventions, evaluation 
frameworks should be expanded to include public health outcomes. 
Health-related metrics—such as reductions in disease burden, avoided 
healthcare expenditures, and improvements in quality-adjusted life 
years (QALYs)—should be quantified and incorporated into policy 
decision-making. This would enable a more comprehensive accounting 
of the wider social benefits of green development strategies. (4) 
Systematically promote green transformation in the transportation 
industry. The transition toward sustainable transportation is influenced 
by multi-level factors, including macroeconomic conditions, 
institutional frameworks, and local-level adoption dynamics. 
Policymaking should therefore be tailored to the specific developmental 
context and transformation stage of each region. In China, local 
governments can draw on the successful experiences of demonstration 
cities to formulate context-specific transition plans. These should 
support the phased electrification of logistics fleets and facilitate green 
transformation across the entire transportation industry chain, 
ensuring a balanced and orderly shift toward low-carbon mobility.

5.3 Methodological implications and 
research prospects

This study was not content with a single assessment method but 
constructed a multi-level and mutually verifying analytical system: 
Firstly, the benchmark causal effect is established by the difference-in-
differences model (DID). Then, high-dimensional confounding 
variables and nonlinear relationships are processed through dual 
machine learning (DML) to enhance robustness. Additionally, 
mediating analysis and heterogeneity tests are used to reveal the 
internal mechanism and differentiated effects. Finally, a series of strict 

TABLE 9  Regression results with the dependent variable replaced (annual 
average urban AQI).

(1) (2)

Replacing the 
dependent variable

PSM-DID 
method

treat_post −0.052** −0.7258***

(−0.017) (0.2611)

Control Yes Yes

City Yes Yes

Year Yes Yes

N 341 392

R-squared 0.915 0.889

Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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robustness tests are conducted to provide support for the core 
conclusion. This methodological combination effectively addresses the 
core challenges such as endogeneity and confounding bias faced in 
non-randomized policy evaluation, significantly enhancing the 
credibility of causal inference.

This study paradigm offers valuable insights for future academic 
studies and policy implementation. It provides a replicable and 
scalable technical framework, along with rigorous standards, for 
evaluating comprehensive public policies with similarly 
multidimensional and long-term impacts, such as “low-carbon cities” 
and “smart cities.” Future research can build on this paradigm and 
further explore the following two key directions:

The first key direction is to evaluate the varying effectiveness and 
synergistic impacts of different policy instruments. By comparing the 
cost-effectiveness and health benefits of various electric vehicle 
promotion measures—such as purchase subsidies, road-use priority, 
and investments in charging infrastructure—research can deliver 
precise scientific evidence to help policymakers optimize policy mixes 
and maximize overall benefits.

The second key direction is to deepen the integration and application 
of multi-source heterogeneous data. This includes incorporating high-
frequency, multi-dimensional new data sources—such as using remote 
sensing data to generate more detailed pollution maps, leveraging data 
from wearable devices to capture real-time physiological health 
responses, and integrating administrative data with these emerging 
sources—to build a more comprehensive analytical framework.

Through multi-dimensional validation and methodological 
innovation, future research will be better equipped to confirm the 
existence and robustness of policy effects, explore their underlying 
mechanisms and heterogeneity in greater depth, and thereby provide 
truly scientific and precise support for public policy optimization, 
advancing the coordinated governance of the environment, health, 
and the economy.
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