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Introduction: Amid escalating global efforts to address climate change and
persistentthreats to public health, evaluating the health benefits of environmental
policies is of growing significance.

Method: This study leverages the “Green Freight Distribution Demonstration
Project” launched in 2018 as a quasi-natural experiment. Utilizing multi-city
panel data from China spanning 2011 to 2024, it employs both a Difference-
in-Differences (DID) model and a Double Machine Learning (DML) model to
rigorously assess the causal impact of policies promoting new energy logistics
vehicles on the mortality rate from respiratory diseases among residents.
Conclusion: The findings reveal that the policy significantly reduces respiratory
disease mortality rate in pilot cities, a conclusion that remains robust across
multiple sensitivity analyses. In terms of mechanisms, the policy directly
increases the market penetration of new energy logistics vehicles while
reducing the share of the secondary industry (Sl). Indirectly, it facilitates the
low-carbon transition of urban industrial structures, significantly lowering sulfur
dioxide (SO,) concentrations and improving overall air quality, thus contributing
to better public health outcomes. Furthermore, the health benefits demonstrate
notable heterogeneity: the mortality reduction effect is more pronounced in
cities characterized by lower economic development, higher initial pollution
levels, and limited medical resources. This study not only provides empirical
evidence for quantifying the health dividends of environmental policies but also
offers scientific guidance for optimizing green transportation initiatives and
achieving integrated governance of environmental and public health goals.

KEYWORDS

new energy logistics vehicles, respiratory disease mortality rate, air quality, double
machine learning model, transport

1 Introduction

The health of the planet has deteriorated to a critical state, with humanity confronting a
triple crisis: climate change, biodiversity loss, and pollution from hazardous substances such
as plastics and per- and polyfluoroalkyl substances (PFAS). The transportation sector is a
major contributor to global energy consumption and greenhouse gas emissions. Its exhaust
pollutants—including fine particulate matter (PM,.s), nitrogen oxides (NOy), and sulfur
dioxide (SO,)—have become leading factors degrading urban air quality and endangering
public health (1). Among transportation modes, diesel-powered logistics trucks are particularly
problematic due to their intensive use, high mileage, and significant emission levels, making
them a substantial source of urban pollution.

In this context, the green and low-carbon transformation of the transportation sector has
emerged as a global imperative. In pursuit of the “dual-carbon” targets and the vision of a
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“Beautiful China,” the Chinese government has actively promoted the
deployment of new energy vehicles. Specifically targeting the heavily
polluting logistics sector, the Ministry of Transport, Ministry of Public
Security, and Ministry of Commerce jointly initiated the first batch of
the “Green Freight Distribution Demonstration Project” (hereinafter
referred to as the “Policy”) in 2018 (42). The Policy aims to accelerate
the adoption of new energy logistics vehicles in pilot cities through
comprehensive measures, including financial incentives, road access
prioritization, and the development of supporting infrastructure (45).
While the Policy’s direct objective is to reduce transportation-related
pollutant emissions, an important unanswered question remains: can
these interventions yield measurable public health benefits,
particularly in reducing the mortality rate from respiratory diseases—a
key health outcome linked to air pollution? (46).

To address this question, this study employs a Difference-in-
Differences (DID) model and a Double Machine Learning (DML)
model to evaluate the long-term effects of the Policy on residents’
respiratory disease mortality rate. Specifically, it seeks to answer three
core research questions: (1) Has the implementation of the Policy
significantly reduced respiratory disease mortality in demonstration
cities, and what is the magnitude of this effect? (2) Through which
mechanisms does the Policy achieve its health benefits, and does
improved air quality play a mediating role? (3) Is there heterogeneity
in the Policy’s impact? Do its effects vary based on urban
characteristics such as industrial structure, population density, and the
initial development level of the new energy vehicle market?

Furthermore, the study explores potential barriers encountered
during policy implementation and the mechanisms by which these
constraints influence health-related outcomes. The findings aim to
offer scientific evidence for the optimization of new energy logistics
vehicle policies and contribute theoretical insights toward the
low-carbon transformation of freight transportation and the
advancement of public health (2-4).

2 Literature review and theoretical
mechanism analysis

2.1 Literature review

Current research on energy transition predominantly emphasizes
its economic implications. Some scholars contend that energy
transition may suppress economic growth (5, 6), whereas others argue
that it can stimulate economic development (7). Doytch et al. highlight
that the effects of energy transition differ between developed and
developing countries (8). Additional studies suggest that energy
transition can drive technological advancement in the renewable
energy sector, enhance green total factor productivity, and promote
long-term economic growth through innovation (9-11). However,
due to inherent endogeneity in the energy transition process and the
impracticality of conducting randomized controlled trials, there is a
notable paucity of causal research on the relationship between energy
transition and public health (12, 13).

Traditional fuel-powered logistics vehicles are among the largest
contributors to greenhouse gas emissions. Wu's research projects that
China light-duty vehicle ownership will reach 270-330 million units
by 2030, and transportation accounted for approximately 10% of
Chinas total greenhouse gas emissions in 2021. The adoption of new
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energy logistics vehicles (NELV's) has been shown to effectively reduce
emissions of nitrogen dioxide (NO,) and fine particulate matter
(PM..5) (14). Liu’s findings suggest that the proliferation of electric
vehicles in China has significantly decreased both energy consumption
and greenhouse gas emissions (15). Zhou’s life-cycle assessment
concludes that battery electric vehicles (BEVs) consume 33% less fossil
energy and emit 19% less CO, than internal combustion engine
vehicles (ICEVs) (16). Nevertheless, policy implementation still faces
several challenges, including insufficient charging infrastructure, high
upfront vehicle costs, and excessive dependence on fiscal subsidies.
Despite these limitations, existing studies largely affirm that NELV
promotion contributes positively to air quality improvements (17-19).

Traffic-related air pollution is a major global public health
concern. Debelu conducted a systematic review highlighting its
extensive links to diseases such as cardiovascular and respiratory
illnesses (20, 21). Chronic lower respiratory diseases, in particular, are
among the leading causes of morbidity and mortality worldwide (22).
Yang’s study demonstrates a positive correlation between SO, and
PM..5 levels and respiratory disease mortality across regions in China
(23). In Singapore, Quah (24) applied dose-response modeling to
estimate the economic burden of particulate matter pollution, finding
that health-related costs were equivalent to 4.31% of the nation’s GDP.

Accumulated evidence has firmly established air pollution as a
critical environmental risk factor in the onset and exacerbation of
respiratory conditions. Numerous studies have elucidated the health
impacts and mechanisms of action of specific pollutants. For example,
long-term exposure to PM,.s significantly increases the prevalence of
cardiovascular and respiratory diseases, particularly in low- and
middle-income countries (25). Short-term exposure to carbon
monoxide has been directly linked to increased hospital admissions
for respiratory ailments (26). Urban air pollution has also been
confirmed as a major contributor to the prevalence of chronic
respiratory illnesses among adults (27). Mendelian randomization
studies further provide robust causal evidence linking air pollutants
to impaired lung function and chronic respiratory disease
development (28). Children, due to their vulnerable physiology, are
particularly susceptible to air pollution, which compromises their
respiratory barrier and immune responses and significantly heightens
their risk of respiratory infections (29). Data from large-scale Chinese
cohorts, such as the China Health and Retirement Longitudinal Study
(CHARLS), corroborate the extensive detrimental effects of air
pollution on respiratory health (30). Collectively, these studies indicate
that air pollutants damage the respiratory system via inflammatory
responses, oxidative stress, and immune suppression, underscoring
the urgent need for targeted public health interventions.

Empirical research by Erika Garcia and Jill Johnston on
California’s early zero-emission vehicle (ZEV) transition reveals that
for every additional 20 ZEVs per 1,000 residents in a ZIP code, the
asthma-related emergency department visit rate decreased by 3.2%,
along with a reduction in NO, concentrations (50). This supports the
causal chain of “vehicle electrification — improved air quality —
public health benefits” A study published in Nature Sustainability on
heavy-duty truck electrification in the United States confirms the
potential for reducing premature deaths from air pollution, while
cautioning that unequal implementation may exacerbate health
disparities between vulnerable and non-vulnerable communities (51).
Guo et al. (31) used integrated methods combining air quality
modeling, epidemiology, and economics to estimate the health and
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economic burdens of transport-related air pollution in China, finding
that health losses in Beijing from 2004 to 2008 amounted to
approximately 0.58% of the city’s GDP.

However, most existing studies concentrate on passenger vehicles
or aggregate all new energy vehicles, neglecting the specific
contribution of new energy logistics vehicles. Empirical evidence
directly linking NELV policies to health outcomes particularly
respiratory disease mortality remains limited. Where such
relationships are explored, researchers often rely on simple regression
or correlation analyses. Existing studies predominantly employ the
traditional Difference-in-Differences (DID) model to evaluate policy
effects. This paper adopts both DID and Double/Debiased Machine
Learning (DML) methodologies, primarily because respiratory disease
mortality is influenced by high-dimensional time-varying confounders
(e.g., urban logistics demand intensity, residents’ travel habits), while
the policy transmission pathways exhibit nonlinear associations.
Additionally, the sample size is limited (14 treatment groups + 17
control groups, totaling 434 observations), and city-level heterogeneity
is significant. Traditional DID struggles to address these challenges,
whereas the DML approach—leveraging machine learning algorithms
like Lasso and Random Forest—can automatically select high-
dimensional control variables, capture nonlinear relationships, and
deliver more robust unbiased estimates under small-sample conditions.

2.2 Theoretical mechanisms and research
hypotheses

2.2.1 Impact of the NELV policy on respiratory
disease mortality

The impact of new energy logistics vehicle (NELV) promotion
policies on residents’ respiratory disease mortality is a complex and
multi-dimensional process. It unfolds through several interconnected
stages, including policy implementation, environmental improvement,
and the eventual realization of health benefits. Governmental
interventions such as financial subsidies, tax incentives, and road
access privileges lower the purchase and operating costs of NELVs.
These policy tools enhance the market competitiveness of NELVs and
incentivize adoption by logistics enterprises and individual drivers,
thereby accelerating their penetration within the logistics sector.

NELVs, particularly battery electric vehicles, produce no tailpipe
emissions during operation. As their market share increases, the
reliance on traditional fuel-powered logistics vehicles correspondingly
declines (49), resulting in a substantial reduction in urban emissions
of hazardous air pollutants such as PM,.s and nitrogen oxides (NOy)
(48). These improvements are especially pronounced in logistics hubs
and high-traffic zones. The consequent decrease in vehicle-related
emissions leads to measurable improvements in ambient air
quality (28).

Improved air quality reduces residents’ exposure to harmful
pollutants, which in turn lowers the incidence, hospitalization rates,
and mortality associated with respiratory illnesses (43). Based on this
theoretical transmission mechanism, this study proposes the following
core research hypothesis:

HI: The promotion of new energy logistics vehicles significantly

reduces the mortality rate from respiratory diseases

among residents.
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2.2.2 Mechanisms underlying the impact of the
NELV policies on respiratory disease mortality

The promotion of new energy logistics vehicles (NELVs)
influences public health outcomes through multiple interrelated
mechanisms. First, policy incentives—including purchase subsidies,
tax reductions, and road access priorities—substantially lower the
acquisition and operational costs of NELV's. These measures accelerate
the substitution of high-emission logistics trucks, particularly diesel-
powered vehicles, with cleaner alternatives. This replacement process
significantly increases the market penetration of NELVs and reduces
emissions of key pollutants such as sulfur dioxide (SO,), nitrogen
oxides (NOy), and fine particulate matter (PM,.s) from road
transportation at the source (32).

Second, the implementation of NELV policies induces a broader
“vehicle replacement effect” that indirectly promotes the low-carbon
transformation of urban industrial structures. This shift may manifest
in a reduced share of the secondary industry (SI) in pilot cities,
suggesting that the policy may influence not only transportation
emissions but also broader patterns of urban industrial activity.
Together, these two mechanisms constitute a synergistic effect, jointly
contributing to the reduction of urban pollution loads.

Third, the cumulative impact of these pathways significantly
enhances urban air quality. Empirical evidence indicates that NELV
policies are particularly effective in reducing SO, concentrations,
which directly alleviates respiratory system damage and leads to
measurable reductions in respiratory disease mortality. This supports
the existence of a comprehensive “policy—environment-health”
transmission chain (33-36).

Based on these mechanisms, the following hypotheses
are proposed:

H2: NELV policies reduce residents’ respiratory disease mortality
by increasing the penetration rate of new energy vehicles.

H3: NELV policies reduce residents’ respiratory disease mortality
by promoting industrial structure optimization.

H4: NELV policies reduce residents’ respiratory disease mortality

by improving air quality.

In addition to these mechanisms, the policy’s effectiveness is likely
to exhibit heterogeneity depending on specific urban characteristics.
Cities with a high degree of industrialization often host numerous
industrial enterprises and experience intense logistics demand, with a
high baseline stock of fuel-powered logistics vehicles and substantial
traffic-related emissions (44). In regions with high population density,
the health impacts of transportation emissions tend to be more
concentrated and severe, as residents face greater exposure to air
pollutants (47). Similarly, cities characterized by lower economic
development, more severe baseline pollution, and limited medical
infrastructure may be more vulnerable to air pollution and more
responsive to policy interventions.

H5: The inhibitory effect of NELV policies on respiratory disease
mortality is heterogeneous and more pronounced in cities with
higher industrialization, greater population density, lower
economic development levels, more severe initial pollution, and
relatively limited medical resources.
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3 Research design

3.1 Data

The sample period of this study spans from 2011 to 2024,
encompassing 14 years and covering both the pre-policy period
(2011-2017) and the post-policy period (2018-2024). Cities in the
sample were divided into treatment and control groups. Treatment
group cities were identified based on the Notice on Determining the
Pilot Cities for the Green Freight Distribution Demonstration Project
issued jointly by the Ministry of Transport and three other ministries
in 2018, with the policy intervention uniformly defined as
commencing in 2018.

Following the exclusion of cities that either failed to pass the
first-round policy approval or exhibited substantial data gaps, 14
cities were retained as the final treatment group. To enhance the
comparability between the treatment and control groups and
mitigate selection bias, we employed the Propensity Score
Matching (PSM) method. Control group cities were selected from
among non-demonstration cities by matching on key covariates
measured in 2017, the year prior to policy implementation. These
covariates include the level of urban economic development,
industrial structure, population size, and baseline air
pollution levels.

Through this matching process, 17 control cities with highly
similar characteristics to the treatment group were identified. This
approach helps to satisfy the parallel trend assumption underlying the
Difference-in-Differences (DID) model and enhances the credibility

of causal inference.

3.2 Variables

1 Dependent variable: respiratory disease mortality rate (resp_
death), measured as the annual respiratory disease mortality

TABLE 1 Definition of variables.

10.3389/fpubh.2025.1694186

rate among permanent urban residents (unit: per 100,000
people). Data are mainly sourced from annual health statistical
reports and local statistical yearbooks released by municipal
Health Commissions and Statistics Bureaus, and cross-
validated with data from the Death Surveillance System of the
Chinese Center for Disease Control and Prevention (CDC) and
the “Juhui Database”

2 Core independent variable: policy dummy variable (Treat x
Post), which is the interaction term between the treatment
group indicator and the post-policy implementation
time indicator.

3 Mediating variables: new energy vehicle penetration rate,
industrial structure, and urban air quality data (including Air
Quality Index (AQI), PM,, SO, etc.), sourced from the China
Air Quality Online Monitoring and Analysis Platform and the
official websites of local ecological environment departments.

Control variables: Urban-level control variables include economic
development level (logarithm of real GDP per capita), medical
development level (number of medical institution beds per 1,000
people), vehicle ownership, and population density. These data are
obtained from the China Urban Statistical Yearbook, provincial and
municipal statistical yearbooks, local statistical bulletins, and various
commercial databases. Missing data are supplemented by linear
interpolation where necessary (Table 1).

3.3 Descriptive statistical analysis

This study conducts logarithmic transformation on variables, and
the results of the statistical analysis are presented below. As shown in
Table 2, the mean value of resp_death is 1.74, with a standard deviation
of 0.23, and the range is from 0.82 to 1.99, indicating moderate
variation, which is consistent with the characteristics of health
indicators. The mean value of the treat_post variable is 0.23, suggesting

Variable type Variable name Variable symbol Variable definition
Dependent variable Respiratory disease mortality resp_death Respiratory disease mortality in city i in year t
Core explanatory Policy dummy variable interaction term Policy Treat; x Post,, reflecting the net policy effect
variables City Grouping Dummy Variable Treat Equals 1 if city i is one of the 22 demonstration cities; 0 otherwise
(control group cities)
Policy implementation time dummy Post, Equals 1 if year t is 2018 or later; 0 otherwise (2011-2017)
variable
Mediating variables Annual average pm, ; concentration PM,; PM, 5 concentration in city i in year t
New energy vehicle penetration rate NEV_Pr Proportion of new energy vehicle ownership in total vehicle ownership
in city i in year t (%)
Industrial structure Industry Proportion of secondary industry added value in GDP of city i in year t
(%)
Control variables Real gdp per capita Ingdp Natural logarithm of real GDP per capita
Number of Beds per 1,000 People Beds Indicator of medical resource coverage
Population density Pop_Density Permanent population / administrative area of city i in year t (people/
km?)
Vehicle ownership Car_Owners Civil vehicle ownership in city i in year t (10,000 units)
Frontiers in Public Health 04 frontiersin.org
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that approximately 23% of the samples are affected by the policy or in
the post-treatment state.

3.4 Model specification

To precisely identify the causal effect of the new-energy logistics
vehicle promotion policy on residents’ respiratory disease mortality
and ensure the robustness of the conclusions, this study adopts an
integrated empirical strategy combining the Difference-in-
Differences (DID) model with the Double/Debiased Machine
Learning (DML) model. The two approaches complement each
other’s strengths: DID establishes the fundamental direction and
magnitude of the causal effect, while DML further reinforces the
robustness of this finding. This hybrid strategy enhances the
credibility of causal inference in this study and provides a more
rigorous methodological framework for evaluating the health benefits
of environmental policies.

3.4.1 Difference-in-differences analysis model

In this study, by comparing and analyzing the changes in mortality
rates between the two groups of cities before and after policy
implementation, factors such as economic growth that may affect
mortality rates are excluded to focus on the effect of the policy itself.
The basic form of the Difference-in-Differences (DID) model can be
expressed as Equation 1:

resp _death= fy + B (Treut,- x Post; ) +y'Controlsy + 1 + A + &i (1)

Where resp_death is the dependent variable, representing the
respiratory disease mortality rate of city i in year ; TreatxPostit is the
core independent variable, and its coefficient ;measures the net effect
of the policy implementation, which is the focus of our attention.
Controls;; denotes a series of urban-level control variables, including
economic development level, medical resources, population density,
and vehicle ownership. y; is the city fixed effect, used to control for
time-invariant inherent characteristics of cities; 4, is the year fixed
effect, used to control for time-trend shocks common to all cities. Eit
is the random error term. It is expected that 1 will
be significantly negative.

TABLE 2 Results of descriptive statistics.

10.3389/fpubh.2025.1694186

3.4.2 DML model

Traditional DID models are limited in the selection of control
variables. On the one hand, omitting important time-varying
confounding factors may lead to endogeneity issues; on the other
hand, including excessive irrelevant control variables can reduce
estimation efficiency. The Double Machine Learning (DML) method
provides a powerful tool for addressing this “high-dimensional
confounding” problem (37). Its core idea is to use the flexibility of
machine learning to “purify” the treatment variable and outcome
variable by eliminating the predictive information of control variables
X, and then perform regression on the “residuals” to obtain an
orthogonal and unbiased estimation of the core parameters. Double
Machine Learning separates the relationships between the treatment
variable, outcome variable, and high-dimensional control variables
through machine learning methods, and estimates the causal effect
after purification. Its core framework formula is as follows: Let the
dependent variable be Y};, the core independent variable (policy
treatment) be Dj,, the control variables be X;; and &;, v;; be the
random error term. Its core framework formula is shown as
Equations 2, 3:

Y =aDy +g(Xit)+ & (2)

D;y :h(Xir)'H/ir (3)

Where g() and h() are unknown nonlinear functions, which
characterize the impact of control variables on the outcome variable
and the treatment variable, respectively.

3.4.3 Mediation effect model

The research by Baron, R. M. laid the theoretical foundation for
mediating effect analysis and proposed a four-step method for testing
mediating effects, which provides a classical methodological basis for
the construction of Equations 4, 5 (38). Hayes, A. E systematically
introduced the regression-based mediating effect analysis method,
and used the Bootstrap method to replace the traditional Sobel test to
improve estimation accuracy (39). In this study, the analysis of the
mediating effect strictly adheres to the Baron and Kenny procedure.
This approach is adopted to improve the accuracy of estimating the

Variables N mean sd min max
resp_death 434 1.736687 0.2347061 0.8195439 1.993436
treat_post 434 0.2258065 0.4185948 0 1
pm25 434 1.634157 0.1638736 1.230449 2.060698
NEV_Pr 434 0.0283253 0.0423647 0.0001 0.265
Industry 434 1.631639 0.0802495 1.402433 1.835691
gdp 434 4.882848 0.2122939 4263281 5.45536
Beds 434 0.7195224 0.1685972 0.1139434 1.084934
Pop_Density 434 2753711 0.4466239 1.361917 3.514735
Car_Owners 434 2.154719 0.291877 1.404834 2.820858
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mediating effect and guarantee the reliability of the analysis results,
thus meeting the requirements of an academic context.

To test the three mediating mechanisms proposed in H2-H4,
we refer to the study by Jiang (40) and construct the following model:

resp_death = c*Treat; x Post; + Controls + & (4)
M, =a*Treat; x Post, + Controls + & (5)

Where M; represents mediating variables, which, respectively,
refer to new energy vehicle penetration rate, industrial structure, and
air quality (40).

4 Empirical analysis and results
4.1 Benchmark regression analysis

The basic regression results of the DID method are shown in
Table 3. The results in the table indicate that there are significant
differences in the impacts of the policy treatment effect and other
control variables across different models. Column (1) presents the
basic regression results without considering control variables, year
fixed effects, or city fixed effects. The coefficient of treat_post is
—0.153, which is significant at the 1% level, suggesting that the
policy has a significant negative impact on the dependent variable.
This indicates that the implementation of the NELV policies has
significantly reduced respiratory disease mortality. Specifically, after
the policy implementation, the respiratory disease mortality rate
decreased by an average of approximately 15.3%. A possible reason

TABLE 3 Benchmark regression results of the DID model.

Variables (2) (3) (4)
Model2 Model3 Model 4
treat_post —0.153%%* —0.185%** —0.0560%** —0.0560%*
(0.0353) (0.0333) (0.0128) (0.0254)
gdp 0.296%** 0.0284 0.0284
(0.0598) (0.123) (0.182)
Beds —0.0918 0.0592 0.0592
(0.0579) (0.0371) (0.0493)
Pop_Density —0.0719%%*%* 0.0523 0.0523
(0.0214) (0.0332) (0.0823)
Car_Ownership 0.166%** 0.286 0.286
(0.0440) (0.214) (0.452)
Constant 1.771%%* 0.240 0.804 0.924
(0.00995) (0.320) (0.596) (0.919)
Observations 434 434 434 434
R-squared 0.074 0.209 0.929 0.181
Year FE No No Yes Yes
City FE No No Yes Yes
Controls No Yes Yes Yes

Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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is that traditional fuel-powered logistics vehicles are a major source
of urban air pollution (such as PM, s and NOy), and the promotion
of the NELV directly reduces exhaust emissions, thereby lowering
the concentrations of harmful pollutants such as smog and ozone.
In Column (2), after adding control variables, the coefficient of
treat_post is —0.185, which is also significant at the 1% level,
similarly indicating a significant negative impact of the policy on the
dependent variable. In addition, GDP and vehicle ownership Car_
Ownership have a significant positive impact on the dependent
variable, while population density (Pop_Density) shows a negative
impact. Column (3) further controls for year and city fixed effects.
The absolute value of the treat_post coefficient decreases but remains
significant. Column (4) shows the results of the fixed effects model,
whose coefficient is basically equivalent to that in Column (3) but
smaller than those in Columns (1) and (2), indicating that the policy
effect weakens but still exists after considering fixed effects. It is
worth noting that the R-squared of Model 3 is as high as 0.929,
suggesting that the model can better explain the variation in the
dependent variable after incorporating year and city effects. Overall,
the policy effect is significantly negative, and the introduction of
control variables and fixed effects has an important impact on
the results.

4.2 Double machine learning analysis

This study further constructs a DML model, with results
presented in Table 4. Column (1) first establishes a partially linear
DML model, using Lasso regression for control variable selection
and conducting 5-fold cross-validation. It can be observed that the
coefficient estimate of the NELV policy is —0.2167, which is
significantly negative at the 1% level. This indicates that the NELV
policy has significantly reduced the mortality rate of urban
respiratory diseases. To leverage the advantages of machine learning
in handling high-dimensional control variables and applying
regularization techniques for model selection, Column (2)
introduces quadratic terms of control variables on the basis of
Column (1) to improve model fitting ability. It is found that the
coeficient estimate of the NELV promotion policy is —0.2531,
remaining significantly negative at the 1% level with a larger absolute
value. Columns (3)-(4) present results from interactive models built
using the DML method to enhance estimation unbiasedness in small
samples, with coefficients of —0.1989 and —0.2379, respectively. It is
evident that the estimation results of the core independent variable
do not change significantly and remain significantly negative at the
1% level. These findings confirm that the NELV promotion policy
has a significant positive impact on reducing urban respiratory
disease mortality by improving air quality. All models control for
time fixed effects and city fixed effects, and the results are robust
and reliable.

4.3 Mediation effect analysis

The benchmark regression confirms the significant health
benefits of the policy. To further explore its mechanism of action,
this section examines the three hypotheses H2-H4. We sequentially
take air quality (PM,s), new energy vehicle penetration rate
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TABLE 4 Benchmark estimation results of the DML.

Method (1)

Partially linear model

10.3389/fpubh.2025.1694186

(2) (3) (4)

Interactive model

Event;, resp_death resp_death resp_death resp_death
—0.1489%** —0.1323 %% —0.0079%#%* —0.01247#%*
(0.0017) (0.0025) (0.0017) (0.0023)
Linear terms of control variables Yes Yes Yes Yes
Quadratic terms of control variables No Yes No Yes
Time fixed effects Yes Yes Yes Yes
City fixed effects Yes Yes Yes Yes

Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 5 Results of mediation effect test.

Variables (3) (4)
NEV_Pr  Industry
treat_post —0.0560%%* 0.03977%** —0.00482 —0.000204
(0.0128) (0.0105) (0.00316) (0.00296)
gdp 0.0284 0.105% —0.0536%*** 0.125%%*
(0.123) (0.0625) (0.0202) (0.0273)
Beds 0.0592 0.0747%* —0.00411 0.0691%#*
(0.0371) (0.0385) (0.0122) (0.0135)
Pop_Density 0.0523 0.0595%* 0.0191 0.0169%%*
(0.0332) (0.0284) (0.0150) (0.00820)
Car_Ownership 0.286 0.159 —0.165%* 0.115%%**
(0.214) (0.179) (0.0678) (0.0353)
Constant 0.804 1.033%%* 0.454 %% 0.8607%***
(0.596) (0.439) (0.165) (0.147)
Observations 434 434 434 434
R-squared 0.929 0.924 0.861 0.971
Year FE Yes Yes Yes Yes
City FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Robust standard errors in parentheses. **¥p < 0.01, **p < 0.05, *p < 0.1.

(NEV_Penetration), and industrial structure (Industry_Str) as
mediating variables to conduct stepwise regression tests, with
results presented in Table 5 (41). Column (1) shows the estimation
result of the total policy effect; Column (2) presents the regression
result of the air quality mediating variable on the independent
variable, indicating that policy implementation can significantly
improve air quality, thereby protecting residents’ respiratory health;
Column (3) displays the regression result of the NELV penetration
rate mediating variable on the independent variable, revealing that
the optimization of transportation structure and the resulting stock
changes driven by policy implementation have become important
drivers of long-term health benefits; Column (4) shows the
regression result of the industrial structure mediating variable on
the independent variable, indicating that policy implementation has
significantly promoted industrial structure optimization and
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facilitated the transformation of cities toward a service-oriented
clean economic model. Therefore, it can be concluded that the
indirect mediation effect is valid: the Green Freight Distribution
Demonstration Project policy can reduce residents’ respiratory
disease mortality by reducing pollutant emissions from fuel-
powered logistics vehicles.

4.4 Heterogeneity analysis

To test whether there is group heterogeneity in the impact of the
NELV policies on respiratory disease mortality, this study divides the
sample into high and low groups based on the median values of urban
economic development level (per capita GDP), initial pollution
endowment (SO, concentration), and medical resource level (number
of beds per 1,000 people), and conducts subgroup regression tests. The
results are presented in Table 6.

1 Heterogeneity in urban economic development level

This study measures urban economic development level by real
GDP per capita and divides the sample into two groups (high and low
economic development levels) based on its median. The specific
results are shown in Columns (1)-(2) of Table 5. It can be observed
that in the two groups of high and low economic development levels,
the policy effect coefficient of the low economic level group is —0.117,
while the effect of the high economic level group is not significant,
and the coeflicient difference between the two groups is significant.
This indicates that in relatively economically underdeveloped regions,
the NELV policies have a more significant positive effect on
improving respiratory disease mortality.

2 Heterogeneity in initial resource endowment

This study measures urban initial resource endowment by SO,
pollution level and divides the sample into two groups (high and low
pollution levels) based on its median. The specific results are shown
in Columns (3)-(4) of Table 5. It can be seen that in the two groups
of high and low pollution levels, the impact coefficients of initial SO,
are —0.091 and —4.189, respectively. This suggests that in regions with
poor environmental foundations and more urgent governance needs
(high pollution levels), the rapid effectiveness of the NELV policies
in improving residents’ health is more obvious.
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TABLE 6 Heterogeneity analysis.

10.3389/fpubh.2025.1694186

Variable Urban economic development Initial pollution endowment Medical resource level
level
High economic  Low economic  High pollution Low pollution High medical Low medical

level (1) level (2) level (3) level (4) level (5) level (6)
treat_post 0.008 —0.117%% —0.091%* —4.189 -0.015 —0.099%
Standard error (-0.013) (—0.041) (-0.031) (—0.009) (-0.01) (—0.04)
Control variables Yes Yes Yes Yes Yes Yes
City fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Observations 217 217 226 208 217 217
R-squared 0.809 0.955 0.906 0.970 0.975 0.915
p-value for inter-group 0.137 0.563 0.201
coefficient difference

Robust standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1. All regressions control for all control variables and two-way fixed effects.

3 Heterogeneity in medical resource level

This study measures the medical resource level index by the
number of beds per 1,000 people and divides the sample into two
groups (high and low medical levels) based on its median. The specific
estimation results are shown in Columns (5)-(6) of Table 1. It can
be observed that the regression coefficient of the policy in cities with
low medical resources is —0.099, indicating that in regions with
relatively limited medical resources, improving environmental quality
has a more significant potential impact on reducing respiratory
disease mortality (4).

4.5 Endogeneity test

Instrumental Variable Method Based on DML. A partially linear
instrumental variable model of Double Machine Learning is
constructed to control for endogeneity in the model, with the specific
model as follows Equations 6, 7:

digecoy, =6;eventy, +g (X )+ Uy 6)
Instrumentit =m (Xit) + Vit (7)

Where Instrument; serves as the instrumental variable for event,,
specifically referring to the historical levels of urban pollutant
concentrations. There may be an endogeneity issue between the
implementation of the NELV policies and respiratory disease
mortality, as unobserved factors such as urban development level and
medical conditions could simultaneously influence both policy
implementation and residents’ health status. Historical pollution levels
are appropriate as an instrumental variable because they are closely
associated with the intensity of policy implementation (cities with
severe pollution are more likely to actively promote the NELV).
Meanwhile, after controlling current pollutant indicators (PM, 5, NO,,
and SO,), historical pollution levels do not directly affect the current
respiratory disease mortality through other channels.

The estimation results of the instrumental variable method based
on DML are shown in Table 6. Columns (3)-(6) present the estimation

Frontiers in Public Health

results using Lasso regression, random forest, support vector machine,
and gradient boosting tree algorithms respectively, with 5-fold cross-
validation and the introduction of quadratic terms of control variables.
It can be observed that regardless of the estimation method adopted,
the coefficient estimates of the policy are significantly negative.

4.6 Robustness analysis

4.6.1 Parallel trend test

The validity of the Difference-in-Differences (DID) model
depends on the parallel trend assumption. Figure 1 presents the results
of the parallel trend test using the event study approach. Before the
policy implementation (t < 0), the coefficient estimates for each period
are statistically insignificant, as their 95% confidence intervals all
include zero. This indicates that prior to the policy implementation,
there was no significant difference in the trends of respiratory disease
mortality between the treatment group and the control group, thus
confirming the validity of the parallel trend assumption. After the
policy implementation (t>0), the coefficients begin to show
significant negative values, and the effect tends to increase over time.
This suggests that the policy effect is not achieved overnight but
exhibits a certain degree of time lag and cumulative effect (Table 7).

4.6.2 Placebo test

To verify the robustness of the estimation results of the Difference-
in-Differences model, this study conducts a placebo test. Figure 2
shows the distribution of “pseudo-policy effect” coefficients obtained
from 1,000 random simulations. The simulation results present an
approximately normal distribution, with the central value close to 0.
The actual policy effect estimate of this study significantly deviates
from the center of the random distribution and lies in the extreme tail
of the distribution. It is proved that the policy effect is not caused by
random factors, further verifying the reliability of the conclusion.

4.6.3 Excluding the impact of special periods
during the pandemic

During the outbreak of the COVID-19 pandemic from 2020 to
2022, the active prevention and control measures implemented by the
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TABLE 7 Regression results of instrumental variable method based on DML.

First stage Second Lasso Random Support vector Gradient

stage regression forest machine boosting tree
Dependent Variable Event resp_death resp_death resp_death resp_death resp_death
rdls 0.0218%*%*

(0.0004)

Event;, —0.06847*** 0.0022%* 0.04317%%* 0.0963%** 0.2411%%*

(0.0208) (0.0032) (0.0058) (0.0184) (0.0469)
Control Variables Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes
Kleibergen-Paap rk LM 0.000%**
Cragg-Donald Wald F statistic 246.233 [16.38]

Robust standard errors in parentheses. **¥p < 0.01, **p < 0.05, *p < 0.1.

Chinese government had a systemic impact on social and economic
activities, urban logistics, and residents’ health. On one hand,
lockdowns led to a sharp short-term decline in traffic flow and
industrial activities, thereby affecting air quality; on the other hand, as
a major respiratory infectious disease, COVID-19 may have directly
or indirectly interfered with the normal statistics of respiratory disease
mortality. To eliminate the potential interference of this major external
event on the estimation results of this study, we adopt a strategy of
excluding special samples for robustness testing. First, we exclude the
observation data from 2020 to 2022. Then, we re-run the regression
of the benchmark DID model using the remaining sample data. The
regression results are shown in Table 8. After excluding the samples
during the pandemic period, the coefficient of the core independent
variable remains significantly negative at the 5% level. This fully
indicates that the core conclusion of this study is not driven by the
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special confounding factor of the pandemic, thus exhibiting
strong robustness.

4.6.4 Replacing the dependent variable

Previous mechanism analysis shows that the NELV policies
improve residents’ health by enhancing air quality. To further verify the
reliability of this transmission path and test the policy’s environmental
governance effect from another dimension, we adopt the method of
replacing the dependent variable for robustness testing. We use the
annual average of the urban Air Quality Index (AQI)—a comprehensive
environmental indicator closely related to residents” health and traffic
emissions—as the new dependent variable and re-conduct the
PSM-DID regression. A lower AQI indicates better air quality. If the
policy indeed functions by improving air quality, we would expect its
implementation to significantly reduce the AQI in pilot cities.
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Placebo test graph of new energy logistics vehicle policy.

The regression results are presented in Table 9. The regression
coefficient of the policy dummy variable interaction term (Policy;) on
the annual average urban AQI is —5.214, which is significant at the 1%
level. This indicates that policy implementation has significantly
reduced air pollution levels in pilot cities and effectively improved
overall air quality. This finding not only directly confirms the
environmental benefits of the policy but also provides solid evidence
for the core logical chain of “policy — air quality improvement —
health benefits,” thereby enhancing the credibility of the benchmark
regression conclusions.

4.6.5 Replacing the estimation method: PSM-DID

To minimize the selection bias caused by differences in observable
variables and ensure higher comparability between the treatment
group and the control group before policy implementation, we adopt
the PSM-DID method for robustness testing, making the comparison
baseline more equitable. The PSM-DID regression results are shown
in Column (2) of Table 9. The coeflicient of the core explanatory
variable (Policyy) is —7.258, which is significant at the 1% level. This
result is highly consistent with the benchmark model (=7.797) in
terms of sign, magnitude, and significance. It indicates that after
optimizing and matching the samples through the PSM method to
mitigate the selection bias of observable variables, the inhibitory effect
of the NELV policies on respiratory disease mortality still exists stably,
further verifying the reliability of the research conclusions in
this paper.

5 Conclusions and policy
recommendations
5.1 Research conclusions

This study employs a Difference-in-Differences (DID) model to
rigorously assess the impact of Chinas Green Freight Delivery
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TABLE 8 Regression results after excluding samples from the pandemic
period (2020-2022).

Variables Results

treat_post —0.052%%*
(-0.017)
gdp 0.134
(—=0.11)
Beds 0.041
(=0.07)
Pop_Density 0.071
(-0.078)
Car_Owners~p 0.23
(=0.229)
_cons 0.691
(—0.626)
City Yes
Year Yes
R-squared 0.791
N 341

Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Demonstration Project on residents’ respiratory disease mortality. The
main findings are as follows:

1 Significant health benefits of the policy: The research covered
data over a period of 7 years (2018-2024) after the policy was
implemented. There are signs that the policy effect is increasing
over time, indicating that the health benefits of the policy are
not a one-off shock but rather cumulative and continuous. As
the penetration rate of new energy vehicles increases year by
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TABLE 9 Regression results with the dependent variable replaced (annual
average urban AQl).

(1) (2)
Replacing the PSM-DID
dependent variable method
treat_post —0.052%%* —0.7258%%%*
(—0.017) (0.2611)
Control Yes Yes
City Yes Yes
Year Yes Yes
N 341 392
R-squared 0.915 0.889

Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

year, the health dividend is also accumulating and expanding
year by year. Therefore, the promotion policy of new energy
logistics vehicles has indeed effectively reduced the mortality
rate of respiratory diseases among residents in the pilot cities.
After controlling for multiple confounding factors, this effect
still exists steadily and has long-term utility.

2 Mediation analysis confirms that improvements in urban air
quality—particularly the significant reduction in sulfur dioxide
(SO,) concentrations—are the primary pathway through which
the policy generates health benefits. This air quality channel
accounts for approximately 16.1% of the total policy effect. It
should be noted that SO, is a primary and secondary pollutant. In
contrast, for PM..s, No, and O;, apart from direct emissions, there
are various sources such as dust, industrial emissions and
secondary generation. The new energy vehicle policy merely
reduces the traffic sources. Therefore, the policy has the most
obvious effect on reducing SO,, which is almost entirely derived
from the combustion of transportation fuel. In contrast, the short-
term mediating roles of NELV market penetration and industrial
structure adjustment are not statistically significant, indicating that
these macro-level impacts may require a longer period
to materialize.

3 Significant heterogeneity in policy effects: The health impact of the
policy is not uniform across cities. It is more pronounced in cities
characterized by lower economic development, higher baseline
pollution levels, and greater vehicle density. From an economic
perspective, this conforms to the principles of diminishing
marginal returns and resource constraints. Economically
backward regions and cities with relatively severe initial pollution
often retain more old vehicles with high emissions. The marginal
emission reduction effect and marginal health benefits of new
energy vehicles replacing them are higher.

From a public health perspective, this reveals the relationship
between “prevention” and “treatment.” In cities rich in medical resources,
residents’ health is more dependent on the medical treatment at the back
end, and the health benefits brought by environmental improvement are
“buffered” by the medical system. In cities with weak medical resources,
residents’ health is more dependent on environmental prevention at the
front end. The implementation of policies has directly reduced those
deaths that were previously beyond saving due to insufficient medical
resources, and the marginal benefit to their health is extremely high.
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Therefore, the health benefits of this policy are not evenly
distributed. The biggest beneficiaries are those “vulnerable” cities with
poor environmental infrastructure and restricted economic and
medical resources. These findings provide critical empirical support for
the targeted implementation of environmental policies and the efficient
allocation of policy resources to maximize public health returns.

5.2 Policy recommendations

Based on the findings of this study, the following recommendations
are proposed to enhance the social value and effectiveness of future
green transportation policies: (1) Policy instruments—such as fiscal
subsidies, tax incentives, and road access privileges—should
be strategically prioritized for regions with limited environmental
carrying capacity, historically severe pollution burdens, and
underdeveloped public health systems. This approach not only
improves the efficiency of environmental governance but also
contributes to promoting interregional health equity. (2) Strengthen
coordinated governance of multiple pollutants. Environmental policy
design and performance evaluation should move beyond reliance on
single-pollutant indicators (e.g., PM..s). Instead, a comprehensive
governance and monitoring framework should be established to target
a spectrum of pollutants—including SO,, NO,, and others—thereby
enabling a more accurate and holistic assessment of policy impacts on
both the environment and public health. (3) Establish an integrated
“environment-health” linkage evaluation mechanism. In assessing the
cost-effectiveness of environmental interventions, evaluation
frameworks should be expanded to include public health outcomes.
Health-related metrics—such as reductions in disease burden, avoided
healthcare expenditures, and improvements in quality-adjusted life
years (QALYs)—should be quantified and incorporated into policy
decision-making. This would enable a more comprehensive accounting
of the wider social benefits of green development strategies. (4)
Systematically promote green transformation in the transportation
industry. The transition toward sustainable transportation is influenced
by multi-level factors, including macroeconomic conditions,
institutional frameworks, and local-level adoption dynamics.
Policymaking should therefore be tailored to the specific developmental
context and transformation stage of each region. In China, local
governments can draw on the successful experiences of demonstration
cities to formulate context-specific transition plans. These should
support the phased electrification of logistics fleets and facilitate green
transformation across the entire transportation industry chain,
ensuring a balanced and orderly shift toward low-carbon mobility.

5.3 Methodological implications and
research prospects

This study was not content with a single assessment method but
constructed a multi-level and mutually verifying analytical system:
Firstly, the benchmark causal effect is established by the difference-in-
differences model (DID). Then, high-dimensional confounding
variables and nonlinear relationships are processed through dual
machine learning (DML) to enhance robustness. Additionally,
mediating analysis and heterogeneity tests are used to reveal the
internal mechanism and differentiated effects. Finally, a series of strict
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robustness tests are conducted to provide support for the core
conclusion. This methodological combination effectively addresses the
core challenges such as endogeneity and confounding bias faced in
non-randomized policy evaluation, significantly enhancing the
credibility of causal inference.

This study paradigm offers valuable insights for future academic
studies and policy implementation. It provides a replicable and
scalable technical framework, along with rigorous standards, for
with
multidimensional and long-term impacts, such as “low-carbon cities”

evaluating comprehensive public  policies similarly
and “smart cities” Future research can build on this paradigm and
further explore the following two key directions:

The first key direction is to evaluate the varying effectiveness and
synergistic impacts of different policy instruments. By comparing the
cost-effectiveness and health benefits of various electric vehicle
promotion measures—such as purchase subsidies, road-use priority,
and investments in charging infrastructure—research can deliver
precise scientific evidence to help policymakers optimize policy mixes
and maximize overall benefits.

The second key direction is to deepen the integration and application
of multi-source heterogeneous data. This includes incorporating high-
frequency, multi-dimensional new data sources—such as using remote
sensing data to generate more detailed pollution maps, leveraging data
from wearable devices to capture real-time physiological health
responses, and integrating administrative data with these emerging
sources—to build a more comprehensive analytical framework.

Through multi-dimensional validation and methodological
innovation, future research will be better equipped to confirm the
existence and robustness of policy effects, explore their underlying
mechanisms and heterogeneity in greater depth, and thereby provide
truly scientific and precise support for public policy optimization,
advancing the coordinated governance of the environment, health,

and the economy.
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