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With the rapid development of industrialization and urbanization in China, air 
pollution has become an increasingly serious problem, and people are increasingly 
concerned about its impact on personal physical and mental health. From the 
perspective of health behavior, this study investigates the participation of residents 
in sports activities by examining fitness behavior and using temperature inversion as 
an instrumental variable for air pollution. Based on the China Family Panel Studies 
dataset from 2010 to 2018, this paper empirically examines the causal relationship 
between air pollution and residents’ participation in fitness activities using two-
stage least squares. The research results reveal a statistically significant negative 
correlation: as air pollution intensifies, the likelihood of individuals participating 
in fitness activities decreases. Additionally, the research results highlight the 
heterogeneous effects among different demographic groups, including differences 
in gender, age, education level, household registration, health status, and income 
status. Overall, this study provides strong evidence for the health-related economic 
costs of air pollution.
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1 Introduction

Air pollution represents a serious worldwide environmental health threat, with the World 
Health Organization assessing (49) that 4.2 million deaths annually are caused because of the 
ambient exposure, primarily through cardiovascular and respiratory diseases1. This burden is 
marked by pronounced socioeconomic disparities: low-income nations experience 23% higher 
relative healthcare expenditure impacts compared to high-income countries (1), while 
vulnerable populations face heightened risks due to limited access to protective and mitigation 
resources (2). The pathophysiological mechanisms underlying these effects are well established. 
For instance, Pope et al. (3) quantified the dose–response link between PM2.5 exposure and 
cardiopulmonary mortality, findings supported by Dockery et al. (4) and Samet et al. (5) across 
diverse populations. Moreover, Brook et  al. (6) elucidated biological pathways linking 
particulate matter (PM) to systemic inflammation and endothelial dysfunction. Recent 

1  WHO. (2018, May2). Ambient (outdoor) air pollution. Retrieved March14, 2019, from https://www.who.

int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
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evidence also highlights developmental consequences: Chay and 
Greenstone (7) documented increases in infant mortality linked to 
recession-induced pollution shocks, while Currie et al. (8) identified 
long-term health and economic impacts associated with early-
life exposure.

Beyond conventional health outcomes, air pollution significantly 
shapes behavioral responses and economic decision-making. Neidell 
(9) pioneered research on avoidance behaviors, demonstrating 
reductions in asthma hospitalizations during ozone alerts, while Zivin 
and Neidell (10) quantified productivity losses attributable to pollution 
exposure. Defensive strategies also play an important role, with Ito 
and Zhang (11) measuring Chinese households’ “willingness-to-pay 
for cleaner air,” and Deschenes et  al. (12) analyzing defensive 
expenditures under the NOx Budget Program. These individual 
responses further accumulate into broader macroeconomic effects. 
For example, Hanna and Oliva (13) estimated a 5.8% reduction in 
labor supply during peak pollution episodes in Mexico City, 
Greenstone and Hanna (14) reported declines in infant mortality 
following Indian environmental regulations, and Walker (15) 
quantified sectoral reallocation costs resulting from compliance with 
the U. S. Clean Air Act. Liao et al. (16) found that environmental 
pollution significantly exacerbates income related health inequalities, 
thereby further widening the wealth gap. Furthermore, Liao et al. (17) 
found that controlling air pollution can significantly improve 
residents’ physical health.

The psychological and societal ramifications of air pollution reveal 
complex welfare trade-offs. Braithwaite et al. (18) identified PM2.5 
thresholds above 50 μg/m3 as increasing depression risk by 10%, 
potentially influencing migration dynamics, as Chen et  al. (19) 
observed a 2.8% population outflow for every 10% rise in PM2.5 
concentrations. Welfare valuation research further underscores these 
impacts: Welsch (20) equated PM10 reductions to income-equivalent 
gains of 11% in life satisfaction, whereas Neidell (21) reported that 
pollution alerts paradoxically increased private vehicle use. More 
recent studies have broadened the lens to quality-of-life dimensions. 
Wei et al. (22) found that long-term exposure to environmental air 
pollution is associated with an increased incidence of depression 
among the Chinese population, further revealing the profound impact 
of air pollution on mental health. Ren et al. (23), on the other hand, 
from the perspectives of residents’ attention and the sustainability of 
commercial health insurance, how does air pollution affect the 
complex trade-off between social mental health and economic 
behavior. Zhang et  al. (24) demonstrated a strong negative link 
between subjective well-being and PM2.5 exposure in China, with 
each 1 μg/m3 increase linked with a 0.8 percentage point decline in life 
satisfaction. Fertility behavior has also been shown to respond to 
environmental conditions; Zhang and Yu (25) found that air pollution 
lowered fertility intentions by 12.7% among women of childbearing 
age in highly polluted areas. Additionally, emerging evidence suggests 
physiological pathways, with Zhang et  al. (26) indicating that 
metabolic disruptions caused by PM may contribute to obesity. 
Urbanization further complicates these dynamics: Schlenker and 
Walker (27) linked airport-related emissions to localized health 
declines, while Banzhaf and Walsh (28) provided empirical support 
for Tiebout’s “voting with feet” migration hypothesis.

Physical activity represents a critical behavioral nexus where the 
health benefits of exercise intersect with the risks posed by pollution 
exposure. Lin et  al. (29) research indicates that in China, the 

cardiovascular health benefits of active commuting are moderated by 
environmental fine particulate matter, highlighting the complex health 
trade-off between physical activity and pollution exposure. The study 
by Hao et al. (30) analyzed the PURE-China cohort and pointed out 
the combined impact of long-term exposure to outdoor fine 
particulate matter and physical activity on mortality and 
cardiovascular events, further confirming physical activity as a key 
behavioral node where health benefits and pollution risks converge 
(29, 30). Rundell (31) demonstrated that PM2.5 deposition during 
exercise is 5–20 times higher than at rest. At the population level, 
behavioral adaptations are evident: Roberts et al. (32) documented an 
inverse link between physical activity and pollution, while Yu et al. 
(33) quantified that retirees reduced weekly walking by 4.69 h for 
every 56.6 μg/m3 raise in PM2.5. These behavioral responses present 
a fundamental challenge to policy initiatives such as China’s “Healthy 
China Strategy,” promoted at the 19th CPC National Congress, which 
emphasizes increased physical activity as a cornerstone of 
public health.

Policy interventions have demonstrated measurable yet uneven 
success in addressing air pollution. Shapiro and Walker (34) attributed 
60% of U. S. manufacturing emissions reductions to regulatory measures, 
while Greenstone (35) documented technology-driven substitutions 
prompted by the Clean Air Act. Similarly, Davis (36) quantified the 
influence of power plant proximity on property values. Nonetheless, 
persistent challenges remain in developing countries. Ebenstein et al. (37) 
revealed stark mortality disparities caused by China’s Huai River policy, 
Barwick et al. (38) measured morbidity costs through consumer spending 
patterns, and Luechinger (39) identified significant life satisfaction effects 
from transboundary pollution. Innovative monitoring and analytical 
approaches continue to expand the policy toolkit. For instance, Apte et al. 
(40) leveraged Google Street View mapping to refine urban pollution 
monitoring, while Deryugina et al. (41) used wind-direction variation as 
a usual experiment to improve causal identification of pollution’s health 
impacts. Bruyneel et  al. (42) evaluated the positive impacts of the 
low-emission zone policies in Antwerp and Brussels on air quality, socio-
economic disparities and health conditions through quasi-experimental 
methods. New empirical evidence was provided for the effectiveness of 
policy intervention. Liu et al. (43) evaluated the effect of China’s air 
pollution control policies using the different-in-differences method, 
revealing the significant but uneven effectiveness of policy intervention 
in improving air quality. Ren et al. (44) found that innovative urban 
policies can provide strong and effective support for air pollution control.

There is a lack of empirical research in academia on the impact of 
air pollution on residents’ fitness behavior. Our study will serve as a 
supplement to this area of research. This study advances the 
understanding of pollution–behavior interactions through three key 
innovations. First, we  employ temperature (temp) inversion as a 
natural experiment (45) to address endogeneity concerns that have 
limited prior observational studies (46). Second, we integrate high-
resolution pollution data from NASA’s MERRA-2 database (47) with 
longitudinal China family panel studies (CFPS) fitness behavior 
records (48) which represents an innovative approach to bridging 
macro-level environmental monitoring with micro-level behavioral 
data. By combining satellite-derived, grid-level PM2.5 concentration 
estimates with detailed individual exercise habits tracked over multiple 
years, this integration enables a granular analysis of how localized air 
pollution variations directly influence personal fitness decisions— a 
methodological advancement that transcends traditional reliance on 
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coarse administrative pollution data or isolated datasets. Third, our 
findings inform the implementation of the “Healthy China” strategy 
by identifying context-specific barriers to physical activity in polluted 
urban regions, thereby complementing global evidence on avoidance 
behaviors and providing policy-relevant elasticity estimates for 
Chinese urban planners. Ultimately, this study is expected to provide 
experiential insights for environmental governance departments, 
social security departments, and fitness related institutions.

2 Model specification

This study sought to examine the causal link between residents’ 
fitness behavior and air pollution. In the baseline analysis, PM2.5 annual 
average concentrations (AACs) are used as a proxy variable for 
atmospheric pollution, while SO2− ACCs are introduced as an alternative 
proxy in robustness checks. The empirical results may be affected by 
endogeneity issues arising from three main sources. First, omitted 
variable bias may distort the findings. For example, economic 
development is typically positively correlated with air pollution, as more 
developed regions often experience higher pollution levels. At the same 
time, economic development shapes residents’ behavioral patterns, 
influencing lifestyle choices and fitness participation. Consequently, 
individuals may relocate based on personal preferences, economic 
opportunities, and social characteristics, thereby systematically altering 
their exposure to pollution. Second, reverse causality between air 
pollution and fitness behavior may bias results. Residents’ physical fitness 
influences social productivity, and higher productivity may increase 
pollutant emissions, which in turn worsen air quality. Third, measurement 
error in pollution indicators may occur, as air quality data in some 
countries are vulnerable to deliberate manipulation. To address this, the 
study relies on data from reputable and verified sources to minimize 
such risks.

Temperature inversion, a well-documented meteorological 
phenomenon, exhibits a strong correlation with pollution levels and 
is therefore used as an instrumental variable (IV) to address 
endogeneity. The temp inversion measure satisfies the exogeneity 
conditions required for a valid instrument, and its use in air pollution 
research is well established in both domestic and international 
literature (45). To further strengthen identification, we incorporate a 
comprehensive set of meteorological covariates, including daily mean 
temp, sunshine duration, maximum (max) and minimum (min) 
temps, wind speed and direction, and precipitation. Controlling for 
these factors ensures that the temp inversion variable satisfies the 
exclusion restriction required for instrumental variables (IVs). 
Accordingly, we specify the following two-stage least squares (2SLS) 
econometric model:

	
' '

ict 0 1 ict ict ict i t ictExercise Air X W= α +α +β + γ +λ +µ + ε 	 (1)

	
' ' '

ict 0 1 ict ict ict i t ictAir TI X W= ϕ +ϕ +β + γ +λ +µ + ε � (2)

ictExercise  represents the weekly frequency of fitness activities for 
individual i, where c denotes the county and t the year. This measure 
captures respondents’ fitness behavior across time, geographic regions, 
and age groups. The variable ictAir  reflects ambient air quality in 

county c during year t, with PM2.5 concentration serving as the 
primary regressor in the baseline specification.

The variable '
ictX  represents the influence of individual and 

socioeconomic characteristics on ictExercise , including age, 
educational attainment, marital status, self-rated health, residential 
location, employment status, health insurance coverage, income level, 
and overall socioeconomic status. The term '

ictãW captures the effects 
of weather-related factors, such as annual average temp, daily min and 
max temps, sunshine duration, wind speed and direction, as well as 
precipitation levels. The IV ictTI  denotes the annual frequency of temp 
inversion events in county c during year t. To address unobserved 
heterogeneity, ië represents individual fixed effects, accounting for 
time-invariant features like gender, while tì denotes time fixed effects, 
capturing common temporal shocks (e.g., the “Healthy China 
Strategy” proposed during the “19th National Congress of the 
Communist Party of China,” which significantly increased public 
awareness of physical fitness and exercise). Finally, ictå  represents the 
idiosyncratic error term.

3 Empirical methodology

3.1 Data specification

This study draws on data related to urban air pollution, 
atmospheric temperature inversion indicators, and the China Family 
Panel Studies (CFPS), a national survey conducted by the Institute of 
Social Science (ISS) at Peking University from 2010 to 2018. The 
CFPS, supported by Peking University, was carried out in 2010, 2012, 
2014, 2016, and 2018. It covers a broad range of research topics, 
including physical exercise, employment, education, health, economic 
activities, social participation, family dynamics, and grassroots 
governance. The CFPS is characterized by comprehensive coverage, 
methodological rigor, and a large sample size, ensuring strong 
representativeness. Specifically, the baseline surveys for 2010–2018 
were drawn from 23 provinces using a three-stage sampling procedure 
(county, village, and household), ultimately encompassing tens of 
thousands of respondents.

This paper relies on CFPS data for three key reasons. First, the 
baseline survey consistently included questions about respondents’ 
physical exercise habits, specifically the number of weekly exercise 
sessions. Importantly, this question was repeated across all five survey 
waves (2010–2018), making exercise frequency a reliable dependent 
variable for this study. Second, the CFPS dataset contains precise 
information on residential location and interview dates, enabling 
accurate spatiotemporal matching between respondents’ exercise data 
and local annual air pollution levels. Third, the CFPS provides 
extensive data on multidimensional individual features, including 
education’s years, age, residential location, employment status, marital 
status, and self-assessed health status, enabling the inclusion of a 
robust set of control variables in the econometric analysis.

This study employs county-level PM2.5 AACs to represent 
regional air pollution levels. Currently, the main source of air pollution 
data in China is provided by ground-based monitoring stations, which 
are maintained by the China National Environmental Monitoring 
Centre (CNEMC), an agency under the Ministry of Ecology and 
Environment. The key advantage of this dataset is its relatively high 
measurement accuracy; however, it also presents several drawbacks, 
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including the limited number of stations, their uneven geographic 
distribution, and the high costs associated with monitoring. Moreover, 
monitoring station data cannot fully capture individual pollutants, and 
PM2.5 concentration values may be subject to potential manipulation. 
To mitigate potential bias arising from these data limitations, this 
study employs satellite-derived aerosol optical depth (AOD) data to 
estimate near-surface PM2.5 concentrations. The underlying principle 
is that AOD represents the vertical integral of the extinction coefficient 
throughout the atmospheric column and exhibits a strong correlation 
with ground-level PM concentrations. Following the methodology of 
Buchard et al. (47), we obtained longitude–latitude gridded AOD data 
(0.5° × 0.625°, around 60 km × 50 km) dating back to 1980 from 
version 5.12.4 of the M2TMNXAER product, publicly released by the 
NASA. In line with Buchard et al. (47), ArcGIS 10.2 software was then 
used to calculate gridded PM2.5 ACC data across all of China for the 
period 2010–2018. These annual pollutant data were subsequently 
aggregated at the county level. In addition, NASA provides SO2− ACC 
data, which allows this study to construct county-level annual average 
SO2− values using the same methodology, thereby serving as a proxy 
variable for air pollution in robustness checks.

Additionally, this study incorporates several meteorological 
indicators as control variables. Moreover, the weather data, obtained 
from 820 meteorological stations across China and provided by the 
“China Meteorological Administration Information Center,” include 
daily average temp, max and min temps, sunshine duration, wind 
direction and speed, and precipitation. To construct county-level 
annual averages, the inverse distance weighting (IDW) method was 
applied to interpolate meteorological information from station points, 
using a search radius of 200 kilometers.

This study further employs the annual frequency of temp 
inversion events as an IV for air pollution. The inversion data were 
sourced from the second Modern-Era Retrospective analysis for 
Research and Applications, Version 2 (MERRA-2) dataset released by 
NASA. MERRA-2 provides atmospheric temp profiles from 110 
meters to 36,000 meters above ground level since 1980, reported as 
six-hourly averages across 42 atmospheric pressure layers within 
50 km × 60 km grid cells. For each year and each pressure layer, the 
six-hourly values were aggregated from the grid level to the county 
level. Under typical conditions, surface temps are higher than those in 
upper layers, indicating the absence of inversion. In contrast, a temp 
inversion is identified when the temp in the lowest atmospheric layer 
(110 meters above ground level) is higher than that in the second layer 
(320 meters above ground level). During such events, air pollutants 
remain trapped near the surface and fail to disperse efficiently, thereby 
exacerbating pollution levels. Given that MERRA-2 provides 
six-hourly averages, inversion conditions can be identified up to four 
times daily. To ensure consistency and reduce measurement error, this 
study defines a daily inversion occurrence if at least one inversion 
event is detected within a 24-h period. The total annual count of 
inversion days was then calculated for each county.

3.2 Variable statistical description

As shown in Table 1, the variable Exercise reflects respondents’ 
weekly physical exercise behavior (0 = no exercise, 1 = exercises). 
Health measures self-rated health status, with values from 1 to 5, 
where higher scores specify greater satisfaction with one’s current 

physical health. Urban Hukou denotes whether the respondent holds 
an urban household registration (1 = urban hukou, 0 = rural hukou). 
Age represents the respondent’s age, while Years of Education captures 
educational attainment. Marital Status records the respondent’s 
marital situation (Widowed = 5, Divorced = 4, Cohabiting = 3, 
Married = 2, and Single = 1). Employment Status indicates work 
participation (0 = unemployed, 1 = employed), and Insurance shows 
whether the respondent has insurance coverage (0 = no insurance, 
1 = insured). Income satisfaction captures individuals’ satisfaction 
with their income levels, measured on a scale from Very satisfied (5) 
to Very dissatisfied (1). Social standing reflects respondents’ self-
perceived social status within their local community, ranging from 
Very high (5) to Very low (1). Environmental variables include PM2.5, 
representing the AAC of fine PM (μg/m3), and SO2−, representing the 
AAC of sulfur dioxide (μg/m3). Inversion Days 1 measures the annual 
count of days with temperature inversions occurring between the 
second atmospheric layer (320 meters) and the first layer (110 m), 
whereas Inversion Days 2 quantifies inversions between the first layer 
(110 m) and the third layer (540 m). Within the study sample, 61.2% 
of respondents reported engaging in weekly exercise. From 2010 to 
2018, the average annual PM2.5 concentration was 72.44 μg/m3, 
surpassing the WHO health safety guideline of 10 μg/m3 by more than 
sevenfold. The standard deviation (SD) of PM2.5 concentration was 

TABLE 1  Descriptive statistics.

Variable Average 
value

SD Min 
value

Max 
value

Keep-fit 

exercises

0.612 0.487 0 1

Health 2.933 1.305 1 5

Whether in the 

town

0.443 0.497 0 1

Age 50.45 13.67 16 94

Years of 

education

6.435 4.741 0 20

Marriage 2.148 0.745 1 5

Employment 0.678 0.467 0 1

Insurance 0.914 0.280 0 1

Income 2.491 1.045 1 5

Social class 2.931 1.051 1 5

PM2.5 72.44 31.18 7.292 141.6

SO2 26.20 15.12 0.816 63.60

Temp 14.31 4.701 −0.900 23.70

Humidity 66.00 9.108 42.40 86

Precipitation 946.9 543.0 132.2 3,203

Sunshine 

duration

1971 477.0 598.4 3,024

Days with 

adverse weather 

1

158.1 77.69 4 324

Days with 

adverse weather 

2

112.8 60.69 1 275
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31.18 μg/m3, with observed values ranging from 7.292 μg/m3 to 
141.6 μg/m3. Regarding atmospheric inversions, the mean annual 
count of inversion days between the first and second layers was 158.1, 
indicating inversions occurred on nearly half the days of the year, with 
a SD of 77.69 days, a min of 4 days, and a max of 324 days. For 
inversions between the first and third layers, the average annual count 
was 112.8 days, with a SD of 60.69 days, a min of 1 day, and a max of 
275 days.

4 Results of empirical evidence

4.1 OLS regression outcomes

Table 2 presents the results that was carried out exclusively by 
employing the Ordinary Least Squares (OLS) regression model 
defined in Equation 1. Column (1) reports regression findings 
excluding both individual-level and weather control variables. 
Column (2) excludes individual-level controls but incorporates 
weather controls. Besides, column (3) contains individual-level 
controls but omits weather controls, while column (4) comprises both 
individual-level and weather control variables.

The results demonstrate that, across all model specifications, no 
statistically significant negative association between air pollution and 
individuals’ engagement in physical exercise, irrespective of whether 
weather-related or individual-level controls are included. This 
outcome suggests that potential endogeneity may be introducing bias 
into the estimates. To address this concern, the research uses the 
annual count of temp inversion days as an IV for air pollution and 
applies a 2SLS estimation strategy.

4.2 2SLS regression outcomes

4.2.1 First-stage regression results: the influence 
of temp inversion days on air pollution

The objective of the first-stage test is to examine whether temp 
inversions influence air pollution, with the results reflecting the extent 
to which the frequency of inversions affects pollution levels. As shown 
in Equation 2, the frequency of temp inversions is included as the 
independent variable, while PM2.5 concentration serves as the 
dependent variable. The F-statistics are all greater than 10, which 
confirms the overall statistical significance of the model. As shown in 
Table 3, column (1) reports the regression outcomes excluding both 
individual-level and meteorological control variables. Column (2) 
includes meteorological controls but excludes individual-level 
controls. Column (3) incorporates individual-level controls while 
excluding meteorological controls, and column (4) presents the 
regression outcomes including both sets of controls.

The first row of Table 3 shows a statistically significant positive 
link between the frequency of temp inversions and PM2.5 AACs 
across all specifications. In particular, a higher number of inversion 
days within a year is associated with elevated annual average PM2.5 
levels. This finding supports the theoretical expectation that, during 
inversion episodes, atmospheric pollutants are trapped near the 
surface and fail to disperse effectively, thereby worsening air quality in 
affected regions. The estimated coefficient of temp inversion, 0.0066, 
indicates that each additional inversion day surges the PM2.5 AAC by 
0.0066 μg/m3.

4.2.2 Second-stage regression results: the impact 
of air pollution on residents’ physical activity 
behaviors

As shown in Table 4, the PM2.5 AAC is employed as the key 
explanatory variable to measure air pollution levels, and the second-
stage regression outcomes are reported. Column (1) shows the 
regression estimates without individual-level or weather-related 
variables, but with both individual and year fixed effects included. The 
results reveal a statistically significant negative association at the 1% 
significance level between PM2.5 AACs and residents’ physical 
exercise behavior, with a regression coefficient of −0.0391. Column 
(2) extends this specification by adding weather controls, and while 
the negative relationship remains statistically significant (1% level), 
the coefficient magnitude increases in absolute terms to −0.0614. 
Column (3), which incorporates individual-level controls based on 
column (1), continues to show a significant negative effect (1% level), 
with a coefficient of −0.0397, nearly identical to the value reported in 
Column (1). Column (4), which comprises both individual-level and 
weather -related control variables, also reports a statistically significant 
negative association at the 1% significance level, with a coefficient of 

TABLE 2  OLS regression results without IVs.

Dependent 
variable: 
fitness 
exercise

(1) (2) (3) (4)

PM2.5 (μg/m3) 0.0000

(0.0006)

0.0011

(0.0007)

−0.0001

(0.0006)

0.0006

(0.0008)

Age −0.0123*

(0.0068)

−0.0036

(0.0115)

Education −0.0015

(0.0016)

−0.0018

(0.0017)

Whether in the 

town

−0.0021

(0.0126)

−0.0063

(0.0142)

Marriage 0.0062

(0.0061)

0.0047

(0.0068)

Employment 0.0364

(0.0056)

0.0319

(0.0063)

Health 0.0055 0.0071

Insurance (0.0022)

0.0002

(0.0026)

−0.0082

Income (0.0078)

−0.0005

(0.0090)

−0.0027

Social class (0.0024)

−0.0109

(0.0023)

(0.0028)

−0.0101

(0.0028)

Meteorological 

control
× √ × √

Individual FE √ √ √ √

Year FE √ √ √ √

Heteroskedasticity-robust standard errors are presented in parentheses and * denotes 
significance at the 10% significance level.
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−0.0660. These results highlight that individual-level control variables 
exert little influence on the PM2.5 estimated effect, whereas the 
inclusion of weather variables has a more substantial impact on the 

coefficient magnitude. Specifically, the column (4) estimates propose 
that a 1 μg/m3 rise in PM2.5 AACs is associated with a 6.6% reduction 
in the probability of residents engaging in weekly physical exercise. 
Considering the SDs of 0.487 for the dependent variable (physical 
exercise) and 31.18 for the explanatory variable (PM2.5), the 
standardized regression coefficient is calculated as −4.23, indicating 
that in column (4), a one- SD rise in annual average PM2.5 level is 
associated with a 4.23-SD decline in weekly physical exercise.

Furthermore, the regression outcomes in column (4) show a 
statistically significant positive association at the 10% level between urban 
household registration status and residents’ exercise behavior. This result 
indicates that urban residents tend to participate more in physical fitness 
activities, which may be attributed to the higher availability of exercise 
facilities and a broader range of recreational opportunities in urban areas 
compared to rural regions. Such factors may encourage stronger interest 
and participation in physical activity. In addition, the ongoing process of 
urbanization has facilitated the transition of rural residents into urban 
populations, thereby broadening the base of individuals who regularly 
engage in exercise. The analysis also reveals a statistically significant positive 
correlation at the 1% significance level between employment status and 
exercise participation, indicating that higher employment rates contribute 
to greater involvement in fitness activities. Moreover, health status 
demonstrates a positive relationship with exercise behavior at the 10% 
significance level, suggesting that individuals who report higher satisfaction 
with their health are more likely to participate in physical activity. Finally, 
the results identify a statistically significant negative association at the 1% 
level between social status and residents’ exercise behavior.

5 Robustness test

Drawing on the above findings, air pollution exhibits a negative 
association with residents’ physical activity behavior. To verify the 
validity of this conclusion, this section conducts a series of 
robustness checks.

In the 2SLS estimation, the AAC of PM2.5 was employed as the 
primary explanatory variable representing air pollution levels. To 
further strengthen the results, this section adopts the AAC of SO2− as 
an alternative indicator of air pollution severity.

As demonstrated in Table 5A, the first-stage regression outcomes 
demonstrate that, across all model specifications, temp inversion has 
a statistically significant positive association with SO2− AACs at the 
1% level, suggesting that a higher frequency of annual temp inversion 
events corresponds to increased SO2− pollution levels, which is 
consistent with established atmospheric science principles.

This outcome further supports the proposed mechanism: temp 
inversions trap pollutants near the surface and hinder their vertical 
dispersion, thereby intensifying air pollution severity in 
affected regions.

All F-statistics are above 10, with the F-statistic from Specification (4) 
reaching 174.33, indicating strong instrument relevance at conventional 
significance levels. The estimated coefficient for temp inversion frequency 
is 0.0036 (p < 0.01), indicating that each additional inversion day surges 
SO2− AACs by 0.0036 μg/m3, an effect that carries both statistical 
significance and practical implications for environmental policy.

Table 5B reports the second-stage regression outcomes. Column 
(4) shows that an increase of 1 μg/m3 in SO2− ACCs is associated with 
a 12.07% decrease in the percentage of residents who participate in 

TABLE 3  Regression outcomes for Phase One.

Dependent 
variable: PM 
(2.5 μg/m3)

(1) (2) (3) (4)

Temp inversion 

(annual 

Occurrence 

frequency)

0.0107***

(0.0008)

0.0071***

(0.0009)

0.0102***

(0.0008)

0.0066***

(0.0009)

Individual-level 

control variables
× × √ √

Meteorological 

control
× √ × √

Individual FE × √ √ √

Year FE × √ √ √

F-statistics 185.87 1981.75 20.92 668.32

Heteroskedasticity-robust standard errors are presented in parentheses and *** denotes 
significance at the 1% significance level.

TABLE 4  Regression outcomes of the Second Stage.

Dependent 
variable: 
fitness 
exercise

(1) (2) (3) (4)

PM2.5 (μg/m3) −0.0391***

(0.0077)

−0.0614***

(0.0163)

−0.0397***

(0.0082)

−0.0660***

(0.0181)

Age −0.0129*

(0.0067)

−0.0058

(0.0106)

Education −0.0015

(0.0016)

−0.0016

(0.0019)

Whether in the 

town

0.0216

(0.0144)

0.0063

0.0382*

(0.0205)

0.0044

Marriage (0.0065)

0.0303***

(0.0077)

0.0285***

Employment (0.0060)

0.0035

(0.0070)

0.0053*

Health (0.0023)

0.0068

(0.0029)

−0.0013

Insurance (0.0083)

−0.0011

(0.0106)

−0.0051

Income (0.0025)

−0.0120***

(0.0032)

−0.0107***

Social class (0.0024) (0.0031)

Meteorological 

control
× √ × √

Individual FE √ √ √ √

Year FE √ √ √ √

Heteroskedasticity-robust standard errors are presented in parentheses. Statistical 
significance is indicated by * and *** at the 10% and 1% levels, respectively.
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weekly physical exercise. Referring to Table  1, the SDs of the 
dependent variable (exercise participation) and the independent 
variable (SO2−) are 0.487 and 15.12, respectively. Given a regression 
coefficient of −0.1207, the corresponding standardized beta 
coefficient is calculated as −3.82. This result implies that a one-SD 
rise in SO2− concentration is linked with a 3.82-SD decline in weekly 
exercise participation.

Second, the robustness of the IV is conducted by redefining 
inversion frequency using alternative atmospheric layers. While the 
baseline specification measured inversions between the first layer 
(110 m) and the second layer (320 m), this section employs inversions 
occurring between the first layer (110 m) and the third layer (540 m) 
as the IV in the 2SLS estimation.

The results presented in Table 6 demonstrate:

	(1)	 The first-stage regression outcomes confirm a statistically 
significant positive association between thermal inversions and 
air pollution.

	(2)	 The second-stage regression results demonstrate a statistically 
significant negative association between air pollution levels and 
the physical exercise behavior of residents.

These findings remain consistent with our baseline regression 
conclusions, though coefficient magnitudes differ. The robustness of 
our IV approach is therefore empirically validated.

Finally, a falsification test is conducted by estimating a 2SLS model 
using respondents’ height as the dependent variable. Height is chosen 
as a placebo outcome because it is theoretically exogenous to air 
pollution exposure; unlike physical exercise behavior, no statistically 
significant relationship is expected.

The regression outcomes revealed in Table  7 confirm that air 
pollution does not have a statistically significant impact on height. 
This finding provides additional support for the validity of our main 
conclusion, indicating that the observed negative association between 
air pollution and residents’ physical exercise behavior likely reflects a 
causal effect rather than a false association.

6 Heterogeneity analysis

This section investigates the heterogeneous impacts of air 
pollution on residents’ physical exercise behavior across personal 

TABLE 5  First- and second-stage regression results for air pollution (SO2) 
and fitness behavior.

Panel A

Dependent 
variable: 
SO2− (μg/
m3)

(1) (2) (3) (4)

Temp inversion 

frequency (annual 

occurrences)

0.0314***

(0.0004)

0.0400***

(0.0004)

0.0028***

(0.0004)

0.0036***

(0.0004)

Individual-level 

controls
× × √ √

Meteorological 

controls
× √ × √

Individual FE √ √ √ √

Year FE √ √ √ √

F-statistic 78.7 536.91 12.19 174.33

Panel B

Dependent 
variable: 
physical 
exercise 
participation

(1) (2) (3) (4)

SO2− (μg/m3) −0.1353***

(0.0294)

−0.1110***

(0.0285)

−0.1439***

(0.0333)

−0.1207***

(0.0320)

Individual-level 

controls
× × √ √

Meteorological 

controls
× √ × √

Individual FE √ √ √ √

Year FE √ √ √ √

Heteroskedasticity-robust standard errors are presented in parentheses and *** denotes 
significance at the 1% significance level.

TABLE 6  First- and second-stage regression results for alternative 
inversion layer definition.

Panel A

Dependent 
variable: 
PM2.5− (μg/
m3)

(1) (2) (3) (4)

Thermal 

Inversions (annual 

count, 110–540 m)

0.0113***

(0.0008)

0.0040***

(0.0008)

0.0104***

(0.0008)

0.0030***

(0.0009)

Individual-level 

controls
× × √ √

Meteorological 

controls
× √ × √

Individual FE √ √ √ √

Year FE √ √ √ √

F-statistic 185.87 1981.75 20.92 668.32

Panel B

Dependent 
variable: 
physical 
exercise 
participation

(1) (2) (3) (4)

PM2.5 (μg/m3) −0.0817***

(0.0100)

−0.2628***

(0.0663)

−0.0904***

(0.0113)

−0.3499***

(0.1098)

Individual-level 

controls
× × √ √

Meteorological 

controls
× √ × √

Individual FE √ √ √ √

Year FE √ √ √ √

Heteroskedasticity-robust standard errors are presented in parentheses and *** denotes 
significance at the 1% significance level.
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characteristics, including gender, age, educational attainment, and 
household registration.

Table  8 highlights notable heterogeneity in the impact of air 
pollution across demographic groups. Columns (1) and (2) show that 
air pollution exerts a more pronounced negative effect on women’s 
exercise behavior compared with men, as reflected by a larger 
correlation coefficient for women. This difference may stem from 
variations in physical constitution and sensitivity to environmental 
factors, as women may be more attentive to air pollution concerns and 
physiologically more affected by its adverse health impacts.

The findings in Columns (3)–(5) indicate that air pollution 
significantly affects exercise behavior at the 5% level for younger 
adults, at the 1% level for middle-aged adults, and is not statistically 
significant for older adults. These differences may be attributed to 
three main factors. First, younger and middle-aged adults typically 
spend more time outdoors than older adults, resulting in greater 
exposure to air pollution. Second, they have better access to pollution-
related information, enabling timely awareness of air quality updates 
through the internet. Third, older adults, having lived in the area for 
extended periods, may develop stronger physiological adaptation to 
local environmental conditions, thereby reducing their perceived 
sensitivity to pollution.

Table 9 presents the heterogeneous effects of education level and 
hukou status on exercise behavior. Columns (1)–(2) show that, when 
respondents are grouped by education level, the coefficient for the 
higher-educated group is significant (1% level), while that for the 
lower-educated group is significant (5% level). This implies that higher 
educational attainment intensifies the adverse effect of air pollution 
on residents’ physical fitness behavior, possibly because more educated 
individuals are more aware of the health risks related with pollution. 
Columns (3)–(4) categorize respondents by hukou status, revealing 
further disparities. The results show that air pollution has a statistically 
significant impact on the exercise behavior of rural residents at the 
10% significance level, whereas no significant effect is observed for 
urban residents. This difference may be due to rural residents’ limited 
access to indoor exercise facilities, requiring them to engage in 
outdoor activities where exposure to pollution is unavoidable, while 
urban residents can more easily shift to indoor exercise settings.

Table  10 presents the results of a heterogeneity analysis on 
residents’ health status and income. The results in columns (1) and (2) 
indicate that air pollution has a stronger and highly significant 
negative effect on the fitness behavior of individuals with better health 

(at the 1% significance level), whereas its impact on individuals with 
poorer health is minimal. This difference can be explained by the fact 
that individuals with better health generally have a more active 
intention and higher frequency of engaging in fitness activities. 
Consequently, they are more sensitive to the negative effects of air 
pollution on outdoor fitness. In contrast, individuals with poorer 
health are less likely to participate in regular fitness activities, making 
them less affected by air pollution. The results in columns (3) and (4) 
reveal that the fitness behavior of low-income individuals is 
significantly more affected by air pollution (at the 1% significance 
level), while high-income individuals are largely unaffected. A possible 
explanation is that low-income individuals tend to engage in fitness 
activities in free, open-air environments, which are more susceptible 
to air pollution. In contrast, high-income individuals are more likely 
to use paid, professional indoor fitness facilities, which provide a 
controlled environment and thus reduce their exposure to polluted air.

7 Conclusion and policy 
recommendations

This study utilized data from the China Family Panel Studies 
(CFPS) from 2010 to 2018, combined with local air quality and 
meteorological records of the corresponding years, to accurately 
measure the frequency of physical exercise among respondents. To 
address the potential endogeneity of air pollution exposure, this study 
employed the meteorological phenomenon of temperature inversion 
as an instrumental variable. Through two-stage least squares (2SLS), 
this study empirically established the causal relationship between air 
pollution and residents’ physical exercise behavior.

The research results show that for every one standard deviation 
increase in the annual average concentration of PM2.5, the frequency 
of residents’ physical exercise decreases by 4.23 standard deviations. 
To test the robustness, this study first used the annual average 
concentration of sulfur dioxide as an alternative estimate of air 
pollution. Additionally, by modifying the selection criteria for 
temperature inversion and conducting placebo tests using 
respondents’ height instead of physical exercise behavior, the analysis 
results were further verified. Heterogeneity analysis indicates that the 
adverse impact of air pollution on physical exercise behavior is more 
significant among women, young and middle-aged people, those with 
higher education levels, non-urban residents, people in good health, 
and low-income groups. The above analysis suggests that air pollution 
has now become a key factor affecting residents’ willingness to 
exercise. Therefore, in promoting the national fitness program and the 
Healthy China initiative, it is necessary to address the ecological and 
environmental challenges related to air pollution. Based on these 
findings, the following suggestions are proposed:

First, in the process of advancing ecological civilization 
construction and sustainable development, it is recommended to 
strengthen the air quality monitoring system and establish a risk 
warning mechanism to overcome the public’s cognitive barriers to 
pollution exposure. In international comparisons, many developed 
countries, such as the United States and the United Kingdom, have 
well-established air quality monitoring and warning systems. The 
United  States Environmental Protection Agency (USEPA) has 
established a national air quality monitoring network that can provide 
real-time and accurate data on the concentrations of relevant air 

TABLE 7  Falsification test (placebo regression).

Dependent 
variable: 
height

(1) (2) (3) (4)

2SLS estimates: 

PM2.5(μg/m3)

0.0383

(0.0805)

−0.0643

(0.1363)

−0.0264

(0.0890)

−0.1647

(0.1555)

Individual-level 

controls
× × √ √

Meteorological 

controls
× √ × √

Individual FE √ √ √ √

Year FE √ √ √ √

Heteroskedasticity-robust standard errors are presented in parentheses.
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pollutants, which helps the public obtain air quality information in a 
timely manner. Therefore, the government should intensify efforts to 
improve air quality, improve the monitoring mechanism, ensure the 
reliability and accuracy of data, and promptly release air quality 
information to the public, enabling residents to take appropriate 
protective measures.

Second, it is necessary to enhance public awareness of the 
concept that “green mountains and clear waters are as valuable as 
mountains of gold and silver,” especially among groups that are 
more sensitive to air quality. Communities can increase the 
intensity of health exercise education activities, popularize the 
hazards of air pollution to health and the protective measures that 
can be taken among specific groups, and encourage all sectors of 
society to use new media platforms to disseminate correct fitness 
awareness and knowledge, explaining the cumulative impact of air 
pollution on heart and lung function during physical activities in 
polluted periods.

Third, establish differentiated air pollution control mechanisms to 
balance health benefits and development needs. Excessively aggressive 
measures may lead to simplistic solutions, thereby hindering 
development, while insufficient control may fail to achieve the 
expected results and improve residents’ living environment. Therefore, 
it is crucial to establish governance goals based on science. The 
government can implement corresponding measures based on the 
pollution levels and industrial characteristics of different regions, 
establish a flexible seasonal control mechanism based on the threshold 
of pollution gasses, prioritize restrictions on industrial emissions and 
traffic pollution during severe pollution periods, and implement 
dynamic adjustments during non-peak periods. Quantify policy 
effects through health benefit–cost assessment models to achieve the 
coordinated optimization of promoting health and 
economic development.

Fourth, promote the coordinated development of fitness 
infrastructure and transportation systems to alleviate the impact of 

TABLE 8  Analysis results of gender and age heterogeneity.

The regression 
outcomes of the 
second stage

Gender Age

Explained variable: 
fitness exercise

Female Male Young people 
(<39)

Wrinkly (40–59) Old people 
(≥60)

(1) (2) (3) (4) (5)

PM2.5(μg/m3) −0.1304***

(0.0465)

−0.0311*

(0.0175)

−0.0553**

(0.0268)

−0.0520***

(0.0197)

−0.1238

(0.1313)

Individual-level control √ √ √ √ √

Weather control √ √ √ √ √

Individual FE √ √ √ √ √

Year FE √ √ √ √ √

F-statistic 346.69 325.77 155.35 391.43 133.4

Heteroskedasticity-robust standard errors are presented in parentheses. Statistical significance is indicated by *, **, and *** at the 10, 5, and 1% levels, respectively.

TABLE 9  Heterogeneous effects by education level and Hukou status.

Second-
stage 
regression 
outcomes

Years of schooling Whether in the 
town

Dependent 
variable: 
fitness 
exercise

<9 years ≥9 years No Yes

(1) (2) (3) (4)

PM2.5(μg/m3) −0.0639**

(0.0323)

−0.0666***

(0.0222)

−0.0637*

(0.0379)

−0.0156

(0.0113)

Individual-level 

control

√ √ √ √

Weather control √ √ √ √

Individual FE √ √ √ √

Year FE √ √ √ √

F-statistic 344.74 309.9 287.37 488.19

Heteroskedasticity-robust standard errors are presented in parentheses. Statistical 
significance is indicated by *, **, and *** at the 10, 5, and 1% levels, respectively.

TABLE 10  Heterogeneity analysis results of health and income.

Second-
stage 
regression 
outcomes

Health Income

Dependent 
variable: 
fitness 
exercise

Poor Good Low High

(1) (2) (3) (4)

PM2.5(μg/m3) 0.0006

(0.0277)

−0.0991***

(0.0227)

−0.0465***

(0.0164)

−0.0259

(0.0531)

Individual-level 

control

√ √ √ √

Weather control √ √ √ √

Individual FE √ √ √ √

Year FE √ √ √ √

F-statistic 21.13 44.59 59.34 6.03

Heteroskedasticity-robust standard errors are presented in parentheses and *** denotes 
significance at the 1% significance level.
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spatial limitations caused by environmental factors on health 
behaviors. Studies have shown that non-urban residents are more 
vulnerable to pollution, so it is recommended that the government 
launch special plans to build community fitness centers and prioritize 
the development of affordable indoor sports facilities in rural areas. In 
addition, priority should be given to infrastructure development, such 
as the expansion of high-speed rail networks. By increasing the 
accessibility of high-speed rail, local pollution can be reduced and 
travel convenience improved, thereby enhancing residents’ subjective 
well-being.

Fifth, a coordination mechanism between environmental and 
health policies should be  established to maximize the benefits of 
pollution control for public health. Improving the ecological 
environment and controlling air pollution can significantly reduce the 
incidence of various diseases, including heart disease, lung disease, 
stroke, and chronic respiratory diseases. These improvements also 
have a positive impact on the national fitness program, as regular 
exercise can enhance an individual’s physical resistance and improve 
their ability to withstand the adverse effects of air pollution. Moreover, 
promoting fitness activities contributes to economic growth by 
reducing medical expenses related to pollution-induced diseases and 
enhancing the overall physical health of the population, thereby 
boosting social productivity.
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