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With the rapid development of industrialization and urbanization in China, air
pollution has become an increasingly serious problem, and people are increasingly
concerned about its impact on personal physical and mental health. From the
perspective of health behavior, this study investigates the participation of residents
in sports activities by examining fitness behavior and using temperature inversion as
an instrumental variable for air pollution. Based on the China Family Panel Studies
dataset from 2010 to 2018, this paper empirically examines the causal relationship
between air pollution and residents’ participation in fitness activities using two-
stage least squares. The research results reveal a statistically significant negative
correlation: as air pollution intensifies, the likelihood of individuals participating
in fitness activities decreases. Additionally, the research results highlight the
heterogeneous effects among different demographic groups, including differences
in gender, age, education level, household registration, health status, and income
status. Overall, this study provides strong evidence for the health-related economic
costs of air pollution.
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1 Introduction

Air pollution represents a serious worldwide environmental health threat, with the World
Health Organization assessing (49) that 4.2 million deaths annually are caused because of the
ambient exposure, primarily through cardiovascular and respiratory diseases'. This burden is
marked by pronounced socioeconomic disparities: low-income nations experience 23% higher
relative healthcare expenditure impacts compared to high-income countries (1), while
vulnerable populations face heightened risks due to limited access to protective and mitigation
resources (2). The pathophysiological mechanisms underlying these effects are well established.
For instance, Pope et al. (3) quantified the dose-response link between PM2.5 exposure and
cardiopulmonary mortality, findings supported by Dockery et al. (4) and Samet et al. (5) across
diverse populations. Moreover, Brook et al. (6) elucidated biological pathways linking
particulate matter (PM) to systemic inflammation and endothelial dysfunction. Recent

1 WHO. (2018, May2). Ambient (outdoor) air pollution. Retrieved March14, 2019, from https://www.who

int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
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evidence also highlights developmental consequences: Chay and
Greenstone (7) documented increases in infant mortality linked to
recession-induced pollution shocks, while Currie et al. (8) identified
long-term health and economic impacts associated with early-
life exposure.

Beyond conventional health outcomes, air pollution significantly
shapes behavioral responses and economic decision-making. Neidell
(9) pioneered research on avoidance behaviors, demonstrating
reductions in asthma hospitalizations during ozone alerts, while Zivin
and Neidell (10) quantified productivity losses attributable to pollution
exposure. Defensive strategies also play an important role, with Ito
and Zhang (11) measuring Chinese households” “willingness-to-pay
for cleaner air;’ and Deschenes et al. (12) analyzing defensive
expenditures under the NOx Budget Program. These individual
responses further accumulate into broader macroeconomic effects.
For example, Hanna and Oliva (13) estimated a 5.8% reduction in
labor supply during peak pollution episodes in Mexico City,
Greenstone and Hanna (14) reported declines in infant mortality
following Indian environmental regulations, and Walker (15)
quantified sectoral reallocation costs resulting from compliance with
the U. S. Clean Air Act. Liao et al. (16) found that environmental
pollution significantly exacerbates income related health inequalities,
thereby further widening the wealth gap. Furthermore, Liao et al. (17)
found that controlling air pollution can significantly improve
residents’ physical health.

The psychological and societal ramifications of air pollution reveal
complex welfare trade-offs. Braithwaite et al. (18) identified PM2.5
thresholds above 50 pg/m’ as increasing depression risk by 10%,
potentially influencing migration dynamics, as Chen et al. (19)
observed a 2.8% population outflow for every 10% rise in PM2.5
concentrations. Welfare valuation research further underscores these
impacts: Welsch (20) equated PM10 reductions to income-equivalent
gains of 11% in life satisfaction, whereas Neidell (21) reported that
pollution alerts paradoxically increased private vehicle use. More
recent studies have broadened the lens to quality-of-life dimensions.
Wei et al. (22) found that long-term exposure to environmental air
pollution is associated with an increased incidence of depression
among the Chinese population, further revealing the profound impact
of air pollution on mental health. Ren et al. (23), on the other hand,
from the perspectives of residents’ attention and the sustainability of
commercial health insurance, how does air pollution affect the
complex trade-off between social mental health and economic
behavior. Zhang et al. (24) demonstrated a strong negative link
between subjective well-being and PM2.5 exposure in China, with
each 1 pg/m’ increase linked with a 0.8 percentage point decline in life
satisfaction. Fertility behavior has also been shown to respond to
environmental conditions; Zhang and Yu (25) found that air pollution
lowered fertility intentions by 12.7% among women of childbearing
age in highly polluted areas. Additionally, emerging evidence suggests
physiological pathways, with Zhang et al. (26) indicating that
metabolic disruptions caused by PM may contribute to obesity.
Urbanization further complicates these dynamics: Schlenker and
Walker (27) linked airport-related emissions to localized health
declines, while Banzhaf and Walsh (28) provided empirical support
for Tiebout’s “voting with feet” migration hypothesis.

Physical activity represents a critical behavioral nexus where the
health benefits of exercise intersect with the risks posed by pollution
exposure. Lin et al. (29) research indicates that in China, the
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cardiovascular health benefits of active commuting are moderated by
environmental fine particulate matter, highlighting the complex health
trade-off between physical activity and pollution exposure. The study
by Hao et al. (30) analyzed the PURE-China cohort and pointed out
the combined impact of long-term exposure to outdoor fine
particulate matter and physical activity on mortality and
cardiovascular events, further confirming physical activity as a key
behavioral node where health benefits and pollution risks converge
(29, 30). Rundell (31) demonstrated that PM2.5 deposition during
exercise is 5-20 times higher than at rest. At the population level,
behavioral adaptations are evident: Roberts et al. (32) documented an
inverse link between physical activity and pollution, while Yu et al.
(33) quantified that retirees reduced weekly walking by 4.69 h for
every 56.6 pg/m’ raise in PM2.5. These behavioral responses present
a fundamental challenge to policy initiatives such as China’s “Healthy
China Strategy,” promoted at the 19th CPC National Congress, which
emphasizes increased physical activity as a cornerstone of
public health.

Policy interventions have demonstrated measurable yet uneven
success in addressing air pollution. Shapiro and Walker (34) attributed
60% of U. S. manufacturing emissions reductions to regulatory measures,
while Greenstone (35) documented technology-driven substitutions
prompted by the Clean Air Act. Similarly, Davis (36) quantified the
influence of power plant proximity on property values. Nonetheless,
persistent challenges remain in developing countries. Ebenstein et al. (37)
revealed stark mortality disparities caused by China’s Huai River policy,
Barwick et al. (38) measured morbidity costs through consumer spending
patterns, and Luechinger (39) identified significant life satisfaction effects
from transboundary pollution. Innovative monitoring and analytical
approaches continue to expand the policy toolkit. For instance, Apte et al.
(40) leveraged Google Street View mapping to refine urban pollution
monitoring, while Deryugina et al. (41) used wind-direction variation as
a usual experiment to improve causal identification of pollution’s health
impacts. Bruyneel et al. (42) evaluated the positive impacts of the
low-emission zone policies in Antwerp and Brussels on air quality, socio-
economic disparities and health conditions through quasi-experimental
methods. New empirical evidence was provided for the effectiveness of
policy intervention. Liu et al. (43) evaluated the effect of China’s air
pollution control policies using the different-in-differences method,
revealing the significant but uneven effectiveness of policy intervention
in improving air quality. Ren et al. (44) found that innovative urban
policies can provide strong and effective support for air pollution control.

There is a lack of empirical research in academia on the impact of
air pollution on residents’ fitness behavior. Our study will serve as a
supplement to this area of research. This study advances the
understanding of pollution-behavior interactions through three key
innovations. First, we employ temperature (temp) inversion as a
natural experiment (45) to address endogeneity concerns that have
limited prior observational studies (46). Second, we integrate high-
resolution pollution data from NASAs MERRA-2 database (47) with
longitudinal China family panel studies (CFPS) fitness behavior
records (48) which represents an innovative approach to bridging
macro-level environmental monitoring with micro-level behavioral
data. By combining satellite-derived, grid-level PM2.5 concentration
estimates with detailed individual exercise habits tracked over multiple
years, this integration enables a granular analysis of how localized air
pollution variations directly influence personal fitness decisions— a
methodological advancement that transcends traditional reliance on
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coarse administrative pollution data or isolated datasets. Third, our
findings inform the implementation of the “Healthy China” strategy
by identifying context-specific barriers to physical activity in polluted
urban regions, thereby complementing global evidence on avoidance
behaviors and providing policy-relevant elasticity estimates for
Chinese urban planners. Ultimately, this study is expected to provide
experiential insights for environmental governance departments,
social security departments, and fitness related institutions.

2 Model specification

This study sought to examine the causal link between residents’
fitness behavior and air pollution. In the baseline analysis, PM2.5 annual
average concentrations (AACs) are used as a proxy variable for
atmospheric pollution, while SO, ACCs are introduced as an alternative
proxy in robustness checks. The empirical results may be affected by
endogeneity issues arising from three main sources. First, omitted
variable bias may distort the findings. For example, economic
development is typically positively correlated with air pollution, as more
developed regions often experience higher pollution levels. At the same
time, economic development shapes residents” behavioral patterns,
influencing lifestyle choices and fitness participation. Consequently,
individuals may relocate based on personal preferences, economic
opportunities, and social characteristics, thereby systematically altering
their exposure to pollution. Second, reverse causality between air
pollution and fitness behavior may bias results. Residents’ physical fitness
influences social productivity, and higher productivity may increase
pollutant emissions, which in turn worsen air quality. Third, measurement
error in pollution indicators may occur, as air quality data in some
countries are vulnerable to deliberate manipulation. To address this, the
study relies on data from reputable and verified sources to minimize
such risks.

Temperature inversion, a well-documented meteorological
phenomenon, exhibits a strong correlation with pollution levels and
is therefore used as an instrumental variable (IV) to address
endogeneity. The temp inversion measure satisfies the exogeneity
conditions required for a valid instrument, and its use in air pollution
research is well established in both domestic and international
literature (45). To further strengthen identification, we incorporate a
comprehensive set of meteorological covariates, including daily mean
temp, sunshine duration, maximum (max) and minimum (min)
temps, wind speed and direction, and precipitation. Controlling for
these factors ensures that the temp inversion variable satisfies the
exclusion restriction required for instrumental variables (IVs).
Accordingly, we specify the following two-stage least squares (2SLS)
econometric model:

Exercisejt = 0 + 0 Airiey + BX;Ct + YWilct + A+l + €t (1)
Airier = Qg + 01 TTict + BXijer +YWice + A + 1t + €ict (2)

Exercise;jc; represents the weekly frequency of fitness activities for
individual i, where ¢ denotes the county and t the year. This measure
captures respondents’ fitness behavior across time, geographic regions,
and age groups. The variable Air reflects ambient air quality in
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county ¢ during year t, with PM2.5 concentration serving as the
primary regressor in the baseline specification.

The variable X;ct represents the influence of individual and
socioeconomic characteristics on Exercisej, including age,
educational attainment, marital status, self-rated health, residential
location, employment status, health insurance coverage, income level,
and overall socioeconomic status. The term éWilct captures the effects
of weather-related factors, such as annual average temp, daily min and
max temps, sunshine duration, wind speed and direction, as well as
precipitation levels. The IV TI;¢; denotes the annual frequency of temp
inversion events in county ¢ during year t. To address unobserved
heterogeneity, é; represents individual fixed effects, accounting for
time-invariant features like gender, whilei { denotes time fixed effects,
capturing common temporal shocks (e.g., the “Healthy China
Strategy” proposed during the “19th National Congress of the
Communist Party of China,” which significantly increased public
awareness of physical fitness and exercise). Finally, &; represents the
idiosyncratic error term.

3 Empirical methodology
3.1 Data specification

This study draws on data related to urban air pollution,
atmospheric temperature inversion indicators, and the China Family
Panel Studies (CFPS), a national survey conducted by the Institute of
Social Science (ISS) at Peking University from 2010 to 2018. The
CFPS, supported by Peking University, was carried out in 2010, 2012,
2014, 2016, and 2018. It covers a broad range of research topics,
including physical exercise, employment, education, health, economic
activities, social participation, family dynamics, and grassroots
governance. The CFPS is characterized by comprehensive coverage,
methodological rigor, and a large sample size, ensuring strong
representativeness. Specifically, the baseline surveys for 2010-2018
were drawn from 23 provinces using a three-stage sampling procedure
(county, village, and household), ultimately encompassing tens of
thousands of respondents.

This paper relies on CFPS data for three key reasons. First, the
baseline survey consistently included questions about respondents’
physical exercise habits, specifically the number of weekly exercise
sessions. Importantly, this question was repeated across all five survey
waves (2010-2018), making exercise frequency a reliable dependent
variable for this study. Second, the CFPS dataset contains precise
information on residential location and interview dates, enabling
accurate spatiotemporal matching between respondents’ exercise data
and local annual air pollution levels. Third, the CFPS provides
extensive data on multidimensional individual features, including
education’s years, age, residential location, employment status, marital
status, and self-assessed health status, enabling the inclusion of a
robust set of control variables in the econometric analysis.

This study employs county-level PM2.5 AACs to represent
regional air pollution levels. Currently, the main source of air pollution
data in China is provided by ground-based monitoring stations, which
are maintained by the China National Environmental Monitoring
Centre (CNEMC), an agency under the Ministry of Ecology and
Environment. The key advantage of this dataset is its relatively high
measurement accuracy; however, it also presents several drawbacks,
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including the limited number of stations, their uneven geographic
distribution, and the high costs associated with monitoring. Moreover,
monitoring station data cannot fully capture individual pollutants, and
PM2.5 concentration values may be subject to potential manipulation.
To mitigate potential bias arising from these data limitations, this
study employs satellite-derived aerosol optical depth (AOD) data to
estimate near-surface PM2.5 concentrations. The underlying principle
is that AOD represents the vertical integral of the extinction coefficient
throughout the atmospheric column and exhibits a strong correlation
with ground-level PM concentrations. Following the methodology of
Buchard et al. (47), we obtained longitude-latitude gridded AOD data
(0.5° x 0.625°, around 60 km x 50 km) dating back to 1980 from
version 5.12.4 of the M2TMNZXAER product, publicly released by the
NASA. In line with Buchard et al. (47), ArcGIS 10.2 software was then
used to calculate gridded PM2.5 ACC data across all of China for the
period 2010-2018. These annual pollutant data were subsequently
aggregated at the county level. In addition, NASA provides SO,_ ACC
data, which allows this study to construct county-level annual average
SO, values using the same methodology, thereby serving as a proxy
variable for air pollution in robustness checks.

Additionally, this study incorporates several meteorological
indicators as control variables. Moreover, the weather data, obtained
from 820 meteorological stations across China and provided by the
“China Meteorological Administration Information Center;” include
daily average temp, max and min temps, sunshine duration, wind
direction and speed, and precipitation. To construct county-level
annual averages, the inverse distance weighting (IDW) method was
applied to interpolate meteorological information from station points,
using a search radius of 200 kilometers.

This study further employs the annual frequency of temp
inversion events as an IV for air pollution. The inversion data were
sourced from the second Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2) dataset released by
NASA. MERRA-2 provides atmospheric temp profiles from 110
meters to 36,000 meters above ground level since 1980, reported as
six-hourly averages across 42 atmospheric pressure layers within
50 km x 60 km grid cells. For each year and each pressure layer, the
six-hourly values were aggregated from the grid level to the county
level. Under typical conditions, surface temps are higher than those in
upper layers, indicating the absence of inversion. In contrast, a temp
inversion is identified when the temp in the lowest atmospheric layer
(110 meters above ground level) is higher than that in the second layer
(320 meters above ground level). During such events, air pollutants
remain trapped near the surface and fail to disperse efficiently, thereby
exacerbating pollution levels. Given that MERRA-2 provides
six-hourly averages, inversion conditions can be identified up to four
times daily. To ensure consistency and reduce measurement error, this
study defines a daily inversion occurrence if at least one inversion
event is detected within a 24-h period. The total annual count of
inversion days was then calculated for each county.

3.2 Variable statistical description

As shown in Table 1, the variable Exercise reflects respondents’
weekly physical exercise behavior (0 = no exercise, 1 = exercises).
Health measures self-rated health status, with values from 1 to 5,
where higher scores specify greater satisfaction with oné’s current
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TABLE 1 Descriptive statistics.

Variable Average SD Min Max
value value value
Keep-fit 0.612 0.487 0 1
exercises
Health 2.933 1.305 1 5
Whether in the 0.443 0.497 0 1
town
Age 50.45 13.67 16 94
Years of 6.435 4.741 0 20
education
Marriage 2.148 0.745 1 5
Employment 0.678 0.467 0 1
Insurance 0.914 0.280 0 1
Income 2.491 1.045 1 5
Social class 2.931 1.051 1 5
PM2.5 72.44 31.18 7.292 141.6
SO, 26.20 15.12 0.816 63.60
Temp 14.31 4.701 —0.900 23.70
Humidity 66.00 9.108 42.40 86
Precipitation 946.9 543.0 132.2 3,203
Sunshine 1971 477.0 598.4 3,024
duration
Days with 158.1 77.69 4 324
adverse weather
1
Days with 112.8 60.69 1 275
adverse weather
2

physical health. Urban Hukou denotes whether the respondent holds
an urban household registration (1 = urban hukou, 0 = rural hukou).
Age represents the respondent’s age, while Years of Education captures
educational attainment. Marital Status records the respondent’s
marital situation (Widowed =5, Divorced =4, Cohabiting = 3,
Married = 2, and Single = 1). Employment Status indicates work
participation (0 = unemployed, 1 = employed), and Insurance shows
whether the respondent has insurance coverage (0 = no insurance,
1 = insured). Income satisfaction captures individuals® satisfaction
with their income levels, measured on a scale from Very satisfied (5)
to Very dissatisfied (1). Social standing reflects respondents’ self-
perceived social status within their local community, ranging from
Very high (5) to Very low (1). Environmental variables include PM2.5,
representing the AAC of fine PM (pg/m?), and SO,_, representing the
AAC of sulfur dioxide (ug/m?). Inversion Days 1 measures the annual
count of days with temperature inversions occurring between the
second atmospheric layer (320 meters) and the first layer (110 m),
whereas Inversion Days 2 quantifies inversions between the first layer
(110 m) and the third layer (540 m). Within the study sample, 61.2%
of respondents reported engaging in weekly exercise. From 2010 to
2018, the average annual PM2.5 concentration was 72.44 pg/ m?,
surpassing the WHO health safety guideline of 10 pg/m* by more than
sevenfold. The standard deviation (SD) of PM2.5 concentration was
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31.18 pg/m?, with observed values ranging from 7.292 pg/m’ to
141.6 pg/m’®. Regarding atmospheric inversions, the mean annual
count of inversion days between the first and second layers was 158.1,
indicating inversions occurred on nearly half the days of the year, with
a SD of 77.69 days, a min of 4 days, and a max of 324 days. For
inversions between the first and third layers, the average annual count
was 112.8 days, with a SD of 60.69 days, a min of 1 day, and a max of
275 days.

4 Results of empirical evidence
4.1 OLS regression outcomes

Table 2 presents the results that was carried out exclusively by
employing the Ordinary Least Squares (OLS) regression model
defined in Equation 1. Column (1) reports regression findings
excluding both individual-level and weather control variables.
Column (2) excludes individual-level controls but incorporates
weather controls. Besides, column (3) contains individual-level
controls but omits weather controls, while column (4) comprises both
individual-level and weather control variables.

TABLE 2 OLS regression results without IVs.

Dependent

variable:

fitness

exercise

PM2.5 (pg/m3) 0.0000 0.0011 —0.0001 0.0006

(0.0006) (0.0007) (0.0006) (0.0008)

Age —0.0123* —0.0036
(0.0068) (0.0115)

Education —0.0015 —0.0018
(0.0016) (0.0017)

Whether in the —0.0021 —0.0063

town (0.0126) (0.0142)

Marriage 0.0062 0.0047
(0.0061) (0.0068)

Employment 0.0364 0.0319
(0.0056) (0.0063)

Health 0.0055 0.0071

Insurance (0.0022) (0.0026)
0.0002 —0.0082

Income (0.0078) (0.0090)
—0.0005 —0.0027

Social class (0.0024) (0.0028)
—0.0109 —0.0101
(0.0023) (0.0028)

Meteorological X \/ X \/

control

Individual FE V Vv v Vv

Year FE \/ \/ \/ \/

Heteroskedasticity-robust standard errors are presented in parentheses and * denotes
significance at the 10% significance level.
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The results demonstrate that, across all model specifications, no
statistically significant negative association between air pollution and
individuals’ engagement in physical exercise, irrespective of whether
weather-related or individual-level controls are included. This
outcome suggests that potential endogeneity may be introducing bias
into the estimates. To address this concern, the research uses the
annual count of temp inversion days as an IV for air pollution and
applies a 2SLS estimation strategy.

4.2 2SLS regression outcomes

4.2.1 First-stage regression results: the influence
of temp inversion days on air pollution

The objective of the first-stage test is to examine whether temp
inversions influence air pollution, with the results reflecting the extent
to which the frequency of inversions affects pollution levels. As shown
in Equation 2, the frequency of temp inversions is included as the
independent variable, while PM2.5 concentration serves as the
dependent variable. The F-statistics are all greater than 10, which
confirms the overall statistical significance of the model. As shown in
Table 3, column (1) reports the regression outcomes excluding both
individual-level and meteorological control variables. Column (2)
includes meteorological controls but excludes individual-level
controls. Column (3) incorporates individual-level controls while
excluding meteorological controls, and column (4) presents the
regression outcomes including both sets of controls.

The first row of Table 3 shows a statistically significant positive
link between the frequency of temp inversions and PM2.5 AACs
across all specifications. In particular, a higher number of inversion
days within a year is associated with elevated annual average PM2.5
levels. This finding supports the theoretical expectation that, during
inversion episodes, atmospheric pollutants are trapped near the
surface and fail to disperse effectively, thereby worsening air quality in
affected regions. The estimated coefficient of temp inversion, 0.0066,
indicates that each additional inversion day surges the PM2.5 AAC by
0.0066 pg/m’.

4.2.2 Second-stage regression results: the impact
of air pollution on residents’ physical activity
behaviors

As shown in Table 4, the PM2.5 AAC is employed as the key
explanatory variable to measure air pollution levels, and the second-
stage regression outcomes are reported. Column (1) shows the
regression estimates without individual-level or weather-related
variables, but with both individual and year fixed effects included. The
results reveal a statistically significant negative association at the 1%
significance level between PM2.5 AACs and residents’ physical
exercise behavior, with a regression coefficient of —0.0391. Column
(2) extends this specification by adding weather controls, and while
the negative relationship remains statistically significant (1% level),
the coeflicient magnitude increases in absolute terms to —0.0614.
Column (3), which incorporates individual-level controls based on
column (1), continues to show a significant negative effect (1% level),
with a coefficient of —0.0397, nearly identical to the value reported in
Column (1). Column (4), which comprises both individual-level and
weather -related control variables, also reports a statistically significant
negative association at the 1% significance level, with a coefficient of
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TABLE 3 Regression outcomes for Phase One.

Dependent

variable: PM

(2.5 pg/md)

Temp inversion 0.0107%** 0.0071%** 0.0102%** 0.0066%**
(annual (0.0008) (0.0009) (0.0008) (0.0009)
Occurrence

frequency)

Individual-level X X \/ \/
control variables

Meteorological X \/ X \/
control

Individual FE x Vv Y/ v
Year FE X \/ \/ \/
F-statistics 185.87 1981.75 20.92 668.32

Heteroskedasticity-robust standard errors are presented in parentheses and *** denotes
significance at the 1% significance level.

TABLE 4 Regression outcomes of the Second Stage.

Dependent (1)

variable:

fitness

exercise

PM2.5 (pg/m3) —0.0391 %% —0.0614%%* —0.03977%** —0.0660%**

(0.0077) (0.0163) (0.0082) (0.0181)

Age —0.0129* —0.0058
(0.0067) (0.0106)

Education —0.0015 —0.0016
(0.0016) (0.0019)

Whether in the 0.0216 0.0382*

town (0.0144) (0.0205)
0.0063 0.0044

Marriage (0.0065) (0.0077)

0.03037%** 0.0285%*%*

Employment (0.0060) (0.0070)
0.0035 0.0053*

Health (0.0023) (0.0029)
0.0068 —0.0013

Insurance (0.0083) (0.0106)
—0.0011 —0.0051

Income (0.0025) (0.0032)

—0.01207%** —0.0107%**

Social class (0.0024) (0.0031)

Meteorological X \/ X \/

control

Individual FE \/ \/ \/ \/

Year FE YV v v v

Heteroskedasticity-robust standard errors are presented in parentheses. Statistical
significance is indicated by * and *** at the 10% and 1% levels, respectively.

—0.0660. These results highlight that individual-level control variables
exert little influence on the PM2.5 estimated effect, whereas the
inclusion of weather variables has a more substantial impact on the
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coefficient magnitude. Specifically, the column (4) estimates propose
thata 1 pg/m’ rise in PM2.5 AACs is associated with a 6.6% reduction
in the probability of residents engaging in weekly physical exercise.
Considering the SDs of 0.487 for the dependent variable (physical
exercise) and 31.18 for the explanatory variable (PM2.5), the
standardized regression coefficient is calculated as —4.23, indicating
that in column (4), a one- SD rise in annual average PM2.5 level is
associated with a 4.23-SD decline in weekly physical exercise.

Furthermore, the regression outcomes in column (4) show a
statistically significant positive association at the 10% level between urban
household registration status and residents’ exercise behavior. This result
indicates that urban residents tend to participate more in physical fitness
activities, which may be attributed to the higher availability of exercise
facilities and a broader range of recreational opportunities in urban areas
compared to rural regions. Such factors may encourage stronger interest
and participation in physical activity. In addition, the ongoing process of
urbanization has facilitated the transition of rural residents into urban
populations, thereby broadening the base of individuals who regularly
engage in exercise. The analysis also reveals a statistically significant positive
correlation at the 1% significance level between employment status and
exercise participation, indicating that higher employment rates contribute
to greater involvement in fitness activities. Moreover, health status
demonstrates a positive relationship with exercise behavior at the 10%
significance level, suggesting that individuals who report higher satisfaction
with their health are more likely to participate in physical activity. Finally,
the results identify a statistically significant negative association at the 1%
level between social status and residents’ exercise behavior.

5 Robustness test

Drawing on the above findings, air pollution exhibits a negative
association with residents” physical activity behavior. To verify the
validity of this conclusion, this section conducts a series of
robustness checks.

In the 2SLS estimation, the AAC of PM2.5 was employed as the
primary explanatory variable representing air pollution levels. To
further strengthen the results, this section adopts the AAC of SO,_ as
an alternative indicator of air pollution severity.

As demonstrated in Table 5A, the first-stage regression outcomes
demonstrate that, across all model specifications, temp inversion has
a statistically significant positive association with SO,_ AACs at the
1% level, suggesting that a higher frequency of annual temp inversion
events corresponds to increased SO,_ pollution levels, which is
consistent with established atmospheric science principles.

This outcome further supports the proposed mechanism: temp
inversions trap pollutants near the surface and hinder their vertical
thereby
affected regions.

All F-statistics are above 10, with the F-statistic from Specification (4)
reaching 174.33, indicating strong instrument relevance at conventional

dispersion, intensifying air pollution severity in

significance levels. The estimated coefficient for temp inversion frequency
is 0.0036 (p < 0.01), indicating that each additional inversion day surges
SO,. AACs by 0.0036 pg/m?, an effect that carries both statistical
significance and practical implications for environmental policy.

Table 5B reports the second-stage regression outcomes. Column
(4) shows that an increase of 1 pg/m® in SO,_ ACCs is associated with
a 12.07% decrease in the percentage of residents who participate in
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TABLE 5 First- and second-stage regression results for air pollution (SO2)
and fitness behavior.

Panel A

Dependent

variable:
SO,_ (ug/
m?3)

10.3389/fpubh.2025.1692650

TABLE 6 First- and second-stage regression results for alternative
inversion layer definition.

Panel A

Dependent
variable:
PM2.5_ (ng/
m3)

Temp inversion 0.0314%%*%* 0.04007%** 0.00287%#* 0.00367%** Thermal 0.0113%#%* 0.00407%** 0.01047%** 0.00307%**

frequency (annual (0.0004) (0.0004) (0.0004) (0.0004) Inversions (annual (0.0008) (0.0008) (0.0008) (0.0009)

occurrences) count, 110-540 m)

Individual-level X X \/ \/ Individual-level X X \/ \/

controls controls

Meteorological N v X \/ Meteorological X v X \/

controls controls

Individual FE v v v v Individual FE v v v v

Year FE \/ \/ \/ \/ Year FE \/ \/ \/ \/

F-statistic 78.7 536.91 12.19 174.33 F-statistic 185.87 1981.75 20.92 668.32

Panel B Panel B

Dependent Dependent

variable: variable:

physical physical

exercise exercise

participation participation

SO,- (pg/m3) —0.1353%#% | —0.1110%*%*% | —0.1439%** | —0.1207%** PM2.5 (pg/m3) —0.0817##% | —0.2628%**% | —0.0904*** | —0.3499%**
(0.0294) (0.0285) (0.0333) (0.0320) (0.0100) (0.0663) (0.0113) (0.1098)

Individual-level X X v v Individual-level X X v Vv

controls controls

Meteorological X \/ X \/ Meteorological X \/ X \/

controls controls

Individual FE v/ v YV v Individual FE v v v v

Year FE \/ \/ \/ \/ Year FE \/ \/ \/ \/

Heteroskedasticity-robust standard errors are presented in parentheses and *** denotes
significance at the 1% significance level.

weekly physical exercise. Referring to Table 1, the SDs of the
dependent variable (exercise participation) and the independent
variable (SO,_) are 0.487 and 15.12, respectively. Given a regression
coefficient of —0.1207, the corresponding standardized beta
coefficient is calculated as —3.82. This result implies that a one-SD
rise in SO,_ concentration is linked with a 3.82-SD decline in weekly
exercise participation.

Second, the robustness of the IV is conducted by redefining
inversion frequency using alternative atmospheric layers. While the
baseline specification measured inversions between the first layer
(110 m) and the second layer (320 m), this section employs inversions
occurring between the first layer (110 m) and the third layer (540 m)
as the IV in the 2SLS estimation.

The results presented in Table 6 demonstrate:

(1) The first-stage regression outcomes confirm a statistically
significant positive association between thermal inversions and
air pollution.

(2) The second-stage regression results demonstrate a statistically
significant negative association between air pollution levels and
the physical exercise behavior of residents.

Frontiers in Public Health

Heteroskedasticity-robust standard errors are presented in parentheses and *** denotes
significance at the 1% significance level.

These findings remain consistent with our baseline regression
conclusions, though coefficient magnitudes differ. The robustness of
our IV approach is therefore empirically validated.

Finally, a falsification test is conducted by estimating a 2SLS model
using respondents’ height as the dependent variable. Height is chosen
as a placebo outcome because it is theoretically exogenous to air
pollution exposure; unlike physical exercise behavior, no statistically
significant relationship is expected.

The regression outcomes revealed in Table 7 confirm that air
pollution does not have a statistically significant impact on height.
This finding provides additional support for the validity of our main
conclusion, indicating that the observed negative association between
air pollution and residents’ physical exercise behavior likely reflects a
causal effect rather than a false association.

6 Heterogeneity analysis

This section investigates the heterogeneous impacts of air
pollution on residents’ physical exercise behavior across personal
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TABLE 7 Falsification test (placebo regression).

Dependent

variable:

height

2S8LS estimates: 0.0383 —0.0643 —0.0264 —0.1647
PM2.5(pg/m3) (0.0805) (0.1363) (0.0890) (0.1555)
Individual-level X X \/ \/
controls

Meteorological X v % v
controls

Individual FE v v YV v
Year FE \/ \/ \/ \/

Heteroskedasticity-robust standard errors are presented in parentheses.

characteristics, including gender, age, educational attainment, and
household registration.

Table 8 highlights notable heterogeneity in the impact of air
pollution across demographic groups. Columns (1) and (2) show that
air pollution exerts a more pronounced negative effect on women’s
exercise behavior compared with men, as reflected by a larger
correlation coefficient for women. This difference may stem from
variations in physical constitution and sensitivity to environmental
factors, as women may be more attentive to air pollution concerns and
physiologically more affected by its adverse health impacts.

The findings in Columns (3)-(5) indicate that air pollution
significantly affects exercise behavior at the 5% level for younger
adults, at the 1% level for middle-aged adults, and is not statistically
significant for older adults. These differences may be attributed to
three main factors. First, younger and middle-aged adults typically
spend more time outdoors than older adults, resulting in greater
exposure to air pollution. Second, they have better access to pollution-
related information, enabling timely awareness of air quality updates
through the internet. Third, older adults, having lived in the area for
extended periods, may develop stronger physiological adaptation to
local environmental conditions, thereby reducing their perceived
sensitivity to pollution.

Table 9 presents the heterogeneous effects of education level and
hukou status on exercise behavior. Columns (1)-(2) show that, when
respondents are grouped by education level, the coefficient for the
higher-educated group is significant (1% level), while that for the
lower-educated group is significant (5% level). This implies that higher
educational attainment intensifies the adverse effect of air pollution
on residents physical fitness behavior, possibly because more educated
individuals are more aware of the health risks related with pollution.
Columns (3)-(4) categorize respondents by hukou status, revealing
further disparities. The results show that air pollution has a statistically
significant impact on the exercise behavior of rural residents at the
10% significance level, whereas no significant effect is observed for
urban residents. This difference may be due to rural residents’ limited
access to indoor exercise facilities, requiring them to engage in
outdoor activities where exposure to pollution is unavoidable, while
urban residents can more easily shift to indoor exercise settings.

Table 10 presents the results of a heterogeneity analysis on
residents’ health status and income. The results in columns (1) and (2)
indicate that air pollution has a stronger and highly significant
negative effect on the fitness behavior of individuals with better health
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(at the 1% significance level), whereas its impact on individuals with
poorer health is minimal. This difference can be explained by the fact
that individuals with better health generally have a more active
intention and higher frequency of engaging in fitness activities.
Consequently, they are more sensitive to the negative effects of air
pollution on outdoor fitness. In contrast, individuals with poorer
health are less likely to participate in regular fitness activities, making
them less affected by air pollution. The results in columns (3) and (4)
reveal that the fitness behavior of low-income individuals is
significantly more affected by air pollution (at the 1% significance
level), while high-income individuals are largely unaffected. A possible
explanation is that low-income individuals tend to engage in fitness
activities in free, open-air environments, which are more susceptible
to air pollution. In contrast, high-income individuals are more likely
to use paid, professional indoor fitness facilities, which provide a
controlled environment and thus reduce their exposure to polluted air.

7 Conclusion and policy
recommendations

This study utilized data from the China Family Panel Studies
(CFPS) from 2010 to 2018, combined with local air quality and
meteorological records of the corresponding years, to accurately
measure the frequency of physical exercise among respondents. To
address the potential endogeneity of air pollution exposure, this study
employed the meteorological phenomenon of temperature inversion
as an instrumental variable. Through two-stage least squares (2SLS),
this study empirically established the causal relationship between air
pollution and residents” physical exercise behavior.

The research results show that for every one standard deviation
increase in the annual average concentration of PM2.5, the frequency
of residents’ physical exercise decreases by 4.23 standard deviations.
To test the robustness, this study first used the annual average
concentration of sulfur dioxide as an alternative estimate of air
pollution. Additionally, by modifying the selection criteria for
temperature inversion and conducting placebo tests using
respondents’ height instead of physical exercise behavior, the analysis
results were further verified. Heterogeneity analysis indicates that the
adverse impact of air pollution on physical exercise behavior is more
significant among women, young and middle-aged people, those with
higher education levels, non-urban residents, people in good health,
and low-income groups. The above analysis suggests that air pollution
has now become a key factor affecting residents’” willingness to
exercise. Therefore, in promoting the national fitness program and the
Healthy China initiative, it is necessary to address the ecological and
environmental challenges related to air pollution. Based on these
findings, the following suggestions are proposed:

First, in the process of advancing ecological civilization
construction and sustainable development, it is recommended to
strengthen the air quality monitoring system and establish a risk
warning mechanism to overcome the public’s cognitive barriers to
pollution exposure. In international comparisons, many developed
countries, such as the United States and the United Kingdom, have
well-established air quality monitoring and warning systems. The
United States Environmental Protection Agency (USEPA) has
established a national air quality monitoring network that can provide
real-time and accurate data on the concentrations of relevant air
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TABLE 8 Analysis results of gender and age heterogeneity.

The regression
outcomes of the
second stage

Explained variable:

fitness exercise

PM2.5(pg/m3)

—0.1304%**
(0.0465)

Gender

—0.0311*
(0.0175)

Young people
(<39)

(3)

—0.0553%*
(0.0268)

10.3389/fpubh.2025.1692650

Age

Wrinkly (40-59)

(4)

—0.0520%**
(0.0197)

Old people
(=60)

(5)

—0.1238
(0.1313)

Individual-level control

\/

\/

\/

\/

YV

Weather control

\/

\/

\/

\/

V/

Individual FE

\/

\/

\/

\/

V

Year FE

\/

\/

\/

\/

\/

F-statistic

346.69

325.77

155.35

391.43

133.4

Heteroskedasticity-robust standard errors are presented in parentheses. Statistical significance is indicated by *, **, and *** at the 10, 5, and 1% levels, respectively.

TABLE 9 Heterogeneous effects by education level and Hukou status.

TABLE 10 Heterogeneity analysis results of health and income.

Second- Years of schooling Whether in the Second-

stage town stage

regression regression

outcomes outcomes

Dependent <9years >9years \[e} Dependent

variable: variable:

fitness (1) (2) (3) fitness

exercise exercise

PM2.5(pg/m3) —0.0639%* —0.0666%* —0.0637* —0.0156 PM2.5(pg/m3) 0.0006 —0.099 1% —0.0465%+* —0.0259
(0.0323) (0.0222) (0.0379) (0.0113) (0.0277) (0.0227) (0.0164) (0.0531)

Individual-level v Vv v v Individual-level YV YV v v

control control

Weather control \/ \/ \/ \/ Weather control \/ \/ \/ \/

Individual FE \/ \/ \/ \/ Individual FE \/ \/ \/ \/

Year FE \/ \/ \/ \/ Year FE \/ \/ \/ \/

F-statistic 344.74 309.9 287.37 488.19 F-statistic 21.13 44.59 59.34 6.03

Heteroskedasticity-robust standard errors are presented in parentheses. Statistical
significance is indicated by *, **, and *** at the 10, 5, and 1% levels, respectively.

pollutants, which helps the public obtain air quality information in a
timely manner. Therefore, the government should intensify efforts to
improve air quality, improve the monitoring mechanism, ensure the
reliability and accuracy of data, and promptly release air quality
information to the public, enabling residents to take appropriate
protective measures.

Second, it is necessary to enhance public awareness of the
concept that “green mountains and clear waters are as valuable as
mountains of gold and silver,” especially among groups that are
more sensitive to air quality. Communities can increase the
intensity of health exercise education activities, popularize the
hazards of air pollution to health and the protective measures that
can be taken among specific groups, and encourage all sectors of
society to use new media platforms to disseminate correct fitness
awareness and knowledge, explaining the cumulative impact of air
pollution on heart and lung function during physical activities in
polluted periods.

Frontiers in Public Health

Heteroskedasticity-robust standard errors are presented in parentheses and *** denotes
significance at the 1% significance level.

Third, establish differentiated air pollution control mechanisms to
balance health benefits and development needs. Excessively aggressive
measures may lead to simplistic solutions, thereby hindering
development, while insufficient control may fail to achieve the
expected results and improve residents’ living environment. Therefore,
it is crucial to establish governance goals based on science. The
government can implement corresponding measures based on the
pollution levels and industrial characteristics of different regions,
establish a flexible seasonal control mechanism based on the threshold
of pollution gasses, prioritize restrictions on industrial emissions and
traffic pollution during severe pollution periods, and implement
dynamic adjustments during non-peak periods. Quantify policy
effects through health benefit-cost assessment models to achieve the
coordinated  optimization of  promoting health and
economic development.

Fourth, promote the coordinated development of fitness

infrastructure and transportation systems to alleviate the impact of
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spatial limitations caused by environmental factors on health
behaviors. Studies have shown that non-urban residents are more
vulnerable to pollution, so it is recommended that the government
launch special plans to build community fitness centers and prioritize
the development of affordable indoor sports facilities in rural areas. In
addition, priority should be given to infrastructure development, such
as the expansion of high-speed rail networks. By increasing the
accessibility of high-speed rail, local pollution can be reduced and
travel convenience improved, thereby enhancing residents’ subjective
well-being.

Fifth, a coordination mechanism between environmental and
health policies should be established to maximize the benefits of
pollution control for public health. Improving the ecological
environment and controlling air pollution can significantly reduce the
incidence of various diseases, including heart disease, lung disease,
stroke, and chronic respiratory diseases. These improvements also
have a positive impact on the national fitness program, as regular
exercise can enhance an individual’s physical resistance and improve
their ability to withstand the adverse effects of air pollution. Moreover,
promoting fitness activities contributes to economic growth by
reducing medical expenses related to pollution-induced diseases and
enhancing the overall physical health of the population, thereby
boosting social productivity.
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