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Cost-effectiveness of
semaglutide 2.4 mg versus
liraglutide 3 mg for the treatment
of obesity in Greece

Panagiotis Papantoniou* and Nikolaos Maniadakis

Department of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece

Background: Obesity is a major public health issue associated with significant
humanistic and economic burden. In Greece, liraglutide 3.0 mg is currently the
only reimbursed pharmacotherapy for obesity, restricted to patients with morbid
obesity and selected comorbidities. Semaglutide 2.4mg has demonstrated
superior clinical efficacy in the STEP-8 clinical trial; however, its cost-
effectiveness relative to liraglutide requires further investigation to ensure
informed reimbursement decision-making.

Methods: A state-transition model was developed in Microsoft Excel to
evaluate the long-term cost-effectiveness of semaglutide 2.4 mg compared with
liraglutide 3.0mg in adults with obesity (BMI > 35 kg/m? and > one weight-
related comorbidity). Clinical efficacy and safety inputs were derived from the
STEP 8 trial, while cost inputs (expressed in 2025 euros) and utility values
were obtained from the literature and published local sources. The analysis
was conducted over a 40-year time horizon, with both costs and outcomes
discounted at an annual rate of 3.5%. Health outcomes were reported as life-
years (LYs) and quality-adjusted life-years (QALYs). The evaluation was conducted
from the perspective of the Greek third-party payer, and deterministic, scenario,
and probabilistic sensitivity analyses were performed.

Results: Semaglutide 2.4 mg was associated with an incremental mean increase
in quality-adjusted life expectancy of 0.09 at modestly incremental higher
costs of 1,083 compared with liraglutide 3.0 mg, yielding an incremental cost-
effectiveness ratio (ICER) of €12,724 per QALY gained, below the willingness-to-
pay threshold of €27,117. Probabilistic sensitivity analysis showed semaglutide
dominated liraglutide in 80.8% of simulations (greater QALYs and lower costs) and
reached 100% probability of cost-effectiveness at a willingness-to-pay threshold
of €9,000 per QALY. Deterministic and scenario analysis identified treatment
duration, time horizon, discount rates, and diabetes-related complication costs
as key drivers of ICER variability.

Conclusions: Semaglutide 2.4 mg is likely to be a cost-effective treatment option
compared to liraglutide 3mg for patients with a BMI > 35 and at least one
weight-related comorbidity in Greece.
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1 Introduction

Obesity is a major global public health issue, defined as excessive adiposity
that adversely affects health and is typically evaluated using body mass index
(BMI >30 kg/m®) (1). Its prevalence has increased sharply since 1990, with
an estimated 890 million adults affected worldwide in 2022 and projections
indicating that more than 1.2 billion will be living with obesity by 2030 (2).
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27.98%
individuals—were classified as obese in 2022, placing the

In Greece, of adults—approximately 2.5 million
country among the highest in Europe (3).

Obesity increases the risk of chronic conditions and is
associated with reduced life expectancy, increased all-cause
mortality, and diminished health-related quality of life (HRQoL)
(4-6). Globally, high BMI accounts for more than 5 million
premature deaths and approximately 9% of all disability-adjusted
life years (DALYs) annually (7, 8). Beyond its health implications,
obesity imposes a considerable economic burden, with its global
cost projected to reach USD 2.47 trillion by 2025 (9). In Greece,
the total cost of adult obesity was estimated at EUR 4.92 billion in
2024, equivalent to 2.07% of GDP (10).

Lifestyle modification, including diet, physical activity, and
behavioral therapy, is the cornerstone of obesity management (11).
However, lifestyle interventions alone generally result in modest
and challenging-to-maintain weight loss due to physiological
mechanisms that favor weight regain (12, 13). Pharmacotherapy,
therefore, represents an important adjunct for individuals unable
to achieve or maintain sufficient weight reduction. Among
currently available agents, glucagon-like peptide-1 (GLP-1)
receptor agonists—liraglutide and semaglutide—have shown
significant efficacy in reducing weight, improving glycemic control,
and lowering cardiometabolic risk factors in the SCALE and STEP
clinical programs (14-19).

In Greece, liraglutide 3.0 mg is currently the only reimbursed
pharmacotherapy for obesity. Its reimbursement is restricted to
adults aged 18-74 years with BMI >40 kg/m” and established CVD
or obstructive sleep apnea and requires prior authorization from
the National Organization for the Provision of Health Services
(EOPYY) (20). Semaglutide 2.4 mg, given its clinical efficacy profile
and broad eligible population, is anticipated to generate substantial
uptake if reimbursed. Therefore, assessing its cost-effectiveness
relative to liraglutide is crucial to inform reimbursement decisions,
support HTA evaluations, and optimize the allocation of scarce
healthcare resources.

International cost-effectiveness studies consistently show
semaglutide 2.4mg to be cost-effective for chronic weight
management. In the UK, a NICE-aligned analysis projected
an ICER of £14,827/QALY vs. diet and exercise, with a
90% probability of cost-effectiveness at a £20,000/QALY
threshold (21). In Portugal, semaglutide yielded an ICER of
€13,459/QALY, with all subgroup ICERs below the conventional
threshold of €20,000 (22). In Canada, semaglutide dominated
orlistat, naltrexone-bupropion, and liraglutide, with ICERs of
CAD 29,014-31,243/QALY vs. standard care from a societal
perspective (23). In the US, semaglutide 2.4 mg was cost-effective
compared with lifestyle intervention and other branded anti-
obesity medications, including liraglutide, with QALY gains
of 0.138-0.925 over 30 years and ICERs well below the USD
150,000 threshold (24). Systematic reviews reinforce these
findings, whereas more recently, evaluations in patients with
obesity and established CVD also found semaglutide cost-
effective compared with standard care in the US, Australia, and
Canada (25-30).

However, the transferability of existing international findings
to the Greek setting remains limited. Most published analyses
rely on foreign unit costs and health system structures, while
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differing in assumptions regarding treatment duration, adherence,
discontinuation, and post-treatment weight regain. In Greece,
economic evidence is currently limited to a short-term cost-
effectiveness analysis, which demonstrates favorable results for
semaglutide vs. liraglutide over a 68-week horizon (31), without
capturing long-term outcomes. Similarly, a recent evaluation from
Egypt confirmed the short-term cost-effectiveness of semaglutide
compared with liraglutide, further reinforcing its economic value
across diverse healthcare contexts (32).

The objective of this study is therefore to evaluate the long-term
cost-effectiveness of semaglutide 2.4 mg compared with liraglutide
3.0 mg for adults with obesity (BMI > 35 kg/m* and > one weight-
related comorbidity) in Greece, from the perspective of the third-
party payer (EOPYY).

2 Materials and methods

2.1 Model structure and description

A Markov state-transition model was developed in Microsoft
Excel (Microsoft Corp, Redmond, WA, USA) to estimate the
long-term cost-effectiveness of semaglutide 2.4 mg compared with
liraglutide 3.0 mg for the treatment of adults in Greece with a BMI
greater than 35 kg/m? and at least one weight-related comorbidity.
Liraglutide 3.0 mg was selected as the comparator because it is the
only reimbursed obesity pharmacotherapy in Greece, while other
anti-obesity agents, such as naltrexone-bupropion and tirzepatide,
were excluded as they are paid for exclusively out-of-pocket.

Unlike more complex multi-biomarker frameworks such as the
Core Obesity Model (COM) (21-24), the present model adopted
a parsimonious structure in which the BMI served as the sole
surrogate risk factor. Changes in BMI under treatment or natural
progression were dynamically translated into the incidence of
obesity-related complications using published risk equations or
transition probabilities. This simplified approach was chosen to
maximize transparency, reproducibility, and adaptability to Greek
decision-making while still capturing the principal health and
economic consequences of obesity. It is critical to note that
while multi-biomarker models, such as the COM, simultaneously
capture changes in additional surrogate endpoints, including blood
pressure, lipids, and glycemic control, this analysis employed BMI
as the sole surrogate risk factor for three reasons. First, it is a
well-established and consistently the strongest and most validated
predictor of obesity-related outcomes, including type 2 diabetes,
cardiovascular disease, and mortality (33, 34). Second, BMI is
systematically collected in both clinical trials and population-based
epidemiological studies, and is the only measure for which robust,
representative, and longitudinal data are consistently available in
the Greek setting (35, 36). This availability allows the model to
be parameterised and externally validated with local data, thereby
enhancing its credibility and relevance for Greek decision-makers.
Third, several previously published cost-effectiveness studies of
obesity pharmacotherapies have successfully applied BMI-only
frameworks, producing reliable results that are broadly consistent
with multi-biomarker models and policy-relevant in high-income
settings (37-40). These precedents demonstrate that a BMI-driven
structure is a methodologically accepted and pragmatic approach
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for long-term decision modeling. Nonetheless, as discussed later,
future research should validate the findings of the present single-
biomarker model against multi-biomarker frameworks to confirm
robustness under alternative structural assumptions.

The model followed a hypothetical cohort of 1,000 adults
whose baseline characteristics were aligned with those of the
STEP 8 clinical trial population (41), supplemented with clinical
expert opinion where local adjustment was necessary. Health
states included no complication, single complications (acute
coronary syndrome, type 2 diabetes, hypertension, dyslipidemia,
asthma, chronic kidney disease, and sleep apnea), combined
complications, and death. All patients enter the model in the
“no complications” state, characterized by their baseline BMI,
demographic characteristics, and utility value. During each cycle,
individuals could transition from the non-complication state to
one of the single-complication states, representing the first onset of
type 2 diabetes, acute coronary syndrome (myocardial infarction or
unstable angina), hypertension, dyslipidemia, asthma, sleep apnea,
or chronic kidney disease. From there, patients could progress
into multi-morbidity states, defined as the coexistence of two or
three of these comorbidities, thereby reflecting the clustering of
obesity-related diseases observed in real-world populations. All
health states were linked to an absorbing death state, allowing
transitions from any condition to mortality according to age-, sex-,
and risk-adjusted probabilities.

The model was run over a 40-year time horizon to approximate
a lifetime perspective, with 3-month cycles in the first year
(to capture treatment response and discontinuation) and annual
cycles thereafter. A half-cycle correction was applied to reflect
the mid-cycle timing of events. Both interventions were assumed
to be administered for a maximum of 2 years, with a non-
responder stopping rule at 12 weeks (failure to achieve >5%
weight loss from baseline) applied in line with STEP 8 (41).
Following discontinuation, patients reverted to the diet-and-
exercise trajectory, and treatment benefits diminished progressively
until values returned to baseline (21-24).

Outcomes were expressed in terms of costs, life-years
(LYs), quality-adjusted life-years (QALYs), and incremental cost-
effectiveness ratios (ICERs). Costs and outcomes were discounted
at an annual rate of 3.5%, consistent with prior published Greek
cost-effectiveness studies (42-46), as no official national HTA
guideline currently specifies a discounting rate. Cost-effectiveness
was assessed against a willingness-to-pay (WTP) threshold of
€27,117 per QALY gained, with an additional threshold of €34,000
per QALY gained also examined, reflecting the only two published
estimates available for Greece (47, 48). A schematic of the model
structure is presented in Figure 1. The analysis was conducted in
line with the Consolidated Health Economic Evaluation Reporting
Standards (CHEERS) 2022 guidelines (49).

2.2 Cohort of patients

The modeled population reflects individuals eligible for
obesity pharmacotherapy under the criteria of the Greek National
Organization for the Provision of Health Services (EOPYY) (20),
specifically adults with a BMI greater than 40 kg/m® and at
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least one weight-related comorbidity. Baseline characteristics were
sourced from the STEP-8 trial, the only randomized controlled
trial directly comparing semaglutide 2.4 mg with liraglutide 3.0 mg
in obesity, thereby providing robust and internally consistent
data for this head-to-head evaluation. Recognizing that the
STEP-8 population may not fully represent the Greek obesity
population, trial-based characteristics were reviewed and adapted
using local epidemiological data and expert clinical opinion
(e.g., smoking prevalence, hypertension, and diabetes distribution)
to enhance relevance for the Greek setting. This approach
ensured internal validity while improving external applicability,
though it is acknowledged that comprehensive local baseline data
remain limited.

The simulated cohort had a mean age of 48.6 years, a mean
BMI of 41.5 kg/m’, and was predominantly female (73.6%).
Cardiometabolic risk factors included a mean systolic blood
pressure of 128.4 mmHg, a mean total cholesterol level of 186.0
mg/dL, a mean HDL-cholesterol level of 50.9 mg/dL, and a
mean triglyceride level of 128.2 mg/dL. Smoking prevalence was
assumed at 45.2%, while 31.4% and 44.7% of patients were
on lipid-lowering and anti-hypertensive therapy, respectively. A
complete list of baseline cohort characteristics is provided in
Table 1.

2.3 Clinical efficacy and safety

Treatment efficacy for semaglutide 2.4mg and liraglutide
3.0mg was represented by their effect on BMI, with clinical
inputs derived from the STEP-8 trial (full analysis set) (41)
(Supplementary Table 1). A maximum treatment duration of 2
years was assumed, with efficacy estimates based on an intention-
to-treat analysis using the treatment-policy estimand, thereby
capturing population-level effects irrespective of adherence or
treatment modifications (41). A non-responder stopping rule was
applied at 12 weeks, defined as failure to achieve >5% weight loss
from baseline. Non-responder rates were 24.6% for semaglutide
and 38.6% for liraglutide. These patients were assumed to continue
with diet and exercise alone, with efficacy values informed by the
corresponding arm of STEP-8 (41).

Following treatment discontinuation (after 2 years, or earlier
due to non-response or adverse events), treatment effects were
assumed to decline according to a catch-up rate until BMI returned
to baseline. Thereafter, BMI was assumed to increase at a natural
rate of 0.47 kg/year, based on longitudinal data from the UK
General Practice Research Database reported by Ara et al. (50).
This approach has been widely adopted in prior obesity modeling
studies and in economic evaluations of semaglutide and other
pharmacotherapies (21-24). To address uncertainty around post-
treatment weight trajectories, additional scenarios were tested,
including accelerated weight regain to baseline within 1 year and
immediate reversion to natural progression without residual diet-
and-exercise benefit.
also derived from STEP-8
(AEs)

events

Safety inputs were (41).

captured in the
(e.g.,
and non-severe hypoglycaemia.

Treatment-related adverse events

model included  gastrointestinal nausea,

vomiting, diarrhea) These
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FIGURE 1
Graphic depiction of the economic model.
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TABLE 1 Baseline patients’ characteristics.

Parameters Mean  Source

Age (years) 48.6 STEP-8 trial (31)

BMI (kg/m?) 41.5 STEP-8 trial (31)
Height (m) 1.70 STEP-8 trial (31)

SBP (mmHg) 128.40 STEP-8 trial (31)
T-chol (mg/dL) 186.00 STEP-8 trial (31)
HDL-chol (mg/dL) 50.90 STEP-8 trial (31)
HbA1lc from onset of T2D 7.50% Clinical expert opinion
(%-points)

T2D duration (years) 6.00 Clinical expert opinion
Triglycerides (mg/dL) 128.20 STEP-8 trial (31)
Proportion triglyceride >150 28.10 STEP-8 trial (31)
mg/dL (%)

Smokers (%) 45.20 Clinical expert opinion
Females (%) 73.60 STEP-8 trial (31)

On lipid-lowering medication (%) 31.4 STEP-8 trial (31)

On anti-hypertensive medication 44.7 Clinical expert opinion
(%)

Glycaemic status at baseline

Proportion with no pre-T2DM, 40.40 Clinical expert opinion
T2DM

Proportion with pre-T2DM 48.80 STEP-8 trial (31)
Proportion with T2DM 10.80 Clinical expert opinion
History of CVD at baseline (%) 5.0 Clinical expert opinion

HbAlc, Hemoglobin Alc; T-chol, Total cholesterol; HDL-chol, High density lipoprotein
cholesterol; SBP, Systolic blood pressure; T2D, Type 2 diabetes mellitus; coronary artery
disorders, including coronary artery disease, angina pectoris, myocardial infarction, acute
myocardial infarction, myocardial ischemia, arteriosclerosis of the coronary artery, acute
coronary syndrome, angina unstable, coronary artery stenosis, microvascular coronary artery
disease, arteriospasm of the coronary; cardiovascular disease.

were applied during active treatment, with discontinuations
due to AEs diet-and-
exercise pathway.

transitioning patients onto the

Frontiersin Public Health

2.4 Transition probabilities

Consistent with previous obesity modeling studies (21-24),
transition probabilities between health states and the incidence
of obesity-related complications were derived from published risk
equations that link changes in BMI to the risk of developing
comorbidities. Specifically, the incidence of T2D was estimated
using the QDiabetes risk prediction algorithm, a validated tool
based on large UK primary care cohorts (51). The risk of
ACS was estimated using the QRisk3 equation, which integrates
demographic and clinical risk factors (52). For individuals with
T2D, the probability of recurrent coronary events was derived from
the Framingham Recurrent CHD equations (53). The incidence
of dyslipidemia was estimated from the PERSINA Guilan Cohort
study (54), while the risk of hypertension was predicted using
longitudinal data from the Johns Hopkins Precursors Study (55).
The probability of asthma onset was informed by analyses from
the National Health and Nutrition Examination Survey (56). The
incidence of sleep apnea was estimated using pooled estimates
from a systematic review and meta-analysis (57). Finally, the risk
of chronic kidney disease (CKD) was informed by prospective
analyses of a primary care cohort of 1.4 million adults in
England (58).

2.5 Mortality

Obesity is associated with increased risk of premature
mortality, particularly through complications such as T2D and
CVD (59). Age- and sex-specific all-cause mortality rates for
the general population were obtained from the WHO life tables
for Greece (60). We followed the approach adopted by Miguel
et al. (22) to avoid double counting of mortality attributable to
obesity-related complications. Consequently, all-cause mortality
was adjusted by subtracting deaths due to specific modeled diseases.
The resulting disease-specific mortality was then modified using
hazard ratios for BMI, derived from an extensive cohort study
based on the UK Clinical Practice Research Datalink (CPRD)
(61). These HRs capture the residual mortality risk associated
with higher BMI levels that are not otherwise explained by the
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explicitly modeled comorbidities (22). Full parameter values for
BMI-related hazard ratios and mortality adjustments are reported
in Supplementary Table 2.

2.6 Utilities

Baseline HRQoL was estimated using a regression-based
function of BMI, derived from baseline data in the STEP 8 trial, an
approach also adopted in previous cost-effectiveness studies (21—
24). Utility scores were regressed against baseline BMI, controlling
for age, sex, coronary artery disease, prediabetes, hypertension, and
smoking status. This generated a baseline, complication-free utility
value that varied with BMI across cycles, consistent with prior
obesity economic models (21-24). The explicit regression equation
applied in the model was: “Baseline Utility = 0.942975 - 0.0005414
* Age - 0.0742818 * HeartCirc - 0.0097531 * Hypertension +
0.0039044 * Smoke_Current — 0.0081972 * Smoke_Previous -+
0.0065954 * BMI - 0.0002476 * BMI* + 0.00000175 * BMI® -
0.0031133 * Prediabetes” (Supplementary Table 3).

Utilities were dynamically updated in each cycle to reflect
both BMI trajectories and the onset of comorbidities. As
individuals transitioned into health states corresponding to
obesity-related complications, condition-specific disutilities were
applied additively to the baseline utility. Disutilities for chronic
comorbidities were obtained from published literature (62-66). For
acute events such as stroke or transient ischemic attack, temporary
disutilities were applied in the cycle of occurrence. Treatment-
related adverse events, primarily gastrointestinal symptoms and
non-severe hypoglycaemia, were also incorporated as short-
duration disutilities during active therapy, consistent with prior
studies (21-24). The baseline utilities and disutilities applied in the
model are reported in Table 2.

2.7 Costs

The analysis was conducted from the perspective of the Greek
third-party payer (EOPYY) and therefore included only direct
medical costs. Indirect costs, such as productivity losses, were
excluded from the analysis. Confidential, mandatory or voluntary
discounts were not applied as such data are confidential and not
readily accessible.

Drug acquisition costs for semaglutide 2.4 mg and liraglutide
3.0 mg were obtained from the most recent official price bulletin
(67). Payer costs were derived by applying the statutory 25% co-
payment to retail prices, consistent with EOPYY reimbursement
rules. The annual cost of obesity monitoring comprised three
general practitioner visits, four visits to an obesity or surgical
specialist, two visits to a dietitian/nutritionist, and three complete
blood and urine panels per patient per year. Unit costs for visits and
diagnostic tests were extracted from the Government Gazette and
the EOPYY reimbursement schedule (68, 69). Costs associated with
the treatment of obesity-related complications and with adverse
events were sourced from published Greek literature and national
unit cost databases. Acute event costs—including hospitalizations
for acute coronary syndrome, stroke, or hypoglycemia—were
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TABLE 2 Baseline utility and disutilities in health states and acute events.

Mean SE

Parameters

Utility at baseline

Baseline utility ‘ 0.78 ‘ 0.023
Disutility applied in the health state

T2D —0.029 0.006
ACS —0.037 0.008
OSA —0.013 0.004
Asthma —0.021 0.005
Dyslipidaemia —0.037 0.004
Hypertension —0.014 0.003
Chronic kidney disease —0.049 0.002
Disutility per event

ACS —0.129 0.032
Stroke —0.181 0.045
Transient Ischemic Attacks —0.033 0.008
Severe GI Events —0.001 0.0002
Severe Hypoglycaemia —0.015 0.002
Non-severe Hypoglycaemia —0.0062 0.004

T2D, type-2 diabetes; ACS, acute coronary syndrome; OSA, obstructive sleep apnea;
GI, gastrointestinal.

retrieved from publicly available Diagnosis-Related Groups (DRGs)
(70). All costs were expressed in 2025 euros. Where necessary,
earlier cost estimates were adjusted to 2025 values using the
Consumer Price Index (CPI) published by the Hellenic Statistical
Authority (ELSTAT) (71). Table 3 illustrates the cost inputs used in
the present analysis.

2.8 Sensitivity analyses

Deterministic sensitivity analyses (DSA) were conducted to
assess the impact of parameter uncertainty on model outcomes
by varying one parameter at a time while holding all others
constant. Key clinical and economic inputs—including drug
acquisition costs, complication costs, utility values, discount rate,
and assumptions regarding post-treatment weight regain—were
varied. When empirical measures of parameter uncertainty (e.g.,
standard errors or confidence intervals) were not available from
published sources, a conservative range of +25% was applied
around the base-case value. This approach follows established
practice in cost-effectiveness modeling and aligns with previous
economic evaluations in obesity (21-24). The eleven most
influential parameters were identified and ranked according to
their effect on the incremental cost-effectiveness ratio (ICER), with
results presented in a tornado diagram.

A series of scenario analyses was conducted to explore the
impact of alternative input parameters and structural assumptions
on cost-effectiveness outcomes. These included: restricting to
disease-specific mortality only, extending treatment duration
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TABLE 3 Health state, event, drug acquisition and consumable costs used
in the analysis, expressed in 2025 Euros (€).

Cost description Costs (€) Reference

Costs of interventions

Semaglutide 0.25 mg 123.62 Drug price bulletin (67)

Semaglutide 0.5 mg 123.62

Semaglutide 1 mg 123.62

Semaglutide 1.7 mg 167.93

Semaglutide 2.4 mg 190.21

Liraglutide 3 mg 162.98

Costs of consumables (annual)

Needles for injectable drugs 33.58 Government Gazette (FEK
B’ 4045/17-11-2017) (73)

Monitoring costs (annual)

Monitoring obesity costs 124.88 Experts’ opinion and
Government Gazette
(67-69)

Adverse event costs (acute)

Minor hypoglycemia 287.77 Tzanetakos et al. (74)

Major hypoglycemia 805.77 Tzanetakos et al. (74)

Major gastrointestinal event 654.50 Government Gazette
(DRGs-code: 141X and
I141X) (70)

Health state costs (annual)

Non complications 124.88 Experts’ opinion &
Government Gazette
(69, 70)

Type-2 diabetes 1,125.91 Athanasakis et al. (75)

Hypertension 593.84 Tsalta et al. (76)

Chronic kidney disease 811.46 Stafylas et al. (77)

Sleep apnea 1,688.40 Prapa et al. (78)

Dyslipidemia 924.21 Migdalis et al. (79)

Asthma 796.58 Vellopoulou et al. (80)

Acute coronary syndrome 1,819.31 Tzanetakos et al. (74)

Acute care costs

Myocardial infarction (fatal) 4,166.00 Government Gazette
(DRGs-code: K10M) (70)

Myocardial infarction 2,724.00 Government Gazette

(non-fatal) (DRGs-code: K10X) (70)

Angina (fatal) 940.00 Government Gazette
(DRGs-code: K47M) (70)

Angina (non-fatal) 424.00 Government Gazette
(DRGs-code: K47X) (70)

Stroke (fatal) 2,475.00 Government Gazette
(DRGs-code: N30MA) (70)

Stroke (non-fatal) 1,625.00 Government Gazette
(DRGs-code: N30MB) (70)

Transient ischemic event 806.50 Government Gazette
(DRGs-codes: N29M &
N29X) (70)
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beyond the base case to 3, 4, 5, 6, and 9 years; applying alternative
efficacy estimands, namely the trial product estimand (with and
without treatment discontinuation for semaglutide 2.4 mg); and
modifying post-treatment trajectories, with scenarios assuming
reversion to natural progression without the benefit of diet and
exercise, as well as accelerated catch-up with treatment effects
fading completely within 1 year.

Probabilistic sensitivity analysis (PSA) was undertaken to
explore joint parameter uncertainty and estimate the probability
that semaglutide 2.4 mg is cost-effective compared with liraglutide
3.0mg. A Monte Carlo simulation with 1,000 iterations was
implemented, drawing inputs from predefined probability
distributions consistent with recommended practice, namely
Gamma for costs, Beta for probabilities and utilities, and Normal
or Lognormal for relative risks and treatment effects (72). Standard
errors were taken from original data sources when reported;
in their absence, a standard error of 20% of the point estimate
was assumed.

PSA outcomes were summarized on a cost-effectiveness plane
and through a cost-effectiveness acceptability curve (CEAC).
Results were reported as mean costs, QALYs, and ICERs across
simulations, with 95% confidence intervals derived using the
percentile method.

3 Results

3.1 Base case analysis

Total discounted lifetime costs, life-years (LYs), quality-
adjusted life-years (QALYs), and incremental cost-effectiveness
ratios (ICERs) are presented in Table 4. Over a 40-year horizon,
semaglutide 2.4 mg was associated with higher total direct medical
costs than liraglutide 3.0mg (€27,731 vs. €26,647; incremental
€1,083). This difference was primarily attributable to higher drug
acquisition costs in the semaglutide arm (€10,261 vs. €8,844;
+€1,417). Monitoring costs were nearly identical between groups
(€2,172 vs. €2,166). Significantly, these additional treatment costs
were partially offset by reductions in downstream complications.
Compared with liraglutide, semaglutide reduced the costs of
obesity-related disease states (€14,828 vs. €15,165; —€337) and
event-related complications (€469 vs. €472; -€3).

Health outcomes favored semaglutide, which provided an
additional 0.09 QALYs (13.90 vs. 13.81) and 0.04 LYs (17.06 vs.
17.03). The resulting ICERs were €12,724 per QALY gained and
€28,051 per LY gained. At the WTP threshold of €27,117 per
QALY, semaglutide yielded a positive net monetary benefit (NMB)
of €1,357. When applying a threshold of €34,000 per QALY, as
proposed by recent research for non-oncology interventions in
Greece (47), the NMB increased to €1,616.

3.2 Scenario analysis
Scenario analyses (Table 5) confirmed the robustness of the

base case findings. Extending treatment duration from 3 to 9 years
resulted in ICERs ranging from €14,020 to €15,487 per QALY. The
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TABLE 4 Base case cost-effectiveness results for semaglutide 2.4 mg vs.
liraglutide 3 mg.

Parameters Semaglutide Liraglutide Incremental
2.4mg 3mg

Discounted total lifetime 27,730.63 26,647.26 1,083.37

direct medical costs

Obesity treatment costs 10,261.39 8,843.97 1,417.42

Obesity monitoring costs 2,172.22 2,166.16 6.05

Obesity complications: 14,827.84 15,165.16 —337.31

state costs

Obesity complications: 469.18 471.97 —2.79

event costs

Discounted 13.90 13.81 0.09

quality-adjusted life

expectancy (QALYs)

Discounted life 17.06 17.03 0.04

expectancy (LYs)

Incremental 12,724

cost-effectiveness ratio

(€per QALY gained)

Incremental 28,051

cost-effectiveness ratio

(€per LY gained)

NMB (QALYs) WTP: 1,357

€27,117 per QALY

NMB (QALYs) WTP: 1,617

€30,000 per QALY

QALY, quality-adjusted life-year; LY, life-year; ICER, incremental cost-effectiveness ratio;
NMB, net monetary benefit.

application of the trial product estimand with a 12-week stopping
rule resulted in a slight improvement in cost-effectiveness (ICER:
€12,331/QALY), whereas removing the non-responder stopping
rule increased the ICER to €19,249/QALY. Post-treatment
assumptions had a limited impact on the cost-effectiveness
results, with reversion to no-treatment progression resulting in
an ICER of €12,669/QALY, while accelerated weight regain to
baseline within 1 year yielded an ICER of €12,410/QALY. Finally,
restricting the model to disease-specific mortality (excluding BMI-
dependent excess mortality) increased the ICER to €16,071/QALY.
Overall, semaglutide remained cost-effective vs. liraglutide across
all structural and clinical assumptions, reinforcing the robustness
of the base case findings.

3.3 Sensitivity analysis

The results of the DSA are presented in Figure 2 in the form
of a tornado graph illustrating the 11 most influential parameters
impacting the base-case ICER. It is worth noting that in all DSA
scenarios, the resulting ICER remained below the WTP threshold
of €27,117/QALY.

The parameters with the most significant influence on cost-
effectiveness were treatment duration, time horizon, discount rates,
and the cost of T2D complications. Extending treatment duration
or shortening the time horizon increased the ICER (up to €17,643).
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Conversely, reducing treatment duration or extending the time
horizon improved cost-effectiveness (ICERs as low as €8,073-
€8,620). Discounting assumptions were also important: varying
the discount rates for costs and QALYs shifted the ICER between
€9,400 and €16,073 for costs and €9,652 to €15,751 for QALYs.
Similarly, varying the cost of T2D complications yielded ICERs
ranging from €9,600 to €15,896.

The results of the probabilistic sensitivity analysis (PSA) are
summarized in Table 6. Across 1,000 Monte Carlo simulations,
semaglutide 2.4 mg was associated with lower mean lifetime costs
(€24,902 vs. €25,203 for liraglutide 3.0mg) and higher mean
QALYs (14.77 vs. 14.70). This translated into mean incremental
cost savings of €301 and incremental health gains of 0.07 QALYs
in favor of semaglutide. A decomposition of incremental costs
is presented in Supplementary Table 4. In the deterministic base
case, semaglutide incurred higher total lifetime costs (€1,083)
compared with liraglutide, primarily due to higher drug acquisition
expenses (€1,417), which were only partially offset by lower
costs associated with obesity complications (€340 in total). In
contrast, the probabilistic sensitivity analysis (PSA) produced a
mean incremental cost saving (—€301). This difference reflects
the incorporation of parameter uncertainty in the PSA, where
joint sampling across treatment effects, complication risks, and
cost inputs allowed scenarios in which semaglutide achieved larger
reductions in obesity-related complications. On average, savings
in complication-related “state” costs (—€1,287.99) and event costs
(—€14.14) outweighed the higher drug and monitoring costs
(+€997.23 and +€4.25, respectively). This resulted in a net mean
saving of €300.65 for semaglutide, demonstrating that the cost-
effectiveness of semaglutide remains robust when uncertainty and
inter-parameter variability are considered.

Uncertainty around these estimates was modest. The standard
deviation of incremental costs was €330, with a 95% confidence
interval (CI) ranging from €-943 to €335. For incremental
QALYs, the standard deviation was 0.01, with a 95% CI of 4+-0.04 to
+0.09. Across all simulations, semaglutide consistently generated
positive incremental QALYs (minimum +0.03, maximum +0.10).

The cost-effectiveness (CE) plane (Figure 3) illustrates that
80.8% of simulations fell in the south-east quadrant, where
semaglutide dominated liraglutide (more QALYs at lower costs).
The remaining simulations were in the north-east quadrant,
where semaglutide provided more QALYs but at higher costs. No
simulations indicated fewer QALYs with semaglutide.
with these results, the cost-effectiveness
acceptability curve (CEAC) (Figure 4) showed that semaglutide
achieved a positive net monetary benefit (NMB) in 80.8% of

Consistent

simulations. The probability of semaglutide being cost-effective
reached 100% at a WTP threshold of approximately €9,000 per
QALY gained. At the examined Greek thresholds of €27,117 or
€34,000 per QALY, semaglutide was cost-effective vs. liraglutide in
all simulations.

4 Discussion

This study presents the first long-term cost-effectiveness
analysis of semaglutide 2.4 mg compared with liraglutide 3.0 mg
for the treatment of adults with obesity (BMI > 35 kg/m” and
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TABLE 5 Scenario analysis results for semaglutide 2.4 mg vs. liraglutide 3 mg.

Scenarios Total costs Total QALYs ICER % Change vs.
base case
Semaglutide Liraglutide Semaglutide Liraglutide Semaglutide
2.4 mg 3 mg 2.4 mg 3 mg 2.4 mg versus
Liraglutide
3 mg
Base case 27,730 26,647 13.90 13.81 12,724
1. Disease-specific mortality 27,461 26,497. 15.12 15.06 16,071 +26%
only
2. Treatment duration: 3 years 28,529 26,847 13.97 13.85 14,020 +10%
3. Treatment duration: 4 years 29,392 27,047 14.05 13.89 14,655 +15%
4. Treatment duration: 5 years 30,250 27,247 14.12 13.92 15,018 +18%
5. Treatment duration: 6 years 31,104 27,447 14.20 13.96 15,239 +20%
6. Treatment duration: 9 years 31,983 27,647 14.29 14.01 15,487 +22%
7. Trial product estimand with 27,733 26,747 13.89 13.81 12,331 —3%
a stopping rule
8. Trial product estimand 28,822 26,897 13.91 13.81 19,249 +51%
without a stopping rule
9. Post-treatment 27,584 26,697 13.89 13.82 12,669 —0.4%
discontinuation to no
treatment
10. Weight returns to baseline 27,590 26,722 13.83 13.76 12,410 —2%
in I year
Deterministic sensitivity analysis (Tornado diagram)
Semaglutide 2.4 mg versus Liraglutide 3 mg
E Weight reduction (Liraglutide, year 2) _
s W Lower
IS Weight reduction (Semaglutide, year 2) _ m Upper
Proportion of patients discontinuing (Liraglutide) [ a0s00 | 14450
Proportion of patients discontinuing (Semaglutide) _
8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000
ICER per QALY gained
FIGURE 2
Tornado diagram based on a deterministic-sensitivity analysis for semaglutide 2.4 mg vs. liraglutide 3mg. T2D, type-2 diabetes; QALY,
quality-adjusted life year; OSA, obstructive sleep apnea; ACS, acute coronary syndrome; ICER, incremental cost-effectiveness ratio.

at least one comorbidity) from the perspective of the Greek
third-party payer. Using a state-transition model over a 40-year
horizon, semaglutide was shown to be cost-effective relative to
liraglutide, with an ICER of €12,724 per QALY gained, well below
the commonly used Greek WTP thresholds. The probabilistic
sensitivity analysis confirmed the robustness of these findings,
with semaglutide dominating liraglutide in most simulations,
generating greater QALYs and lower costs in 80.8% of cases,
and achieved a 100% probability of cost-effectiveness at a WTP
threshold of approximately €9,000 per QALY. The findings
remained robust when evaluated against various cost-effectiveness
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thresholds (€27,117 and €34,000 per QALY which reinforced
semaglutide’s cost-effectiveness profile and strengthened the policy
relevance of the analysis for HTA and reimbursement decision-
making. Deterministic and scenario analyses further demonstrated
that the results were most sensitive to assumptions regarding
treatment duration, time horizon, discounting, and the costs of
diabetes-related complications; however, semaglutide remained
cost-effective in all scenarios.

Our results align with a growing international evidence base.
Cost-effectiveness studies conducted in the UK, Portugal, Canada,
and the United States consistently concluded that semaglutide
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TABLE 6 Probabilistic sensitivity analysis results for semaglutide 2.4 mg vs. liraglutide 3 mg.

Parameters Semaglutide 2.4 mg Liraglutide 3mg Incremental
Costs (€) QALYs Costs (€) QALYs Costs (€) QALYs

B-Mean 24,902.28 14.77 25,202.93 14.70 ~300.65 0.07
B-SD 1,479.58 0.18 1,498.27 0.17 330.05 0.01
B-95% LCI 21,987.93 14.43 22,346.25 14.37 —942.68 0.04
B-95% UCI 27,957.94 15.11 28,335.21 15.04 334.89 0.09
B-Min 20,104.68 14.21 20,773.60 14.14 —1,215.77 0.03
B-Max 30,381.04 1530 30,474.66 15.22 759.03 0.10

B, Bootstrap; SD, standard deviation; LCI, lower confidence interval; UCI, upper confidence interval.

Results were based on 1,000 non-parametric bootstrap experiments.
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Difference in QALYs
- Simulation - Bivariate_Normal 95% -@-WTP
FIGURE 3

Cost-effectiveness plane for semaglutide 2.4 mg vs. liraglutide 3 mg.
CE, cost-effectiveness; ICER, incremental cost-effectiveness ratio;
QALY, quality-adjusted life-year; WTP, willingness-to-pay.

Cost-effectiveness acceptability curve of semaglutide versus
liraglutide
100%

95%

90%

85%

Probability (%) that semaglutide is cost-effective

80%
0 3,000 6,000 9,000 12,000 15,000 18,000 21,000 24,000 27,000
‘Willingness-to-pay (€ per QALY gained)

FIGURE 4
Cost-effectiveness acceptability curve (CEAC) for semaglutide
2.4mg vs. liraglutide 3mag.

is cost-effective relative to lifestyle management and other
pharmacotherapies, including liraglutide (21-27). In Portugal,
semaglutide yielded an ICER of €13,459 per QALY compared

Frontiersin Public Health

with diet and exercise alone in adults with BMI >30 and
comorbidities, with a 100% probability of cost-effectiveness at a
€20,000 threshold (22). In the UK, Sandhu et al. (21) reported
that semaglutide was cost-effective in 90% of simulations at a
willingness-to-pay threshold of £20,000 per QALY, whereas Olivieri
et al. (23) demonstrated semaglutide to be cost-effective vs.
liraglutide and other agents in Canada, with extended dominance
over naltrexone-bupropion. Our results are consistent with the
findings of Alshahawey et al. (32), who conducted a decision
analysis in the Egyptian setting and reported semaglutide 2.4 mg
as a cost-effective and clinically superior alternative to liraglutide
3.0mg for achieving significant weight loss. It is noteworthy
that the probabilistic analysis yielded mean cost savings despite
the deterministic base case showing marginally higher costs for
semaglutide. This discrepancy reflects the probabilistic sampling of
interdependent parameters—treatment effects, complication risks,
and healthcare costs—enabling scenarios where greater reductions
in obesity-related complications result in substantial downstream
savings. The resulting net cost savings observed in the PSA
further reinforce the robustness of semaglutide’s cost-effectiveness
under uncertainty.

The present analysis builds on this literature by providing
country-specific evidence for Greece, where liraglutide remains
the only reimbursed obesity pharmacotherapy and is restricted to
adults with morbid obesity and established cardiovascular disease
or sleep apnoea. Methodologically, this study advances previous
work by broadening the scope of obesity-related complications
considered. While earlier models often focused on type 2
diabetes, cancer and cardiovascular disease (20-23), we also
incorporated chronic kidney disease, sleep apnoea, hypertension,
asthma, and dyslipidaemia, thereby capturing a broader spectrum
of obesity-related morbidity. This increases face validity and
decision-making relevance. Nevertheless, important comorbidities
such as osteoarthritis, several cancers (e.g., colorectal, endometrial),
and mental health disorders were not included, potentially leading
to underestimation of the full clinical and economic benefits
of treatment.

Several limitations should be acknowledged. First, although
semaglutide’s efficacy estimates were derived from the robust
STEP 8 trial, long-term extrapolation of weight trajectories and
complication risks required assumptions and the application of
published risk equations. These may not fully reflect real-world
outcomes in Greece and, given the BMI-only surrogate approach,
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may underestimate pathways not directly mediated through BMI.
Second, tirzepatide, a dual GIP/GLP-1 receptor agonist with
superior weight-loss efficacy, was not considered. Although it
is currently available in Greece only on an out-of-pocket basis,
its potential future reimbursement makes it a key comparator
for subsequent analyses. Third, this analysis was conducted from
the perspective of the Greek third-party payer (EOPYY) and
therefore excluded indirect costs, such as productivity losses,
absenteeism, presenteeism, and premature mortality, associated
with obesity. As these costs represent a substantial component
of the overall economic burden of obesity, excluding a societal
perspective may underestimate the broader economic benefits
of effective pharmacotherapy. Fourth, although STEP-8 provides
the only head-to-head randomized evidence directly comparing
semaglutide and liraglutide, its trial population may not fully
reflect the demographic and clinical profile of Greek patients
with obesity. Given the limited availability of comprehensive
local data, some differences between the modeled cohort and
the real-world Greek population may remain unaccounted for,
which should be considered when interpreting the findings. Fifth,
while the STEP-8 trial primarily informed baseline characteristics,
specific parameters (such as smoking prevalence, hypertension,
and diabetes distribution) were supplemented with expert clinical
input to reflect the Greek population more accurately. Although
this approach enhances local relevance, it may introduce a degree
of subjectivity and should be interpreted as a potential source
of uncertainty. Finally, although this analysis incorporated more
comorbidities than many prior studies, several obesity-related
conditions (e.g., certain cancers, osteoarthritis, and mental health
disorders) were not included. Similarly, bariatric surgery was not
modeled as a comparator or as an acute event manifesting across
health states. These omissions suggest that our results may be
conservative estimates of semaglutide’s cost-effectiveness profile.

Future research should expand on these findings in several
directions. First, the application of alternative frameworks, such
as the Core Obesity Model (20-23), would allow for the
validation of results across different structural assumptions and
the incorporation of additional risk factors beyond BMI, thereby
enabling more accurate long-term projections. Second, societal-
perspective analyses in Greece are warranted to capture the
broader economic implications of obesity management, including
productivity losses and informal care costs. Third, head-to-head
evaluations of semaglutide and emerging therapies, particularly
tirzepatide, will be crucial in informing future reimbursement and
treatment decisions. Fourth, the integration of real-world data
on adherence, weight trajectories, safety, and long-term outcomes
in Greek patients will strengthen the external validity of future
models. Finally, subgroup analyses in patients with obesity and
coexisting conditions such as type 2 diabetes or non-alcoholic
steatohepatitis could provide deeper insights into the dual benefits
of obesity management for both metabolic and hepatic outcomes.

In summary, this study provides robust evidence that
semaglutide 2.4mg is a cost-effective treatment for obesity in
Greece compared with liraglutide 3.0mg. These results have
important implications for reimbursement and resource allocation
in Greece, where obesity imposes a substantial health and economic
burden, and support the expansion of access to clinical and cost-
effective pharmacotherapies such as semaglutide.
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5 Conclusion

The present cost-effectiveness analysis demonstrates that
semaglutide 2.4mg is a cost-effective option compared with
liraglutide 3.0 mg for adults with obesity (BMI > 35 kg/m? and at
least one weight-related comorbidity) in Greece, at a willingness-
to-pay threshold of €27,117 per QALY gained. Deterministic
and probabilistic sensitivity analyses confirmed the robustness of
these findings.
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