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Objective: This study aims to summarize current applications of artificial 
intelligence (AI) for chronic disease self-management, critically appraise their 
effectiveness, and identify implementation challenges and future directions for 
research and clinical integration.
Methods: A narrative literature review of peer-reviewed, English-language 
studies identified via PubMed, Web of Science, and Scopus was conducted, using 
combinations of “artificial intelligence,” “chronic disease,” “self-management,” 
“remote monitoring,” “predictive analytics,” “conversational agent,” and “mobile 
health.” Reference lists of key reviews were snowballed. We  included studies 
that described or evaluated AI-enabled self-management tools or interventions 
for chronic conditions and excluded non-AI, acute-care, editorial, and non-
human studies. Findings were synthesized thematically.
Results: The literature consistently identifies four roles of AI in chronic care: 
(1) personalized decision support and treatment optimization; (2) continuous 
monitoring and risk prediction from patient-generated data; (3) conversational 
agents delivering education, adherence support, reminders, behavioral coaching, 
and mental-health support; and (4) AI-enabled Mobile health (mHealth) 
platforms that connect patients with clinicians and coordinate care. Recurrent 
challenges reported include data privacy and security risks, algorithmic bias 
and limited generalizability, interoperability and workflow-integration barriers, 
variable usability and sustained engagement (digital divide- inequalities in 
access to digital technologies and the internet, often influenced by age, income, 
or geography), and insufficient high-quality evidence on clinical effectiveness 
and cost-effectiveness.
Conclusion: Future directions focus on developing more accurate, explainable, 
and trustworthy AI models, better clinical integration, leveraging advanced AI for 
engagement, rigorous evaluation, and addressing ethical and implementation 
barriers to realize AI’s full potential in empowering patients and improving 
chronic disease outcomes.
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1 Introduction

Chronic diseases, such as diabetes, cardiovascular diseases, 
respiratory disorders, and mental health conditions, represent a 
significant global health burden, characterized by their long-term 
nature and the necessity for continuous management (1, 2). Effective 
self-management by patients is paramount to improving health 
outcomes, maintaining quality of life, and reducing healthcare costs 
(2, 3). Self-management involves a range of behaviors, including 
medication adherence, lifestyle modifications (diet, exercise), 
symptom monitoring, and active participation in treatment decisions 
(4, 5) However, supporting patients in consistently performing these 
complex tasks over a lifetime presents substantial challenges for 
traditional healthcare systems, often limited by resources and 
geographical barriers, particularly in rural or underserved areas (6, 7).

The rapid advancements in artificial intelligence (AI) and related 
digital health technologies, including mobile health (mHealth) and 
wearable devices, offer transformative potential to address these 
challenges and revolutionize chronic disease self-management (8–10). 
AI can process vast amounts of patient-generated data from various 
sources, such as Electronic Health Record (EHR)s, wearable sensors, 
and mobile applications, to provide personalized insights, predictive 
warnings, and interactive support, moving healthcare towards a more 
predictive, preventive, and personalized model (11). Unlike prior 
reviews that focus on single tools (e.g., chatbots) or single diseases 
(e.g., diabetes), our review takes a task-based, cross-modal perspective, 
mapping diverse AI technologies directly onto the core components 
of patient self-management. This approach offers a unified framework 
that clarifies both where AI has matured and where gaps remain. By 
examining diverse AI modalities and their implementation across 
various chronic conditions, this review seeks to provide a 
comprehensive overview of the evolving landscape and highlight areas 
requiring further research and development to fully realize AI’s 
potential in empowering patients and improving health outcomes.

2 Literature search and selection

This review followed a narrative approach. We searched PubMed, 
Web of Science, and Scopus for English-language studies published up 
to May 2025 using keyword combinations including “artificial 
intelligence,” “chronic disease,” “self-management,” “remote 
monitoring,” and “digital health.” Additional references were identified 
by screening citations in relevant reviews. We included studies that 
described or evaluated AI-enabled self-management tools for chronic 
conditions, while excluding non-AI, acute-care, non-human, and 
editorial/commentary articles. As this was a narrative review, no 
formal quality assessment or systematic synthesis (e.g., PRISMA flow 
diagram) was undertaken.

3 Current applications of AI in chronic 
disease self-management

The application of artificial intelligence in chronic disease self-
management is multifaceted, leveraging various AI techniques to 
address different aspects of patient care and support. These 
applications can broadly be categorized by the type of AI technology 

employed or the specific function they serve within the self-
management process. This section will delve into the current state of 
AI applications, examining their use in personalized interventions, 
predictive analytics, monitoring, and patient engagement tools like 
conversational agents—an AI-powered virtual assistant or chatbot that 
interacts with patients via text or speech to provide education, 
reminders, or coaching—drawing upon recent literature across 
different chronic conditions.

3.1 AI for personalized interventions and 
decision support

One of the most significant promises of AI in chronic disease 
management is its ability to enable personalized interventions and 
provide data-driven decision support, moving away from a “one-size-
fits-all” approach (12). Machine learning (ML) algorithms analyze 
high-dimensional, longitudinal data to identify patterns and predict 
individual responses to treatments or lifestyle changes, thereby 
informing day-to-day self-management decisions. Diabetes 
exemplifies this precision approach: models integrating continuous 
glucose monitors (CGM), insulin pumps records, diet logs, and 
activity data generate tailored recommendations for insulin dosing, 
meal planning, and exercise with the goal of optimizing glycemic 
control (13–26). Diabetes education tools increasingly embed AI to 
personalize content and coaching, strengthening self-management 
skills (27, 28). Prospective system-validity studies demonstrate 
next-day hypoglycemia prediction from mobile/CGM data with 
random forest accuracy 0.814 (F1 = 0.812; sensitivity = 0.815; 
specificity = 0.824), outperforming alternative models (accuracy 0.65–
0.80). Explainable Artificial Intelligence–driven Clinical Decision 
Support Systems (AI-CDSS) can make daily self-management more 
predictive and proactive by fusing data from smartphones, wearables, 
and CGMs (29), while “nurse-in-the-loop” predictive digital twin—a 
virtual, patient-specific model that simulates health status and 
treatment responses to support personalized care—strategies for Type 
2 Diabetes (T2D) showcase how transfer-learned models can deliver 
individualized feedback aligned with clinical expertise (30). In 
oncology survivorship, emerging tools personalize surveillance and 
supportive-care recommendations (e.g., symptom triage, fatigue/
exercise prescriptions, toxicity monitoring), aligning advice with 
individual risk profiles and preferences.

3.2 AI for monitoring and predictive 
analytics

A core contribution of AI to self-management is the ability to 
transform continuous, multimodal data streams—physiological 
signals from wearables and home devices, symptom reports, 
medication logs, and EHR histories into timely risk assessment and 
early-warning insights that patients and clinicians can act on between 
visits. Models trained on longitudinal data support near-real-time 
monitoring, short-horizon exacerbation prediction, and trend 
detection that trigger tailored advice or escalation pathways, thereby 
complementing decision support systems.

In cardiovascular disease, monitoring pipelines increasingly fuse 
signals such as heart rate dynamics and rhythm strips with clinical 
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history to detect atrial fibrillation (AF) episodes, anticipate 
deterioration, and inform self-care prompts or remote reviews (31–
35). These systems illustrate how passive sensing coupled with 
predictive analytics can shorten the time from signal to action in 
routine self-management.

The monitoring–prediction stack spans risk stratification, 
diagnostic augmentation, screening, and patient support. Explainable 
AI stratifies exacerbation risk from features such as smoking history, 
BMI, and symptom profiles (36). In specialist settings, adding 
explainable AI to pulmonologist PFT interpretation increased mean 
diagnostic accuracy versus pulmonologists alone—although a subset 
performed worse, underscoring the need for clinical oversight (36, 
37). Imaging models provide staging and prognostic precision: CT 
deep learning in Chronic Obstructive Pulmonary Disease (COPD) 
Gene/ECLIPSE achieved ~50% exact GOLD staging and ~75% within 
one stage, predicted exacerbations and mortality, and reached AUC 
0.89; PPV 0.847 for COPD identification in ECLIPSE; combining CT 
radiomics + demographics + spirometry further improved progression 
prediction over any single modality. At primary-care level, case-
finding tools report usable operating points: a graph convolutional 
network achieved accuracy 0.77 (AUC 0.81) on weakly labeled CT; an 
AI “robot” questionnaire reached sensitivity 76.11%, specificity 
84.76%, AUC 0.858; and a multi-instance learning classifier reported 
AUC 0.742 (38, 39).

Beyond cardiometabolic disease, monitoring and prediction are 
expanding across other conditions. In chronic kidney disease (CKD), 
longitudinal EMRs underpin AI models that predict progression 
trajectories to guide precision management (40, 41), with systems 
such as TrajVis translating model outputs into interpretable clinical 
insights (42). In addition, a comparative modeling study for early 
CKD identification trained a deep neural network (multilayer 
perceptron) on a 400-patient dataset (75/25 train–test split; McNemar 
test for model comparison) and reported 100% test accuracy, 
outperforming logistic regression (96%) and SVM (82%); the reported 
confusion matrix showed perfect classification of both CKD and 
non-CKD cases, underscoring potential while also highlighting the 
need for external validation and larger, multi-site cohorts (43). For 
end-stage kidney disease, proof-of-concept models suggest AI can 
help steer blood-pressure and volume strategies by learning from prior 
response, such as through artificial neural networks that predict 
session-specific outcomes and enable personalized adjustments to 
minimize intradialytic hypotension while optimizing fluid 
removal (44).

3.3 Conversational AI and intelligent 
coaching systems

These systems target engagement—personalized education, 
adherence support, and behavioral coaching—grounded in behavioral 
science and “nudge” principles. Unlike decision-support engines or 
passive risk models, engagement-focused systems emphasize human–
AI dialogue and habit formation, with personalization and 
explainability as key levers (45–47).

Diabetes remains the most developed use case for AI-enabled 
engagement. mHealth apps increasingly integrate CGM/pump, diet, 
and activity data to deliver individualized education and real-time 
coaching around dosing, meals, and exercise. AI-driven education 

modules adapt content to literacy and learning needs (48–50), while 
nudge-based features encourage sustained lifestyle change (51, 52). 
Evidence maturity is mixed but encouraging: the breadth of tools 
reflects rapid diffusion in diabetes, and feasibility/acceptability is 
supported even in low-resource settings where peer-educator models 
are being tested to extend reach and cultural fit. At the same time, 
durable engagement and rigorous external validation remain 
necessary to translate personalization gains into consistent clinical 
improvements (53–55).

Conversational/ natural language processing (NLP) 
personalization can also improve engagement with diabetes education 
(mean engagement ratio 0.31 with personalization vs. 0.26 without) 
(56). In chronic limb-threatening ischemia (CLTI), AI/ML approaches 
aim to improve accurate diagnosis, outcome prediction, and identify 
disparities in treatment, highlighting the potential role for decision 
support in addressing inequities.

AI-powered digital pain coaches deliver individualized pacing, 
exercise, and cognitive-behavioral strategies via conversational 
interfaces. Prospective and multicenter studies report significant 
improvements in pain interference, physical function, and 
psychological distress over 12 weeks, supporting the role of tailored 
coaching in everyday self-management (57). These benefits underscore 
the potential of engagement-centric AI to shift outcomes even when 
pharmacologic or procedural options are limited.

Because anxiety, depression, and low mood commonly co-occur 
with chronic conditions, conversational agents increasingly provide 
personalized emotional support, self-monitoring, and triage. Early 
results suggest acceptability and user-reported benefit, but concerns 
around ethical safeguards, accuracy, and escalation pathways are 
prominent (58, 59), reinforcing the need for transparent reporting and 
integration with clinical oversight.

On the patient side, virtual agents co-designed with user’s support 
exacerbation action plans, mood management, and daily tasks with 
good acceptability and perceived usefulness (60, 61); at the sensing 
layer, smartphone auscultation and AI-augmented stethoscopes are 
being evaluated for wheeze/symptom recognition to enable home tele-
monitoring (62, 63). Digital programs that embed algorithmic 
feedback improve quality of life and self-efficacy, although effects on 
healthcare utilization remain mixed (64).

3.4 AI in mHealth and digital health 
platforms

AI-enabled mHealth platforms coordinate information, decisions, 
and actions between patients and clinicians by fusing home-collected 
signals (wearables, sensors, symptom diaries) with EHR data, then 
routing triage, escalation, and follow-up through secure messaging, 
teleconsultation, and shared care plans. The aim is to close the 
“between-visit” gap with timely guidance, medication titration, and 
appointment or testing prompts while documenting actions back to 
the record. In heart failure (HF), platforms increasingly pair post-
discharge risk models with symptom check-ins to trigger medication 
reconciliation, complication surveillance, rehabilitation/exercise 
pacing, and timely clinic contact. Evidence remains early-phase, but 
perioperative studies offer concrete operating points that motivate 
such transition workflows: ML can predict intraoperative hypotension 
up to 15 min in advance (AUC 0.95, sensitivity 88%, specificity 87%); 
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continuous ward monitoring with gradient-boosted models has 
anticipated stage-2 AKI ~ 24 min before KDIGO criteria; and the 
PRODIGY score uses continuous capnography and oximetry to 
prospectively stratify risk of opioid-induced respiratory depression on 
general wards. At the same time, a pilot randomized evaluation of 
hypotension-prediction decision support did not reduce hypotension 
when alerts were frequently ignored, underscoring the need for robust 
workflow integration and escalation pathways as these tools move into 
the post-discharge transition context (65, 66).

3.5 Evidence maturity and gaps

Beyond functional categorizations, disease-specific manifestations 
of chronic conditions necessitate tailored AI approaches. This section 
explores these implementations across major chronic diseases, 
delineating how AI addresses distinct pathophysiological and self-
management challenges (Table 1; Figure 1).

Across chronic conditions, the strongest maturation is seen in 
monitoring and predictive analytics, where longitudinal sensing and 
EHR data support near–real-time risk assessment and early-warning 
prompts. Feasibility and user acceptance are consistent in AF/CVD and 
COPD, and trajectory modelling in CKD provides actionable forecasts 
(42, 67, 68). However, The impact on service outcomes is heterogeneous 
and appears to depend strongly on patient engagement and workflow 
integration (43). For personalized decision support, promising signals 

come from diabetes (CGM/pump–integrated coaching, AI-CDSS, and 
nurse-in-the-loop “digital twin” strategies) and from HF care planning 
and titration. Yet broader clinical utility hinges on data quality, external 
validation, interpretability, and seamless integration into routines of care 
(12, 24, 69). Engagement-focused systems—conversational education, 
adherence support, and behavioral coaching—show improvements in 
patients-reported outcomes (PROs) in chronic pain and diabetes 
education, and are feasible even in low-resource settings (70, 71). At the 
same time, long-term retention is variable, effects on healthcare 
utilization remain mixed in respiratory disease programs, and ethical/
accuracy questions persist for mental-health comorbidity agents.

Taken together, the field has progressed from feasibility toward 
prospective and real-world deployment in several niches, but 
generalizability and durability are the main bottlenecks. Priorities 
include: multi-site external validation and transparent reporting; 
pragmatic/hybrid-effectiveness evaluations with standardized PROs 
and economic endpoints; and design for sustained engagement and 
workflow interoperability so that model outputs translate into reliable, 
patient-centered action (32, 72, 73).

4 Challenges and considerations for AI 
in chronic disease self-management

Despite the transformative potential of AI in chronic disease self-
management, significant challenges and considerations must 

TABLE 1  AI applications in chronic disease self-management: key functions, technologies, and outcomes.

Chronic condition Core AI functions Key technologies/tools Reported outcomes/
advantages

References

Diabetes

Personalized insulin dosing; 

Glycemic prediction; 

Behavioral coaching

CGM + Closed-loop systems; AI 

mHealth apps; ML-based glucose 

prediction algorithms

Improved glycemic control; 

Reduced hypoglycemia events; 

Enhanced adherence to lifestyle 

modifications

(9, 19–24, 28, 32)

Cardiovascular diseases/heart 

failure

Remote deterioration 

detection; Risk stratification; 

Personalized care planning

Wearable sensors [ECG, blood 

pressure (BP)]; AI remote 

monitoring platforms; Predictive 

analytics models

Early detection of clinical 

deterioration; Reduced 

hospitalizations; Proactive 

intervention facilitation

(50, 67)

Chronic obstructive 

pulmonary disease (COPD)

Risk prediction; 

Exacerbation support; 

Symptom monitoring

Explainable AI (XAI) frameworks; 

Virtual conversational agents; 

Smartphone-based monitoring

Targeted screening; Improved 

self-efficacy during 

exacerbations; Enhanced 

quality of life

(34–37, 63)

Chronic pain

Activity-pain correlation 

analysis; Personalized 

behavioral guidance

AI-powered digital coaching 

platforms; Mobile apps with ML-

based feedback systems

Reduced pain interference; 

Improved physical function; 

Decreased anxiety/depression

(70, 71)

Periodontitis

Oral hygiene adherence 

monitoring; Personalized 

feedback

AI-enabled toothbrush sensors; 

Targeted mHealth micromessages

Improved oral hygiene 

performance; Enhanced 

periodontal therapy outcomes

(33)

Other conditions†

Risk prediction; Symptom 

tracking; Personalized 

education

Chatbots (e.g., haemophilia); LLMs 

(e.g., ChatGPT); Predictive digital 

twins

Improved disease knowledge 

(haemophilia); Theoretical 

mental health support; 

Individualized management 

strategies

(12, 26, 45–47, 72, 73)

AI, Artificial Intelligence; BP, Blood Pressure; CGM, Continuous Glucose Monitoring; COPD, Chronic Obstructive Pulmonary Disease; ECG, Electrocardiogram; LLM, Large Language 
Model; ML, Machine Learning; mHealth, mobile Health; XAI, Explainable AI. Outcomes: Reflects outcomes reported in cited studies (e.g., “reduced hospitalizations” in CVD/HF; “improved 
oral hygiene” in periodontitis). †Other Conditions: Includes haemophilia, mental health, hepatitis C, epilepsy, and inflammatory bowel disease where evidence is emerging but less established.
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be addressed to ensure its safe, effective, and equitable implementation. 
These challenges span technical, ethical, regulatory, and socio-
behavioral domains (Table  2). A key concern is data privacy and 
security. AI systems for self-management often rely on collecting 
sensitive personal health data from various sources, including 
wearables, apps, and EHRs (6, 8). Robust cybersecurity measures and 
compliance with regulations are essential to maintain patient trust (6, 
8). Ethical issues include algorithmic bias, transparency, and informed 
consent. Biased data may exacerbate disparities, while the “black box” 
nature of some AI models hinders trust among patients and clinicians. 
Enhancing transparency and ensuring meaningful informed consent 
remain priorities (8). Implementation barriers are also notable. 
Limited digital health literacy, especially among older adults and 
socioeconomically disadvantaged groups, and inequitable access to 
smartphones or internet connectivity restrict uptake (6, 74). 
Integrating AI into clinical workflows and EHRs poses technical and 
logistical hurdles, requiring interdisciplinary collaboration and 
training for health-care professionals. Importantly, even accurate 
models fail if alerts are ignored or escalation pathways are unclear, 
underscoring the need for workflow fit and human-in-the-loop 
oversight (43). Significant evidence gaps remain, particularly 
regarding long-term effectiveness, standardized outcome measures, 
and external validation across diverse populations. While monitoring 
and prediction tools show feasibility and patient-reported benefits, 
clinical outcomes remain heterogeneous and generalizability limited 
due to single-center or narrow cohorts. Large-scale, prospective 
validation with standardized outcomes is urgently needed. While 
engagement-focused AI demonstrates short-term improvements in 
PROs, challenges such as inconsistent retention and limited external 
validation highlight the need for further research. Similarly, mHealth 
platforms and telemonitoring improve adherence yet show mixed 

effects on hospitalization or long-term outcomes, with interoperability 
challenges limiting health-system deployment. Finally, In addition, 
ongoing regulatory uncertainty and concerns about patient trust 
present major barriers to widespread adoption. Frameworks for 
clinical AI remain in flux, complicating adoption (10). Sustained 
patient engagement requires building trust, as false alerts or over-
reliance on automation can erode confidence (9). Addressing these 
multifaceted challenges demands coordinated efforts among 
researchers, developers, clinicians, policymakers, and patients.

In addition to these challenges, three barriers to broad adoption 
deserve emphasis. First, data integration and standardization remain 
formidable, as AI systems require multimodal, large-scale datasets 
combining imaging, EHR, and wearable signals. Heterogeneous data 
formats, inconsistent data quality, and siloed healthcare systems 
complicate the development of robust AI models, often requiring 
advanced data harmonization techniques and interoperable platforms 
to ensure compatibility across diverse data sources. For example, 
integrating continuous glucose monitoring data with EHRs for 
diabetes management demands standardized ontologies and secure 
data-sharing protocols to enable real-time, actionable insights (75). 
Second, regulatory clarity is evolving; notably, the U. S. Food and Drug 
Administration (FDA)’s December 2024 guidance on “Predetermined 
Change Control Plans” for continuously learning AI devices marks an 
important milestone. This guidance facilitates adaptive AI algorithms 
by allowing pre-approved modifications while ensuring safety and 
efficacy, yet uncertainties around reimbursement and liability persist, 
delaying integration into clinical practice (76). Harmonizing global 
regulatory frameworks remains critical to streamline deployment 
across jurisdictions (77). Third, ethical considerations are paramount: 
explainable AI is critical to foster clinician and patient trust, and 
physicians should play a leading role in driving AI innovation to 

FIGURE 1

Examples of AI applications in chronic diseases. This figure illustrates various applications of AI in managing chronic conditions such as diabetes, 
cardiovascular diseases, and other chronic diseases (e.g., chronic pain, obesity, mental health). It highlights AI’s role in self-monitoring, telemedicine, 
risk prediction, and personalized treatment strategies.
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ensure alignment with real-world clinical needs. Explainable AI 
models, such as those incorporating interpretable decision trees or 
attention mechanisms, enhance transparency by elucidating decision-
making processes, thereby reducing skepticism among clinicians and 
patients (78). Moreover, physician-led innovation ensures AI tools 
address practical clinical challenges, such as optimizing chronic 
disease monitoring or personalizing treatment plans, by incorporating 
domain expertise into algorithm design and validation (79). 
Collaborative initiatives, such as clinician-researcher partnerships, are 
essential to align AI development with patient-centered care 
priorities (80).

5 Current AI use cases in 
cardiovascular medicine beyond 
self-management

AI applications extend beyond patient self-management to 
broader domains in cardiovascular medicine, including procedural, 
diagnostic, and efficiency areas. These use cases demonstrate AI’s 
versatility in addressing AF and related conditions, offering insights 
into potential integrations with self-management tools. This section 
outlines key examples, emphasizing their methodologies, findings, 
and implications, drawn from large-scale studies and clinical trials.

In AF screening and monitoring, consumer wearables have 
leveraged AI for large-scale, real-world detection. The Apple Heart 
Study, a prospective single-arm trial involving over 419,000 
participants, utilized photoplethysmography (PPG) sensors on the 

Apple Watch combined with a ML algorithm to detect irregular pulses 
suggestive of AF. The algorithm achieved a positive predictive value of 
84% for confirmed AF on subsequent ECG patches, with 34% of 
notified participants having AF episodes lasting ≥30 min, 
demonstrating high feasibility for opportunistic screening and user 
engagement, though limitations included underrepresentation of 
older adults (81). Similarly, the Fitbit Heart Study enrolled 455,699 
participants and employed a PPG-based deep learning algorithm, 
reporting 98.7% sensitivity for AF episodes >30 min and a positive 
predictive value of 98% among those with irregular rhythms, 
underscoring cost-effective population-level monitoring with minimal 
false positives (82). The Samsung HEARTBEAT study, using Galaxy 
Watch devices, validated PPG algorithms against 12-lead ECGs, 
achieving 92.9% accuracy in AF detection over 14 days, highlighting 
usability for continuous monitoring in ambulatory settings (83). These 
studies illustrate AI’s potential to enhance early AF detection and 
burden quantification, bridging gaps in intermittent monitoring for 
chronic cardiovascular self-management.

Procedural challenges in AF ablation, such as prolonged ablation 
times (often exceeding 3–4 h), labor-intensive manual mapping, 
inconsistent lesion formation leading to incomplete transmurality, and 
difficulties in identifying extra-pulmonary vein (extra-PV) targets like 
rotors or focal drivers, have created opportunities for AI-driven 
solutions to streamline workflows, enhance precision, and improve 
outcomes (84, 85). These limitations in traditional approaches, which 
rely on operator experience and can result in recurrence rates of 
20–40% in persistent AF, underscore the need for automated, data-
driven tools that reduce variability and procedural duration while 

TABLE 2  Cross-cutting challenges and solution requirements for AI in chronic disease self-management.

Challenge domain Specific issues Associated risks Key solution 
requirements

References

Data privacy and security

Collection/storage of sensitive 

biometric, activity, and EHR data; 

Cross-platform data sharing

Patient data breaches; Non-

compliance with regulations; 

Erosion of trust

Robust encryption (e.g., end-to-

end); Strict adherence to GDPR/

HIPAA; Decentralized data 

storage (e.g., federated learning)

(6, 8, 45, 69)

Algorithmic bias and 

transparency

Training data 

unrepresentativeness; “Black box” 

decision-making; Limited 

explainability

Perpetuation of health 

disparities; Clinician 

skepticism; Patient mistrust

Development of Explainable AI 

(XAI) frameworks; Diverse multi-

center datasets; Algorithmic 

fairness audits

(8, 24, 42, 59, 68, 108)

Implementation barriers

Low digital literacy (e.g., elderly/

low-SES groups); Limited tech 

access (rural/LMICs); Workflow 

integration difficulties

Digital divide exacerbation; 

Low adoption rates; Clinical 

workflow disruptions

Culturally adapted training 

programs; Low-cost/offline-

capable devices; Interoperability 

standards (e.g., HL7 FHIR)

(6, 26, 32, 59, 74)

Evidence and regulatory gaps

Insufficient long-term efficacy 

data; Lack of standardized 

outcome measures; Evolving 

regulatory frameworks

Unproven clinical utility; 

Reimbursement uncertainties; 

Delayed market access

Large-scale RCTs with real-world 

endpoints; Consensus 

frameworks for AI validation; 

Adaptive regulatory pathways 

(e.g., FDA SaMD)

(10, 12, 66, 69)

Clinical integration and trust

False alerts (e.g., AF detection); 

Lack of clinician training; Patient 

over-reliance

Alert fatigue; Reduced 

confidence in AI; 

Undermined patient-clinician 

relationships

Hybrid “human-in-the-loop” 

oversight (e.g., nurse-led AI); 

Clinician education modules; 

Fail-safe mechanisms for critical 

alerts

(22, 24, 25, 66)

AF, Atrial Fibrillation; AI, Artificial Intelligence; EHR, Electronic Health Record; FDA, U. S. Food and Drug Administration; FHIR, Fast Healthcare Interoperability Resources; GDPR, General 
Data Protection Regulation; HIPAA, Health Insurance Portability and Accountability Act; HL7, Health Level Seven International; LMICs, Low- and Middle-Income Countries; RCT, 
Randomized Controlled Trial; SaMD, Software as a Medical Device; SES, Socioeconomic Status; XAI, Explainable AI.
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supporting personalized strategies (85, 86). For AI-assisted mapping 
and imaging, tools like Volta VX1 employ ML to analyze multipolar 
electrograms during AF ablation, identifying dispersion areas in real-
time with high inter-operator agreement (kappa 0.85), improving 
procedural efficiency and reducing recurrence rates in persistent AF 
by targeting non-pulmonary vein drivers (87). CARTO AI, integrated 
into the CARTO electroanatomic mapping system, uses neural 
networks for automated annotation of complex fractionated atrial 
electrograms, facilitating faster substrate mapping and personalized 
ablation strategies, with studies showing reduced mapping time by 
30% while maintaining accuracy comparable to expert manual review 
(88). Additionally, AI-guided MRI segmentation tools, such as deep 
learning-based convolutional neural networks for atrial scar and 
fibrosis delineation in late gadolinium-enhanced cardiac MRI, enable 
automated identification of extra-PV ablation targets with 
segmentation accuracy comparable to manual methods, reducing 
pre-procedural planning time and aiding in tailored lesion sets to 
minimize gaps and improve long-term success (89, 90). US2. AI 
echocardiography applies convolutional neural networks to automate 
full echocardiographic analysis, measuring parameters like ejection 
fraction and chamber dimensions with 95% agreement to expert 
readings, enabling rapid point-of-care diagnostics for HF and valvular 
disease in AF patients (91). These applications enhance precision in 
procedural interventions, potentially informing future AI-driven self-
management by providing baseline data for personalized monitoring.

Efficiency tools further expand AI’s utility. AI risk scoring models, 
such as those predicting incident AF from clinical data and polygenic 
scores, integrate ML with EHRs to achieve AUCs of 0.85–0.90, 
outperforming traditional scores like CHARGE-AF by identifying 
high-risk individuals for preventive strategies (92). For ECG labeling, 
deep learning algorithms automate AF classification with >99% 
accuracy, reducing manual review time in large datasets and 
supporting scalable diagnostics (93). Prediction of AF from sinus 
rhythm ECGs uses convolutional neural networks to detect subtle 
features, predicting future AF with AUC 0.87  in cohorts like UK 
Biobank, aiding early intervention in at-risk populations (94). The 
TAILORED AF trial, a randomized controlled study, employed AI to 
guide real-time lesion delivery during ablation by mapping 
spatiotemporal dispersion, resulting in 74% freedom from AF at 
12 months in the AI arm versus 58% in controls, demonstrating 
superior outcomes through adaptive, individualized procedures (95).

Collectively, these use cases exemplify AI’s clinical breadth, 
distinct from but complementary to patient-centered self-
management, emphasizing the need for integration to optimize 
chronic disease outcomes.

6 Discussion

An important distinction that emerges from the reviewed 
literature is between early-phase feasibility or pilot studies and 
validated clinical applications. Many AI-enabled tools, such as 
conversational agents for patient engagement or predictive analytics 
for exacerbation risk, have primarily been evaluated in small, single-
center feasibility trials or short-term pilots. These studies provide 
valuable proof-of-concept evidence and user-acceptability insights but 
do not establish clinical effectiveness. In contrast, validated clinical 
applications—those tested in large-scale, prospective, or real-world 

settings—remain relatively limited. For example, while some 
AI-supported decision support systems in diabetes and remote 
monitoring platforms in HF have undergone prospective evaluations 
and regulatory clearance, most other domains lack comparable 
validation (96, 97). This distinction underscores that the field, while 
promising, remains in a transitional stage between early feasibility 
studies and fully validated clinical applications. Feasibility evidence is 
encouraging, but widespread clinical adoption requires rigorous 
multi-site randomized trials, standardized outcome measures, and 
long-term effectiveness and cost-effectiveness data. Taken together, 
these observations underscore that while feasibility studies 
demonstrate promising signals. Validated applications, however, 
remain relatively scarce, underscoring the importance of conducting 
large-scale, multi-site clinical trials. In addition to these evidence-
related challenges, regulatory oversight—particularly from the FDA—
is playing an increasingly important role in shaping the clinical 
implementation of AI. The FDA regulates many AI systems under its 
Software as a Medical Device (SaMD) framework, requiring robust 
evaluation of safety, effectiveness, and quality assurance before 
approval (98). Recent guidance, including the introduction of 
“Predetermined Change Control Plans,” marks a pivotal step by 
allowing certain AI algorithms to adapt and update post-approval 
while maintaining oversight (99). Pilot initiatives such as the Digital 
Health Software Precertification Program also demonstrate the FDA’s 
intent to accelerate the evaluation process for digital health 
innovations (100). Nevertheless, evolving requirements and 
uncertainties regarding reimbursement, liability, and interoperability 
continue to create barriers for widespread adoption. Thus, FDA 
regulation acts as both a safeguard—ensuring patient safety and 
building trust—and a challenge, as stakeholders must continuously 
adapt to meet changing regulatory expectations.

The limitations of conventional monitoring strategies further 
illustrate this gap in clinical practice. For instance, intermittent 
approaches such as 24-h or 7-d ambulatory Electrocardiogram (ECG) 
recordings detect only a fraction of AF episodes, with reported 
sensitivities of approximately 16 and 42%, respectively, compared with 
implantable cardiac monitors that achieve up to 99% sensitivity in 
detecting AF episodes lasting ≥2 min, as demonstrated in a review of 
ambulatory ECG monitoring strategies where prolonged continuous 
monitoring significantly outperformed shorter intermittent recordings 
in identifying paroxysmal AF in patients with cryptogenic stroke or 
suspected arrhythmia (101). This limited sensitivity hampers timely 
diagnosis and accurate burden quantification, especially for patients 
with paroxysmal AF. AI-enabled wearable devices have the potential 
to overcome these limitations by providing continuous, unobtrusive 
monitoring in real-world settings. When coupled with advanced 
algorithms, these devices can enhance early AF detection, enable more 
precise assessment of arrhythmia burden, and support proactive 
intervention strategies. For example, large-scale screening studies like 
the Apple Heart Study utilized PPG-based algorithms with ML to 
detect irregular pulse suggestive of AF, achieving a positive predictive 
value of 84% for confirmed AF episodes and demonstrating high user 
engagement with over 400,000 participants, thereby highlighting the 
feasibility of AI-driven wearables for population-level AF detection 
and burden estimation in chronic cardiovascular self-management 
(81). Similarly, the Fitbit Heart Study employed PPG sensors 
integrated with deep learning models to identify AF, reporting a 98.7% 
sensitivity for AF episodes lasting >30 min and underscoring 
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cost-effective, scalable alternatives to traditional monitoring (82). This 
context underscores how AI not only augments existing monitoring 
modalities but also addresses critical diagnostic blind spots inherent 
in conventional strategies.

Prior studies typically narrow to a single tool class (e.g., chatbots) 
or to a specific population/technology stack and largely inventory 
systems without linking them to the day-to-day work of self-
management; chatbot reviews deem the evidence promising yet 
heterogeneous and note inconsistent technical reporting, limiting 
cross-disease comparability (102), while aging-focused surveys 
summarize ML/NLP advances but are not organized around patient 
tasks or mHealth/wearable workflows (103), and bibliometric 
overviews describe a fragmented field and call for implementation-
relevant studies (104). In this review, we  synthesize predictive 
analytics, continuous sensing/remote monitoring, conversational 
agents, and AI-enabled mHealth platforms and map them to core self-
management tasks—personalized decision support; continuous 
monitoring and risk prediction; education/adherence/behavioral 
coaching; and patient–clinician care coordination—thereby clarifying 
where roles are maturing (e.g., monitoring/risk prediction) versus 
under-developed (e.g., sustained engagement and emotional support) 
and providing a cross-modal, task-anchored lens absent from chatbot-
only work (102). We also reconcile mixed clinical signals by placing 
encouraging single-arm findings (e.g., an AI-powered digital pain 
coach over 12 weeks) alongside a null multicenter randomized 
controlled trial (RCT) (70, 105). Importantly, we connect patient-
articulated priorities—personalization, emotional/social support, 
proactive monitoring, service integration, and ethics/governance 
(106)—to implementation pathways using NASSS and privacy-
preserving infrastructures such as federated learning and blockchain. 
Unlike aging-focused reviews or platform papers that emphasize 
architectures without cross-disease appraisal (103, 107), our synthesis 
spans conditions and technologies yet remain organized by the work 
patients and clinicians actually perform. Collectively, this yields a 
pragmatic agenda—pragmatic/hybrid designs with standardized 
PROs and economic endpoints (70, 105), transparent technical 
reporting to enable comparability (102), and privacy-preserving data 
pipelines aligned with health-system integration (NASSS)—and, to 
our knowledge, the first cross-modal, task-based account of AI for 
chronic-disease self-management.

7 Future directions and opportunities

Looking ahead, the future of AI in chronic disease self-
management holds immense potential, provided that current 
challenges are effectively addressed. Several key directions 
are emerging.

First, more trustworthy AI models are needed, with improvements 
in accuracy, reliability, and explainable AI (XAI) to enhance 
transparency and build trust among users and clinicians (12, 13). 
Ethical design principles must be embedded from the outset, actively 
working to mitigate bias and ensure equitable access (8). Second, 
integration into existing healthcare ecosystems is critical. Interoperable 
platforms should link patient-generated data from wearables and 
mHealth tools with EHRs and clinical workflows. Hybrid approaches 
such as “nurse-in-the-loop” models- a hydrid model where nurses 
oversee or validate the recommendations generated by AI systems, 

ensuring clinical appropriateness and patient safety-can combine AI 
efficiency with human oversight, ensuring care remains personalized 
and compassionate (20). Third, advancements in generative AI and 
NLP offer new opportunities to enhance patient engagement and 
education. Future conversational agents could become more 
empathetic, context-aware, and capable of delivering personalized self-
management content, supporting adherence and sustained behavior 
change. Finally, rigorous evaluation and responsible implementation 
are essential. Large-scale RCTs and pragmatic trials are needed to 
establish effectiveness, cost-effectiveness, and long-term impact. 
Research should also address diverse patient populations, digital 
literacy gaps, and cultural adaptation. Clear regulatory pathways (e.g., 
recent FDA guidance on adaptive AI), along with interdisciplinary 
collaboration, will be crucial to ensure safe, scalable adoption.

8 Conclusion

Artificial intelligence is rapidly emerging as a powerful tool with the 
potential to fundamentally transform chronic disease self-management. 
By enabling personalized interventions, enhancing monitoring and 
predictive capabilities, and supporting patient engagement through 
conversational agents and digital platforms, AI provides innovative 
ways to help individuals manage complex, lifelong conditions.

Unlike prior reviews that typically focus on a single technology 
(e.g., chatbots) or a single disease (e.g., diabetes), this narrative review 
provides a task-oriented, cross-modal synthesis that integrates diverse 
AI modalities across multiple chronic conditions. This unique lens 
explicitly maps AI applications to the core self-management tasks of 
patients—personalized decision support, continuous monitoring and 
prediction, behavioral coaching, and patient–clinician care 
coordination—thereby offering a unifying framework absent from 
earlier work. In addition, our review incorporates the regulatory 
dimension, highlighting how evolving FDA guidance and other 
oversight frameworks critically shape the translation of AI into clinical 
practice, an aspect often underrepresented in the literature.

Current applications, particularly in diabetes and cardiovascular 
disease, show encouraging results such as improved treatment 
personalization, early detection of complications, and enhanced 
adherence. However, most evidence to date arises from feasibility or 
pilot studies, with validated clinical deployments in large-scale or real-
world contexts still limited.

Bridging this gap requires rigorous multi-site trials, standardized 
outcome measures, and long-term effectiveness and cost-effectiveness 
evaluations. Only by generating robust clinical evidence and 
addressing challenges such as data privacy, algorithmic bias, and 
equitable access can AI move from promising prototypes to 
trustworthy, widely adopted solutions. Ultimately, by situating AI 
applications within both patient self-management tasks and real-
world adoption pathways, this review contributes a novel and 
pragmatic roadmap for advancing AI toward reliable, patient-centered 
improvements in chronic disease outcomes.
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