& frontiers

@ Check for updates

OPEN ACCESS

EDITED BY
Han Feng,
Tulane University, United States

REVIEWED BY
Mohammad Atasi,

Tulane University, United States

Alex El Darzi,

Tulane Medical Center, United States

*CORRESPONDENCE
Ying Du
m13972517469@163.com

RECEIVED 21 August 2025
ACCEPTED 31 October 2025
PUBLISHED 20 November 2025

CITATION
DuY, Yang P, Liu Y, Deng C and Li X (2025)
Artificial intelligence in chronic disease
self-management: current applications and
future directions.

Front. Public Health 13:1689911.

doi: 10.3389/fpubh.2025.1689911

COPYRIGHT

© 2025 Du, Yang, Liu, Deng and Li. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Public Health

Frontiers in Public Health

TYPE Review
PUBLISHED 20 November 2025
pol 10.3389/fpubh.2025.1689911

Artificial intelligence in chronic
disease self-management:
current applications and future
directions

Ying Du'*, Peng Yang?, Yuntao Liu®, Chunxia Deng* and Xin Li*

!Department of Health Management, Affiliated Renhe Hospital of China Three Gorges University,
Yichang, Hubei, China, 2Department of Anesthesiology, Affiliated Renhe Hospital of China Three
Gorges University, Yichang, Hubei, China, *Department of Endocrinology, Affiliated Renhe Hospital of
China Three Gorges University, Yichang, Hubei, China, *Department of General Surgery, Affiliated
Renhe Hospital of China Three Gorges University, Yichang, Hubei, China, *Department of Nursing,
Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China

Objective: This study aims to summarize current applications of artificial
intelligence (Al) for chronic disease self-management, critically appraise their
effectiveness, and identify implementation challenges and future directions for
research and clinical integration.

Methods: A narrative literature review of peer-reviewed, English-language
studies identified via PubMed, Web of Science, and Scopus was conducted, using
combinations of “artificial intelligence,” “chronic disease,” “self-management,”
“remote monitoring,” “predictive analytics,” “conversational agent,” and “mobile
health.” Reference lists of key reviews were snowballed. We included studies
that described or evaluated Al-enabled self-management tools or interventions
for chronic conditions and excluded non-Al, acute-care, editorial, and non-
human studies. Findings were synthesized thematically.

Results: The literature consistently identifies four roles of Al in chronic care:
(1) personalized decision support and treatment optimization; (2) continuous
monitoring and risk prediction from patient-generated data; (3) conversational
agentsdelivering education, adherence support, reminders, behavioral coaching,
and mental-health support; and (4) Al-enabled Mobile health (mHealth)
platforms that connect patients with clinicians and coordinate care. Recurrent
challenges reported include data privacy and security risks, algorithmic bias
and limited generalizability, interoperability and workflow-integration barriers,
variable usability and sustained engagement (digital divide- inequalities in
access to digital technologies and the internet, often influenced by age, income,
or geography), and insufficient high-quality evidence on clinical effectiveness
and cost-effectiveness.

Conclusion: Future directions focus on developing more accurate, explainable,
and trustworthy Al models, better clinical integration, leveraging advanced Al for
engagement, rigorous evaluation, and addressing ethical and implementation
barriers to realize Al's full potential in empowering patients and improving
chronic disease outcomes.
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1 Introduction

Chronic diseases, such as diabetes, cardiovascular diseases,
respiratory disorders, and mental health conditions, represent a
significant global health burden, characterized by their long-term
nature and the necessity for continuous management (1, 2). Effective
self-management by patients is paramount to improving health
outcomes, maintaining quality of life, and reducing healthcare costs
(2, 3). Self-management involves a range of behaviors, including
medication adherence, lifestyle modifications (diet, exercise),
symptom monitoring, and active participation in treatment decisions
(4, 5) However, supporting patients in consistently performing these
complex tasks over a lifetime presents substantial challenges for
traditional healthcare systems, often limited by resources and
geographical barriers, particularly in rural or underserved areas (6, 7).

The rapid advancements in artificial intelligence (AI) and related
digital health technologies, including mobile health (mHealth) and
wearable devices, offer transformative potential to address these
challenges and revolutionize chronic disease self-management (8-10).
Al can process vast amounts of patient-generated data from various
sources, such as Electronic Health Record (EHR)s, wearable sensors,
and mobile applications, to provide personalized insights, predictive
warnings, and interactive support, moving healthcare towards a more
predictive, preventive, and personalized model (11). Unlike prior
reviews that focus on single tools (e.g., chatbots) or single diseases
(e.g., diabetes), our review takes a task-based, cross-modal perspective,
mapping diverse Al technologies directly onto the core components
of patient self-management. This approach offers a unified framework
that clarifies both where AI has matured and where gaps remain. By
examining diverse Al modalities and their implementation across
various chronic conditions, this review seeks to provide a
comprehensive overview of the evolving landscape and highlight areas
requiring further research and development to fully realize ATs
potential in empowering patients and improving health outcomes.

2 Literature search and selection

This review followed a narrative approach. We searched PubMed,
Web of Science, and Scopus for English-language studies published up
to May 2025 using keyword combinations including “artificial
intelligence;”  “chronic disease,” “self-management,” “remote
monitoring,” and “digital health” Additional references were identified
by screening citations in relevant reviews. We included studies that
described or evaluated Al-enabled self-management tools for chronic
conditions, while excluding non-Al, acute-care, non-human, and
editorial/commentary articles. As this was a narrative review, no
formal quality assessment or systematic synthesis (e.g., PRISMA flow

diagram) was undertaken.

3 Current applications of Al in chronic
disease self-management

The application of artificial intelligence in chronic disease self-
management is multifaceted, leveraging various Al techniques to
address different aspects of patient care and support. These
applications can broadly be categorized by the type of AI technology
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employed or the specific function they serve within the self-
management process. This section will delve into the current state of
AT applications, examining their use in personalized interventions,
predictive analytics, monitoring, and patient engagement tools like
conversational agents—an Al-powered virtual assistant or chatbot that
interacts with patients via text or speech to provide education,
reminders, or coaching—drawing upon recent literature across
different chronic conditions.

3.1 Al for personalized interventions and
decision support

One of the most significant promises of Al in chronic disease
management is its ability to enable personalized interventions and
provide data-driven decision support, moving away from a “one-size-
fits-all” approach (12). Machine learning (ML) algorithms analyze
high-dimensional, longitudinal data to identify patterns and predict
individual responses to treatments or lifestyle changes, thereby
Diabetes
exemplifies this precision approach: models integrating continuous

informing day-to-day self-management decisions.
glucose monitors (CGM), insulin pumps records, diet logs, and
activity data generate tailored recommendations for insulin dosing,
meal planning, and exercise with the goal of optimizing glycemic
control (13-26). Diabetes education tools increasingly embed Al to
personalize content and coaching, strengthening self-management
skills (27, 28). Prospective system-validity studies demonstrate
next-day hypoglycemia prediction from mobile/CGM data with
random forest accuracy 0.814 (F1=0.812; sensitivity = 0.815;
specificity = 0.824), outperforming alternative models (accuracy 0.65-
0.80). Explainable Artificial Intelligence-driven Clinical Decision
Support Systems (AI-CDSS) can make daily self-management more
predictive and proactive by fusing data from smartphones, wearables,
and CGMs (29), while “nurse-in-the-loop” predictive digital twin—a
virtual, patient-specific model that simulates health status and
treatment responses to support personalized care—strategies for Type
2 Diabetes (T2D) showcase how transfer-learned models can deliver
individualized feedback aligned with clinical expertise (30). In
oncology survivorship, emerging tools personalize surveillance and
supportive-care recommendations (e.g., symptom triage, fatigue/
exercise prescriptions, toxicity monitoring), aligning advice with
individual risk profiles and preferences.

3.2 Al for monitoring and predictive
analytics

A core contribution of Al to self-management is the ability to
transform continuous, multimodal data streams—physiological
signals from wearables and home devices, symptom reports,
medication logs, and EHR histories into timely risk assessment and
early-warning insights that patients and clinicians can act on between
visits. Models trained on longitudinal data support near-real-time
monitoring, short-horizon exacerbation prediction, and trend
detection that trigger tailored advice or escalation pathways, thereby
complementing decision support systems.

In cardiovascular disease, monitoring pipelines increasingly fuse
signals such as heart rate dynamics and rhythm strips with clinical
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history to detect atrial fibrillation (AF) episodes, anticipate
deterioration, and inform self-care prompts or remote reviews (31—
35). These systems illustrate how passive sensing coupled with
predictive analytics can shorten the time from signal to action in
routine self-management.

The monitoring-prediction stack spans risk stratification,
diagnostic augmentation, screening, and patient support. Explainable
Al stratifies exacerbation risk from features such as smoking history,
BMI, and symptom profiles (36). In specialist settings, adding
explainable AI to pulmonologist PFT interpretation increased mean
diagnostic accuracy versus pulmonologists alone—although a subset
performed worse, underscoring the need for clinical oversight (36,
37). Imaging models provide staging and prognostic precision: CT
deep learning in Chronic Obstructive Pulmonary Disease (COPD)
Gene/ECLIPSE achieved ~50% exact GOLD staging and ~75% within
one stage, predicted exacerbations and mortality, and reached AUC
0.89; PPV 0.847 for COPD identification in ECLIPSE; combining CT
radiomics + demographics + spirometry further improved progression
prediction over any single modality. At primary-care level, case-
finding tools report usable operating points: a graph convolutional
network achieved accuracy 0.77 (AUC 0.81) on weakly labeled CT; an
Al “robot” questionnaire reached sensitivity 76.11%, specificity
84.76%, AUC 0.858; and a multi-instance learning classifier reported
AUC 0.742 (38, 39).

Beyond cardiometabolic disease, monitoring and prediction are
expanding across other conditions. In chronic kidney disease (CKD),
longitudinal EMRs underpin AI models that predict progression
trajectories to guide precision management (40, 41), with systems
such as TrajVis translating model outputs into interpretable clinical
insights (42). In addition, a comparative modeling study for early
CKD identification trained a deep neural network (multilayer
perceptron) on a 400-patient dataset (75/25 train-test split; McNemar
test for model comparison) and reported 100% test accuracy,
outperforming logistic regression (96%) and SVM (82%); the reported
confusion matrix showed perfect classification of both CKD and
non-CKD cases, underscoring potential while also highlighting the
need for external validation and larger, multi-site cohorts (43). For
end-stage kidney disease, proof-of-concept models suggest Al can
help steer blood-pressure and volume strategies by learning from prior
response, such as through artificial neural networks that predict
session-specific outcomes and enable personalized adjustments to
minimize intradialytic hypotension while optimizing fluid
removal (44).

3.3 Conversational Al and intelligent
coaching systems

These systems target engagement—personalized education,
adherence support, and behavioral coaching—grounded in behavioral
science and “nudge” principles. Unlike decision-support engines or
passive risk models, engagement-focused systems emphasize human-
Al dialogue and habit formation, with personalization and
explainability as key levers (45-47).

Diabetes remains the most developed use case for Al-enabled
engagement. mHealth apps increasingly integrate CGM/pump, diet,
and activity data to deliver individualized education and real-time
coaching around dosing, meals, and exercise. Al-driven education
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modules adapt content to literacy and learning needs (48-50), while
nudge-based features encourage sustained lifestyle change (51, 52).
Evidence maturity is mixed but encouraging: the breadth of tools
reflects rapid diffusion in diabetes, and feasibility/acceptability is
supported even in low-resource settings where peer-educator models
are being tested to extend reach and cultural fit. At the same time,
durable engagement and rigorous external validation remain
necessary to translate personalization gains into consistent clinical
improvements (53-55).

(NLP)
personalization can also improve engagement with diabetes education

Conversational/  natural language processing
(mean engagement ratio 0.31 with personalization vs. 0.26 without)
(56). In chronic limb-threatening ischemia (CLTI), AI/ML approaches
aim to improve accurate diagnosis, outcome prediction, and identify
disparities in treatment, highlighting the potential role for decision
support in addressing inequities.

Al-powered digital pain coaches deliver individualized pacing,
exercise, and cognitive-behavioral strategies via conversational
interfaces. Prospective and multicenter studies report significant
improvements in pain interference, physical function, and
psychological distress over 12 weeks, supporting the role of tailored
coaching in everyday self-management (57). These benefits underscore
the potential of engagement-centric Al to shift outcomes even when
pharmacologic or procedural options are limited.

Because anxiety, depression, and low mood commonly co-occur
with chronic conditions, conversational agents increasingly provide
personalized emotional support, self-monitoring, and triage. Early
results suggest acceptability and user-reported benefit, but concerns
around ethical safeguards, accuracy, and escalation pathways are
prominent (58, 59), reinforcing the need for transparent reporting and
integration with clinical oversight.

On the patient side, virtual agents co-designed with user’s support
exacerbation action plans, mood management, and daily tasks with
good acceptability and perceived usefulness (60, 61); at the sensing
layer, smartphone auscultation and Al-augmented stethoscopes are
being evaluated for wheeze/symptom recognition to enable home tele-
monitoring (62, 63). Digital programs that embed algorithmic
feedback improve quality of life and self-efficacy, although effects on
healthcare utilization remain mixed (64).

3.4 Al in mHealth and digital health
platforms

Al-enabled mHealth platforms coordinate information, decisions,
and actions between patients and clinicians by fusing home-collected
signals (wearables, sensors, symptom diaries) with EHR data, then
routing triage, escalation, and follow-up through secure messaging,
teleconsultation, and shared care plans. The aim is to close the
“between-visit” gap with timely guidance, medication titration, and
appointment or testing prompts while documenting actions back to
the record. In heart failure (HF), platforms increasingly pair post-
discharge risk models with symptom check-ins to trigger medication
reconciliation, complication surveillance, rehabilitation/exercise
pacing, and timely clinic contact. Evidence remains early-phase, but
perioperative studies offer concrete operating points that motivate
such transition workflows: ML can predict intraoperative hypotension
up to 15 min in advance (AUC 0.95, sensitivity 88%, specificity 87%);
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continuous ward monitoring with gradient-boosted models has
anticipated stage-2 AKI ~ 24 min before KDIGO criteria; and the
PRODIGY score uses continuous capnography and oximetry to
prospectively stratify risk of opioid-induced respiratory depression on
general wards. At the same time, a pilot randomized evaluation of
hypotension-prediction decision support did not reduce hypotension
when alerts were frequently ignored, underscoring the need for robust
workflow integration and escalation pathways as these tools move into
the post-discharge transition context (65, 66).

3.5 Evidence maturity and gaps

Beyond functional categorizations, disease-specific manifestations
of chronic conditions necessitate tailored Al approaches. This section
explores these implementations across major chronic diseases,
delineating how AI addresses distinct pathophysiological and self-
management challenges (Table 1; Figure 1).

Across chronic conditions, the strongest maturation is seen in
monitoring and predictive analytics, where longitudinal sensing and
EHR data support near-real-time risk assessment and early-warning
prompts. Feasibility and user acceptance are consistent in AF/CVD and
COPD, and trajectory modelling in CKD provides actionable forecasts
(42, 67, 68). However, The impact on service outcomes is heterogeneous
and appears to depend strongly on patient engagement and workflow
integration (43). For personalized decision support, promising signals

10.3389/fpubh.2025.1689911

come from diabetes (CGM/pump-integrated coaching, AI-CDSS, and
nurse-in-the-loop “digital twin” strategies) and from HF care planning
and titration. Yet broader clinical utility hinges on data quality, external
validation, interpretability, and seamless integration into routines of care
(12, 24, 69). Engagement-focused systems—conversational education,
adherence support, and behavioral coaching—show improvements in
patients-reported outcomes (PROs) in chronic pain and diabetes
education, and are feasible even in low-resource settings (70, 71). At the
same time, long-term retention is variable, effects on healthcare
utilization remain mixed in respiratory disease programs, and ethical/
accuracy questions persist for mental-health comorbidity agents.

Taken together, the field has progressed from feasibility toward
prospective and real-world deployment in several niches, but
generalizability and durability are the main bottlenecks. Priorities
include: multi-site external validation and transparent reporting;
pragmatic/hybrid-effectiveness evaluations with standardized PROs
and economic endpoints; and design for sustained engagement and
workflow interoperability so that model outputs translate into reliable,
patient-centered action (32, 72, 73).

4 Challenges and considerations for Al
in chronic disease self-management

Despite the transformative potential of Al in chronic disease self-
management, significant challenges and considerations must

TABLE 1 Al applications in chronic disease self-management: key functions, technologies, and outcomes.

Chronic condition Core Al functions

Key technologies/tools

Reported outcomes/ References

Personalized insulin dosing;
Diabetes Glycemic prediction;

Behavioral coaching

CGM + Closed-loop systems; AI
mHealth apps; ML-based glucose

prediction algorithms

advantages

Improved glycemic control;

Reduced hypoglycemia events;
YROBY! (9,19-24, 28, 32)
Enhanced adherence to lifestyle

modifications

. . Remote deterioration
Cardiovascular diseases/heart

‘Wearable sensors [ECG, blood
pressure (BP)]; A remote

Early detection of clinical

deterioration; Reduced

feedback

Targeted mHealth micromessages

detection; Risk stratification; (50, 67)
failure monitoring platforms; Predictive hospitalizations; Proactive
Personalized care planning
analytics models intervention facilitation
Targeted screening; Improved
Risk prediction; Explainable AI (XAI) frameworks;
Chronic obstructive self-efficacy during
Exacerbation support; Virtual conversational agents; (34-37, 63)
pulmonary disease (COPD) exacerbations; Enhanced
Symptom monitoring Smartphone-based monitoring
quality of life
Activity-pain correlation Al-powered digital coaching Reduced pain interference;
Chronic pain analysis; Personalized platforms; Mobile apps with ML- Improved physical function; (70, 71)
behavioral guidance based feedback systems Decreased anxiety/depression
Oral hygiene adherence Improved oral hygiene
Al-enabled toothbrush sensors;
Periodontitis monitoring; Personalized performance; Enhanced (33)

periodontal therapy outcomes

Risk prediction; Symptom
Other conditions’ tracking; Personalized

education twins

Chatbots (e.g., haemophilia); LLMs
(e.g., ChatGPT); Predictive digital

Improved disease knowledge
(haemophilia); Theoretical

mental health support; (12, 26, 45-47,72,73)
Individualized management

strategies

Al Artificial Intelligence; BP, Blood Pressure; CGM, Continuous Glucose Monitoring; COPD, Chronic Obstructive Pulmonary Disease; ECG, Electrocardiogram; LLM, Large Language
Model; ML, Machine Learning; mHealth, mobile Health; XAI, Explainable AI. Outcomes: Reflects outcomes reported in cited studies (e.g., “reduced hospitalizations” in CVD/HF; “improved
oral hygiene” in periodontitis). ‘Other Conditions: Includes haemophilia, mental health, hepatitis C, epilepsy, and inflammatory bowel disease where evidence is emerging but less established.
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FIGURE 1
Examples of Al applications in chronic diseases. This figure illustrates various applications of Al in managing chronic conditions such as diabetes,
cardiovascular diseases, and other chronic diseases (e.g., chronic pain, obesity, mental health). It highlights Al's role in self-monitoring, telemedicine,
risk prediction, and personalized treatment strategies.

be addressed to ensure its safe, effective, and equitable implementation.
These challenges span technical, ethical, regulatory, and socio-
behavioral domains (Table 2). A key concern is data privacy and
security. Al systems for self-management often rely on collecting
sensitive personal health data from various sources, including
wearables, apps, and EHRs (6, 8). Robust cybersecurity measures and
compliance with regulations are essential to maintain patient trust (6,
8). Ethical issues include algorithmic bias, transparency, and informed
consent. Biased data may exacerbate disparities, while the “black box”
nature of some Al models hinders trust among patients and clinicians.
Enhancing transparency and ensuring meaningful informed consent
remain priorities (8). Implementation barriers are also notable.
Limited digital health literacy, especially among older adults and
socioeconomically disadvantaged groups, and inequitable access to
smartphones or internet connectivity restrict uptake (6, 74).
Integrating Al into clinical workflows and EHRs poses technical and
logistical hurdles, requiring interdisciplinary collaboration and
training for health-care professionals. Importantly, even accurate
models fail if alerts are ignored or escalation pathways are unclear,
underscoring the need for workflow fit and human-in-the-loop
oversight (43). Significant evidence gaps remain, particularly
regarding long-term effectiveness, standardized outcome measures,
and external validation across diverse populations. While monitoring
and prediction tools show feasibility and patient-reported benefits,
clinical outcomes remain heterogeneous and generalizability limited
due to single-center or narrow cohorts. Large-scale, prospective
validation with standardized outcomes is urgently needed. While
engagement-focused AI demonstrates short-term improvements in
PROs, challenges such as inconsistent retention and limited external
validation highlight the need for further research. Similarly, mHealth
platforms and telemonitoring improve adherence yet show mixed
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effects on hospitalization or long-term outcomes, with interoperability
challenges limiting health-system deployment. Finally, In addition,
ongoing regulatory uncertainty and concerns about patient trust
present major barriers to widespread adoption. Frameworks for
clinical AI remain in flux, complicating adoption (10). Sustained
patient engagement requires building trust, as false alerts or over-
reliance on automation can erode confidence (9). Addressing these
multifaceted challenges demands coordinated efforts among
researchers, developers, clinicians, policymakers, and patients.

In addition to these challenges, three barriers to broad adoption
deserve emphasis. First, data integration and standardization remain
formidable, as AI systems require multimodal, large-scale datasets
combining imaging, EHR, and wearable signals. Heterogeneous data
formats, inconsistent data quality, and siloed healthcare systems
complicate the development of robust Al models, often requiring
advanced data harmonization techniques and interoperable platforms
to ensure compatibility across diverse data sources. For example,
integrating continuous glucose monitoring data with EHRs for
diabetes management demands standardized ontologies and secure
data-sharing protocols to enable real-time, actionable insights (75).
Second, regulatory clarity is evolving; notably, the U. S. Food and Drug
Administration (FDA)’s December 2024 guidance on “Predetermined
Change Control Plans” for continuously learning AI devices marks an
important milestone. This guidance facilitates adaptive AI algorithms
by allowing pre-approved modifications while ensuring safety and
efficacy, yet uncertainties around reimbursement and liability persist,
delaying integration into clinical practice (76). Harmonizing global
regulatory frameworks remains critical to streamline deployment
across jurisdictions (77). Third, ethical considerations are paramount:
explainable Al is critical to foster clinician and patient trust, and
physicians should play a leading role in driving AI innovation to
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TABLE 2 Cross-cutting challenges and solution requirements for Al in chronic disease self-management.

Challenge domain Specific issues

Associated risks

Key solution References

Collection/storage of sensitive
Data privacy and security biometric, activity, and EHR data;

Cross-platform data sharing

Patient data breaches; Non-
compliance with regulations;

Erosion of trust

requirements

Robust encryption (e.g., end-to-
end); Strict adherence to GDPR/
HIPAA; Decentralized data

storage (e.g., federated learning)

(6, 8,45, 69)

explainability

Training data
Perpetuation of health
Algorithmic bias and unrepresentativeness; “Black box”
disparities; Clinician
transparency decision-making; Limited

skepticism; Patient mistrust

Development of Explainable AT

(XAI) frameworks; Diverse multi-
(8, 24, 42, 59, 68, 108)
center datasets; Algorithmic

fairness audits

Low digital literacy (e.g., elderly/
low-SES groups); Limited tech

Implementation barriers
access (rural/LMICs); Workflow

integration difficulties

Digital divide exacerbation;
Low adoption rates; Clinical

workflow disruptions

Culturally adapted training
programs; Low-cost/offline-

(6,26, 32, 59, 74)
capable devices; Interoperability

standards (e.g., HL7 FHIR)

Insufficient long-term efficacy
data; Lack of standardized

Evidence and regulatory gaps
outcome measures; Evolving

regulatory frameworks

Unproven clinical utility;
Reimbursement uncertainties;

Delayed market access

Large-scale RCTs with real-world
endpoints; Consensus

frameworks for Al validation; (10, 12, 66, 69)
Adaptive regulatory pathways

(e.g., FDA SaMD)

False alerts (e.g., AF detection);
Clinical integration and trust | Lack of clinician training; Patient

over-reliance

Alert fatigue; Reduced
confidence in Al;
Undermined patient-clinician

relationships

Hybrid “human-in-the-loop”
oversight (e.g., nurse-led Al);
Clinician education modules; (22, 24, 25, 66)
Fail-safe mechanisms for critical

alerts

AF, Atrial Fibrillation; AI, Artificial Intelligence; EHR, Electronic Health Record; FDA, U. S. Food and Drug Administration; FHIR, Fast Healthcare Interoperability Resources; GDPR, General
Data Protection Regulation; HIPAA, Health Insurance Portability and Accountability Act; HL7, Health Level Seven International; LMICs, Low- and Middle-Income Countries; RCT,
Randomized Controlled Trial; SaMD, Software as a Medical Device; SES, Socioeconomic Status; XAI, Explainable AL

ensure alignment with real-world clinical needs. Explainable AI
models, such as those incorporating interpretable decision trees or
attention mechanisms, enhance transparency by elucidating decision-
making processes, thereby reducing skepticism among clinicians and
patients (78). Moreover, physician-led innovation ensures Al tools
address practical clinical challenges, such as optimizing chronic
disease monitoring or personalizing treatment plans, by incorporating
domain expertise into algorithm design and validation (79).
Collaborative initiatives, such as clinician-researcher partnerships, are
essential to align AI development with patient-centered care
priorities (80).

5 Current Al use cases in
cardiovascular medicine beyond
self-management

Al applications extend beyond patient self-management to
broader domains in cardiovascular medicine, including procedural,
diagnostic, and efficiency areas. These use cases demonstrate AI’s
versatility in addressing AF and related conditions, offering insights
into potential integrations with self-management tools. This section
outlines key examples, emphasizing their methodologies, findings,
and implications, drawn from large-scale studies and clinical trials.

In AF screening and monitoring, consumer wearables have
leveraged Al for large-scale, real-world detection. The Apple Heart
Study, a prospective single-arm trial involving over 419,000
participants, utilized photoplethysmography (PPG) sensors on the
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Apple Watch combined with a ML algorithm to detect irregular pulses
suggestive of AE. The algorithm achieved a positive predictive value of
84% for confirmed AF on subsequent ECG patches, with 34% of
notified participants having AF episodes lasting >30 min,
demonstrating high feasibility for opportunistic screening and user
engagement, though limitations included underrepresentation of
older adults (81). Similarly, the Fitbit Heart Study enrolled 455,699
participants and employed a PPG-based deep learning algorithm,
reporting 98.7% sensitivity for AF episodes >30 min and a positive
predictive value of 98% among those with irregular rhythms,
underscoring cost-effective population-level monitoring with minimal
false positives (82). The Samsung HEARTBEAT study, using Galaxy
Watch devices, validated PPG algorithms against 12-lead ECGs,
achieving 92.9% accuracy in AF detection over 14 days, highlighting
usability for continuous monitoring in ambulatory settings (83). These
studies illustrate AT’s potential to enhance early AF detection and
burden quantification, bridging gaps in intermittent monitoring for
chronic cardiovascular self-management.

Procedural challenges in AF ablation, such as prolonged ablation
times (often exceeding 3-4h), labor-intensive manual mapping,
inconsistent lesion formation leading to incomplete transmurality, and
difficulties in identifying extra-pulmonary vein (extra-PV) targets like
rotors or focal drivers, have created opportunities for Al-driven
solutions to streamline workflows, enhance precision, and improve
outcomes (84, 85). These limitations in traditional approaches, which
rely on operator experience and can result in recurrence rates of
20-40% in persistent AF, underscore the need for automated, data-
driven tools that reduce variability and procedural duration while
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supporting personalized strategies (85, 86). For Al-assisted mapping
and imaging, tools like Volta VX1 employ ML to analyze multipolar
electrograms during AF ablation, identifying dispersion areas in real-
time with high inter-operator agreement (kappa 0.85), improving
procedural efficiency and reducing recurrence rates in persistent AF
by targeting non-pulmonary vein drivers (87). CARTO Al, integrated
into the CARTO electroanatomic mapping system, uses neural
networks for automated annotation of complex fractionated atrial
electrograms, facilitating faster substrate mapping and personalized
ablation strategies, with studies showing reduced mapping time by
30% while maintaining accuracy comparable to expert manual review
(88). Additionally, Al-guided MRI segmentation tools, such as deep
learning-based convolutional neural networks for atrial scar and
fibrosis delineation in late gadolinium-enhanced cardiac MRI, enable
automated identification of extra-PV ablation targets with
segmentation accuracy comparable to manual methods, reducing
pre-procedural planning time and aiding in tailored lesion sets to
minimize gaps and improve long-term success (89, 90). US2. Al
echocardiography applies convolutional neural networks to automate
full echocardiographic analysis, measuring parameters like ejection
fraction and chamber dimensions with 95% agreement to expert
readings, enabling rapid point-of-care diagnostics for HF and valvular
disease in AF patients (91). These applications enhance precision in
procedural interventions, potentially informing future AI-driven self-
management by providing baseline data for personalized monitoring.

Efficiency tools further expand AT’ utility. AI risk scoring models,
such as those predicting incident AF from clinical data and polygenic
scores, integrate ML with EHRs to achieve AUCs of 0.85-0.90,
outperforming traditional scores like CHARGE-AF by identifying
high-risk individuals for preventive strategies (92). For ECG labeling,
deep learning algorithms automate AF classification with >99%
accuracy, reducing manual review time in large datasets and
supporting scalable diagnostics (93). Prediction of AF from sinus
rhythm ECGs uses convolutional neural networks to detect subtle
features, predicting future AF with AUC 0.87 in cohorts like UK
Biobank, aiding early intervention in at-risk populations (94). The
TAILORED AF trial, a randomized controlled study, employed Al to
guide real-time lesion delivery during ablation by mapping
spatiotemporal dispersion, resulting in 74% freedom from AF at
12 months in the AI arm versus 58% in controls, demonstrating
superior outcomes through adaptive, individualized procedures (95).

Collectively, these use cases exemplify ATs clinical breadth,
distinct from but complementary to patient-centered self-
management, emphasizing the need for integration to optimize
chronic disease outcomes.

6 Discussion

An important distinction that emerges from the reviewed
literature is between early-phase feasibility or pilot studies and
validated clinical applications. Many Al-enabled tools, such as
conversational agents for patient engagement or predictive analytics
for exacerbation risk, have primarily been evaluated in small, single-
center feasibility trials or short-term pilots. These studies provide
valuable proof-of-concept evidence and user-acceptability insights but
do not establish clinical effectiveness. In contrast, validated clinical
applications—those tested in large-scale, prospective, or real-world
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settings—remain relatively limited. For example, while some
Al-supported decision support systems in diabetes and remote
monitoring platforms in HF have undergone prospective evaluations
and regulatory clearance, most other domains lack comparable
validation (96, 97). This distinction underscores that the field, while
promising, remains in a transitional stage between early feasibility
studies and fully validated clinical applications. Feasibility evidence is
encouraging, but widespread clinical adoption requires rigorous
multi-site randomized trials, standardized outcome measures, and
long-term effectiveness and cost-effectiveness data. Taken together,
these observations underscore that while feasibility studies
demonstrate promising signals. Validated applications, however,
remain relatively scarce, underscoring the importance of conducting
large-scale, multi-site clinical trials. In addition to these evidence-
related challenges, regulatory oversight—particularly from the FDA—
is playing an increasingly important role in shaping the clinical
implementation of AI. The FDA regulates many Al systems under its
Software as a Medical Device (SaMD) framework, requiring robust
evaluation of safety, effectiveness, and quality assurance before
approval (98). Recent guidance, including the introduction of
“Predetermined Change Control Plans,” marks a pivotal step by
allowing certain Al algorithms to adapt and update post-approval
while maintaining oversight (99). Pilot initiatives such as the Digital
Health Software Precertification Program also demonstrate the FDAs
intent to accelerate the evaluation process for digital health
innovations (100). Nevertheless, evolving requirements and
uncertainties regarding reimbursement, liability, and interoperability
continue to create barriers for widespread adoption. Thus, FDA
regulation acts as both a safeguard—ensuring patient safety and
building trust—and a challenge, as stakeholders must continuously
adapt to meet changing regulatory expectations.

The limitations of conventional monitoring strategies further
illustrate this gap in clinical practice. For instance, intermittent
approaches such as 24-h or 7-d ambulatory Electrocardiogram (ECG)
recordings detect only a fraction of AF episodes, with reported
sensitivities of approximately 16 and 42%, respectively, compared with
implantable cardiac monitors that achieve up to 99% sensitivity in
detecting AF episodes lasting >2 min, as demonstrated in a review of
ambulatory ECG monitoring strategies where prolonged continuous
monitoring significantly outperformed shorter intermittent recordings
in identifying paroxysmal AF in patients with cryptogenic stroke or
suspected arrhythmia (101). This limited sensitivity hampers timely
diagnosis and accurate burden quantification, especially for patients
with paroxysmal AF. Al-enabled wearable devices have the potential
to overcome these limitations by providing continuous, unobtrusive
monitoring in real-world settings. When coupled with advanced
algorithms, these devices can enhance early AF detection, enable more
precise assessment of arrhythmia burden, and support proactive
intervention strategies. For example, large-scale screening studies like
the Apple Heart Study utilized PPG-based algorithms with ML to
detect irregular pulse suggestive of AF, achieving a positive predictive
value of 84% for confirmed AF episodes and demonstrating high user
engagement with over 400,000 participants, thereby highlighting the
feasibility of Al-driven wearables for population-level AF detection
and burden estimation in chronic cardiovascular self-management
(81). Similarly, the Fitbit Heart Study employed PPG sensors
integrated with deep learning models to identify AF, reporting a 98.7%
sensitivity for AF episodes lasting >30 min and underscoring
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cost-effective, scalable alternatives to traditional monitoring (82). This
context underscores how Al not only augments existing monitoring
modalities but also addresses critical diagnostic blind spots inherent
in conventional strategies.

Prior studies typically narrow to a single tool class (e.g., chatbots)
or to a specific population/technology stack and largely inventory
systems without linking them to the day-to-day work of self-
management; chatbot reviews deem the evidence promising yet
heterogeneous and note inconsistent technical reporting, limiting
cross-disease comparability (102), while aging-focused surveys
summarize ML/NLP advances but are not organized around patient
tasks or mHealth/wearable workflows (103), and bibliometric
overviews describe a fragmented field and call for implementation-
relevant studies (104). In this review, we synthesize predictive
analytics, continuous sensing/remote monitoring, conversational
agents, and Al-enabled mHealth platforms and map them to core self-
management tasks—personalized decision support; continuous
monitoring and risk prediction; education/adherence/behavioral
coaching; and patient-clinician care coordination—thereby clarifying
where roles are maturing (e.g., monitoring/risk prediction) versus
under-developed (e.g., sustained engagement and emotional support)
and providing a cross-modal, task-anchored lens absent from chatbot-
only work (102). We also reconcile mixed clinical signals by placing
encouraging single-arm findings (e.g., an Al-powered digital pain
coach over 12 weeks) alongside a null multicenter randomized
controlled trial (RCT) (70, 105). Importantly, we connect patient-
articulated priorities—personalization, emotional/social support,
proactive monitoring, service integration, and ethics/governance
(106)—to implementation pathways using NASSS and privacy-
preserving infrastructures such as federated learning and blockchain.
Unlike aging-focused reviews or platform papers that emphasize
architectures without cross-disease appraisal (103, 107), our synthesis
spans conditions and technologies yet remain organized by the work
patients and clinicians actually perform. Collectively, this yields a
pragmatic agenda—pragmatic/hybrid designs with standardized
PROs and economic endpoints (70, 105), transparent technical
reporting to enable comparability (102), and privacy-preserving data
pipelines aligned with health-system integration (NASSS)—and, to
our knowledge, the first cross-modal, task-based account of Al for
chronic-disease self-management.

7 Future directions and opportunities

Looking ahead, the future of AI in chronic disease self-
management holds immense potential, provided that current
challenges are effectively addressed. Several key directions
are emerging.

First, more trustworthy AI models are needed, with improvements
in accuracy, reliability, and explainable AI (XAI) to enhance
transparency and build trust among users and clinicians (12, 13).
Ethical design principles must be embedded from the outset, actively
working to mitigate bias and ensure equitable access (8). Second,
integration into existing healthcare ecosystems is critical. Interoperable
platforms should link patient-generated data from wearables and
mHealth tools with EHRs and clinical workflows. Hybrid approaches
such as “nurse-in-the-loop” models- a hydrid model where nurses
oversee or validate the recommendations generated by Al systems,
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ensuring clinical appropriateness and patient safety-can combine AI
efficiency with human oversight, ensuring care remains personalized
and compassionate (20). Third, advancements in generative Al and
NLP offer new opportunities to enhance patient engagement and
education. Future conversational agents could become more
empathetic, context-aware, and capable of delivering personalized self-
management content, supporting adherence and sustained behavior
change. Finally, rigorous evaluation and responsible implementation
are essential. Large-scale RCTs and pragmatic trials are needed to
establish effectiveness, cost-effectiveness, and long-term impact.
Research should also address diverse patient populations, digital
literacy gaps, and cultural adaptation. Clear regulatory pathways (e.g.,
recent FDA guidance on adaptive AI), along with interdisciplinary
collaboration, will be crucial to ensure safe, scalable adoption.

8 Conclusion

Artificial intelligence is rapidly emerging as a powerful tool with the
potential to fundamentally transform chronic disease self-management.
By enabling personalized interventions, enhancing monitoring and
predictive capabilities, and supporting patient engagement through
conversational agents and digital platforms, Al provides innovative
ways to help individuals manage complex, lifelong conditions.

Unlike prior reviews that typically focus on a single technology
(e.g., chatbots) or a single disease (e.g., diabetes), this narrative review
provides a task-oriented, cross-modal synthesis that integrates diverse
AT modalities across multiple chronic conditions. This unique lens
explicitly maps Al applications to the core self-management tasks of
patients—personalized decision support, continuous monitoring and
prediction, behavioral coaching, and patient—clinician care
coordination—thereby offering a unifying framework absent from
earlier work. In addition, our review incorporates the regulatory
dimension, highlighting how evolving FDA guidance and other
oversight frameworks critically shape the translation of Al into clinical
practice, an aspect often underrepresented in the literature.

Current applications, particularly in diabetes and cardiovascular
disease, show encouraging results such as improved treatment
personalization, early detection of complications, and enhanced
adherence. However, most evidence to date arises from feasibility or
pilot studies, with validated clinical deployments in large-scale or real-
world contexts still limited.

Bridging this gap requires rigorous multi-site trials, standardized
outcome measures, and long-term effectiveness and cost-effectiveness
evaluations. Only by generating robust clinical evidence and
addressing challenges such as data privacy, algorithmic bias, and
equitable access can Al move from promising prototypes to
trustworthy, widely adopted solutions. Ultimately, by situating AI
applications within both patient self-management tasks and real-
world adoption pathways, this review contributes a novel and
pragmatic roadmap for advancing Al toward reliable, patient-centered
improvements in chronic disease outcomes.
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