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Background: Helicobacter pylori (H. pylori) infection remains prevalent in
regions such as Shanxi, China, contributing to gastrointestinal morbidity.
Accurately identifying high-risk individuals is essential for effective screening
and early intervention.

Methods: We conducted a retrospective longitudinal cohort study of 35,206
adults who underwent repeated annual health checkups with H. pylori testing
at a single center from 2016 to 2024. Group-Based Trajectory Modeling (GBTM)
identified risk subgroups. Multivariable logistic regression identified predictors of
high-risk trajectories; alcohol consumption was assessed as an effect modifier.
Five machine learning models—including Light Gradient Boosting Machine
(LightGBM), Extreme Gradient Boosting, Logistic regression, etc.—were trained
using a 7:3 split. Temporal validation (2016-2020 training/2021-2024 validation)
assessed generalizability. SHapley Additive exPlanations (SHAP) improved
interpretability. A prediction tool was deployed via R Shiny.

Results: GBTM identified high-risk (14.63%) and low-risk (85.37%) groups.
Protective factors included women (OR = 0.042, 95% CIl: 0.039-0.046) and
unmarried status (OR = 0.092, 95% CI: 0.085-0.099); risk factors included
obesity (OR =1.138, 95% Cl: 1.070-1.210), blue-collar workers (OR = 1.557,
95% Cl: 1454-1.666), and alcohol consumption (OR = 1.277, 95% Cl: 1.165-
1.401). Alcohol consumption interacted with all significant factors in subgroup
analysis (all p < 0.001), with the strongest interaction observed for being married
(OR = 8.622, 95% ClI: 7.872-9.437). LightGBM achieved AUCs of 0.851 (training),
0.843 (validation), 0.863 (temporal training), and 0.831 (temporal validation).
SHAP ranked marital status and sex as top predictors. The tool is available at:
https://prediction-model-for-hp.shinyapps.io/hp_shinyapp-/.

Conclusion: We developed an online, interpretable risk prediction tool with
validated accuracy to support precision screening of H. pylori infection.

KEYWORDS

Helicobacter pylori, machine learning, risk prediction, group-based trajectory
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Introduction

Helicobacter pylori (H. pylori), classified as a Group 1 carcinogen
by the World Health Organization (1), is a major etiological agent of
gastritis, peptic ulcer disease, and gastric cancer (GC) (2). It poses a
substantial global public health burden (3). Although infection rates
have declined in certain regions due to improved hygiene and
widespread eradication efforts, recent epidemiological data estimate
that approximately 40% of adults worldwide—and 40.7% in China—
remain infected (4). This underscores the ongoing need for effective
detection and management strategies (5). Given the robust evidence
that H. pylori eradication in asymptomatic individuals significantly
reduces the incidence of GC (6, 7), the early identification of high-risk
populations remains a critical public health priority.

Although risk prediction models for H. pylori infection have been
previously proposed, most are built on traditional regression methods
and fail to account for heterogeneity in individual risk trajectories (8).
These models often assume that all individuals follow a similar risk
pattern, overlooking potential subgroups within the population who
may exhibit distinct risk dynamics over time (9). In parallel, although
machine learning (ML) approaches offer improved predictive
performance (10), their clinical uptake remains limited by concerns
around interpretability (11, 12). Some early ML studies, such as Tran
et al. (10), applied machine learning to H. pylori risk prediction
without explicit interpretability frameworks. Without transparent
explanation frameworks, such as SHapley Additive exPlanations
(SHAP), ML models may be perceived as “black boxes,” reducing trust
and applicability in healthcare contexts (13, 14).

In response to these challenges, we developed an interpretable
ML-based approach to predict H. pylori infection risk. This approach
integrates Group-Based Trajectory Modeling (GBTM) to identify
latent risk subgroups, followed by a comparative evaluation of five ML
algorithms optimized for predictive performance. To enhance model
interpretability, SHAP were applied to quantify the relative
contribution of each predictor. Finally, we implemented our findings
in a web-based, interactive prediction tool using R Shiny, aiming to
facilitate real-time clinical use and support more targeted
screening strategies.

Methods
Study population

This retrospective longitudinal cohort study included adults aged
>18 years who underwent annual routine health examinations at
Shanxi Medical University First Hospital between January 2016 and
June 2024 and had complete examination records for each year,
including at least one H. pylori test per year. Each participant
underwent repeated annual assessments, including H. pylori testing,
physical examination, and structured questionnaires. Demographic
and clinical data were collected at each visit via structured medical
records and institutional health checkup databases.

Sex was categorized as men or women. Age groups (<50, 50-69,
and >70 years) were defined based on the cohort’s median and mean
age (48 years). Marital status was dichotomized into married versus
unmarried, with the unmarried group including single, divorced, and
widowed individuals (15). Body mass index (BMI) values were
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categorized as <24.0 and >24.0 kg/m* based on Chinese classification
standards (<18.5: underweight; 18.5-23.9: normal; 24.0-27.9:
overweight; >28.0: obese) to enhance model interpretability and
ensure statistical stability in multivariable analysis (16). Occupational
classification followed the Occupational Classification Dictionary of the
People’s Republic of China (17). Blue-collar workers included (1)
workers engaged in agriculture, forestry, animal husbandry, fishery,
and water conservancy production; and (2) operators and related
personnel in production and transportation equipment. White-collar
workers included (1) government officials, leaders of party and mass
organizations, and managers in enterprises and public institutions;
and (2) professional and technical personnel. Hypertension was
categorized as yes or no based on systolic blood pressure >140 mm
Hg or diastolic blood pressure >90 mm Hg (18). Smoking status was
categorized as yes or no, with current smokers were defined as
individuals who used tobacco in the past 30 days (19). Alcohol
consumption was similarly categorized as yes or no, with current
drinkers were defined as those who consumed alcohol at least once
weekly in the past year (20). This study was approved by the Ethics
Committee of Shanxi Medical University First Hospital (approval
number KYLL-2024-226).

H. pylori testing

During the study period, H. pylori infection was detected using
the *C-urea breath test (*C-UBT) (Shenzhen Headway Company)
(21). Participants were instructed to fast for at least 6 h prior to testing
and to rinse their mouths with water before ingesting the *C-labeled
urea solution. Breath samples were collected 30 min post-ingestion
and analyzed via isotope ratio mass spectrometry. According to the
manufacturer’s guidelines, a delta over baseline (DOB) value of
>4.0%o was considered indicative of active H. pylori infection.

Statistical analysis

GBTM was used to classify participants into distinct H. pylori
infection risk trajectories based on annual health checkup data from
2016 to 2024. Censored normal models with quadratic polynomial
terms were applied. Models with different numbers of groups (ranging
from 1 to 4) were compared using the Bayesian Information Criterion
(BIC), Akaike Information Criterion (AIC), entropy, and average
posterior probabilities (AvePP). The optimal number of trajectories
was selected based on the lowest BIC, high entropy (>0.80), and
average posterior probabilities >0.70, consistent with established
recommendations for GBTM.

Participants in the low-risk trajectory group (class =0) were
defined as the negative control, and those in the high-risk trajectory
group (class = 1) as the positive control, based on GBTM analysis of
longitudinal H. pylori infection status. For all ML models and
subsequent risk factor analyses, these trajectory groups were used as
the outcome variable, with the high-risk group serving as the positive
class and the low-risk group as the negative class.

Between-group differences were assessed using the chi-square
test, and variables with p-values <0.05 were included in multivariable
logistic regression to identify independent risk factors, with results
reported as odds ratios (ORs) and 95% confidence intervals (CIs).
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Alcohol consumption was treated as an exposure variable in subgroup
analyses, and interaction effects were tested using multiplicative terms
in the logistic regression models. To account for the imbalance
between the high-risk and low-risk trajectory groups, a weighting
scheme was applied in the logistic regression, assigning higher weights
to participants in the high-risk trajectory to account for class
imbalance and improve estimate stability. To control for potential
inflation of type I error due to multiple subgroup and interaction tests,
p-values were adjusted using the Benjamini-Hochberg false discovery
rate (FDR) method. Stratum-specific ORs were displayed in
forest plots.

The dataset was randomly divided into a training set (70%) and a
validation set (30%) to develop five ML models: Light Gradient Boosting
Machine (LightGBM), Extreme Gradient Boosting (XGBoost), Logistic
Regression, Naive Bayes, and Elastic Net. These five models were selected
for their complementary strengths with large epidemiologic datasets.
The strengths and limitations of the five ML models are summarized in
the Supplementary Table SI. To address potential class imbalance
between trajectory groups, the Synthetic Minority Oversampling
Technique (SMOTE) was applied to the training set only; the validation
set was left unaltered to preserve the real-world class distribution.

Each model was implemented using standard R packages (caret,
glmnet, xgboost, lightgbm, naivebayes), and hyperparameter tuning was
performed with five-fold cross-validation within the training set. Model
performance metrics included area under the receiver operating
characteristic curve (AUC) with 95% ClIs, sensitivity, specificity, and
accuracy. Accuracy was calculated as the proportion of correctly
classified cases among all participants, with the optimal cutoff
determined by the Youden index. Additional evaluation metrics,
including baseline plots, receiver operating characteristic (ROC) curves,
calibration plots, and decision curve analysis (DCA), were used to assess
discrimination, calibration, and clinical utility. To evaluate temporal
robustness and generalizability, the dataset was temporally split, with
data from 2016 to 2020 as the temporal training set and data from 2021
to 2024 as the temporal validation set. Calibration curves, decision
curves, and ROC curves were generated for both validation phases.

10.3389/fpubh.2025.1688708

SHAP values were applied to the best-performing model
(LightGBM) to interpret the contribution and direction of each
predictor. DCA was performed using the rmda package in R software
to assess clinical net benefit. Finally, we developed an interactive,
web-based prediction tool for H. pylori infection risk using R Shiny to
support real-time clinical decision-making. To illustrate the overall
workflow, a flowchart was generated (Supplementary Figure S1).
Performance reporting and model evaluation adhered to the
transparent reporting of a multivariable prediction model for individual
prognosis or diagnosis guidelines (22), ensuring that discrimination,
calibration, and clinical utility were consistently assessed across all
models. All statistical analyses were conducted in R (version 4.4.2), and
a two-sided p-value <0.05 was considered statistically significant.

Results
Baseline characteristics

A total of 35,206 individuals were included in the final analysis,
including 31,512 men (89.5%) and 3,694 women (10.5%) who
underwent routine health examinations and H. pylori testing at Shanxi
Medical University First Hospital from 2016 to 2024.

GBTM was performed to identify distinct longitudinal risk
trajectories of H. pylori infection. Models with one to four groups were
compared using fit indices including the AIC, BIC, entropy, and
AvePP. The two-group model showed the best balance between model
fit and interpretability, exhibiting the lowest AIC (—140,350.21) and
BIC (—140,220.53), acceptable entropy (0.82), and high AvePP (>0.85)
for each group.

Based on this model, participants were classified into a low-risk
group (85.37%) and a high-risk group (14.63%) (Figure 1; Table 1).
The high-risk group was characterized by a predominance of men
(61.27%), younger age (>70 years, 45.90%), higher BMI (>24,
56.09%), married status (58.86%), white-collar occupation (71.19%),
absence of hypertension (88.51%), smoking (65.27%), and alcohol

FIGURE 1
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GBTM of H. pylori infection risk over time. Estimated probability trajectories of H. pylori infection from 2016 to 2024, identifying distinct risk subgroups.
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TABLE 1 Baseline characteristics by H. pylori trajectory groups.

10.3389/fpubh.2025.1688708

Factors Low-risk group High-risk group
(85.37%) (14.63%)

Sex 5122.880 <0.001
Men 28,356 (94.35%) 3,156 (61.27%)
Women 1,699 (5.65%) 1,995 (38.73%)

Age (years) 5385.211 <0.001
<50 9,559 (31.81%) 2,228 (43.25%)
50-69 17,201 (57.23%) 559 (10.85%)
>70 3,295 (10.96%) 2,364 (45.90%)

Body mass index (kg/m?) 149.245 <0.001
<24 10,535 (35.05%) 2,262 (43.91%)
>24 19,520 (64.95%) 2,889 (56.09%)

Marital status 1815.232 <0.001
Married 25,332 (84.29%) 3,032 (58.86%)
Unmarried 4,723 (15.71%) 2,119 (41.14%)

Occupation 341.318 <0.001
White-collar workers 17,286 (57.51%) 3,667 (71.19%)
Blue-collar workers 12,769 (42.49%) 1,484 (28.81%)

Hypertension 43.489 <0.001
No 25,549 (85.01%) 4,559 (88.51%)
Yes 4,506 (14.99%) 592 (11.49%)

Smoking 349.178 <0.001
No 6,801 (22.63%) 1,789 (34.73%)
Yes 23,254 (77.37%) 3,362 (65.27%)

Alcohol consumption 609.024 <0.001
No 3,508 (11.67%) 1,257 (24.40%)
Yes 26,547 (88.33%) 3,894 (75.60%)

consumption (75.60%). Differences between the two groups were
statistically significant (all p < 0.001; Table 1).

Risk factors for H. pylori infection and
subgroup analysis

Multivariable logistic regression was conducted with trajectory
group (high-risk vs. low-risk) as the dependent variable. Variables that
showed significant associations in univariable analyses were included
in the model. Independent risk factors associated with increased odds
of H. pylori infection were obesity (OR = 1.138, 95% CI: 1.070-1.210),
alcohol consumption (OR = 1.277, 95% CI: 1.165-1.401), and blue-
collar workers (OR =1.557, 95% CI: 1.454-1.666). A sensitivity
analysis using six more detailed occupational categories yielded
generally consistent results, supporting the robustness of the
occupational finding (Supplementary Table 52). Conversely, women
(OR =0.042, 95% CI: 0.039-0.046) and unmarried status (OR = 0.092,
95% CI: 0.085-0.099) were associated with a lower risk of infection
(Table 2). Weighted analyses were also performed to account for
potential differences in trajectory group sizes, and results were
consistent with the unweighted analysis (Supplementary Table S3).

Subgroup analyses were performed stratified by alcohol
consumption, treated as the exposure variable. Interaction terms
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between alcohol and other significant factors were tested in
multivariable logistic regression models, with both subgroup-specific
and interaction p-values adjusted for multiple testing using the
Benjamini-Hochberg FDR method. Forest plots visualized stratum-
specific ORs (Supplementary Figure S2). After adjustment, significant
effect modification by alcohol consumption was observed in the
associations between all other significant factors and H. pylori
infection (all adjusted p for interaction <0.001). The strongest
modification was observed for marital status: the effect of being
married on infection risk was substantially amplified among drinkers
(OR = 8.622, 95% CI: 7.872-9.437, adjusted p < 0.001).

Model development and evaluation

The dataset was randomly divided into a training set (70%) and a
validation set (30%). Baseline plots, ROC curves, calibration plots, and
DCA were generated to evaluate model performance. The baseline
plot showed good agreement with the results from multivariable
logistic regression. All three evaluation curves (ROC, calibration, and
DCA) demonstrated good performance in both the training and
validation sets (Supplementary Figures S3, S4).

Five ML models were developed: LightGBM, XGBoost, Logistic
Regression, Naive Bayes, and Elastic Net. The performance of each
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TABLE 2 Multivariable logistic regression analysis of factors associated with high-risk H. pylori trajectory.

Factors p coefficient p-value (O] 95% ClI
Sex (ref: men) —3.164 <0.001 0.042 0.039-0.046
Body mass index (ref: <24 kg/m?) 0.129 <0.001 1.138 1.070-1.210
Marital status (ref: married) —2.389 <0.001 0.092 0.085-0.099
Occupation (ref: White-collar workers) 0.442 <0.001 1.557 1.454-1.666
Alcohol consumption (ref: no) 0.245 <0.001 1.277 1.165-1.401

CI, confidence intervals; OR, odds ratio.

model in the overall training and validation sets is summarized in ~ Model deployment

Supplementary Table S4, with ROC curves presented in Figure 2.
LightGBM achieved the best performance, with AUCs of 0.851 (95% CI:
0.848-0.853) in the training set and 0.843 (95% CI: 0.837-0.850) in the
validation set. Accuracy was 0.805/0.791, with well-balanced sensitivity
(0.813/0.807) and specificity (0.775/0.781),
discriminative ability and robustness. The other models also performed

indicating  strong

well, showing stable discrimination and overall performance: XGBoost
(AUC 0.847/0.844; Accuracy 0.818/0.805), Elastic Net (AUC 0.840/0.839;
Accuracy 0.802/0.783), Logistic Regression (AUC 0.839/0.839; Accuracy
0.799/0.783), and Naive Bayes (AUC 0.835/0.835; Accuracy 0.826/0.769).
Notably, Naive Bayes had the highest sensitivity (0.822/0.831) but slightly
lower overall accuracy.

To further assess model robustness and generalizability, the
dataset was temporally split, with data from 2016 to 2020 used as
the temporal training set and 2021-2024 as the temporal validation
set. Models were retrained, and their performance was evaluated
ROC DCA
(Supplementary Figures S5, S6; Supplementary Table S5).
LightGBM maintained the highest stability, with AUCs of 0.863
(95% CI: 0.859-0.866) in the temporal training set and 0.831 (95%
CI: 0.825-0.837) in the temporal validation set, sensitivity
(0.819/0.801), specificity (0.788/0.766), and accuracy (0.835/0.775).
XGBoost, Elastic Net, and Logistic Regression remained stable
over time (XGBoost: AUC 0.859/0.831; Accuracy 0.856/0.772;
Elastic Net: AUC 0.852/0.830; Accuracy 0.795/0.790; Logistic
Regression: AUC 0.852/0.830; Accuracy 0.794/0.789). Naive Bayes
showed lower temporal accuracy (AUC 0.851/0.815; Accuracy
0.766/0.764).

Overall, LightGBM consistently demonstrated the best
discrimination, calibration, and temporal stability among all models.

using curves, calibration plots, and

Model interpretability

To enhance clinical interpretability, SHAP values were used to
quantify the contribution and directional influence of each predictor
in the LightGBM model. As shown in Figure 3A, the top five
predictors of H. pylori infection risk were marital status, sex,
occupation, BMI, and alcohol consumption, ranked by overall
feature importance.

Figure 3B presents the individual-level associations between each
predictor and infection risk. Factors positively associated with
increased risk included blue-collar workers, higher BMI and alcohol
consumption. In contrast, being women and unmarried were
associated with a lower predicted probability of infection, suggesting
potential protective effects.

Frontiers in Public Health

Given its superior predictive performance across all datasets, the
LightGBM model was selected as the core algorithm for deployment
in an interactive, web-based risk prediction tool. The model was fine-
tuned using five-fold cross-validated grid search, yielding the
following optimal risk-enhancing input profiles: “Sex”: Men; “Marital
status”: Married; “Alcohol consumption”: Yes; “Occupation”: White-
collar workers; and “BMI”: >24.

A publicly accessible web application was developed using R
Shiny: https://prediction-model-for-hp.shinyapps.io/hp_shinyapp-/.
Users can enter their information through drop-down menus and
click the “Predict” button to receive individualized risk estimates (low,
moderate, or high) based on model-derived probabilities. For
individuals identified as high risk, this tool may facilitate early
identification and prompt preventive interventions for H. pylori
infection, as shown in Supplementary Figure S7.

Discussion

Globally, H. pylori infection remains a major public health
concern, with approximately 43% of adults infected, particularly in
regions such as China (4, 23). Although previous studies have explored
its risk factors using cross-sectional designs or traditional regression
methods, few have applied dynamic classification approaches or
interpretable ML models to track risk over time in large longitudinal
cohorts (10).

In this study, we analyzed a longitudinal cohort of 35,206
individuals with repeated annual health checkups from 2016 to 2024.
This design not only enabled risk identification and early intervention
but also provided high-quality longitudinal data for refining predictive
models and evaluating long-term public health interventions (24-27).
To our knowledge, this is the first study to integrate GBTM with both
logistic regression and ML methods for dynamic risk stratification,
further translated into a web-based tool for individualized prediction.

Obesity emerged as an independent risk factor. Mechanistically,
excess adiposity alters gut microbiota composition (28), particularly
by increasing the Firmicutes-to-Bacteroidetes ratio, which may
promote H. pylori colonization (29, 30). Obesity-related dysbiosis also
impairs mucosal immune defenses and disrupts gastric barrier
function (31), while chronic low-grade inflammation and insulin
resistance further weaken host immunity (32, 33). These findings align
with recent microbiome studies linking obesity to increased epithelial
permeability, reduced antimicrobial peptide production, and a
weakened gastric mucosal barrier (34). BMI thus serves not only as a
marker of adiposity, but also as a clinically relevant proxy for a broader
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set of physiological, behavioral, and metabolic factors—including diet,
physical activity, and microbiome-associated immune modulation—
that together shape H. pylori susceptibility (34, 35).

Occupational status was another important factor. Blue-collar
workers —including those in agriculture, manufacturing, and
transportation—had significantly higher H. pylori infection risk than
white-collar workers. This may result from greater exposure to
suboptimal sanitation, limited access to clean water, and communal
dining practices (36, 37). Socioeconomic disadvantage and lower
health literacy may further exacerbate vulnerability (38). Beyond
direct exposure, occupational status may also act as a proxy for
broader social determinants of health—such as hygiene awareness,
nutritional quality, and chronic stress—that collectively shape an
individual’s susceptibility to persistent H. pylori colonization (39, 40).

Alcohol consumption emerged as both a direct risk factor and an
effect modifier in interactions with other significant variables. Prior
studies have reported a dose-dependent association: light-to-moderate
intake is associated with lower infection odds, while heavy drinking
impairs immune defenses and gastric barrier integrity, increasing
susceptibility to colonization (41-44). This may be attributed to
ethanol metabolites, such as acetaldehyde, which damage the gastric
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mucosa and compromise the gastric barrier (45). Additionally, alcohol
suppresses immune responses, modulates gut microbiota by reducing
beneficial bacteria and promoting pathogenic bacteria growth, and
suppresses antimicrobial peptide production, all of which enhance
H. pylori colonization (46-48). In our study, alcohol also demonstrated
interactive effects with sex, marital status, occupational status, and
BM]I, suggesting potential synergism in modulating susceptibility to
H. pylori infection.

Conversely, women and unmarried individuals were protective
factors. The lower infection risk among women may be attributed to
physiological differences, particularly the influence of sex hormones,
which modulate immune and inflammatory responses and alter the
host’s immune reaction to H. pylori infection (49). Additionally,
women tend to be more vigilant about hygiene practices, including
frequent handwashing and food preparation hygiene, which likely
reduce the risk of fecal-oral transmission (50, 51). Gender roles in
family settings, where women often assume household care
responsibilities, may reinforce these protective practices (52).
Unmarried individuals may experience reduced intrafamilial
transmission, as H. pylori is commonly spread among spouses (53, 54).
One study found that over 68% of infected couples shared identical
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strains, with risk increasing with marriage duration (55). Reduced
shared meals, less close contact, and dispersed social networks likely
explain the lower prevalence among unmarried groups (56, 57).

Among the ML models, Light GBM achieved the highest and most
stable performance, with AUCs of 0.851 (training set), 0.843
(validation set), 0.863 (temporal training set), and 0.831 (temporal
validation set). SHAP confirmed marital status, sex, occupation, BMI,
and alcohol consumption as the top predictors, aligning with
multivariable regression and enhancing model interpretability.

Prior work has demonstrated the utility of LightGBM in
gastroenterology: Wang et al. (58) predicted postoperative
complications in GC (AUC = 0.923, accuracy 87.3%); Fu et al. (59)
used it for GC screening in 25,622 participants with high recall
(94.6%) even without H. pylori IgG data; and Yang et al. (60)
predicted esophageal cancer surgery complications with excellent
discrimination (AUC = 0.956). Our study extends these findings by
applying LightGBM to a significantly larger longitudinal cohort and
including both temporal validation. The model not only achieved
high discrimination but also offered interpretability through SHAP
values and a practical, web-based tool for real-time risk stratification.
While the Shiny application provides an accessible platform to
estimate individual H. pylori infection risk (categorizing users as low,
moderate, or high risk), broader validation in multi-center cohorts
will be necessary before clinical integration. If validated prospectively,
such a tool may assist clinicians as a pre-screening aid to help
prioritize individuals for confirmatory testing.

Strengths and limitations

This study offers several strengths. First, it employed GBTM to
capture dynamic risk trajectories over time. Second, the large sample
size and extended follow-up period enhance statistical power and
model robustness. Third, combining interpretable ML with
conventional regression balances predictive accuracy with clinical
relevance. Fourth, the resulting R Shiny-based prediction tool enables
accessible, real-time individualized screening in primary care and
public health settings.

However, several limitations should be noted. Although variables
such as BMI, occupation, and alcohol consumption may indirectly
capture aspects of lifestyle and socioeconomic status due to their
strong associations with factors like diet, income, and hygiene (20, 35,
39), the absence of direct measurement of these lifestyle indicators
may still limit the comprehensiveness of the risk assessment. Such
omissions may lead to residual confounding and potentially bias the
estimated associations (61). Future studies should incorporate more
detailed predictors and conduct multicenter external validation.
Additionally, integration with mobile platforms or electronic health
records could further support early detection and individualized
risk management.

Conclusion
This study is the first to combine GBTM with multiple ML

methods to identify and validate key risk factors for H. pylori
infection. The resulting interpretable and high-performing model
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was translated into a user-friendly online tool, providing a scalable
solution for personalized prevention. Future work should include
prospective studies to evaluate the impact of early intervention in
high-risk individuals and assess model performance across
diverse settings.
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