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Background: Helicobacter pylori (H. pylori) infection remains prevalent in 
regions such as Shanxi, China, contributing to gastrointestinal morbidity. 
Accurately identifying high-risk individuals is essential for effective screening 
and early intervention.
Methods: We conducted a retrospective longitudinal cohort study of 35,206 
adults who underwent repeated annual health checkups with H. pylori testing 
at a single center from 2016 to 2024. Group-Based Trajectory Modeling (GBTM) 
identified risk subgroups. Multivariable logistic regression identified predictors of 
high-risk trajectories; alcohol consumption was assessed as an effect modifier. 
Five machine learning models—including Light Gradient Boosting Machine 
(LightGBM), Extreme Gradient Boosting, Logistic regression, etc.—were trained 
using a 7:3 split. Temporal validation (2016–2020 training/2021–2024 validation) 
assessed generalizability. SHapley Additive exPlanations (SHAP) improved 
interpretability. A prediction tool was deployed via R Shiny.
Results: GBTM identified high-risk (14.63%) and low-risk (85.37%) groups. 
Protective factors included women (OR = 0.042, 95% CI: 0.039–0.046) and 
unmarried status (OR = 0.092, 95% CI: 0.085–0.099); risk factors included 
obesity (OR = 1.138, 95% CI: 1.070–1.210), blue-collar workers (OR = 1.557, 
95% CI: 1.454–1.666), and alcohol consumption (OR = 1.277, 95% CI: 1.165–
1.401). Alcohol consumption interacted with all significant factors in subgroup 
analysis (all p < 0.001), with the strongest interaction observed for being married 
(OR = 8.622, 95% CI: 7.872–9.437). LightGBM achieved AUCs of 0.851 (training), 
0.843 (validation), 0.863 (temporal training), and 0.831 (temporal validation). 
SHAP ranked marital status and sex as top predictors. The tool is available at: 
https://prediction-model-for-hp.shinyapps.io/hp_shinyapp-/.
Conclusion: We developed an online, interpretable risk prediction tool with 
validated accuracy to support precision screening of H. pylori infection.
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Introduction

Helicobacter pylori (H. pylori), classified as a Group 1 carcinogen 
by the World Health Organization (1), is a major etiological agent of 
gastritis, peptic ulcer disease, and gastric cancer (GC) (2). It poses a 
substantial global public health burden (3). Although infection rates 
have declined in certain regions due to improved hygiene and 
widespread eradication efforts, recent epidemiological data estimate 
that approximately 40% of adults worldwide—and 40.7% in China—
remain infected (4). This underscores the ongoing need for effective 
detection and management strategies (5). Given the robust evidence 
that H. pylori eradication in asymptomatic individuals significantly 
reduces the incidence of GC (6, 7), the early identification of high-risk 
populations remains a critical public health priority.

Although risk prediction models for H. pylori infection have been 
previously proposed, most are built on traditional regression methods 
and fail to account for heterogeneity in individual risk trajectories (8). 
These models often assume that all individuals follow a similar risk 
pattern, overlooking potential subgroups within the population who 
may exhibit distinct risk dynamics over time (9). In parallel, although 
machine learning (ML) approaches offer improved predictive 
performance (10), their clinical uptake remains limited by concerns 
around interpretability (11, 12). Some early ML studies, such as Tran 
et  al. (10), applied machine learning to H. pylori risk prediction 
without explicit interpretability frameworks. Without transparent 
explanation frameworks, such as SHapley Additive exPlanations 
(SHAP), ML models may be perceived as “black boxes,” reducing trust 
and applicability in healthcare contexts (13, 14).

In response to these challenges, we developed an interpretable 
ML–based approach to predict H. pylori infection risk. This approach 
integrates Group-Based Trajectory Modeling (GBTM) to identify 
latent risk subgroups, followed by a comparative evaluation of five ML 
algorithms optimized for predictive performance. To enhance model 
interpretability, SHAP were applied to quantify the relative 
contribution of each predictor. Finally, we implemented our findings 
in a web-based, interactive prediction tool using R Shiny, aiming to 
facilitate real-time clinical use and support more targeted 
screening strategies.

Methods

Study population

This retrospective longitudinal cohort study included adults aged 
≥18 years who underwent annual routine health examinations at 
Shanxi Medical University First Hospital between January 2016 and 
June 2024 and had complete examination records for each year, 
including at least one H. pylori test per year. Each participant 
underwent repeated annual assessments, including H. pylori testing, 
physical examination, and structured questionnaires. Demographic 
and clinical data were collected at each visit via structured medical 
records and institutional health checkup databases.

Sex was categorized as men or women. Age groups (<50, 50–69, 
and ≥70 years) were defined based on the cohort’s median and mean 
age (48 years). Marital status was dichotomized into married versus 
unmarried, with the unmarried group including single, divorced, and 
widowed individuals (15). Body mass index (BMI) values were 

categorized as <24.0 and ≥24.0 kg/m2 based on Chinese classification 
standards (<18.5: underweight; 18.5–23.9: normal; 24.0–27.9: 
overweight; ≥28.0: obese) to enhance model interpretability and 
ensure statistical stability in multivariable analysis (16). Occupational 
classification followed the Occupational Classification Dictionary of the 
People’s Republic of China (17). Blue-collar workers included (1) 
workers engaged in agriculture, forestry, animal husbandry, fishery, 
and water conservancy production; and (2) operators and related 
personnel in production and transportation equipment. White-collar 
workers included (1) government officials, leaders of party and mass 
organizations, and managers in enterprises and public institutions; 
and (2) professional and technical personnel. Hypertension was 
categorized as yes or no based on systolic blood pressure ≥140 mm 
Hg or diastolic blood pressure ≥90 mm Hg (18). Smoking status was 
categorized as yes or no, with current smokers were defined as 
individuals who used tobacco in the past 30 days (19). Alcohol 
consumption was similarly categorized as yes or no, with current 
drinkers were defined as those who consumed alcohol at least once 
weekly in the past year (20). This study was approved by the Ethics 
Committee of Shanxi Medical University First Hospital (approval 
number KYLL-2024-226).

H. pylori testing

During the study period, H. pylori infection was detected using 
the 13C-urea breath test (13C-UBT) (Shenzhen Headway Company) 
(21). Participants were instructed to fast for at least 6 h prior to testing 
and to rinse their mouths with water before ingesting the 13C-labeled 
urea solution. Breath samples were collected 30 min post-ingestion 
and analyzed via isotope ratio mass spectrometry. According to the 
manufacturer’s guidelines, a delta over baseline (DOB) value of 
≥4.0‰ was considered indicative of active H. pylori infection.

Statistical analysis

GBTM was used to classify participants into distinct H. pylori 
infection risk trajectories based on annual health checkup data from 
2016 to 2024. Censored normal models with quadratic polynomial 
terms were applied. Models with different numbers of groups (ranging 
from 1 to 4) were compared using the Bayesian Information Criterion 
(BIC), Akaike Information Criterion (AIC), entropy, and average 
posterior probabilities (AvePP). The optimal number of trajectories 
was selected based on the lowest BIC, high entropy (≥0.80), and 
average posterior probabilities ≥0.70, consistent with established 
recommendations for GBTM.

Participants in the low-risk trajectory group (class = 0) were 
defined as the negative control, and those in the high-risk trajectory 
group (class = 1) as the positive control, based on GBTM analysis of 
longitudinal H. pylori infection status. For all ML models and 
subsequent risk factor analyses, these trajectory groups were used as 
the outcome variable, with the high-risk group serving as the positive 
class and the low-risk group as the negative class.

Between-group differences were assessed using the chi-square 
test, and variables with p-values <0.05 were included in multivariable 
logistic regression to identify independent risk factors, with results 
reported as odds ratios (ORs) and 95% confidence intervals (CIs). 
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Alcohol consumption was treated as an exposure variable in subgroup 
analyses, and interaction effects were tested using multiplicative terms 
in the logistic regression models. To account for the imbalance 
between the high-risk and low-risk trajectory groups, a weighting 
scheme was applied in the logistic regression, assigning higher weights 
to participants in the high-risk trajectory to account for class 
imbalance and improve estimate stability. To control for potential 
inflation of type I error due to multiple subgroup and interaction tests, 
p-values were adjusted using the Benjamini–Hochberg false discovery 
rate (FDR) method. Stratum-specific ORs were displayed in 
forest plots.

The dataset was randomly divided into a training set (70%) and a 
validation set (30%) to develop five ML models: Light Gradient Boosting 
Machine (LightGBM), Extreme Gradient Boosting (XGBoost), Logistic 
Regression, Naive Bayes, and Elastic Net. These five models were selected 
for their complementary strengths with large epidemiologic datasets. 
The strengths and limitations of the five ML models are summarized in 
the Supplementary Table S1. To address potential class imbalance 
between trajectory groups, the Synthetic Minority Oversampling 
Technique (SMOTE) was applied to the training set only; the validation 
set was left unaltered to preserve the real-world class distribution.

Each model was implemented using standard R packages (caret, 
glmnet, xgboost, lightgbm, naivebayes), and hyperparameter tuning was 
performed with five-fold cross-validation within the training set. Model 
performance metrics included area under the receiver operating 
characteristic curve (AUC) with 95% CIs, sensitivity, specificity, and 
accuracy. Accuracy was calculated as the proportion of correctly 
classified cases among all participants, with the optimal cutoff 
determined by the Youden index. Additional evaluation metrics, 
including baseline plots, receiver operating characteristic (ROC) curves, 
calibration plots, and decision curve analysis (DCA), were used to assess 
discrimination, calibration, and clinical utility. To evaluate temporal 
robustness and generalizability, the dataset was temporally split, with 
data from 2016 to 2020 as the temporal training set and data from 2021 
to 2024 as the temporal validation set. Calibration curves, decision 
curves, and ROC curves were generated for both validation phases.

SHAP values were applied to the best-performing model 
(LightGBM) to interpret the contribution and direction of each 
predictor. DCA was performed using the rmda package in R software 
to assess clinical net benefit. Finally, we  developed an interactive, 
web-based prediction tool for H. pylori infection risk using R Shiny to 
support real-time clinical decision-making. To illustrate the overall 
workflow, a flowchart was generated (Supplementary Figure S1). 
Performance reporting and model evaluation adhered to the 
transparent reporting of a multivariable prediction model for individual 
prognosis or diagnosis guidelines (22), ensuring that discrimination, 
calibration, and clinical utility were consistently assessed across all 
models. All statistical analyses were conducted in R (version 4.4.2), and 
a two-sided p-value <0.05 was considered statistically significant.

Results

Baseline characteristics

A total of 35,206 individuals were included in the final analysis, 
including 31,512 men (89.5%) and 3,694 women (10.5%) who 
underwent routine health examinations and H. pylori testing at Shanxi 
Medical University First Hospital from 2016 to 2024.

GBTM was performed to identify distinct longitudinal risk 
trajectories of H. pylori infection. Models with one to four groups were 
compared using fit indices including the AIC, BIC, entropy, and 
AvePP. The two-group model showed the best balance between model 
fit and interpretability, exhibiting the lowest AIC (−140,350.21) and 
BIC (−140,220.53), acceptable entropy (0.82), and high AvePP (>0.85) 
for each group.

Based on this model, participants were classified into a low-risk 
group (85.37%) and a high-risk group (14.63%) (Figure 1; Table 1). 
The high-risk group was characterized by a predominance of men 
(61.27%), younger age (≥70 years, 45.90%), higher BMI (≥24, 
56.09%), married status (58.86%), white-collar occupation (71.19%), 
absence of hypertension (88.51%), smoking (65.27%), and alcohol 

FIGURE 1

GBTM of H. pylori infection risk over time. Estimated probability trajectories of H. pylori infection from 2016 to 2024, identifying distinct risk subgroups.

https://doi.org/10.3389/fpubh.2025.1688708
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhao et al.� 10.3389/fpubh.2025.1688708

Frontiers in Public Health 04 frontiersin.org

consumption (75.60%). Differences between the two groups were 
statistically significant (all p < 0.001; Table 1).

Risk factors for H. pylori infection and 
subgroup analysis

Multivariable logistic regression was conducted with trajectory 
group (high-risk vs. low-risk) as the dependent variable. Variables that 
showed significant associations in univariable analyses were included 
in the model. Independent risk factors associated with increased odds 
of H. pylori infection were obesity (OR = 1.138, 95% CI: 1.070–1.210), 
alcohol consumption (OR = 1.277, 95% CI: 1.165–1.401), and blue-
collar workers (OR = 1.557, 95% CI: 1.454–1.666). A sensitivity 
analysis using six more detailed occupational categories yielded 
generally consistent results, supporting the robustness of the 
occupational finding (Supplementary Table S2). Conversely, women 
(OR = 0.042, 95% CI: 0.039–0.046) and unmarried status (OR = 0.092, 
95% CI: 0.085–0.099) were associated with a lower risk of infection 
(Table  2). Weighted analyses were also performed to account for 
potential differences in trajectory group sizes, and results were 
consistent with the unweighted analysis (Supplementary Table S3).

Subgroup analyses were performed stratified by alcohol 
consumption, treated as the exposure variable. Interaction terms 

between alcohol and other significant factors were tested in 
multivariable logistic regression models, with both subgroup-specific 
and interaction p-values adjusted for multiple testing using the 
Benjamini–Hochberg FDR method. Forest plots visualized stratum-
specific ORs (Supplementary Figure S2). After adjustment, significant 
effect modification by alcohol consumption was observed in the 
associations between all other significant factors and H. pylori 
infection (all adjusted p for interaction <0.001). The strongest 
modification was observed for marital status: the effect of being 
married on infection risk was substantially amplified among drinkers 
(OR = 8.622, 95% CI: 7.872–9.437, adjusted p < 0.001).

Model development and evaluation

The dataset was randomly divided into a training set (70%) and a 
validation set (30%). Baseline plots, ROC curves, calibration plots, and 
DCA were generated to evaluate model performance. The baseline 
plot showed good agreement with the results from multivariable 
logistic regression. All three evaluation curves (ROC, calibration, and 
DCA) demonstrated good performance in both the training and 
validation sets (Supplementary Figures S3, S4).

Five ML models were developed: LightGBM, XGBoost, Logistic 
Regression, Naive Bayes, and Elastic Net. The performance of each 

TABLE 1  Baseline characteristics by H. pylori trajectory groups.

Factors Low-risk group 
(85.37%)

High-risk group 
(14.63%)

χ2 value p-value

Sex 5122.880 <0.001

 � Men 28,356 (94.35%) 3,156 (61.27%)

 � Women 1,699 (5.65%) 1,995 (38.73%)

Age (years) 5385.211 <0.001

 � <50 9,559 (31.81%) 2,228 (43.25%)

 � 50–69 17,201 (57.23%) 559 (10.85%)

 � ≥70 3,295 (10.96%) 2,364 (45.90%)

Body mass index (kg/m2) 149.245 <0.001

 � <24 10,535 (35.05%) 2,262 (43.91%)

 � ≥24 19,520 (64.95%) 2,889 (56.09%)

Marital status 1815.232 <0.001

 � Married 25,332 (84.29%) 3,032 (58.86%)

 � Unmarried 4,723 (15.71%) 2,119 (41.14%)

Occupation 341.318 <0.001

 � White-collar workers 17,286 (57.51%) 3,667 (71.19%)

 � Blue-collar workers 12,769 (42.49%) 1,484 (28.81%)

Hypertension 43.489 <0.001

 � No 25,549 (85.01%) 4,559 (88.51%)

 � Yes 4,506 (14.99%) 592 (11.49%)

Smoking 349.178 <0.001

 � No 6,801 (22.63%) 1,789 (34.73%)

 � Yes 23,254 (77.37%) 3,362 (65.27%)

Alcohol consumption 609.024 <0.001

 � No 3,508 (11.67%) 1,257 (24.40%)

 � Yes 26,547 (88.33%) 3,894 (75.60%)
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model in the overall training and validation sets is summarized in 
Supplementary Table S4, with ROC curves presented in Figure  2. 
LightGBM achieved the best performance, with AUCs of 0.851 (95% CI: 
0.848–0.853) in the training set and 0.843 (95% CI: 0.837–0.850) in the 
validation set. Accuracy was 0.805/0.791, with well-balanced sensitivity 
(0.813/0.807) and specificity (0.775/0.781), indicating strong 
discriminative ability and robustness. The other models also performed 
well, showing stable discrimination and overall performance: XGBoost 
(AUC 0.847/0.844; Accuracy 0.818/0.805), Elastic Net (AUC 0.840/0.839; 
Accuracy 0.802/0.783), Logistic Regression (AUC 0.839/0.839; Accuracy 
0.799/0.783), and Naive Bayes (AUC 0.835/0.835; Accuracy 0.826/0.769). 
Notably, Naive Bayes had the highest sensitivity (0.822/0.831) but slightly 
lower overall accuracy.

To further assess model robustness and generalizability, the 
dataset was temporally split, with data from 2016 to 2020 used as 
the temporal training set and 2021–2024 as the temporal validation 
set. Models were retrained, and their performance was evaluated 
using ROC curves, calibration plots, and DCA 
(Supplementary Figures S5, S6; Supplementary Table S5). 
LightGBM maintained the highest stability, with AUCs of 0.863 
(95% CI: 0.859–0.866) in the temporal training set and 0.831 (95% 
CI: 0.825–0.837) in the temporal validation set, sensitivity 
(0.819/0.801), specificity (0.788/0.766), and accuracy (0.835/0.775). 
XGBoost, Elastic Net, and Logistic Regression remained stable 
over time (XGBoost: AUC 0.859/0.831; Accuracy 0.856/0.772; 
Elastic Net: AUC 0.852/0.830; Accuracy 0.795/0.790; Logistic 
Regression: AUC 0.852/0.830; Accuracy 0.794/0.789). Naive Bayes 
showed lower temporal accuracy (AUC 0.851/0.815; Accuracy 
0.766/0.764).

Overall, LightGBM consistently demonstrated the best 
discrimination, calibration, and temporal stability among all models.

Model interpretability

To enhance clinical interpretability, SHAP values were used to 
quantify the contribution and directional influence of each predictor 
in the LightGBM model. As shown in Figure  3A, the top five 
predictors of H. pylori infection risk were marital status, sex, 
occupation, BMI, and alcohol consumption, ranked by overall 
feature importance.

Figure 3B presents the individual-level associations between each 
predictor and infection risk. Factors positively associated with 
increased risk included blue-collar workers, higher BMI and alcohol 
consumption. In contrast, being women and unmarried were 
associated with a lower predicted probability of infection, suggesting 
potential protective effects.

Model deployment

Given its superior predictive performance across all datasets, the 
LightGBM model was selected as the core algorithm for deployment 
in an interactive, web-based risk prediction tool. The model was fine-
tuned using five-fold cross-validated grid search, yielding the 
following optimal risk-enhancing input profiles: “Sex”: Men; “Marital 
status”: Married; “Alcohol consumption”: Yes; “Occupation”: White-
collar workers; and “BMI”: ≥24.

A publicly accessible web application was developed using R 
Shiny: https://prediction-model-for-hp.shinyapps.io/hp_shinyapp-/. 
Users can enter their information through drop-down menus and 
click the “Predict” button to receive individualized risk estimates (low, 
moderate, or high) based on model-derived probabilities. For 
individuals identified as high risk, this tool may facilitate early 
identification and prompt preventive interventions for H. pylori 
infection, as shown in Supplementary Figure S7.

Discussion

Globally, H. pylori infection remains a major public health 
concern, with approximately 43% of adults infected, particularly in 
regions such as China (4, 23). Although previous studies have explored 
its risk factors using cross-sectional designs or traditional regression 
methods, few have applied dynamic classification approaches or 
interpretable ML models to track risk over time in large longitudinal 
cohorts (10).

In this study, we  analyzed a longitudinal cohort of 35,206 
individuals with repeated annual health checkups from 2016 to 2024. 
This design not only enabled risk identification and early intervention 
but also provided high-quality longitudinal data for refining predictive 
models and evaluating long-term public health interventions (24–27). 
To our knowledge, this is the first study to integrate GBTM with both 
logistic regression and ML methods for dynamic risk stratification, 
further translated into a web-based tool for individualized prediction.

Obesity emerged as an independent risk factor. Mechanistically, 
excess adiposity alters gut microbiota composition (28), particularly 
by increasing the Firmicutes-to-Bacteroidetes ratio, which may 
promote H. pylori colonization (29, 30). Obesity-related dysbiosis also 
impairs mucosal immune defenses and disrupts gastric barrier 
function (31), while chronic low-grade inflammation and insulin 
resistance further weaken host immunity (32, 33). These findings align 
with recent microbiome studies linking obesity to increased epithelial 
permeability, reduced antimicrobial peptide production, and a 
weakened gastric mucosal barrier (34). BMI thus serves not only as a 
marker of adiposity, but also as a clinically relevant proxy for a broader 

TABLE 2  Multivariable logistic regression analysis of factors associated with high-risk H. pylori trajectory.

Factors β coefficient p-value OR 95% CI

Sex (ref: men) −3.164 <0.001 0.042 0.039–0.046

Body mass index (ref: <24 kg/m2) 0.129 <0.001 1.138 1.070–1.210

Marital status (ref: married) −2.389 <0.001 0.092 0.085–0.099

Occupation (ref: White-collar workers) 0.442 <0.001 1.557 1.454–1.666

Alcohol consumption (ref: no) 0.245 <0.001 1.277 1.165–1.401

CI, confidence intervals; OR, odds ratio.
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set of physiological, behavioral, and metabolic factors—including diet, 
physical activity, and microbiome-associated immune modulation—
that together shape H. pylori susceptibility (34, 35).

Occupational status was another important factor. Blue-collar 
workers —including those in agriculture, manufacturing, and 
transportation—had significantly higher H. pylori infection risk than 
white-collar workers. This may result from greater exposure to 
suboptimal sanitation, limited access to clean water, and communal 
dining practices (36, 37). Socioeconomic disadvantage and lower 
health literacy may further exacerbate vulnerability (38). Beyond 
direct exposure, occupational status may also act as a proxy for 
broader social determinants of health—such as hygiene awareness, 
nutritional quality, and chronic stress—that collectively shape an 
individual’s susceptibility to persistent H. pylori colonization (39, 40).

Alcohol consumption emerged as both a direct risk factor and an 
effect modifier in interactions with other significant variables. Prior 
studies have reported a dose-dependent association: light-to-moderate 
intake is associated with lower infection odds, while heavy drinking 
impairs immune defenses and gastric barrier integrity, increasing 
susceptibility to colonization (41–44). This may be  attributed to 
ethanol metabolites, such as acetaldehyde, which damage the gastric 

mucosa and compromise the gastric barrier (45). Additionally, alcohol 
suppresses immune responses, modulates gut microbiota by reducing 
beneficial bacteria and promoting pathogenic bacteria growth, and 
suppresses antimicrobial peptide production, all of which enhance 
H. pylori colonization (46–48). In our study, alcohol also demonstrated 
interactive effects with sex, marital status, occupational status, and 
BMI, suggesting potential synergism in modulating susceptibility to 
H. pylori infection.

Conversely, women and unmarried individuals were protective 
factors. The lower infection risk among women may be attributed to 
physiological differences, particularly the influence of sex hormones, 
which modulate immune and inflammatory responses and alter the 
host’s immune reaction to H. pylori infection (49). Additionally, 
women tend to be more vigilant about hygiene practices, including 
frequent handwashing and food preparation hygiene, which likely 
reduce the risk of fecal–oral transmission (50, 51). Gender roles in 
family settings, where women often assume household care 
responsibilities, may reinforce these protective practices (52). 
Unmarried individuals may experience reduced intrafamilial 
transmission, as H. pylori is commonly spread among spouses (53, 54). 
One study found that over 68% of infected couples shared identical 

FIGURE 2

Comparison of five machine learning models. (A) ROC curves in the training cohort. (B) ROC curves in the validation cohort. AUC, area under the 
receiver operating characteristic curve; ROC, receiver operating characteristic; LightGBM, Light Gradient Boosting Machine; XGBoost, Extreme 
Gradient Boosting.

FIGURE 3

SHAP-based interpretation of model features. (A) Mean SHAP value bar plot (feature importance ranking). (B) SHAP summary plot (feature effects on 
model output).
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strains, with risk increasing with marriage duration (55). Reduced 
shared meals, less close contact, and dispersed social networks likely 
explain the lower prevalence among unmarried groups (56, 57).

Among the ML models, LightGBM achieved the highest and most 
stable performance, with AUCs of 0.851 (training set), 0.843 
(validation set), 0.863 (temporal training set), and 0.831 (temporal 
validation set). SHAP confirmed marital status, sex, occupation, BMI, 
and alcohol consumption as the top predictors, aligning with 
multivariable regression and enhancing model interpretability.

Prior work has demonstrated the utility of LightGBM in 
gastroenterology: Wang et  al. (58) predicted postoperative 
complications in GC (AUC = 0.923, accuracy 87.3%); Fu et al. (59) 
used it for GC screening in 25,622 participants with high recall 
(94.6%) even without H. pylori IgG data; and Yang et  al. (60) 
predicted esophageal cancer surgery complications with excellent 
discrimination (AUC = 0.956). Our study extends these findings by 
applying LightGBM to a significantly larger longitudinal cohort and 
including both temporal validation. The model not only achieved 
high discrimination but also offered interpretability through SHAP 
values and a practical, web-based tool for real-time risk stratification. 
While the Shiny application provides an accessible platform to 
estimate individual H. pylori infection risk (categorizing users as low, 
moderate, or high risk), broader validation in multi-center cohorts 
will be necessary before clinical integration. If validated prospectively, 
such a tool may assist clinicians as a pre-screening aid to help 
prioritize individuals for confirmatory testing.

Strengths and limitations

This study offers several strengths. First, it employed GBTM to 
capture dynamic risk trajectories over time. Second, the large sample 
size and extended follow-up period enhance statistical power and 
model robustness. Third, combining interpretable ML with 
conventional regression balances predictive accuracy with clinical 
relevance. Fourth, the resulting R Shiny-based prediction tool enables 
accessible, real-time individualized screening in primary care and 
public health settings.

However, several limitations should be noted. Although variables 
such as BMI, occupation, and alcohol consumption may indirectly 
capture aspects of lifestyle and socioeconomic status due to their 
strong associations with factors like diet, income, and hygiene (20, 35, 
39), the absence of direct measurement of these lifestyle indicators 
may still limit the comprehensiveness of the risk assessment. Such 
omissions may lead to residual confounding and potentially bias the 
estimated associations (61). Future studies should incorporate more 
detailed predictors and conduct multicenter external validation. 
Additionally, integration with mobile platforms or electronic health 
records could further support early detection and individualized 
risk management.

Conclusion

This study is the first to combine GBTM with multiple ML 
methods to identify and validate key risk factors for H. pylori 
infection. The resulting interpretable and high-performing model 

was translated into a user-friendly online tool, providing a scalable 
solution for personalized prevention. Future work should include 
prospective studies to evaluate the impact of early intervention in 
high-risk individuals and assess model performance across 
diverse settings.
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