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The comprehensive identification of environmental and endogenous chemicals 
in human biospecimens is a critical bottleneck for realizing the Human Exposome 
Project. Untargeted metabolomics, particularly liquid chromatography–high-resolution 
mass spectrometry (LC–HRMS), offers unparalleled coverage of small molecules, 
but most detected features remain unidentified due to limited spectral libraries 
and structural ambiguity. Retention time (RT) prediction—based on quantitative 
structure–retention relationships (QSRR) and enhanced by artificial intelligence (AI)—is 
an underutilized orthogonal parameter that can substantially improve metabolite 
annotation confidence. This review synthesizes advances in machine learning–based 
RT prediction, probabilistic calibration, and cross-platform harmonization for liquid 
chromatography and gas chromatography, including deep learning, graph neural 
networks, and transfer learning approaches. We evaluate workflows integrating 
RT prediction with mass-based searches and network-based annotation tools, 
highlighting their potential to refine candidate ranking and reduce false positives 
in environmental exposure assessment. The use of endogenous compounds as 
internal calibrants is discussed as a practical strategy for improving RT transferability 
across laboratories. We further outline how RT-aware annotation supports non-
targeted screening of emerging contaminants, transformation products, and 
exposure biomarkers, thereby enhancing the interpretability and reproducibility 
of exposomics data. By integrating RT prediction, QSRR modeling, and AI into 
untargeted metabolomics pipelines, researchers can move from qualitative detection 
toward quantitative, inference-driven mapping of environmental influences on 
human health, strengthening the scientific foundation for environmental health 
policy and preventive public health strategies.
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Introduction

Exposomics (1) and in consequence a possible Human Exposome 
project (2) depend critically on the identification of metabolites in 
human biofluids. Untargeted metabolomics of human blood yields 
vast numbers of features detected by liquid or gas chromatography 
coupled with high-resolution mass spectrometry (LC–HRMS and 
GC–HRMS). A persistent challenge is the identification of unknown 
metabolites from these features. Researchers typically rely on 
measuring the mass spectrometry (MS) mass-to-charge ratios (m/z) 
of molecular ions and fragmentation spectra (MS/MS) with accurate 
mass to search databases for candidate structures (3). However, many 
features remain unidentified because multiple compounds can share 
the same m/z or similar spectra (4, 5) and a main limitation is also that 
the MS and MS/MS databases are still very limited. An often 
underused piece of information is the chromatographic retention time 
(RT) at which a compound elutes. RT is strongly influenced by 
molecular structure and physicochemical properties, making it a 
valuable orthogonal feature for narrowing candidate lists (5). 
Integrating RT prediction, a type of quantitative structure–retention 
relationship (QSRR), with mass-based searches and machine learning 
(ML) offers a promising route to improve unknown identification. As 
Kaliszan (6) outlined in his seminal review, retention is governed by 
thermodynamically driven interactions between analytes and 
chromatographic phases. QSRR models translate these interactions 
into predictive equations using descriptors such as molar volume, 
polarizability, and charge distribution. The extrathermodynamic 
framework he  proposed remains foundational for understanding 
retention modeling in metabolomics workflows. As Héberger (7) 
outlines in his comprehensive review of QSRR practices, robust model 
performance hinges on clear definition of applicability domain, 
independent test validation, and proper residual analysis. Overfitting, 
data leakage during feature selection, and misuse of correlation 
coefficients continue to plague the field. These concerns are especially 
salient when applying QSRR models to untargeted data across 
laboratories with varying chromatographic conditions. To democratize 
QSRR modeling, Naylor et  al. (8) developed QSRR Automator, a 
Graphical User Interface (GUI) based tool that enables rapid 
construction of retention time models with performance comparable 
to expert-curated algorithms. It supports common ML methods such 
as Support Vector Regression (SVR), Random Forest (RF), and 
Multiple Linear Regression (MLR) and accommodates varying LC 
conditions, making it ideal for multi-lab exposomic studies with high 
throughput needs.

RT information, when used properly, can filter out false candidates 
and boost annotation accuracy. Historically, RT usage has been limited 
because experimental RT data are sparse in metabolomic databases 
and RTs vary widely between labs and chromatographic methods. 
Recent advances address these issues: large RT datasets (e.g., 
METLIN’s 80 k-compound Small Molecule RT dataset) have enabled 
accurate QSRR models, and new calibration techniques correct RT 
differences between instruments. Furthermore, modern artificial 
intelligence (AI) and deep learning methods can predict RT and 
related properties with high accuracy, and these predictions can 
be  incorporated into metabolite identification workflows. In this 
report, we evaluate how RT prediction improves candidate ranking, 
discuss strategies to calibrate RT across different runs and 
chromatographic modalities, review relevant AI/ML approaches and 

tools, and outline best practices for applying this integrated approach 
to current and future metabolomics studies.

Retention time, indicative of the compound’s physicochemical 
interaction with the chromatographic stationary and mobile phases, 
serves as an orthogonal structural descriptor that can complement 
m/z of MS and MS/MS information. RT narrows the plausible 
candidate space and provides additional discrimination among 
structural isomers, even in the absence of fragmentation data. 
However, until recently, RT data was often ignored or used only 
heuristically due to variability across platforms and lack of predictive 
tools. Recent advances in AI-based QSRR have transformed this 
landscape. These ML and deep learning models—especially those 
using molecular fingerprints, graph neural networks, or transformer 
architectures—can now predict RT with impressive accuracy. Despite 
these advancements, the broader metabolomics community has been 
slow to adopt RT-aware workflows as standard practice. This is due in 
part to the fragmented nature of prediction tools, lack of calibration 
protocols, and insufficient cross-platform harmonization. In addition, 
retention time prediction models often perform optimally only under 
specific chromatographic conditions unless fine-tuned or recalibrated. 
For exposome research, where retrospective data integration across 
diverse platforms is essential, this variability becomes a critical 
limitation. Standardization of RT prediction models and incorporation 
into open-source tools and FAIR-compliant pipelines is needed.

The lack of high-confidence identification in untargeted 
metabolomics is more than a technical limitation—it is a rate-limiting 
step for the exposome field. Without precise structural information, 
linking exposures to molecular mechanisms or population health 
outcomes remains speculative. Moreover, annotation uncertainty 
hampers reproducibility across labs and reduces confidence in derived 
biomarkers. The inability to fully interpret the metabolome limits both 
hypothesis-driven toxicology and the discovery of unanticipated 
environmental contributors to disease.

To realize the Human Exposome Project, we must therefore invest 
in RT-informed annotation workflows as standard practice. This 
includes widespread adoption of QSRR models, routine use of internal 
calibrants in LC–MS and GC–MS workflows, and integration of RT 
prediction into automated annotation pipelines. As RT-aware 
identification matures, it will bridge the gap between feature detection 
and actionable insights—transforming untargeted metabolomics from 
an exploratory tool into a quantitative engine for environmental 
health science.

Background exposomics and a 
possible Human Exposome Project

From Genome to Exposome: The completion of the Human 
Genome Project in 2003 marked a watershed moment in biomedical 
science, successfully mapping all human genes at a cost of $3 billion 
and generating an economic impact exceeding $965 billion by 2010.1 
However, despite this monumental achievement, a critical gap 
remained in our understanding of disease causation: while estimates 

1  https://web.ornl.gov/sci/techresources/Human_Genome/publicat/

BattelleReport2011.pdf
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vary, analyses suggest that heritable genetic factors may account for 
only a small fraction of chronic disease risk (on the order of a few 
percent), whereas environmental exposures and other non-genetic 
factors could contribute the majority (on the order of tens of percent 
to over half) (9). For example, one analysis attributed ~70–90% of 
chronic disease risk to differences in environmental exposure (9), 
underscoring the need to map the ‘exposome’ alongside the genome.

This realization has catalyzed the emergence of exposomics—the 
comprehensive study of environmental exposures and their biological 
effects throughout the human lifespan. As Wild (10) first articulated, 
complementing the genome with an “exposome” represents “the 
outstanding challenge of environmental exposure measurement in 
molecular epidemiology.” The exposome encompasses all physical, 
chemical, biological, and psychosocial factors that individuals 
encounter from conception to death, excluding DNA 
sequence variation.

The exposome concept and environmental 
health

The exposome framework provides a systematic approach to 
understanding how environmental factors contribute to disease 
development, making it particularly relevant for analyzing emerging 
contaminants and the environmental exposome (11). Unlike 
traditional toxicological approaches that focus on single compounds, 
exposomics embraces the complexity of real-world exposure scenarios 
where individuals encounter multiple chemicals simultaneously 
through various pathways.

Environmental exposures encompass the general external 
environment (pollution, climate, built environment), specific external 
factors (lifestyle, occupation, diet, infections), and the internal 
environment (metabolism, inflammation, oxidative stress, aging). 
Exposomics therefore aims to measure xenobiotics and endogenous 
metabolites, i.e., to identify exposure and its imprint on metabolism; 
noteworthy, gene expression to characterize the perturbation of 
biology and possibly indications of adverse reactions (hazard 
manifestations) also for a crucial tool to form an exposure hypothesis 
connecting to disease (1). This comprehensive framework is essential 
for understanding how emerging environmental contaminants—
including pharmaceuticals, personal care products, industrial 
chemicals, and their transformation products—contribute to the 
growing burden of chronic disease.

The need for advanced analytical 
approaches

Traditional environmental monitoring approaches that rely on 
targeted analysis of known compounds are insufficient for 
characterizing the full scope of environmental exposures. The 
chemical universe contains over 200 million registered substances, 
with approximately 80,000 requiring investigation for potential 
environmental and human health risks according to regulatory 
agencies. Most chemicals present in environmental and biological 
samples remain structurally unknown (≤1% have been characterized). 
This challenge necessitates advanced analytical platforms capable of 
non-targeted screening to detect previously unknown contaminants, 

suspect screening to identify compounds of emerging concern, and 
metabolomics approaches to understand biological effects of 
exposures. The advancements modern HRMS instruments allow us to 
tackle all of these aspects in a single analytical run. Another critical 
advancement is the integration of retention time prediction with 
quantitative structure–activity relationships (QSAR) and AI, enabling 
more confident identification of unknown environmental chemicals 
in biological samples.

The HEP vision

Building on the success and lessons learned from the Human 
Genome Project, the scientific community has begun organizing 
around the concept of a Human Exposome Project (HEP). This 
ambitious initiative aims to comprehensively map environmental 
exposures and their health effects with the same rigor and scale that 
characterized genomic mapping efforts. We started a project to realize 
this vision (12, 58).

Key components of the human exposome 
project

Three key technical components toward HEP were identified:

Global research infrastructure
The project leverages existing international networks including 

the European Exposome Infrastructure (EIRENE),2 backed by 17 EU 
governments with over €1 billion in projected investments, the 
International Human Exposome Network (IHEN),3 the Network for 
Exposomics in the United  States (NEXUS),4 and emerging 
partnerships across Africa, Asia, and Latin America.

Technological integration
The HEP platform integrates high-throughput mass spectrometry 

for chemical analysis, wearable biosensors for real-time exposure 
monitoring, geospatial mapping for environmental context, artificial 
intelligence for pattern recognition and prediction, and multi-omics 
integration across genomics, transcriptomics, proteomics, 
and metabolomics.

AI-driven knowledge creation
AI serves as the “Apollo Guidance Computer” of the exposome 

moonshot (13), enabling faster data interpretation and hypothesis 
generation, cost reduction through automation and reduced animal 
testing, democratized access to analytical capabilities for low-resource 
settings, and real-time synthesis of complex, heterogeneous datasets.

2  https://eirene.eu

3  https://humanexposome.net

4  https://www.nexus-exposomics.org
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The Washington declaration and global 
momentum

Two of the authors (FS, TH) were the hosts of the inaugural 
Human Exposome Moonshot Forum (Washington, D.C., May 2025),5 
which brought together over 300 scientists, policymakers, ethicists, 
and civil society representatives from 50+ countries. The resulting 
Washington Declaration6 established a shared global commitment to 
advancing exposomics as a scientific discipline, policy priority, and 
public health imperative. Key outcomes include living labs and citizen 
science emphasizing community engagement and participatory 
monitoring, embedded ethics and governance learning from genomics 
to ensure anticipatory, inclusive, and transparent research, open 
science and FAIR data with commitment to making tools and findings 
openly available, and multi-omics AI integration fusing diverse 
datasets using machine learning to uncover exposure-health links.

Relevance to emerging contaminants and 
environmental exposome

The HEP framework is particularly relevant for addressing 
challenges in emerging contaminant identification and environmental 
health assessment. Environmental contaminant discovery involves 
suspect screening workflows using RT prediction to identify 
pharmaceuticals, pesticides, and industrial chemicals in environmental 
samples, transformation product identification for understanding how 
parent compounds degrade in the environment and biological 
systems, and exposure pathway mapping to trace contaminant sources 
from environment to human biomarkers. Non-targeted analysis 
enhancement includes AI-powered structural elucidation combining 
MS, RT prediction, and QSAR modeling, database expansion to 
include environmental chemicals and their metabolites, and cross-
platform integration enabling comprehensive chemical coverage 
across different analytical methods. Real-world exposure assessment 
encompasses biomonitoring applications to detect environmental 
contaminants in human biological samples, population-level 
surveillance for emerging chemicals of concern, and exposure-
response modeling to understand dose–response relationships for 
environmental chemicals.

Scientific and economic impact potential
The economic impact of the HEP is projected to match or exceed 

that of the Human Genome Project. Early indicators suggest 
significant potential through healthcare cost reduction via prevention-
focused approaches, innovation drivers in environmental diagnostics, 
personalized exposure profiling, and digital health applications, new 
therapeutic development based on exposure-disease relationships, and 
regulatory science advancement through improved chemical safety 
assessment methods. The National Institutes of Health has announced 
at the Moonshot Forum the development of a Real-World Data 
Platform that will integrate clinical, genomic, behavioral, and 
environmental data at scale, with exposome integration as a 
scientific imperative.

5  https://exposomemoonshot.org

6  https://exposomemoonshot.org/

washington-d-c-declaration-on-the-human-exposome/

Challenges and opportunities
Technical challenges include data integration complexity when 

combining diverse data types across multiple scales, analytical gaps 
requiring improved methods to detect and identify unknown 
chemicals, standardization needs for harmonized protocols for 
exposure assessment and data sharing, and computational 
requirements for AI models capable of handling massive, 
heterogeneous datasets. Societal considerations encompass privacy 
and ethics in protecting individual exposure data while enabling 
population health insights, equity and access to ensure global 
participation and benefit-sharing, public engagement to build 
community trust and participation in exposome research, and 
regulatory integration to translate exposome findings into effective 
public health policies.

Future directions
The Human Exposome Project represents a paradigm shift from 

reactive to preventive approaches in environmental health. Key 
priorities include methodological development in advancing retention 
time prediction, AI-driven identification, and multi-omics integration; 
infrastructure building to establish global networks for data sharing 
and collaborative research; capacity building to train the next 
generation of exposome scientists and regulatory scientists; and 
translation to convert exposome discoveries into actionable public 
health interventions.

As stated by participants in the Exposome Moonshot Forum: “If 
the genome was Apollo 11, the exposome is Artemis—same audacity, 
bigger destination.” The integration of advanced analytical methods, 
including retention time prediction and AI-driven approaches, will 
be essential for realizing this ambitious vision and addressing the 
growing challenge of environmental chemical exposures in 
human health.

Conclusion
The Human Exposome Project represents an unprecedented 

opportunity to understand and address the environmental 
determinants of chronic disease. By systematically mapping the 
chemical, physical, and biological exposures that shape human health, 
this initiative promises to transform our approach to disease 
prevention and environmental protection. The success of this 
endeavor depends on continued advancement in analytical 
methodologies, including the integration of retention time prediction 
with QSAR and AI approaches described in this review, enabling 
confident identification of the vast array of environmental chemicals 
that influence human health throughout the lifespan.

Metabolite identification in untargeted 
metabolomics as the bottleneck for a 
Human Exposome Project

The promise of the HEP is to systematically map environmental 
exposures and link them to human health outcomes. Untargeted 
metabolomics, particularly when applied to blood samples, is a 
cornerstone of this vision (1): it enables comprehensive profiling of 
endogenous and exogenous small molecules reflective of exposure 
history. Yet, despite the remarkable sensitivity and coverage of LC–MS 
and GC–MS, a fundamental bottleneck persists—the structural 

https://doi.org/10.3389/fpubh.2025.1687056
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://exposomemoonshot.org
https://exposomemoonshot.org/washington-d-c-declaration-on-the-human-exposome/
https://exposomemoonshot.org/washington-d-c-declaration-on-the-human-exposome/


Sillé et al.� 10.3389/fpubh.2025.1687056

Frontiers in Public Health 05 frontiersin.org

identification of detected features. Most features in untargeted 
metabolomics remain unidentified or only tentatively annotated, 
limiting their interpretability, reproducibility, and utility for regulatory 
or clinical translation.

This identification bottleneck arises from several factors: the high 
dimensionality and redundancy of mass spectral features, the overlap 
of mass-to-charge ratios (m/z) among isomers and analogs, limited 
MS/MS fragmentation data for all features, and the lack of 
comprehensive spectral databases that include environmental 
chemicals and transformation products. These challenges are 
compounded by the fact that many detected substances are not present 
in existing libraries (e.g., HMDB, NIST), particularly those of 
emerging concern such as industrial by-products, metabolites of 
synthetic chemicals, or food-derived xenobiotics.

Metabolomics as the ‘omics technology closest to phenotype is of 
critical importance for the future of toxicology (14, 15) and its 
transition to HEP (16). In deeply phenotyped cohorts, data sparsity is 
a critical challenge. Llera et al. (17) applied a multivariate imputation 
framework using Round-Robin regression and Extra Trees to restore 
missing clinical variables in autism datasets. Such imputation 
workflows are directly applicable to exposomics, where missing 
covariates or sample-level measures often limit integrative analyses. 
LC–MS untargeted workflows face several technical limitations that 
directly impact exposome research: variable MS ionization efficiencies, 
retention time drift, and high false discovery rates in 
compound annotation.

In simple terms, the more comprehensively and accurately we can 
identify both exogenous substances (those that come from outside the 
body, such as pollutants, food additives, or drugs) and endogenous 
metabolites (those produced within the body as part of physiological 
or pathological processes), the more effectively we  can generate 
meaningful exposure hypotheses linked to health outcomes. 
Importantly, this must be done in an untargeted fashion—that is, not 
limited to a predefined list of “usual suspects” or known chemicals 
of concern.

This has to come on top of the quality assurance, quality control 
and reporting quality the field of metabolomics needs (15). Starting 
with our workshop in 2013 (18), a number of QA & QC activities 
started including our work on peak-calling (19); most notably the 
Metabolomics Quality Assurance & Quality Control Consortium 
(MQACC)7 published a number relevant articles (20–22). As 
highlighted in a recent review (23), systematic use of standards and 
reference materials is essential for ensuring reliability, accessibility, 
and sustainability of omics-based methods in regulatory toxicology, 
including LC–MS metabolomics. Notably, generally accepted 
reporting standards are still missing (24), which would facilitate the 
integration of RT in the analysis of untargeted metabolomics.

Historically, exposome research has been constrained by a 
targeted mindset: measuring what we already suspect to be harmful. 
While this has led to important regulatory actions, it inherently 
overlooks the vast chemical “dark matter” we  are exposed to—
unmonitored industrial compounds, transformation products, and 
low-abundance dietary or environmental exposures that may 
nonetheless contribute to chronic disease. The untargeted approach 

7  https://www.mqacc.org

enables discovery-driven science: it casts a wide net, allowing us to 
detect unexpected exposures and their biological effects, even in the 
absence of prior hypotheses.

High-resolution untargeted metabolomics, when paired with robust 
annotation pipelines, provides a window into both external exposures and 
their downstream effects on host metabolism. Each unidentified feature 
that is correctly assigned a structure potentially represents a new piece of 
the puzzle: a candidate environmental contributor, a biomarker of past 
exposure, or a mechanistic link to disease pathways. In this way, high-
coverage, high-confidence chemical identification does not merely 
enhance the data—it expands the landscape of plausible etiological 
hypotheses, guiding future epidemiology, mechanistic toxicology, and 
even regulatory prioritization.

The increasing diversity of environmental chemicals entering 
biological systems necessitates broader analytical coverage (25, 26). 
Techniques such as LC–MS and GC–MS remain foundational, but 
real-time platforms like proton-transfer-reaction mass spectrometry 
(PTR-MS) and selected ion flow tube mass spectrometry (SIFT-MS) 
offer additional promise for volatile or unstable contaminants, 
particularly in “breathomics” or ambient exposure contexts. For 
exposomics to scale, integration of these methods into a shared data 
backbone—with AI models to unify and interpret output—is a 
necessary next step (27).

In essence, the better we  can characterize the full chemical 
footprint of human exposure and response—without preconceived 
filters—the closer we move toward realizing the central goal of the 
exposome: to map the complex, lifelong environmental influences that 
shape health and disease.

Literature search methodology

This is a narrative review based on a corpus of literature collected 
over the last decade. To ensure comprehensive coverage of recent 
developments in RT prediction for metabolomics, we conducted a 
structured literature search informed by systematic review principles. 
AI tools such as Perplexity.ai, Gemini and ChatGPT were used to 
identify literature for select aspects, which was accessed and verified.

Databases and time frame

We searched multiple bibliographic databases including PubMed, 
Scopus, and Google Scholar for relevant literature published up to July 
2025, in order to capture the rapid methodological progress of recent 
years (2023–2025). Articles from early 2025, including select preprints, 
were considered when peer-reviewed alternatives were not yet 
available. In addition, using elicit.ai, a search of 126 million abstracts 
from the Semantic Scholar corpus was carried out with the prompt 
“What are advances in the automated identification of metabolites in 
untargeted metabolomics? “This retrieved 493 papers most relevant to 
the query, which were screened for these criteria: Computational 
Method Focus: Does the study present computational methods or 
algorithms for metabolite identification in untargeted metabolomics 
data? Analytical Platform: Does the study use mass spectrometry (MS) 
data? Method Innovation: Does the study present either a novel 
approach or significant improvements to existing automated 
identification methods? Method Validation: Does the research include 
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validation of the automated identification methods? Metabolomics 
Approach: Does the study include untargeted metabolomics analysis 
(not exclusively targeted)? Annotation Method: Does the study include 
automated (not exclusively manual) annotation methods? 
Computational Component: Does the study include computational 
components beyond pure analytical chemistry? This resulted in 40 
studies with focus: Identification was the most common focus, found 
in 19 studies; Annotation was the focus in 13 studies; Feature detection 
was addressed in 6 studies; Classification was the focus in 2 studies; 
Benchmarking was the focus in 1 study; some studies addressed more 
than one focus. These were further analyzed by Elicit.ai, to extract 
information, which was not used because of some obvious mistakes, 
but the downloaded papers were added to our review corpus.

Search terms and strategy

Representative search strings included: “retention time prediction 
metabolomics,” “QSR model LC–MS,” “retention index GC 
metabolomics,” “machine learning retention time,” “MetFrag RT scoring,” 
and “SIRIUS CSI FingerID retention.” We  combined terms for 
chromatographic modes (reversed-phase, HILIC, GC) with those for 
prediction or algorithms (e.g., deep learning, GNN, transfer learning). 
Author names associated with seminal works (e.g., Kaliszan, Héberger, 
Ruttkies) were also used as search terms to retrieve foundational and 
follow-up contributions. Some references from within the papers 
identified, were also retrieved and added to the review corpus.

Inclusion and exclusion criteria

We included publications that: (i) introduced new RT prediction 
models; (ii) reported large RT datasets; or (iii) demonstrated 
integration of RT information into metabolite identification 
workflows. Both methods-focused studies (e.g., model development, 
algorithm benchmarking) and application studies (using RT for 
exposomics identifications) were incorporated to balance theory and 
practice. Key review articles [e.g., (6, 7)] were also cited to ensure 
coverage of foundational principles. Exclusion criteria encompassed 
papers that were overly narrow in scope (e.g., QSRR models limited 
to a single small chemical class), those lacking sufficient 
methodological data, or those only mentioning RT without substantive 
evaluation. Non-English articles were excluded, and preprints were 
only cited when indispensable.

Bias control

To minimize bias, we deliberately sought coverage across all major 
chromatographic modalities (RP, HILIC, GC) and across both classical 
(MLR, SVR, RF) and modern AI approaches (DNNs, GNNs, transfer/
meta-learning). Multiple independent studies were cited for each 
major conclusion whenever possible—for example, drawing on results 
from different groups to validate reported error ranges in HILIC 
prediction. Findings were cross-checked for consistency across studies 
to avoid over-reliance on single laboratories. Furthermore, limitations 
and failure modes of RT prediction models are discussed explicitly in 
the manuscript to prevent over-optimistic interpretation.

Although this review is narrative in scope, the inclusion of this 
methodology section is intended to increase transparency, 
demonstrate rigor in source selection, and provide guidance for 
readers seeking to replicate or extend the literature survey.

Role of retention time in metabolite 
identification

RT is the time a compound spends in the chromatographic 
column before detection. It encodes information about the 
compound’s interactions with the stationary phase and mobile phase. 
Compounds with different structures typically have different RTs, 
especially under well-controlled conditions. Thus, RT provides an 
additional dimension for identification beyond mass. For example, 
among candidates with the same m/z, those with predicted RTs 
incompatible with the observed RT can be eliminated. Using RT as a 
filter can significantly narrow down candidate lists, focusing on 
structures whose properties match the chromatographic behavior. 
This is particularly useful when fragmentation data are limited or 
absent. In many untargeted studies (e.g., pilot studies or those with 
limited sample), MS/MS spectra may not be available for every feature. 
In such cases, analysts must rely on m/z and RT alone, which yields a 
putative identification (below the Metabolomics Society identification 
(MSI) confidence of MSI Level 2, as Level 2 formally requires MS/MS 
spectral confirmation). Incorporating RT predictions can nonetheless 
raise confidence in these tentative IDs by requiring consistency 
between predicted and observed RT.

However, raw RT values are not directly comparable across 
experiments without correction. Even the same compound can have 
different RTs on different systems or on the same system over time. 
This lack of reproducibility historically limited RT’s usefulness in 
databases. Calibration and standardized retention indices (RI) are 
solutions to make RT more transferable. In GC–MS, Kovats retention 
indices (using alkane standards) have long been used to match 
experimental RTs to library values, greatly aiding identification. By 
contrast, LC–MS lacks a universally adopted retention index system—
as noted in early studies, “no such index currently exists for LC–MS 
experiments” and run-to-run RT variation complicates direct 
comparison (28). They recommend robust RT alignment, pooled QC 
analysis, and multidimensional chromatography to address these 
challenges. Retention time prediction has also proven valuable for 
distinguishing structural isomers, which are otherwise 
indistinguishable by accurate mass alone. In a forensic toxicology 
context, Tyrkkö et  al. (29) used ACD/ChromGenius to correctly 
predict elution order for over two-thirds of isomer groups, 
underscoring the utility of RT as a structural discriminator even in 
complex matrices. In the following sections we  explore how new 
methods predict RT from structure and calibrate RT across systems to 
overcome these issues.

Retention time behavior across 
chromatographic modalities

Different chromatographic modalities separate molecules based 
on different physicochemical interactions, so the retention time 
meaningfully reflects different properties in each modality. A 
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comprehensive RT-based identification approach must therefore 
account for the specific chromatography used, which include reversed-
phase (RP) LC; hydrophilic interaction LC (HILIC), ion-exchange and 
ion-pair LC as well as gas chromatography (GC). Table 1 summarizes 
key datasets (e.g., SMRT, RepoRT) and representative model 
performances across modalities [RP, HILIC, GC Retention Index 
(GC/RI)]: N (compounds), gradient window, train/test split, MAE/
median error, and external-method transfer results.

Reversed-phase (RP) LC

This is the most common modality in metabolomics (e.g., using 
C18 columns with aqueous/polar organic mobile phases). Retention 
depends on partitioning between the stationary and mobile phase, and 
increases with hydrophobicity. Thus, in RP-LC, RT correlates strongly 
with measures like octanol–water partition coefficient (logP), number 
of nonpolar carbons, and aromaticity. QSRR models for RP often use 
descriptors capturing hydrophobic surface area, H-bond donors/
acceptors, etc., which relate to logP. Indeed, a simple linear relationship 
between logP and RT is sometimes used for rough predictions or to 
filter candidates. Tools like MetFrag8 exploit this: given a set of 
reference compounds with known RT, MetFrag can derive a linear 
model RT = a·(predicted logP) + b, and then score candidates by how 
well their predicted logP fits the observed RT. MetFrag2.2 (30) 
represents a significant evolution in in silico annotation, integrating 
structure-based fragmentation with orthogonal scoring layers such as 
predicted RT, database references, and user-defined filters. These 
functions make MetFrag2.2 a foundational component of 

8  https://github.com/ipb-halle/MetFragTraining

high-throughput in many exposomic workflows. More advanced RP 
models use nonlinear ML to capture subtle effects (e.g., polar groups 
that cause shorter RT than logP alone would suggest). Since the 
METLIN SMRT dataset is RP-based, most of the recent deep learning 
models (DNNs, transformers, etc.) have focused on RP-LC 
predictions. The accuracy achieved (median errors on the order of 
seconds) shows that RP retention can be predicted very effectively 
across diverse chemical classes. However, note that extremely polar or 
ionic compounds may be “non-retained” (elute in the void volume) 
on RP; these need special treatment (e.g., classification models to 
predict if a compound will be non-retained). Aalizadeh et al. (31) 
developed QSRR models for thousands of emerging contaminants 
across both RPLC and HILIC platforms and introduced OTrAMS and 
MCS to map error distributions and define prediction applicability 
domains. This combination improves confidence in suspect screening 
by reducing false positives and providing formalized acceptance 
windows for predicted RTs.

Hydrophilic interaction LC (HILIC)

HILIC, a hybrid technology between normal phase LC (NP-LC) 
and RP-LC, uses a polar stationary phase, which would be common 
in NP-LC, and combines it with a polar mobile phase containing 
solvents common in RP-LC, such as acetonitrile or methanol. It 
retains very polar and hydrophilic compounds that are poorly retained 
in RP. Retention in HILIC tends to increase with polarity and the 
ability to form hydrogen bonds—essentially the opposite trend of 
RP. Properties like polar surface area, number of charged or polar 
functional groups, and dipole moments become important. HILIC 
retention prediction is inherently more complex in some cases due to 
possible multiple interaction mechanisms (partitioning and 
adsorption). Nonetheless, researchers have developed HILIC-specific 

TABLE 1  Benchmarking of retention time prediction models and datasets across modalities.

Dataset/study Chromatographic 
mode

Size (N, 
compounds)

Gradient/RI 
window

Model type 
(s)

Performance (MAE/
median error, 
transferability)

METLIN SMRT (4) RP-LC (C18, 10 min) ~80,000 0–10 min DNN, Gradient 

Boosting

MAE ~ 39 s; median ~17 s 

(~5% RT); robust cross-

validation

RepoRT (41) RP-LC + HILIC, 49 methods 8,809 compounds (88,325 

RTs)

Varied (2–30 min 

gradients)

Graph Neural 

Networks (GNN), 

Transfer Learning

Error ~0.3–1.8% of RT; post-

calibration <0.15 min across 

platforms

HILIC QSRR (33, 

34)

HILIC (polar stationary phase) 100 s–1,500 10–20 min Random Forest, 

Linear QSRR

R2 up to 0.97; eliminated 

~40% false positives in 

annotation

NIST retention 

index DB (GC)

GC–MS, Kovats RI scale ~180,000 RI scale (C8–C40 

n-alkanes)

DL, SVM, RF Median error ~20–40 RI units 

(~0.5–1% RI scale); correct 

ID first-rank in up to 86%

EndoRI (42) RP-UPLC (endo-calibrants, 

acylcarnitines)

~200–300 standards + 

endogenous calibrants

0–12 min Linear calibration, 

meta-learning

Reduced inter-batch RT 

variability by 95% 

(1.5 → 0.15 min)

RPLC datasets (e.g., METLIN SMRT, RepoRT) underpin modern deep learning approaches, achieving approximately seconds-level prediction accuracy. HILIC (hydrophilic interaction liquid 
chromatography) datasets are smaller but show strong relative retention time (%RT) prediction performance when models are trained specifically for polar chemistries. GC datasets (Retention 
Index, RI) benefit from highly standardized conditions, yielding very low relative errors (~1% of RI scale). Calibration strategies (endoRI, transfer learning) dramatically improve cross-
platform transferability.
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models. For instance, versions of graph neural networks have been 
trained for HILIC retention (“GNN-TL-HILIC”) distinct from RP 
models. The availability of HILIC data is more limited than RP, but 
growing. A recent report noted successful RT prediction for >1,500 
metabolites on 24 different LC systems including HILIC, with median 
errors ~0.3–1.8% of the RT (32). This suggests that with proper 
training, HILIC RT can also be predicted and used for identification—
albeit one may need separate models or transfer learning from an RP 
model. When annotating unknowns in HILIC, one should use a 
model trained or calibrated for HILIC to avoid systematic bias. In 
HILIC chromatography, where retention behavior is highly nonlinear 
and condition-sensitive, Cao et al. (33) achieved a Pearson correlation 
of 0.97 between predicted and experimental RTs using a Random 
Forest QSRR model. This level of precision allowed systematic 
reduction of false positives during peak annotation, even without MS/
MS confirmation. In a foundational study, Creek et al. (34) developed 
a QSRR model for HILIC chromatography and demonstrated that RT 
prediction improved annotation precision, eliminating 40% of false 
positives from exact-mass matches alone. This underscores the 
importance of orthogonal RT filtering for increasing annotation 
confidence in metabolomics. The approach by Karlberg et al. (35) to 
predict hydrophobic interaction chromatography (HIC) retention of 
monoclonal antibodies using sequence-, model-, and dynamics-
derived descriptors offers a useful analogy for metabolite RT 
modeling. Their success with 3D descriptors suggests that deep 
molecular representations may enhance QSRR model performance in 
highly diverse exposomic datasets.

Ion-exchange and ion-pair LC

These modalities separate compounds based on charge 
interactions. In ion-exchange chromatography, a charged stationary 
phase (cation or anion exchanger) retains oppositely charged 
analytes. Retention depends on the ionic strength, the charge of the 
molecule (which in turn depends on pH and pKa), and how 
strongly that charge interacts with the stationary phase. For 
metabolomics, ion-exchange is less commonly used in untargeted 
profiling (since it is highly selective), but it can appear in targeted 
methods (e.g., analysis of amino acids or organic acids). Ion-pair 
LC is a variant of RP where an ionic reagent in the mobile phase 
forms ion pairs with analytes, effectively allowing charged molecules 
to be retained, for example, on a C18 column. Predicting retention 
in such systems requires understanding of both hydrophobic and 
ionic characteristics. QSAR models might include descriptors for 
pKa, net charge at the working pH, and interactions with counter-
ions. While fewer public studies exist on machine learning for 
ion-exchange LC, conceptually one could train a model if a dataset 
of retention times for charged metabolites (with a given ion-pair 
reagent or ion-exchange column) is available (36). Calibration is 
particularly important here: small changes in mobile phase pH or 
salt can shift RT substantially. Including internal standards of 
known pKa/charge can help model the retention. In summary, 
while ion-exchange modes are not as prevalent in untargeted 
workflows, the same principles apply – one would need a method-
specific retention model, and using RT for identification in these 
modes works best when the unknown and references share similar 
ionic properties.

Gas chromatography (GC)

GC separates compounds based on volatility, vapor pressure and 
partitioning between the stationary phase and carrier gas (often 
correlating with boiling point and hydrophobicity). In metabolomics, 
GC–MS (usually with electron ionization, EI) is commonly used for 
volatile metabolites and requires derivatization for polar compounds. 
Retention indices (RI) in GC are well-established for compound 
identification. Libraries like NIST and Wiley contain thousands of 
spectra with associated retention indices on standard columns (e.g., 
DB-5 or polar columns), allowing dual matching: spectral pattern and 
RI. In unknown identification, if the experimental RI of a feature 
matches a library compound’s RI within a tolerance (e.g., ±10 index 
units) and the spectra match, the identification is considered 
confident. RT prediction in GC can leverage the vast RI libraries. 
Researchers have applied deep learning to predict Kovats retention 
indices: for example, a study by de Cripan et al. (39) demonstrated 
deep learning (DL) prediction of RI on polar and mid-polar columns, 
marking the first use of DL for GC retention (37). Another study 
focused on trimethylsilylated metabolites (common in GC 
derivatization) built an SVM-based model that predicted RI with 
~37 units median error (40). They showed that using predicted RI to 
rank candidates could reliably identify the correct structure among 
isomers. The advantage in GC is that, thanks to RI calibration with 
standards (n-alkanes), the predicted RI can be directly compared to 
literature/library values, which are highly reproducible (unlike 
absolute RT in LC). Thus, integrating AI-predicted RI with GC–MS 
libraries can flag which candidate is most plausible. For instance, if an 
unknown’s EI spectrum matches several compounds but their 
literature RIs differ, one can compute which candidate’s RI is closest to 
the observed. In practice, GC identification already uses retention as 
a key factor; AI simply enhances this by predicting RI for compounds 
not yet experimentally measured. As more metabolite RI data become 
available (e.g., via the MetaboLights (38), FiehnLib,9 or HMDB10 GC 
libraries), we anticipate even better predictive models.

In summary, each chromatographic modality requires a tailored 
approach to RT prediction. The fundamental strategy remains: train 
or apply a model appropriate to that modality, and calibrate if 
necessary, using reference compounds. RPLC and GC are currently 
the most mature in terms of available data and models, but HILIC and 
others are catching up. An ideal pipeline in untargeted metabolomics 
might involve running samples on multiple platforms (e.g., RPLC- and 
HILIC-MS, plus GC–MS for volatile fraction) and using RT 
predictions in each domain to aid identifications. This would cover a 
wide swath of metabolome polarity and use RT information optimally 
in all cases.

Retention time prediction (QSRR) for 
candidate ranking

Retention time prediction models (QSRR) use molecular 
descriptors or structural fingerprints to predict a compound’s RT on 

9  https://fiehnlab.ucdavis.edu/projects/fiehnlib

10  https://www.hmdb.ca
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a given chromatographic system. These are essentially quantitative 
structure–retention relationship models, akin to QSAR models for 
activity or other properties. By training on compounds with known 
structures and RTs, a model can learn the relationship between 
molecular features (e.g., hydrophobicity, polarity, functional groups) 
and retention. The model can then predict RT for new compounds 
and thereby assist identification (4, 6, 7, 30, 40, 48). In practice, one 
would take the list of candidate structures (proposed by matching m/z 
or MS/MS to databases) and rank or filter them by comparing 
predicted RT to the observed RT of the unknown feature. Candidates 
whose predicted RT deviates greatly from the experimental RT are less 
likely to be correct.

Studies have demonstrated that RT-based ranking significantly 
improves the chance of including the correct structure among top hits. 
For example, García et al. (4) trained machine learning regressors 
(including deep neural networks and gradient boosting) on ~80,000 
compounds’ RTs (the METLIN SMRT dataset) for a reversed-phase 
LC system. They integrated these predictions into a metabolite 
annotation workflow, assigning a probabilistic score (z-score) based 
on how well a candidate’s predicted RT matches the observed RT after 
accounting for prediction uncertainty. In a test where candidates were 
filtered by mass and then ranked by this RT score, the correct molecule 
was among the top  3 candidates in 68% of cases—a substantial 
improvement over mass-based ranking alone, where baseline values 
were around 51–60% depending on the dataset. This highlights that 
using RT as an additional criterion can greatly enhance identification 
success. Similarly, in GC–MS, where RT indices are routinely used, a 
recent machine learning model predicted retention indices for 
trimethylsilyl-derivatized metabolites with median error ~37 index 
units, and using these predictions to rank candidates placed the true 
identity first in up to 86.7% of cases with two candidates (and 
significantly improved top-3 ranking for multiple candidates) (39). 
Although RT predictions may not perfectly eliminate all false hits, 
they prioritize the most plausible structures. Indeed, one study found 
that the ranking power of predicted RT was comparable to that of MS/
MS spectral matching—combining both yields the best results (28).

It is important that RT predictions have to be reasonably accurate 
(on the order of a few seconds to at most a minute error for LC, or a 
few RI units for GC) to be useful. Early QSRR models suffered from 
limited accuracy due to small training sets (hundreds of compounds). 
This typically restricted models to narrow chemical classes or yielded 
only rough retention order predictions. The situation has improved 
dramatically with larger datasets. The METLIN SMRT dataset release 
(80 k compounds) “renewed interest in RT prediction” and enabled 
general models covering diverse small molecules. Modern ML models 
now achieve mean absolute errors on the order of seconds: for 
example, evaluating performance using the Mean Absolute Error 
(MAE) and the Median Absolute Error (MEDAE), both reported in 
seconds, the best model by García et al. (4) had ~39.2 ± 1.2 s mean 
error (17.2 s median) on a ~ 10-min gradient, which is typically within 
~5% of RT. Another advanced model (RT-Transformer, 2024) 
achieved ~27–33 s error in tests, and importantly maintained accuracy 
across different chromatographic methods via transfer learning (40). 
Such accuracy is sufficient to discriminate many isomers or to flag 
candidates with clearly mismatched RT. In practical workflows, one 
would usually set an RT tolerance window or score function. For 
instance, if an unknown elutes at 5.00 min, and one candidate is 
predicted at 4.9 min while another at 8.0 min, the first will score much 

higher. Inclusion of RT scores in tools like MetFrag has shown drastic 
improvements: Ruttkies et  al. (30) reported that adding retention 
information (along with other metadata) improved the top-rank 
identification rate from only ~6–9% (using mass and MS/MS alone) 
to 71–89% when RT and reference data were considered. Clearly, 
QSRR models provide a powerful filter to reduce false positives 
in annotation.

Fitch et  al. (41) proposed a standardizable Chromatographic 
Hydrophobicity Index (CHI) and CHIbt, a standardized RT-shift 
descriptor for interpreting Phase I  drug biotransformations. By 
linking CHI to physicochemical descriptors like clogP and hydrogen 
bond donors, they enabled metabolite annotation using predicted RT 
behavior—a strategy that could be  adapted to untargeted 
xenobiotic exposomics.

Calibration of retention time and 
retention indices

One of the main hurdles in using RT broadly is variability: RT can 
shift due to instrument differences, column aging, or subtle changes 
in mobile phase or temperature. Therefore, calibration strategies are 
essential to correct RT shifts and make predicted RT applicable across 
different runs and machines. Calibration can be achieved by using 
well-characterized reference substances—either spiked standards or 
endogenous compounds—with known retention behavior. The idea is 
to adjust the RT scale of an experiment to a reference scale (or model) 
via a mapping function (Figure 1).

A simple calibration approach is the use of retention index (RI) 
systems, analogous to GC. In GC–MS, a series of n-alkane standards 
is often run, and each compound’s RT is converted to an index (e.g., 
Kovats index) relative to those standards. This compensates for 
differences in temperature ramp or column length. For LC, various 
RI schemes have been proposed. For example, the chromatographic 
hydrophobicity index (CHI) uses a set of standard compounds to 
create a reproducible scale for reversed-phase HPLC. More recently, 
researchers have explored using endogenous metabolites as 
calibrants. Chen et al. (42) developed an “endogenous retention 
index” (endoRI) method for ‘RP ultra performance liquid 
chromatography (RP-UPLC). By leveraging straight-chain 
acylcarnitines present in biological samples as internal calibrants. 
Since acylcarnitines (C2 to C18, etc.) are naturally found in plasma/
serum, they provide a built-in homologous series. The team 
established a quantitative relationship between acylcarnitine chain 
length and RT, and used this to correct RTs in each run. The result 
was a dramatic reduction of RT variability: inter-batch and inter-
platform RT differences dropped from ~1.5 min to 0.15 min (95% 
reduction) for 95% of metabolites after endoRI correction. In other 
words, using internal compounds to normalize the RT axis allowed 
data from different days or instruments to be directly compared 
with only a few seconds discrepancy.

Retention time prediction using support vector regression (SVR) 
and random forests trained on 3D molecular interaction field (MIF)-
based descriptors has shown high utility in identifying unknowns in 
untargeted UPLC–MS workflows. In a study using over 400 authentic 
standards, Wolfer et al. (43) demonstrated >80% reduction in false 
positives and effective applicability domain modeling via self-
organizing maps (SOMs).
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More generally, calibration can use any set of known 
compounds spanning the RT range of interest. In practice, one 
might include a mix of standards in each run, or rely on identified 
endogenous metabolites, to act as anchors. These anchors are run 
through the same LC–MS method and their known identities allow 
one to either: (a) adjust the RT prediction model (e.g., via linear 
regression, bias correction, or more complex projection) or (b) 
create an index. Approaches like the Bayesian meta-learning 
projection by García et al. (4) require as few as 10 known molecules 
in an experiment to calibrate predictions to that specific method. 
The model uses the small set of observed RTs to learn a mapping 
(with uncertainty estimates) from predicted RT to actual RT for 
that method. Once calibrated, the predicted RTs are converted to 
“projected” RTs for that run, which can be directly compared to 
experimental values. This not only accounts for systematic shifts 
(e.g., all compounds eluting 0.5 min later than predicted) but can 
also handle differences in gradient length or column chemistry to 
some extent. The use of z-scores or confidence intervals, as 
implemented by García et al. (4), means that the ranking considers 
prediction uncertainty—a candidate whose projected RT falls well 
within the experimental RT error band will score higher than one 
at the edge of the range.

Best results are often achieved by multi-point calibration covering 
the chromatographic range. A recent comprehensive study by Zhou 
et al. (28) evaluated cross-method RT projection using 30 different LC 
methods and 330 compounds, with various sets of calibrants. They 
found that using 30–70 carefully selected calibrants that span different 

retention behaviors allowed accurate projection between very different 
chromatographic setups. When source and target methods were 
similar (e.g., same C18 column and mobile phase), projected RTs had 
<0.5 min error (<3% of gradient). Even between quite different 
methods, errors were mostly within ~2 min after calibration. This 
underscores that with a sufficient and representative calibrant set, one 
can translate RT predictions from one modality to another with 
high fidelity.

A recent breakthrough in LC–MS retention alignment is the 
development of a system-agnostic RI, proposed by Aalizadeh 
et al. (31), which allows mapping RT across labs and platforms 
using 18 carefully selected calibrants. This harmonization makes 
retention time a transportable identifier, analogous to Kovats 
indices in GC. The RI approach holds particular promise for 
multi-cohort exposomic studies and should be  evaluated in 
blood-based untargeted workflows.

In summary, calibration strategies—whether using a fixed index 
scale or adaptive modeling with internal standards—are crucial to 
unlock RT’s full potential for unknown identification. We recommend 
that analysts include a set of known metabolites (endogenous or 
spiked) in each batch as RT calibrants. Notably, human blood has 
many well-characterized metabolites (glucose, amino acids, lipids, 
etc.) that can serve this role without needing exotic standards. By 
modeling RT against these references, labs can correct drift and even 
share comparable RT data across instruments. This makes retention 
time a robust, transferable identifier rather than a 
lab-specific observation.

FIGURE 1

Illustrative workflow for integrating retention time prediction and calibration into metabolite annotation. To start, a machine learning model is trained 
on a large RT dataset. From these, a projection (calibration) function is learned to map RTs to given LC or GC measurement conditions. A small number 
of known reference molecules in the sample (with known identities and RTs, e.g., human blood metabolites as discussed later) are used to calibrate 
experimental vs. predicted RT. The model’s expected RT for all candidate structures is adjusted to the current chromatographic conditions, yielding a 
“projected RT.” For an unknown feature, its experimental RT is compared to the projected RTs to find matching candidates, and candidates are ranked 
by how close their RT is (accounting for uncertainty via a z-score). This approach allows retention time to be used alongside m/z for more accurate 
metabolite annotation.
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AI and machine learning for RT and 
physicochemical property prediction

Recent years have seen rapid growth in AI and machine learning 
methods for predicting retention time and related physicochemical 
properties. Traditional QSRR approaches used linear regressions or 
simple machine learning (like partial least squares or random forests) 
on computed molecular descriptors. Artificial neural networks 
(ANNs) have shown promise for RT prediction across large and 
diverse chemical sets. Bade et al. (44) trained an ANN that achieved 
95% RT prediction accuracy within 2 min, enabling high-confidence 
screening of drug metabolites and transformation products in 
wastewater without reference standards. Modern approaches 
increasingly leverage deep learning to automatically learn features 
from molecular structures, often outperforming descriptor-based 
models. Heinonen et  al. (45) pioneered a two-step ML method 
(FingerID) to predict molecular fingerprints from MS/MS spectra and 
match them to PubChem structures, enabling de novo metabolite 
annotation even in the absence of reference spectra. This framework 
underpins many modern identification algorithms and supports 
discovery beyond known databases. In a comprehensive 
benchmarking study, Bouwmeester et al. (46) evaluated seven ML 
algorithms for retention time prediction across 36 LC–MS datasets. 
While no single method outperformed others across all conditions, 
gradient boosting consistently ranked among the top performers with 
minimal overfitting risk. Their findings underscore the need for 
tailored algorithm selection or model blending to optimize RT 
prediction in diverse exposomic contexts. Below we highlight key 
advancements in deep neural networks, graph neural networks, 
transfer learning and meta-learning, physicochemical property 
prediction, and other AI applications in identification.

Deep neural networks (DNNs)

Multilayer feed-forward neural nets can model complex nonlinear 
relationships between structural features and RT. García et al. (4) used 
a deep neural network (with advanced training tricks like cosine 
annealing and weight averaging) to achieve state-of-the-art accuracy 
on the SMRT dataset. The DNN outperformed other regressors, 
indicating that enough training data can unlock the predictive power 
of deep learning. DNNs treat molecular descriptors or fingerprints as 
input; one challenge is deciding how to represent the molecule. In 
García’s work, they provided over 5,000 molecular descriptors 
(alvaDesc) plus 2,214 binary fingerprints as input features. The 
network then learned which features correlate with retention. The 
result was a median error of ~17 s, which was (at the time) the most 
accurate published result for small-molecule RT prediction. This 
demonstrates that with enough data, a neural network can implicitly 
learn classical retention trends (like hydrophobicity) as well as more 
subtle structural effects (ring systems, functional group interactions 
with the column, etc.). García et al. (4) introduced a probabilistic 
annotation framework that combines deep learning-based RT 
prediction with Bayesian meta-learning for method-specific 
projection. Their approach converts predicted RTs into probabilistic 
z-scores relative to a small set of identified metabolites, enabling 
accurate ranking of annotation candidates even across different 
chromatographic systems. In GC–MS-based metabolomics, de Cripan 

et  al. (39) showed that accurate retention index prediction of 
trimethylsilyl (TMS) derivatives can be achieved using support vector 
machines and Dragon molecular fingerprints. They further 
demonstrated that prediction accuracy correlates strongly with the 
Tanimoto similarity of training-test structures, providing a 
quantitative confidence estimate for each RI prediction. In lipidomics, 
where chromatographic behavior varies due to matrix complexity and 
compound polarity, Noreldeen (47) developed a robust RT prediction 
model based on molecular descriptors and validated across human 
and mouse datasets. Crucially, the study demonstrated successful RT 
calibration across LC–MS instruments using a linear transformation 
equation, enabling direct reuse of RT-annotated libraries across 
systems. Matyushin et al. (37) applied deep learning to GC retention 
index prediction across polar and mid-polar stationary phases, 
achieving MAEs as low as 16 RI units. Their layered architecture 
supports extension to 2D-GC applications, making it highly suitable 
for exposome workflows reliant on derivatized compounds. A 
comprehensive review by Liu et al. (5) highlighted the surge in deep 
learning RT models following the release of SMRT (48) and RepoRT 
datasets, emphasizing transferability, representation artifacts, and the 
need for curated multi-CM training data. Their summary affirms the 
trend toward harmonized RT-informed annotation pipelines across 
experimental conditions.

Graph Neural Networks (GNNs)

Instead of relying on pre-computed descriptors, GNNs operate 
directly on molecular graphs (atoms as nodes, bonds as edges). They 
perform message-passing to learn an embedding that captures the 
molecule’s structure. GNNs have shown excellent performance in 
many chemistry tasks and are naturally suited to generalize to novel 
structures. For RT prediction, various GNN architectures have been 
tested. Kwon et al. (60) introduced a graph convolution model that 
achieved good RT predictions by learning from molecular graphs and 
was later extended with transfer learning for HILIC vs. RP differences. 
One advantage of GNNs is that they can inherently capture structural 
isomer differences that might be  lost in simple descriptors. For 
example, two isomers with the same formula can have different RT; a 
GNN can be trained to distinguish those by subtle structural cues (like 
branching versus linear structure affecting hydrophobic surface area). 
Some models combine GNNs with other deep learning components – 
Retentive Time Transformer (RT-Transformer) (Figure 2) is a notable 
example combining a graph attention network (to encode structure) 
with a transformer network (to encode learned fingerprints in 
sequence). Xue et  al. (38) introduced RT-Transformer, a state-of-
the-art hybrid deep learning model combining graph attention 
networks with 1D-transformers to predict RT across diverse 
chromatographic systems. Pre-trained on over 80,000 molecules, the 
model supports transfer learning and achieves a mean absolute error 
of 27.3 s on external datasets. Its scalability and accessibility make it a 
valuable tool for RT-informed metabolite annotation in exposomics. 
This hybrid model was pre-trained on the large SMRT dataset and 
then fine-tuned on specific chromatographic conditions via transfer 
learning. The result is a highly flexible model that can “adapt” to any 
LC method given a small fine-tuning dataset. RT-Transformer 
achieved competitive accuracy and demonstrated excellent scalability, 
i.e., the same model architecture can handle RP, HILIC, or other 
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gradients with minimal loss of accuracy. This is a significant 
advancement because it means labs could leverage a pre-trained RT 
predictor and just calibrate it with a few dozen known compounds for 
their custom method, rather than needing to train from scratch. It 
essentially automates the projection concept with deep learning.

Transfer learning and meta-learning

As mentioned, models like RT-Transformer explicitly use transfer 
learning to handle different methods. Another approach is meta-
learning, where the model is trained to quickly adapt to new tasks. 
García et al.’s (4) Bayesian meta-learning can be seen as a lightweight 
version: it learns how to adjust predictions with few samples. In both 
cases, the underlying principle is that retention mechanisms share 
commonalities (e.g., a very polar compound will likely elute early in 
RP, and perhaps later in HILIC—the model can learn such patterns) 
and differences (the scale and exact ordering differ by method). AI 
models that can leverage large, pooled data but specialize to local 
conditions are crucial for practical use, since each lab’s method 
has quirks.

Physicochemical property prediction

Besides direct RT prediction, AI is used to predict 
intermediate properties that correlate with RT. For instance, log 
P (octanol–water partition coefficient) can be  predicted from 

structure using machine learning. SIRIUS’s interface uses a 
computed XLogP to filter candidates by expected RT range.11 
Abrahamsson et al. (49) recently proposed a novel approach that 
integrates measurements of equilibrium partition ratios between 
different organic solvents and water (KSW) to predictions of 
molecular structures. This information can be  used as a 
fingerprint and, using machine learning, converted into a series 
of functional groups that can be  used to search chemical 
databases. Another property is pKa—knowing a molecule’s pKa 
can help predict if it will be ionized under LC conditions, which 
drastically affects retention (especially for ion-exchange or if 
buffers cause partial ionization). Tools like ACD Labs or open-
source models can predict pKa, and this information could be fed 
into retention models or used qualitatively (e.g., expecting that a 
molecule that is highly ionized might elute early on RP). Deep 
learning has been applied to many such properties (logP, pKa, 
solubility, etc.), often achieving better accuracy than older 
methods. The integration of these predictions in metabolite ID is 
an emerging area. For example, one could imagine using 
predicted pKa to choose the correct isomer of an organic acid 
that matches an ion-exchange retention time. In practice, 
however, since we can now often predict RT directly, the need for 
intermediate property prediction is reduced—the model 
implicitly accounts for them. Still, having accurate property 

11  https://github.com/AspirinCode/sirius

FIGURE 2

Overview of the RT-transformer deep learning approach for retention time prediction across chromatographic methods. A large dataset of RTs (SMRT, 
reversed-phase etc.) is used to train a base model (graph neural network + transformer). Through transfer learning, this model can be fine-tuned on 
new chromatographic methods (CM 1, 2, … N) using smaller datasets of known compounds. The resulting model predicts retention times for the 
specific method with high accuracy. This approach greatly improves scalability and allows retention prediction to assist metabolite identification under 
varied conditions, as demonstrated by improved annotation accuracy when incorporating predicted RTs.
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predictors can aid understanding: if a candidate has a predicted 
logP of 1 but requires logP ~4 to elute at 10 min in a given RP 
method, that is a quick sanity check to discard it.

Other AI applications in identification

Beyond RT, AI is heavily used in other aspects of 
metabolomics. CSI:FingerID (50) uses kernel-SVM methods to 
predict a molecular fingerprint from MS/MS spectra, which is 
then compared to database structures. This is an example of ML 
improving structure ranking by spectral features. CSI:FingerID 
transformed database searching by inferring molecular 
fingerprints from MS/MS spectra using supervised machine 
learning. This allowed metabolite annotation beyond spectrum 
libraries and became foundational for follow-on tools like SIRIUS 
and COSMIC. Deep learning has also been used to generate 
in-silico spectra (to expand MS/MS libraries) and even to propose 
novel structures from spectra [e.g., MSNovelist (51), MassGenie 
(52)]. These advances complement RT prediction; a future 
AI-driven identification pipeline might predict both the spectrum 
and retention of candidate structures and score everything 
together against the observed data. Some research already heads 
this direction, combining multi-modal prediction to boost 
confidence. As of 2024, the field recognizes that multi-parameter 
scoring (m/z, MS/MS, RT, even ion mobility CCS) is the way to 
break the bottleneck of unknown identification. AI provides the 
tools to predict each parameter with associated confidence, 
enabling a more holistic comparison between an unknown and 
candidate structures. The KGMN approach by Zhou et al. (28) 
unites three network layers-reaction pathways, MS2 similarity, 
and chromatographic coelution-to propagate annotations from 
knowns to unknowns recursively. This hybrid model outperforms 
MS2-only methods by recognizing in-source fragments and 
prioritizing biochemically plausible transformations.

In summary, AI and machine learning have become 
indispensable for retention time prediction. They offer accuracy 
and generalization far beyond what earlier QSAR models could 
achieve. By deploying deep learning models (either pre-trained 
or trained on in-house data), researchers can routinely obtain RT 
predictions to within a few seconds or a few percent error. These 
predictions, when properly calibrated and combined with other 
evidence, significantly enhance the reliability of metabolite 
identification. As datasets continue to grow (e.g., community-
driven sharing of RT data) and models improve, we  expect 
retention prediction to become even more robust, possibly 
incorporating explainability (so one can rationalize why a 
compound is predicted to elute later—e.g., “due to having a long 
alkyl chain,” etc.). The key takeaway is that ML-predicted RT is 
now a viable, validated tool for metabolomics, and its adoption 
is accelerating.

Tools and databases for integrated 
identification

AI critically depends on the availability of Big Data. Several 
software tools and databases can facilitate the integration of RT 

predictions with traditional MS-based identification. Table 2 shows a 
number of these tools and databases.

Here we review some prominent ones and how they utilize (or 
could utilize) retention time and AI predictions:

SIRIUS and CSI:FingerID

SIRIUS12 is a widely used framework for small molecule 
identification from MS and MS/MS data, focusing on molecular formula 
determination and fragmentation trees. CSI:FingerID (integrated with 
SIRIUS) then scores candidate structures by comparing predicted versus 
observed fragmentation patterns (53). Historically, SIRIUS/CSI did not 
use RT, focusing on spectral data. However, recent updates have added 
features to incorporate RT heuristics. The SIRIUS GUI can import 
retention times and even allows the user to apply a logP-based filter: it 
calculates an approximate XLogP for each candidate (using the 
Chemistry Development Kit) and provides a slider to filter candidates by 
logP range, which indirectly corresponds to an RT range. For example, 
if an unknown eluted at a very hydrophilic region, one might slide to 
only allow candidates with XLogP below a certain threshold (i.e., polar 
compounds). This is a rudimentary use of RT, but effective in pruning 
obvious mismatches. In future, we anticipate SIRIUS will integrate more 
advanced RT scoring—possibly by taking predicted RT (from an 
external model or a built-in one) and adding it to the overall score. A 
workflow developed in 2023 called COSMIC (Confidence of Small 
Molecule Identifications) already suggests combining in silico structure 
generation with retention filtering for higher confidence (52). COSMIC 
provides a breakthrough in high-confidence annotation of unknowns 
absent from spectral libraries by combining machine learning with 
probabilistic scoring. When applied to 17,400 metabolomics datasets, it 
recovered 1,715 novel structures with FDR control-enabling scale-
compatible confidence filtering in exposomics. As SIRIUS development 
continues, users should watch for plugins or options related to RT. Even 
now, one best practice is: after obtaining a candidate list from SIRIUS/
CSI, manually cross-check if the candidates’ predicted or known RTs 
align with the experimental RT, eliminating those that do not fit.

MetFrag

MetFrag13 is an in silico fragmentation tool that scores candidates 
based on how well they explain the observed MS/MS peaks. Critically, 
MetFrag has been at the forefront of incorporating non-spectral 
information as additional scoring terms. The 2016 “MetFrag 
relaunched” version introduced the ability to use retention time in 
two ways: (1) Internal RT model—if the user provides a file of known 
compounds’ RTs in the same method, MetFrag will build a linear 
regression model between those compounds’ predicted logP and 
their RT. It then predicts a logP for each candidate and uses the 
regression to estimate an expected RT; candidates get penalized if 
their expected RT deviates from the observed RT of the unknown. 
(2) User-defined score—the user can separately compute any 

12  https://github.com/sirius-ms/sirius

13  https://ipb-halle.github.io/MetFrag/
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retention score (e.g., using an external QSRR model or simply an 
absolute difference from expected RT) and feed it into MetFrag as an 
additional column in the candidate list. MetFrag will then include 
that in the final score weighting. These features allow a flexible 
integration of RT. The impact is huge: as noted earlier, including 
retention data improved MetFrag’s top-rank identifications by many-
fold. Using MetFrag with RT requires a bit more effort (one needs 
either reference data or an external predictor), but it is a highly 

recommended practice. For example, if analyzing a batch of plasma 
metabolites on an LC–MS, one can identify a subset of known 
metabolites first (using standards or library matches), fit a quick RT 
vs. logP curve, and then run MetFrag with that model to prioritize 
candidates for the unknowns. The result will favor chemically 
plausible candidates that fit the chromatography. MetFrag’s 
documentation and training materials provide guidance on how to 
format the RT training file or custom score input.

TABLE 2  Software tools and databases for integrated retention time (RT) predictions.

Database Owner/institution Purpose/focus Public/non-
public

Number of 
samples/spectra

Number of 
chemicals 
identified

MetaboLights
European Bioinformatics 

Institute (EMBL-EBI)

Repository for 

metabolomics 

experiments and derived 

information

Public
270,403 samples, 439,537 

data files

1,687,165 metabolites/

unknowns/features

Metabolomics 

workbench (NMDR)

National Institutes of 

Health (NIH)

Repository for 

metabolomics data and 

metadata

Public
~2,200 MS and NMR 

studies

~174,000 metabolite 

structures

GNPS/MassIVE
University of California 

San Diego

Natural product mass 

spectrometry data 

repository

Public

~490,000 mass 

spectrometry files, 1.2 

billion tandem mass 

spectra

Not specified

Blood exposome database UC Davis/Fiehn Lab
Chemicals detected in 

human blood specimens
Public Not specified

41,474 achiral structures 

(65,957 PubChem CIDs)

Exposome-explorer

International Agency for 

Research on Cancer 

(IARC)

Biomarkers of exposure to 

environmental risk factors
Public Not specified

908 dietary and pollutant 

biomarkers

METLIN exposome Scripps Research Institute

Environmental toxicants, 

food contaminants, drugs 

identification

Public Not specified
950,000 + unique small 

molecules

Human metabolome 

database (HMDB)
University of Alberta

Small molecule 

metabolites found in the 

human body

Public Not specified
253,245 metabolites (3,444 

detected and quantified)

UK biobank 

metabolomics

UK Biobank/Nightingale 

Health

Circulating metabolomic 

biomarkers in population 

cohort

Public (restricted 

access)

120,000 participants 

(expanding to 500,000)
249 metabolic measures

HELIX study
European Research 

Consortium

Environmental exposures 

during early life 

(pregnancy and 

childhood)

Public
31,472 mother–child 

pairs
Not specified

PeakForest MetaboHUB/INRAE

Storage and annotation 

services for metabolic 

profiles

Public Not specified Not specified

T3DB (toxin database) University of Alberta
Toxic compounds and 

their protein/DNA targets
Public Not specified

3,700 toxic compounds 

linked to 2,086 protein/DNA 

targets

DrugBank University of Alberta

Drug, drug-target and 

pharmaceutical 

information

Public Not specified
11,891 drugs (4,563 FDA 

approved)

SMPDB University of Alberta
Small molecule pathway 

database
Public Not specified

55,700 metabolites (non-

redundant)

FooDB University of Alberta Food component database Public Not specified ~24,000 food chemicals
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HMDB (human metabolome database)

HMDB (54) is a rich database of human metabolites, including 
structures, concentrations, and in many cases experimental spectra. 
The Human Metabolome Database (HMDB 5.0) now catalogs over 
217,000 annotated metabolites and more than 1.5 million 
derivatized entries, including predicted RT, MS/MS, and NMR data. 
These additions significantly enhance identification coverage in 
untargeted exposomics, especially for blood exposome compounds 
and microbial or food-derived metabolites identification. HMDB 
serves as a reference library—one can search by m/z or formula to 
find possible matches that are known human metabolites. While 
HMDB is not an identification software per se, it is invaluable for 
prioritizing biologically relevant candidates. Retention times in 
HMDB: HMDB does include some GC–MS and LC–MS spectral 
data for certain entries (e.g., from literature or experimental assays), 
and these often come with RT or RI information. For instance, 
HMDB’s MS spectra section may list a retention index for a 
metabolite’s GC spectrum, or an LC retention time if available. 
However, these are not standardized and only apply if the exact 
same method was used. HMDB 5.0 (2022 update) expanded content 
but still does not offer a unified retention index system. Instead of 
direct RT usage, HMDB’s role in our context is: provide a filtered 
search space (metabolites likely present in blood). If a candidate is 
in HMDB, it is more likely to be a real endogenous compound. 
Additionally, HMDB contains predicted properties (like logP, pKa) 
for many metabolites—those can be quickly accessed to sanity-
check RT expectations. For example, if your unknown has an m/z 
matching glucose and another compound, and your chromatography 
is such that only a very polar compound would elute where it did, 
HMDB tells you glucose is highly polar (logP −3.24) whereas the 
other candidate is hydrophobic (logP +2). Such data, coupled with 
the observation, would favor glucose. In summary, HMDB is a 
database to cross-reference structures and their known data 
(though it does not perform the matching automatically, many 
analysis pipelines incorporate HMDB queries).

PubChem

PubChem is the largest public chemical database, containing 
millions of compounds. Many identification workflows (including 
SIRIUS, MetFrag, and others) query PubChem for candidate 
structures by formula or mass. PubChem ensures we cast a wide net—
the true identity could be a xenobiotic or unusual compound not in 
HMDB or other metabolic databases. However, PubChem provides 
almost no chromatographic data, as it is a general chemical repository. 
There are calculated properties (PubChem predicts logP, water 
solubility, etc., through its services), which could be used similarly to 
HMDB’s data for rough filtering. Some tools (like the PubChem search 
in MetFrag) can rank by the number of references, implying 
compounds commonly studied (e.g., drugs, natural products) rank 
higher. When using PubChem results, applying RT filtering is critical 
because the list can be enormous. This is where an automated RT 
prediction tool (like an QSRR model) is extremely useful: one can take 
all PubChem candidates and score them by RT fit to narrow down. So 
while PubChem itself does not aid directly with RT, it provides the 
candidate pool on which we apply our RT+AI filters.

GNPS (global natural products social 
platform)

GNPS is primarily a platform for sharing and matching MS/MS 
spectra (especially for natural products and metabolites). It excels at 
spectral networking—grouping unknown spectra to known 
compounds or to each other based on similarity. GNPS’s library search 
can identify known compounds if an exact or similar spectrum is 
present in its extensive database. Retention time in GNPS: currently, 
GNPS spectral libraries do not systematically include retention 
indices; they focus on spectral data (though some contributors include 
a field for RT in their metadata). GNPS does incorporate optional 
retention time windows in some workflows—for example, when 
aligning features, one can set an RT tolerance to consider two features 
the same if their RTs are close. But in terms of identification, GNPS 
outputs a candidate match (with a spectral score) and often leaves it 
to the user to verify RT separately. In an unknown identification 
scenario, GNPS might tell you: “this spectrum best matches 
lysoPC(18:1) with score X.” It is then up to you to check if the RT is 
reasonable for a C18:1 lysophosphatidylcholine in your LC method. If 
you had a predictive RT model for lipids, you could confirm that. In 
fact, one study used a machine learning model to predict RT of lipids 
in an LC–HRMS lipidomics workflow and showed it helped confirm 
lipid annotations (62). So GNPS provides the spectral match, and an 
external RT model (or empirical expectation) provides an orthogonal 
check. We recommend incorporating RT filters when using GNPS 
outputs: for instance, if GNPS gives 5 candidate matches for an 
unknown, see if any have known or predicted RT close to your 
observation. Databases like LipidBlast14 or the Committee on 
Analytical Measurement (CITAC)15 Evaporative Light Scattering 
Detector (ELSD) retention index for lipids can be  helpful 
reference points.

Other tools/databases

There are many more resources in metabolomics. MassBank/
MoNA (MassBank of North America)16 contains thousands of spectra 
often with retention information. A recent review compiled that 
MassBank (as of late 2023) had ~81,167 LC data records with RT and 
even 1,761 GC records with RI (5). These repositories could be mined 
to train better RT models or simply used to cross-check if an 
unknown’s RT matches a library entry for a given compound. PredRet 
(32) is a database specifically of experimental RTs across multiple 
systems, which was used to test RT projection methods. There are also 
vendor libraries (e.g., Agilent’s MassHunter Personal Compound 
Database and Library (PCDL)17 or Bruker’s HMDB library18) that 
include retention indices for GC or RT for LC under defined methods. 

14  https://fiehnlab.ucdavis.edu/projects/lipidblast

15  https://www.eurachem.org/images/stories/Guides/pdf/

QUAM2012_P1.pdf

16  https://mona.fiehnlab.ucdavis.edu/

17  https://www.agilent.com/cs/library/usermanuals/public/G3336-90030_

PCDLManager_QuickStart.pdf

18  https://store.bruker.com/products/

bruker-hmdb-metabolite-library-2-0
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These can directly support identification by matching your data to 
entries that have both spectral and RT matches. NIST’s Retention 
Index Database19 is another example of a specialized collection. For 
software, beyond MetFrag and SIRIUS, there is MS-DIAL20 and 
MS-FINDER21 which are free tools that also support retention indices 
for GC-EI data and have fields for LC retention (though they require 
user to input some reference values for LC). Retip22 (described earlier) 
is available as an R/Python tool to build RT prediction models with 
integrated databases—it is worth noting it comes pre-loaded with 
some retention libraries from Riken and UC Davis for certain 
conditions, which could be  directly applicable if your method is 
similar. The Retip R package is a powerful open-source framework 
that integrates five different machine learning algorithms to predict 
RT with high accuracy across HILIC and RPLC. By incorporating 
Retip into MS-DIAL and MS-FINDER, Bonini et al. (55) achieved a 
68% reduction in candidate annotations in a test dataset, 
demonstrating that coupling RT prediction with MS/MS scoring 
substantially improves metabolite identification confidence.

A comprehensive LC-Orbitrap screening workflow developed by 
Angeles et al. (56) highlights how stringent RT and MS2 filtering 
(5 ppm mass error, isotope presence, replicate consistency) can reduce 
false discovery rates in large-scale exposomics. Their detection of 
penilloic and penicilloic acid across six countries illustrates the utility 
of such workflows for global-scale chemical surveillance.

In conclusion, the ecosystem of tools and databases is increasingly 
supportive of multi-parameter identification. Best practice is to use a 
pipeline that combines complementary tools: for example, use 
SIRIUS/CSI or GNPS for MS/MS-based candidate generation, then 
use MetFrag or an in-house script to apply RT scoring to those 
candidates, utilizing databases like HMDB for biologically relevant 
filtering. Always cite the sources of your RT data or predictions when 
reporting an identification—this transparency helps build confidence 
in the result and allows others to reproduce the reasoning [e.g., 
“Compound X was identified as the likely structure because its 
predicted RT of 5.2 min matches the observed 5.0 min (within error), 
whereas other isomers had predicted RTs > 8 min”]. By leveraging the 
available software and DBs, analysts can vastly improve the throughput 
and reliability of unknown identification in untargeted metabolomics.

Using known blood substances as 
internal calibrants

Calibrants dramatically improve RT transferability across labs. 
Zhang et al. (57) propose a post–projection calibration strategy that 
improves RT projection accuracy across chromatographic methods. 
Using 35 calibrants, their ReProjection model reduced projection 
errors below 3.2% and offers a generalizable route for integrating 
public RT resources into local annotation pipelines. However, these 
have to be added before measurements, so that they cannot help with 
existing measurements.

19  https://chemdata.nist.gov/dokuwiki/doku.php

20  https://systemsomicslab.github.io/compms/msdial/main.html

21  https://systemsomicslab.github.io/compms/msfinder/main.html

22  https://www.retip.app

Human blood plasma and serum, the principal matrices of 
exposomics, offer a unique opportunity as they have a core set of 
metabolites that appear in virtually every sample (glucose, lactate, 
amino acids like alanine and glutamine, essential fatty acids, etc.). 
These known endogenous compounds can serve as convenient 
internal calibrants for retention time in each run. The concept is to 
take advantage of compounds already present in the sample matrix, 
whose identities can be confirmed (either via standards or strong 
database matches) and use them to adaptively model the RT behavior 
for that specific run or batch.

Steps to utilize internal calibrants:

	 1.	 Identify a set of known metabolites in the sample. These could 
be confirmed by running pure standards or by confident library 
matches. Priority should be given to compounds covering a 
range of RTs—e.g., an early-eluting polar metabolite (like citric 
acid), a mid-eluting one (like caffeine or tryptophan), and a 
late-eluting hydrophobic one (like cholesterol if doing broad 
lipidomic runs, or a long-chain fatty acid). The more points and 
the more spread-out they are, the better the calibration. In 
practice, even 5–10 compounds can be  sufficient, as 
demonstrated by García et al. (4).

	 2.	 Obtain their experimental RTs and theoretical RT predictions. 
The theoretical predictions can come from a generic model 
(trained on a large dataset for that modality) or even from 
literature if the compound’s RT under identical conditions is 
known. Often, one might just use the model’s prediction 
(which could initially be off due to method differences, but that 
is fine). Now you have pairs of (predicted RT, observed RT) for 
each calibrant.

	 3.	 Fit a calibration model. This could be as simple as a linear 
regression (adjusting slope and intercept), or more complex 
(polynomial, or a warping function). Often a linear shift + 
scale is enough if the method differences are primarily 
gradient timing or flow rate differences (causing a nearly 
uniform shift/stretch of RT). For instance, if most 
compounds elute 20% earlier than predicted, a calibration 
might derive a factor to multiply predicted RTs by 0.8. 
Sometimes a second-order fit might capture slight 
curvature (if early and late “eluters” shift differently). In 
García et al.’s (4) meta-learning approach, they effectively 
learn a small Bayesian model for this mapping that also 
outputs uncertainty. The output is a function that can input 
any predicted RT and output a calibrated RT for the 
current run.

	 4.	 Apply the calibrated model to all candidate predictions. If 
you have a list of candidate structures (from formula matching), 
predict their RT with the base model, then adjust via the 
calibration function to get an estimated RT specific to your run. 
This yields what Figure  2 (above) calls the “projected 
database” of RTs.

	 5.	 Compare unknown features to the calibrated predictions. For 
each unknown feature with an observed RT, find which 
candidate structures have a projected RT near that value. One 
can calculate a difference or z-score (difference divided by the 
prediction error). Rank candidates by this score—smaller 
difference (within error) = better rank. If the difference is 
beyond a reasonable threshold, that candidate can 
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be considered incompatible. Known substances in blood thus 
act as an adaptive model: if today the column is a bit slower, all 
predictions get shifted accordingly; if a different gradient is 
used, the model automatically compensates once it learns from 
the calibrants.

An example of this in practice: suppose an untargeted LC–MS of 
serum identifies metabolites like caffeine (RT 4.2 min observed) and 
leucine (RT 2.1 min). The global model predicted caffeine at 4.5 and 
leucine at 2.5 min for the standard gradient. The calibration fit might 
realize a factor of ~0.93 on RT (since both came out ~7–20% earlier). 
After calibration, the model predicts another compound, say 
hypotaurine, to elute at 1.0 min instead of 1.2 min it originally 
thought. If you  indeed see a feature ~1.0 min that matches 
hypotaurine’s m/z, that bolsters the identification. Conversely, if a 
candidate was predicted (after calibration) to appear at 8 min but your 
unknown is at 3 min, you can drop that candidate.

One must be  cautious that the calibrants themselves must 
be correctly identified (garbage in, garbage out). Thus, it is ideal to use 
high-confidence metabolites (possibly level 1 IDs confirmed with 
standards). Many labs include a mixture of authentic standards of 
common metabolites spiked into a representative matrix as part of their 
quality control—these can double as RT calibrants. Alternatively, natural 
ubiquitous metabolites suffice if you are confident in their annotation.

Another consideration is matrix effects: in complex blood 
extracts, very early or very late RT extremes might have fewer features. 
If your unknown falls outside the RT range covered by calibrants, 
extrapolation of the calibration model can be less reliable. To mitigate 
this, try to have calibrants near the boundaries of your chromatogram 
(e.g., a sugar that elutes at void volume, and a long-chain lipid that 
elutes near the end). If not, be more conservative in interpreting RT 
match for compounds beyond the calibrant range.

Using known blood metabolites as calibrants is essentially 
creating an in situ retention index system: instead of referencing an 
external standard mix, you reference inherent compounds. This has 
the benefit of no additional sample preparation and captures any 

matrix-induced shifts as well (since calibrants experience the same 
matrix). The Talanta study using acylcarnitines is a prime example—
they leveraged metabolites naturally present to create a quantitative 
RT scale (endoRI) (43). We encourage metabolomics researchers to 
adopt similar strategies: for any dataset, list a few confidently 
identified compounds and use them to “lock” the RT scale of that 
dataset. This can be  done post hoc too—for existing datasets, if 
you can retrospectively identify some features, you can recalibrate 
and re-search unknowns with improved accuracy.

Advances in RT prediction models and 
their integration into workflows

Traditional QSRR models, such as linear regression or small 
nonlinear approaches using physicochemical descriptors (e.g., logP, 
polar surface area, hydrogen-bond donors/acceptors), offer the 
advantages of interpretability and require relatively few training 
compounds. However, their predictive accuracy tends to plateau, 
especially when applied across chemically diverse datasets. By 
contrast, deep learning and graph-based models (e.g., DNNs, 
RT-Transformer, GraphRT) exploit large-scale datasets such as SMRT 
or RepoRT to achieve far higher accuracy, often reducing prediction 
errors to mere seconds on RPLC gradients. These models can capture 
complex, nonlinear retention patterns and subtle structural effects 
(such as branching or isomerism), but function more as “black boxes” 
with limited mechanistic transparency.

An emerging middle ground is provided by transfer learning and 
meta-learning techniques, which retain the power of global models 
while adapting to local conditions with minimal additional data. For 
example, the Bayesian meta-learning approach described by García 
et al. (4) enabled recalibration of a global DNN predictor using only a 
handful of calibrants, consistently achieving cross-laboratory errors 
below 0.3 min. This represents a major practical benefit, as it reduces 
the need for each lab to retrain models from scratch while maintaining 
accuracy across diverse chromatographic systems.

TABLE 3  Use of retention time (RT/RI) in major annotation tools and workflows.

Tool/workflow RT/RI input capability Use of RT in 
scoring/ranking

Calibration or RT 
alignment options

Outputs/integration

MetFrag (30) Accepts observed RT; can 

incorporate predicted RTs (from 

QSRR/ML).

RT deviation penalizes 

candidates; requires external 

predicted RT source.

No internal calibration; external 

RT model calibration 

recommended.

Ranked list of candidates with 

composite score (can include 

RT).

SIRIUS/CSI:FingerID (SIRIUS 

manual)

No direct RT input; LogP slider 

acts as a proxy filter.

N/A (filter only); user can 

exclude candidates 

inconsistent with expected 

RT.

None. Ranked formulas/structures by 

MS/MS score only.

KGMN Zhou et al. (61) Uses chromatographic co-elution 

patterns between known and 

unknown features; does not use 

absolute RT values.

RT contributes indirectly 

(binary co-elution link); no 

numerical RT scoring.

Not applicable (relative within-

sample).

Annotation network linking 

unknowns to known 

metabolites; confidence scores, 

no explicit RT score.

COSMIC (52) RT not used in scoring; users can 

filter externally.

Confidence score based on 

MS/MS fragmentation and 

metadata; no RT term.

None. Candidate list with ML-based 

confidence score; RT verification 

possible post hoc.

MetFrag is currently the most flexible in incorporating RT explicitly, provided users supply predicted RTs or calibrants. SIRIUS/CSI:FingerID offers an indirect proxy via logP filtering but does 
not yet integrate RT in scoring. KGMN leverages relative RT through co-elution rather than absolute values. COSMIC focuses on large-scale confidence scoring without RT, though external 
RT filtering can complement its workflow.
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The integration of calibration strategies also highlights trade-offs 
between RI-based approaches and model-based projection methods 
(Table 3). RI systems, such as Kovats indices for GC or chromatographic 
hydrophobicity index (CHI) for LC, provide absolute, portable scales 
that facilitate reproducibility and data sharing across laboratories. In 
contrast, model-projection strategies (e.g., z-score calibration using 
local calibrants) can more flexibly fine-tune global models to the 
specific conditions of a given experiment, often yielding higher within-
study accuracy. Endogenous calibrants (endoRI), such as acylcarnitines 
in plasma, further extend this concept by leveraging compounds 
inherently present in biological samples to anchor RT scales.

Taken together, these comparisons underscore that no single 
approach is universally superior. Instead, QSRR and AI-based methods, 
index systems and projection approaches, offer complementary 
strengths: interpretability versus accuracy, reproducibility versus 
flexibility. Explicitly articulating these trade-offs helps ensure that 
researchers adopt RT-aware workflows that are both scientifically 
robust and practically feasible across different experimental settings.

Best practices and recommendations

Bringing together the insights above, here are best-practice 
recommendations for improving unknown metabolite identification 
by integrating retention time, QSAR models, and AI predictions:

	•	 Incorporate RT from the start: Always record accurate retention 
times for all features during LC–MS/GC–MS data acquisition 
(ensure your data processing exports RT for each peak). Treat RT 
as a standard part of the feature annotation (just like m/z and 
MS/MS spectrum).

	•	 Use multi-modal evidence in identification: Do not rely on m/z or 
spectral match alone. Use retention time as a critical filter or 
scoring factor. If a library hit has a vastly different RT (or RI) than 
your unknown, consider it suspect even if spectra match. 
Conversely, if an unknown’s RT matches a predicted or literature 
RT for a candidate, give that candidate a higher priority.

	•	 Build or apply RT prediction models appropriate to your 
chromatography: If working in RPLC, you can leverage published 
models (e.g., those trained on SMRT). Tools like Retip allow 
you to train a custom model using ~300 known compounds—
consider doing this if you have a rich in-house library. For HILIC 
or other less common systems, try transfer learning from a base 
model or gather a small training set of standards. Always test the 
model’s accuracy on a handful of knowns to gauge its error.

	•	 Calibrate retention times for each run/batch: Implement a 
retention index or calibration scheme. For LC, you can simply 
inject a standard mix (e.g., a mixture of amino acids or a 
commercial RT calibration mix) or rely on endogenous calibrants 
as discussed. Perform calibration early in your data analysis. For 
GC, always calculate retention indices for unknowns using 
alkane standards (if your method allows)—most GC libraries 
expect RI for matching.

	•	 Leverage software capabilities: Use MetFrag’s retention time 
scoring option if doing in silico fragmentation ranking. In 
SIRIUS, use the logP filter slider to remove implausible 
candidates (and stay tuned for more RT integration in future 
versions). In MS-DIAL or other pipelines, make use of any 

retention time alignment and annotation features—for instance, 
MS-DIAL can match features to a database with RT constraints 
if you provide one.

	•	 Utilize databases and literature: Before assigning an ID, check 
resources like HMDB or publications for reported retention 
times of that metabolite under similar conditions. For GC, 
compare your measured RI to known RI values (NIST webbook 
or literature)—a match within ~ ± 10 index units strongly 
supports the ID. For LC, if a metabolite was previously identified 
in a similar method, use that as supporting evidence (keeping in 
mind method differences).

	•	 Combine AI predictions with expert knowledge: AI models are 
powerful, but still benefit from chemical intuition. If a model 
predicts an RT that seems off given known behavior (e.g., it 
predicts a very polar molecule to elute extremely late on C18), 
double-check and consider alternative models or descriptor 
checks. Use predicted properties (logP, pKa) to sanity-check: e.g., 
if a candidate is extremely hydrophobic but your unknown eluted 
early in a polar fraction, that is a red flag.

	•	 Internal standard usage: In prospective studies, include a set of 
internal standards spanning the polarity range. Isotopically 
labeled versions of metabolites can be ideal as they co-elute with 
natives. These will ensure precise RT references and also help 
monitor any chromatographic drifts during the run.

	•	 Continuous model validation: As you confidently identify more 
compounds in your dataset, iteratively feed those back to refine 
your RT model. This adaptive approach (akin to active learning) 
can improve predictions for the remaining unknowns. Many of 
the mentioned tools allow dynamic addition of calibrants or 
re-training.

	•	 Document and report the RT evidence: When publishing or 
reporting identifications, note the retention time and how it was 
used. For example: “Compound X was putatively identified as Y; 
supporting evidence includes an observed RT of 5.3 min, which 
closely matches the predicted RT of 5.1 min (error ~4%) for Y on 
our C18 method. Other isomers had predicted RTs of >8 min, 
making them unlikely.” This not only justifies the ID but also 
contributes to collective knowledge of RT data.

	•	 Stay updated with new models and tools: The field is evolving – 
new deep learning models (like retention time transformers, 
graph neural nets) are being published. New databases (like 
expanded MassBank (59), PredRet (32) updates, etc.) are coming 
online with more retention data. Keep an eye on these 
developments, as they can be quickly applied to improve your 
analyses. For instance, if a new model drastically improves HILIC 
RT prediction, adopting it could resolve some ambiguous IDs 
that were previously uncertain.

To promote reproducibility and harmonization of RT-informed 
metabolomics workflows, we recommend that authors include the 
items listed in Box 1 when reporting retention time calibration.

By following these practices, researchers can achieve more 
accurate and confident identifications in untargeted metabolomics 
and exposomics (see Box 2). The combination of high-resolution MS 
data with AI-driven RT prediction and proper calibration constitutes 
a powerful approach to tackle unknown features. What used to be a 
bottleneck (having tens of thousands of “unknown unknowns” in a 
metabolomic profile) can gradually be alleviated by systematically 
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narrowing possibilities and pinpointing structures that make sense 
both in mass and in chromatographic behavior.

Limits and caveats

While RT prediction has advanced substantially, several limitations 
and edge cases remain important for practical implementation. 
Awareness of these applicability domain (AD) constraints can help 
researchers avoid misinterpretation and overconfidence in predictions.

Non-retained compounds in RPLC

Highly polar or ionic compounds may be essentially unretained 
in reversed-phase LC, eluting near the void volume. Such early-eluting 
features fall outside the useful range of most RPLC QSRR models, and 
predictions in this regime are often unreliable. Aalizadeh et al. (31) 
addressed this issue by developing a classifier to flag non-retention on 
C18 columns, illustrating that a dedicated check for non-retention is 
feasible. In practice, we recommend that analysts first assess whether 
a compound is likely to be  unretained (e.g., predicted to elute at 
<0.5 min or with extremely high polarity) before applying an RPLC-
based RT prediction.

Ion-pair and ion-exchange 
chromatography idiosyncrasies

Specialized chromatographic modes such as ion-pairing LC or 
ion-exchange LC rely on unique ionic interactions that general RPLC 
models cannot capture. Even subtle changes in conditions (e.g., mobile 
phase pH, buffer composition, salt concentration, counter-ion 
identity) can dramatically shift retention times, narrowing the 
applicability domain for predictive models. Consequently, if an 
unknown was analyzed under ion-pair or ion-exchange conditions, a 
standard RPLC model should not be applied blindly. Instead, a mode-
specific model or at minimum a locally calibrated approach is 
required. Users should verify that the model’s training data include 
similar ionic conditions, or consider re-training with appropriate 
calibrants before relying on predictions.

Chemical-space distance versus error 
growth

RT prediction models, like other QSAR/QSRR frameworks, are 
most reliable within the chemical space they were trained on. 
Prediction error tends to grow as a compound’s structure diverges 
from the training set, for example in the case of novel scaffolds or 
extreme physicochemical properties. Users can apply simple AD 
checks, such as examining whether a compound’s descriptors fall 
within the training range, or by calculating leverage values in PCA 
space. Several modern tools (e.g., Retip, QSRR Automator) provide 
automated AD warnings or prediction confidence intervals; if an 
unknown has a very high uncertainty or lies outside the AD, its RT 
prediction should be interpreted cautiously. These checks help avoid 
misidentification due to model overreach.

BOX 1  Retention time calibration checklist.

1. Calibration compounds and range

	•	 List the internal or external calibrant compounds used, including their 
identities and concentrations (or source, if endogenous).

	•	 Report the retention time span they cover, ensuring early- and late-eluting 
compounds are included.

2. Chromatographic method details

	•	 Specify stationary phase (column chemistry, dimensions), mobile phase 
gradient program, flow rate, column temperature, and buffer 
composition/pH.

	•	 These parameters are critical for contextualizing retention times and 
enabling reproducibility.

3. Calibration function/model

	•	 Describe the mathematical function used to relate predicted and observed 
RT (e.g., linear regression, polynomial fit, retention index scale).

	•	 Note if a z-score or probabilistic correction was applied.

4. Calibration performance

	•	 Report residuals or error statistics for calibrants (e.g., RMSE, median 
absolute error, R2).

	•	 Provide a statement such as: “Calibration achieved residuals <0.2 min for 
95% of calibrants.”

5. Reference scale or index

	•	 Indicate whether a standardized retention index (e.g., Kovats RI, CHI) or 
endogenous retention index (endoRI) system was used.

	•	 State the reference compounds (e.g., n-alkanes, acylcarnitines).

6. Quality control information

	•	 Document how calibration was checked over time (e.g., across batches, 
runs, or instruments).

	•	 If calibration stability was monitored, report any drift or corrections 
applied.

BOX 2  Getting started tomorrow: integrating RT into your 
metabolite ID workflow.

	 1.	 Record all retention times: ensure your LC–MS or GC–MS data 
processing exports accurate RTs (or RIs) for every detected feature. 
Treat RT as a standard piece of metadata for each peak, just like m/z or 
MS/MS spectrum.

	 2.	 Calibrants at hand: select a set of reference compounds (endogenous 
metabolites or spiked standards) that span the chromatographic range – 
from early to late eluters. Run these in your system to serve as 
RT calibrants.

	 3.	 Pick a prediction tool: choose a QSRR/RT prediction model suitable for 
your needs. You can use open tools (e.g., Retip in R, or published deep 
learning models) and/or train a simple model using ~20–50 known 
compounds from your lab’s library.

	 4.	 Calibrate and predict: apply the model to predict RTs for candidate 
structures. Use your reference compounds to calibrate or align 
predictions to your instrument (simple linear fit or retention index). 
Then for each unknown, compare its observed RT to predicted RTs—
filter out candidates that fall outside an acceptable window (e.g., > ± 5% 
deviation).

	 5.	 Verify and report: for top candidate IDs, cross-check against literature 
or databases for matching RT (under similar conditions). Document 
how RT was used to support identifications in your report or 
supplementary info (include predicted vs. observed RT, calibration 
details, etc.). This transparency will strengthen confidence in your 
results.
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Extrapolation beyond calibrant range

Calibration strategies should not be  extrapolated beyond the 
range covered by calibrants. For example, if calibrants span 1–10 min 
but a compound elutes at 12 min, the calibrated model is operating in 
extrapolation mode, where errors may be large and unpredictable. To 
minimize this risk, calibrants should bracket the entire 
chromatographic run, ideally including an early-eluting polar 
compound (near the void) and a late-eluting hydrophobic compound 
(near column wash). If such coverage is not achievable, identifications 
outside the calibrant range should be treated with greater caution. The 
inclusion of a calibrant panel spanning the RT range provides a 
practical safeguard against over-extrapolation.

Taken together, these caveats emphasize that RT prediction, while 
powerful, is not universally reliable. Proper consideration of 
chromatographic modality, retention regime, chemical space, and 
calibrant coverage ensures more robust application and prevents over 
interpretation of results.

Conclusion

Untargeted metabolomics is entering an era where integrated data 
analysis—combining m/z, MS/MS, retention time, and even ion 
mobility—is the norm for rigorous metabolite identification. 
Chromatographic retention time, once considered a secondary or 
even nuisance parameter, is now recognized as an independent 
structural signature that can greatly aid identification when used 
intelligently. By developing RT prediction models (QSRR models and 
modern ML predictors) and calibrating them to specific experimental 
conditions, we can exploit RT to rank candidates and reduce false 
positives. This is a transformative improvement: studies show major 
boosts in correct identification rates when RT information is included 
in annotation workflows. The approach spans all chromatographic 
modalities—from reversed-phase and HILIC in LC to gas 
chromatography—each benefiting from tailored models and 
calibration techniques. AI and deep learning methods, empowered by 
large datasets, are key enablers, delivering accurate predictions and 
even the flexibility to transfer those predictions across different 
chromatographic setups.

Crucially, the tools to implement this strategy are increasingly at 
our disposal: algorithms like RT-Transformer for retention prediction, 
platforms like SIRIUS and MetFrag that incorporate multi-criteria 
scoring, and databases like HMDB and GNPS providing reference 
points. As we  have outlined, using known blood metabolites as 
internal RT calibrants is a practical way to adapt these innovations to 
real-world samples without extensive extra work—your sample 
inherently contains a roadmap for RT alignment if you know where 
to look.

When incorporated into candidate ranking algorithms, RT 
prediction significantly improves annotation confidence. In landmark 
studies, correct metabolite IDs were recovered among top-ranked 
candidates in 68–86% of cases when RT predictions were included—
compared to far lower performance using mass-based scores alone. 
This leap in performance is especially impactful for metabolites with 
few or no spectral matches in existing databases, which is often the 
case in exposome research.

To fully leverage RT as an identifier, however, three key 
developments are needed: (1) Reliable RT Prediction Models 
Across Modalities: Deep learning architectures, such as 
RT-Transformer and graph neural networks, have achieved mean 
absolute errors of <30 s for RP-LC and promising transferability 
to HILIC and GC systems. These models allow structure-based 
RT prediction even for compounds lacking experimental RT 
entries, including emerging contaminants. (2) Run-Specific 
Calibration for RT Transferability: Because RTs shift between 
instruments and over time, the development of robust calibration 
strategies using endogenous metabolites (e.g., acylcarnitines, 
amino acids) as internal calibrants is essential. Methods such as 
Bayesian meta-learning and endogenous retention index 
(endoRI) scaling correct systematic bias and enable comparison 
across datasets. (3) Integration with Candidate Scoring 
Frameworks: Platforms like MetFrag and SIRIUS now support RT 
filtering or scoring, enabling users to weight candidate structures 
by predicted RT proximity. This approach is especially effective 
when MS/MS spectra are absent, and it harmonizes with suspect 
screening workflows increasingly used in environmental  
exposomics.

In conclusion, we  recommend that all untargeted 
metabolomics and exposomics studies adopt a mindset of 
integrative identification—leveraging retention time alongside 
spectral data and leveraging AI-based QSAR models for 
prediction. By doing so, the community will accelerate the 
identification of “unknown” features, improve the consistency of 
metabolite annotation across labs, and ultimately extract more 
biological insight from metabolomics data. With best practices in 
place, retention time will no longer be an underused feature, but 
rather an indispensable element of the metabolomics 
identification toolkit, supported by QSAR, AI, and sound 
analytical calibration. This holistic approach positions us to 
tackle the long tail of unknown metabolites with greater 
confidence and accuracy than ever before.
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