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The comprehensive identification of environmental and endogenous chemicals
in human biospecimens is a critical bottleneck for realizing the Human Exposome
Project. Untargeted metabolomics, particularly liquid chromatography-high-resolution
mass spectrometry (LC-HRMS), offers unparalleled coverage of small molecules,
but most detected features remain unidentified due to limited spectral libraries
and structural ambiguity. Retention time (RT) prediction—based on quantitative
structure—retention relationships (QSRR) and enhanced by artificial intelligence (Al)—is
an underutilized orthogonal parameter that can substantially improve metabolite
annotation confidence. This review synthesizes advances in machine learning—based
RT prediction, probabilistic calibration, and cross-platform harmonization for liquid
chromatography and gas chromatography, including deep learning, graph neural
networks, and transfer learning approaches. We evaluate workflows integrating
RT prediction with mass-based searches and network-based annotation tools,
highlighting their potential to refine candidate ranking and reduce false positives
in environmental exposure assessment. The use of endogenous compounds as
internal calibrants is discussed as a practical strategy for improving RT transferability
across laboratories. We further outline how RT-aware annotation supports non-
targeted screening of emerging contaminants, transformation products, and
exposure biomarkers, thereby enhancing the interpretability and reproducibility
of exposomics data. By integrating RT prediction, QSRR modeling, and Al into
untargeted metabolomics pipelines, researchers can move from qualitative detection
toward quantitative, inference-driven mapping of environmental influences on
human health, strengthening the scientific foundation for environmental health
policy and preventive public health strategies.
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Introduction

Exposomics (1) and in consequence a possible Human Exposome
project (2) depend critically on the identification of metabolites in
human biofluids. Untargeted metabolomics of human blood yields
vast numbers of features detected by liquid or gas chromatography
coupled with high-resolution mass spectrometry (LC-HRMS and
GC-HRMS). A persistent challenge is the identification of unknown
metabolites from these features. Researchers typically rely on
measuring the mass spectrometry (MS) mass-to-charge ratios (m/z)
of molecular ions and fragmentation spectra (MS/MS) with accurate
mass to search databases for candidate structures (3). However, many
features remain unidentified because multiple compounds can share
the same m/z or similar spectra (4, 5) and a main limitation is also that
the MS and MS/MS databases are still very limited. An often
underused piece of information is the chromatographic retention time
(RT) at which a compound elutes. RT is strongly influenced by
molecular structure and physicochemical properties, making it a
valuable orthogonal feature for narrowing candidate lists (5).
Integrating RT prediction, a type of quantitative structure-retention
relationship (QSRR), with mass-based searches and machine learning
(ML) offers a promising route to improve unknown identification. As
Kaliszan (6) outlined in his seminal review, retention is governed by
thermodynamically driven interactions between analytes and
chromatographic phases. QSRR models translate these interactions
into predictive equations using descriptors such as molar volume,
polarizability, and charge distribution. The extrathermodynamic
framework he proposed remains foundational for understanding
retention modeling in metabolomics workflows. As Héberger (7)
outlines in his comprehensive review of QSRR practices, robust model
performance hinges on clear definition of applicability domain,
independent test validation, and proper residual analysis. Overfitting,
data leakage during feature selection, and misuse of correlation
coefficients continue to plague the field. These concerns are especially
salient when applying QSRR models to untargeted data across
laboratories with varying chromatographic conditions. To democratize
QSRR modeling, Naylor et al. (8) developed QSRR Automator, a
Graphical User Interface (GUI) based tool that enables rapid
construction of retention time models with performance comparable
to expert-curated algorithms. It supports common ML methods such
as Support Vector Regression (SVR), Random Forest (RF), and
Multiple Linear Regression (MLR) and accommodates varying LC
conditions, making it ideal for multi-lab exposomic studies with high
throughput needs.

RT information, when used properly, can filter out false candidates
and boost annotation accuracy. Historically, RT usage has been limited
because experimental RT data are sparse in metabolomic databases
and RTs vary widely between labs and chromatographic methods.
Recent advances address these issues: large RT datasets (e.g.,
METLIN’s 80 k-compound Small Molecule RT dataset) have enabled
accurate QSRR models, and new calibration techniques correct RT
differences between instruments. Furthermore, modern artificial
intelligence (AI) and deep learning methods can predict RT and
related properties with high accuracy, and these predictions can
be incorporated into metabolite identification workflows. In this
report, we evaluate how RT prediction improves candidate ranking,
discuss strategies to calibrate RT across different runs and
chromatographic modalities, review relevant AI/ML approaches and
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tools, and outline best practices for applying this integrated approach
to current and future metabolomics studies.

Retention time, indicative of the compound’s physicochemical
interaction with the chromatographic stationary and mobile phases,
serves as an orthogonal structural descriptor that can complement
m/z of MS and MS/MS information. RT narrows the plausible
candidate space and provides additional discrimination among
structural isomers, even in the absence of fragmentation data.
However, until recently, RT data was often ignored or used only
heuristically due to variability across platforms and lack of predictive
tools. Recent advances in Al-based QSRR have transformed this
landscape. These ML and deep learning models—especially those
using molecular fingerprints, graph neural networks, or transformer
architectures—can now predict RT with impressive accuracy. Despite
these advancements, the broader metabolomics community has been
slow to adopt RT-aware workflows as standard practice. This is due in
part to the fragmented nature of prediction tools, lack of calibration
protocols, and insufficient cross-platform harmonization. In addition,
retention time prediction models often perform optimally only under
specific chromatographic conditions unless fine-tuned or recalibrated.
For exposome research, where retrospective data integration across
diverse platforms is essential, this variability becomes a critical
limitation. Standardization of RT prediction models and incorporation
into open-source tools and FAIR-compliant pipelines is needed.

The lack of high-confidence identification in untargeted
metabolomics is more than a technical limitation—it is a rate-limiting
step for the exposome field. Without precise structural information,
linking exposures to molecular mechanisms or population health
outcomes remains speculative. Moreover, annotation uncertainty
hampers reproducibility across labs and reduces confidence in derived
biomarkers. The inability to fully interpret the metabolome limits both
hypothesis-driven toxicology and the discovery of unanticipated
environmental contributors to disease.

To realize the Human Exposome Project, we must therefore invest
in RT-informed annotation workflows as standard practice. This
includes widespread adoption of QSRR models, routine use of internal
calibrants in LC-MS and GC-MS workflows, and integration of RT
prediction into automated annotation pipelines. As RT-aware
identification matures, it will bridge the gap between feature detection
and actionable insights—transforming untargeted metabolomics from
an exploratory tool into a quantitative engine for environmental
health science.

Background exposomics and a
possible Human Exposome Project

From Genome to Exposome: The completion of the Human
Genome Project in 2003 marked a watershed moment in biomedical
science, successfully mapping all human genes at a cost of $3 billion
and generating an economic impact exceeding $965 billion by 2010.!
However, despite this monumental achievement, a critical gap
remained in our understanding of disease causation: while estimates

1 https://web.ornl.gov/sci/techresources/Human_Genome/publicat/
BattelleReport2011.pdf
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vary, analyses suggest that heritable genetic factors may account for
only a small fraction of chronic disease risk (on the order of a few
percent), whereas environmental exposures and other non-genetic
factors could contribute the majority (on the order of tens of percent
to over half) (9). For example, one analysis attributed ~70-90% of
chronic disease risk to differences in environmental exposure (9),
underscoring the need to map the ‘exposome’ alongside the genome.

This realization has catalyzed the emergence of exposomics—the
comprehensive study of environmental exposures and their biological
effects throughout the human lifespan. As Wild (10) first articulated,
complementing the genome with an “exposome” represents “the
outstanding challenge of environmental exposure measurement in
molecular epidemiology” The exposome encompasses all physical,
chemical, biological, and psychosocial factors that individuals
from death, excluding DNA

encounter conception to

sequence variation.

The exposome concept and environmental
health

The exposome framework provides a systematic approach to
understanding how environmental factors contribute to disease
development, making it particularly relevant for analyzing emerging
contaminants and the environmental exposome (11). Unlike
traditional toxicological approaches that focus on single compounds,
exposomics embraces the complexity of real-world exposure scenarios
where individuals encounter multiple chemicals simultaneously
through various pathways.

Environmental exposures encompass the general external
environment (pollution, climate, built environment), specific external
factors (lifestyle, occupation, diet, infections), and the internal
environment (metabolism, inflammation, oxidative stress, aging).
Exposomics therefore aims to measure xenobiotics and endogenous
metabolites, i.e., to identify exposure and its imprint on metabolism;
noteworthy, gene expression to characterize the perturbation of
biology and possibly indications of adverse reactions (hazard
manifestations) also for a crucial tool to form an exposure hypothesis
connecting to disease (1). This comprehensive framework is essential
for understanding how emerging environmental contaminants—
including pharmaceuticals, personal care products, industrial
chemicals, and their transformation products—contribute to the
growing burden of chronic disease.

The need for advanced analytical
approaches

Traditional environmental monitoring approaches that rely on
targeted analysis of known compounds are insufficient for
characterizing the full scope of environmental exposures. The
chemical universe contains over 200 million registered substances,
with approximately 80,000 requiring investigation for potential
environmental and human health risks according to regulatory
agencies. Most chemicals present in environmental and biological
samples remain structurally unknown (<1% have been characterized).
This challenge necessitates advanced analytical platforms capable of
non-targeted screening to detect previously unknown contaminants,
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suspect screening to identify compounds of emerging concern, and
metabolomics approaches to understand biological effects of
exposures. The advancements modern HRMS instruments allow us to
tackle all of these aspects in a single analytical run. Another critical
advancement is the integration of retention time prediction with
quantitative structure-activity relationships (QSAR) and Al enabling
more confident identification of unknown environmental chemicals
in biological samples.

The HEP vision

Building on the success and lessons learned from the Human
Genome Project, the scientific community has begun organizing
around the concept of a Human Exposome Project (HEP). This
ambitious initiative aims to comprehensively map environmental
exposures and their health effects with the same rigor and scale that
characterized genomic mapping efforts. We started a project to realize
this vision (12, 58).

Key components of the human exposome
project

Three key technical components toward HEP were identified:

Global research infrastructure

The project leverages existing international networks including
the European Exposome Infrastructure (EIRENE),* backed by 17 EU
governments with over €1 billion in projected investments, the
International Human Exposome Network (IHEN),” the Network for
Exposomics in the United States (NEXUS),' and emerging
partnerships across Africa, Asia, and Latin America.

Technological integration

The HEP platform integrates high-throughput mass spectrometry
for chemical analysis, wearable biosensors for real-time exposure
monitoring, geospatial mapping for environmental context, artificial
intelligence for pattern recognition and prediction, and multi-omics
integration across genomics,

transcriptomics,  proteomics,

and metabolomics.

Al-driven knowledge creation

Al serves as the “Apollo Guidance Computer” of the exposome
moonshot (13), enabling faster data interpretation and hypothesis
generation, cost reduction through automation and reduced animal
testing, democratized access to analytical capabilities for low-resource
settings, and real-time synthesis of complex, heterogeneous datasets.

2 https://eirene.eu
3 https://humanexposome.net

4 https://www.nexus-exposomics.org
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The Washington declaration and global
momentum

Two of the authors (FS, TH) were the hosts of the inaugural
Human Exposome Moonshot Forum (Washington, D.C., May 2025),
which brought together over 300 scientists, policymakers, ethicists,
and civil society representatives from 50+ countries. The resulting
Washington Declaration® established a shared global commitment to
advancing exposomics as a scientific discipline, policy priority, and
public health imperative. Key outcomes include living labs and citizen
science emphasizing community engagement and participatory
monitoring, embedded ethics and governance learning from genomics
to ensure anticipatory, inclusive, and transparent research, open
science and FAIR data with commitment to making tools and findings
openly available, and multi-omics Al integration fusing diverse
datasets using machine learning to uncover exposure-health links.

Relevance to emerging contaminants and
environmental exposome

The HEP framework is particularly relevant for addressing
challenges in emerging contaminant identification and environmental
health assessment. Environmental contaminant discovery involves
suspect screening workflows using RT prediction to identify
pharmaceuticals, pesticides, and industrial chemicals in environmental
samples, transformation product identification for understanding how
parent compounds degrade in the environment and biological
systems, and exposure pathway mapping to trace contaminant sources
from environment to human biomarkers. Non-targeted analysis
enhancement includes AI-powered structural elucidation combining
MS, RT prediction, and QSAR modeling, database expansion to
include environmental chemicals and their metabolites, and cross-
platform integration enabling comprehensive chemical coverage
across different analytical methods. Real-world exposure assessment
encompasses biomonitoring applications to detect environmental
contaminants in human biological samples, population-level
surveillance for emerging chemicals of concern, and exposure-
response modeling to understand dose-response relationships for
environmental chemicals.

Scientific and economic impact potential

The economic impact of the HEP is projected to match or exceed
that of the Human Genome Project. Early indicators suggest
significant potential through healthcare cost reduction via prevention-
focused approaches, innovation drivers in environmental diagnostics,
personalized exposure profiling, and digital health applications, new
therapeutic development based on exposure-disease relationships, and
regulatory science advancement through improved chemical safety
assessment methods. The National Institutes of Health has announced
at the Moonshot Forum the development of a Real-World Data
Platform that will integrate clinical, genomic, behavioral, and
environmental data at scale, with exposome integration as a
scientific imperative.

5 https://exposomemoonshot.org
6 https://exposomemoonshot.org/

washington-d-c-declaration-on-the-human-exposome/
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Challenges and opportunities

Technical challenges include data integration complexity when
combining diverse data types across multiple scales, analytical gaps
requiring improved methods to detect and identify unknown
chemicals, standardization needs for harmonized protocols for
exposure assessment and data sharing, and computational
requirements for AI models capable of handling massive,
heterogeneous datasets. Societal considerations encompass privacy
and ethics in protecting individual exposure data while enabling
population health insights, equity and access to ensure global
participation and benefit-sharing, public engagement to build
community trust and participation in exposome research, and
regulatory integration to translate exposome findings into effective
public health policies.

Future directions

The Human Exposome Project represents a paradigm shift from
reactive to preventive approaches in environmental health. Key
priorities include methodological development in advancing retention
time prediction, Al-driven identification, and multi-omics integration;
infrastructure building to establish global networks for data sharing
and collaborative research; capacity building to train the next
generation of exposome scientists and regulatory scientists; and
translation to convert exposome discoveries into actionable public
health interventions.

As stated by participants in the Exposome Moonshot Forum: “If
the genome was Apollo 11, the exposome is Artemis—same audacity,
bigger destination.” The integration of advanced analytical methods,
including retention time prediction and AI-driven approaches, will
be essential for realizing this ambitious vision and addressing the
growing challenge of environmental chemical exposures in
human health.

Conclusion

The Human Exposome Project represents an unprecedented
opportunity to understand and address the environmental
determinants of chronic disease. By systematically mapping the
chemical, physical, and biological exposures that shape human health,
this initiative promises to transform our approach to disease
prevention and environmental protection. The success of this
endeavor depends on continued advancement in analytical
methodologies, including the integration of retention time prediction
with QSAR and AI approaches described in this review, enabling
confident identification of the vast array of environmental chemicals
that influence human health throughout the lifespan.

Metabolite identification in untargeted
metabolomics as the bottleneck for a
Human Exposome Project

The promise of the HEP is to systematically map environmental
exposures and link them to human health outcomes. Untargeted
metabolomics, particularly when applied to blood samples, is a
cornerstone of this vision (1): it enables comprehensive profiling of
endogenous and exogenous small molecules reflective of exposure
history. Yet, despite the remarkable sensitivity and coverage of LC-MS
and GC-MS, a fundamental bottleneck persists—the structural
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identification of detected features. Most features in untargeted
metabolomics remain unidentified or only tentatively annotated,
limiting their interpretability, reproducibility, and utility for regulatory
or clinical translation.

This identification bottleneck arises from several factors: the high
dimensionality and redundancy of mass spectral features, the overlap
of mass-to-charge ratios (m/z) among isomers and analogs, limited
MS/MS fragmentation data for all features, and the lack of
comprehensive spectral databases that include environmental
chemicals and transformation products. These challenges are
compounded by the fact that many detected substances are not present
in existing libraries (e.g., HMDB, NIST), particularly those of
emerging concern such as industrial by-products, metabolites of
synthetic chemicals, or food-derived xenobiotics.

Metabolomics as the ‘omics technology closest to phenotype is of
critical importance for the future of toxicology (14, 15) and its
transition to HEP (16). In deeply phenotyped cohorts, data sparsity is
a critical challenge. Llera et al. (17) applied a multivariate imputation
framework using Round-Robin regression and Extra Trees to restore
missing clinical variables in autism datasets. Such imputation
workflows are directly applicable to exposomics, where missing
covariates or sample-level measures often limit integrative analyses.
LC-MS untargeted workflows face several technical limitations that
directly impact exposome research: variable MS ionization efficiencies,
time drift, and high false
compound annotation.

retention discovery rates in

In simple terms, the more comprehensively and accurately we can
identify both exogenous substances (those that come from outside the
body, such as pollutants, food additives, or drugs) and endogenous
metabolites (those produced within the body as part of physiological
or pathological processes), the more effectively we can generate
meaningful exposure hypotheses linked to health outcomes.
Importantly, this must be done in an untargeted fashion—that is, not
limited to a predefined list of “usual suspects” or known chemicals
of concern.

This has to come on top of the quality assurance, quality control
and reporting quality the field of metabolomics needs (15). Starting
with our workshop in 2013 (18), a number of QA & QC activities
started including our work on peak-calling (19); most notably the
Metabolomics Quality Assurance & Quality Control Consortium
(MQACC)” published a number relevant articles (20-22). As
highlighted in a recent review (23), systematic use of standards and
reference materials is essential for ensuring reliability, accessibility,
and sustainability of omics-based methods in regulatory toxicology,
including LC-MS metabolomics. Notably, generally accepted
reporting standards are still missing (24), which would facilitate the
integration of RT in the analysis of untargeted metabolomics.

Historically, exposome research has been constrained by a
targeted mindset: measuring what we already suspect to be harmful.
While this has led to important regulatory actions, it inherently
overlooks the vast chemical “dark matter” we are exposed to—
unmonitored industrial compounds, transformation products, and
low-abundance dietary or environmental exposures that may
nonetheless contribute to chronic disease. The untargeted approach

7 https://www.mgacc.org
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enables discovery-driven science: it casts a wide net, allowing us to
detect unexpected exposures and their biological effects, even in the
absence of prior hypotheses.

High-resolution untargeted metabolomics, when paired with robust
annotation pipelines, provides a window into both external exposures and
their downstream effects on host metabolism. Each unidentified feature
that is correctly assigned a structure potentially represents a new piece of
the puzzle: a candidate environmental contributor, a biomarker of past
exposure, or a mechanistic link to disease pathways. In this way, high-
coverage, high-confidence chemical identification does not merely
enhance the data—it expands the landscape of plausible etiological
hypotheses, guiding future epidemiology, mechanistic toxicology, and
even regulatory prioritization.

The increasing diversity of environmental chemicals entering
biological systems necessitates broader analytical coverage (25, 26).
Techniques such as LC-MS and GC-MS remain foundational, but
real-time platforms like proton-transfer-reaction mass spectrometry
(PTR-MS) and selected ion flow tube mass spectrometry (SIFT-MS)
offer additional promise for volatile or unstable contaminants,
particularly in “breathomics” or ambient exposure contexts. For
exposomics to scale, integration of these methods into a shared data
backbone—with AI models to unify and interpret output—is a
necessary next step (27).

In essence, the better we can characterize the full chemical
footprint of human exposure and response—without preconceived
filters—the closer we move toward realizing the central goal of the
exposome: to map the complex, lifelong environmental influences that
shape health and disease.

Literature search methodology

This is a narrative review based on a corpus of literature collected
over the last decade. To ensure comprehensive coverage of recent
developments in RT prediction for metabolomics, we conducted a
structured literature search informed by systematic review principles.
Al tools such as Perplexity.ai, Gemini and ChatGPT were used to
identify literature for select aspects, which was accessed and verified.

Databases and time frame

We searched multiple bibliographic databases including PubMed,
Scopus, and Google Scholar for relevant literature published up to July
2025, in order to capture the rapid methodological progress of recent
years (2023-2025). Articles from early 2025, including select preprints,
were considered when peer-reviewed alternatives were not yet
available. In addition, using elicit.ai, a search of 126 million abstracts
from the Semantic Scholar corpus was carried out with the prompt
“What are advances in the automated identification of metabolites in
untargeted metabolomics? “This retrieved 493 papers most relevant to
the query, which were screened for these criteria: Computational
Method Focus: Does the study present computational methods or
algorithms for metabolite identification in untargeted metabolomics
data? Analytical Platform: Does the study use mass spectrometry (MS)
data? Method Innovation: Does the study present either a novel
approach or significant improvements to existing automated
identification methods? Method Validation: Does the research include
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validation of the automated identification methods? Metabolomics
Approach: Does the study include untargeted metabolomics analysis
(not exclusively targeted)? Annotation Method: Does the study include
automated (not exclusively manual) annotation methods?
Computational Component: Does the study include computational
components beyond pure analytical chemistry? This resulted in 40
studies with focus: Identification was the most common focus, found
in 19 studies; Annotation was the focus in 13 studies; Feature detection
was addressed in 6 studies; Classification was the focus in 2 studies;
Benchmarking was the focus in 1 study; some studies addressed more
than one focus. These were further analyzed by Elicit.ai, to extract
information, which was not used because of some obvious mistakes,

but the downloaded papers were added to our review corpus.

Search terms and strategy

Representative search strings included: “retention time prediction
“QSR  model LC-MS) index GC

metabolomics;” “machine learning retention time,” “MetFrag RT scoring,”
and “SIRIUS CSI FingerID retention” We combined terms for
chromatographic modes (reversed-phase, HILIC, GC) with those for

metabolomics,” “retention

prediction or algorithms (e.g., deep learning, GNN, transfer learning).
Author names associated with seminal works (e.g., Kaliszan, Héberger,
Ruttkies) were also used as search terms to retrieve foundational and
follow-up contributions. Some references from within the papers
identified, were also retrieved and added to the review corpus.

Inclusion and exclusion criteria

We included publications that: (i) introduced new RT prediction
models; (ii) reported large RT datasets; or (iii) demonstrated
integration of RT information into metabolite identification
workflows. Both methods-focused studies (e.g., model development,
algorithm benchmarking) and application studies (using RT for
exposomics identifications) were incorporated to balance theory and
practice. Key review articles [e.g., (6, 7)] were also cited to ensure
coverage of foundational principles. Exclusion criteria encompassed
papers that were overly narrow in scope (e.g., QSRR models limited
to a single small chemical class), those lacking sufficient
methodological data, or those only mentioning RT without substantive
evaluation. Non-English articles were excluded, and preprints were
only cited when indispensable.

Bias control

To minimize bias, we deliberately sought coverage across all major
chromatographic modalities (RP, HILIC, GC) and across both classical
(MLR, SVR, RF) and modern AI approaches (DNNs, GNNs, transfer/
meta-learning). Multiple independent studies were cited for each
major conclusion whenever possible—for example, drawing on results
from different groups to validate reported error ranges in HILIC
prediction. Findings were cross-checked for consistency across studies
to avoid over-reliance on single laboratories. Furthermore, limitations
and failure modes of RT prediction models are discussed explicitly in
the manuscript to prevent over-optimistic interpretation.
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Although this review is narrative in scope, the inclusion of this
methodology section is intended to increase transparency,
demonstrate rigor in source selection, and provide guidance for
readers seeking to replicate or extend the literature survey.

Role of retention time in metabolite
identification

RT is the time a compound spends in the chromatographic
column before detection. It encodes information about the
compound’s interactions with the stationary phase and mobile phase.
Compounds with different structures typically have different RTs,
especially under well-controlled conditions. Thus, RT provides an
additional dimension for identification beyond mass. For example,
among candidates with the same m/z, those with predicted RTs
incompatible with the observed RT can be eliminated. Using RT as a
filter can significantly narrow down candidate lists, focusing on
structures whose properties match the chromatographic behavior.
This is particularly useful when fragmentation data are limited or
absent. In many untargeted studies (e.g., pilot studies or those with
limited sample), MS/MS spectra may not be available for every feature.
In such cases, analysts must rely on m/z and RT alone, which yields a
putative identification (below the Metabolomics Society identification
(MSI) confidence of MSI Level 2, as Level 2 formally requires MS/MS
spectral confirmation). Incorporating RT predictions can nonetheless
raise confidence in these tentative IDs by requiring consistency
between predicted and observed RT.

However, raw RT values are not directly comparable across
experiments without correction. Even the same compound can have
different RTs on different systems or on the same system over time.
This lack of reproducibility historically limited RT’s usefulness in
databases. Calibration and standardized retention indices (RI) are
solutions to make RT more transferable. In GC-MS, Kovats retention
indices (using alkane standards) have long been used to match
experimental RTs to library values, greatly aiding identification. By
contrast, LC-MS lacks a universally adopted retention index system—
as noted in early studies, “no such index currently exists for LC-MS
experiments” and run-to-run RT variation complicates direct
comparison (28). They recommend robust RT alignment, pooled QC
analysis, and multidimensional chromatography to address these
challenges. Retention time prediction has also proven valuable for
distinguishing  structural isomers, which are otherwise
indistinguishable by accurate mass alone. In a forensic toxicology
context, Tyrkko et al. (29) used ACD/ChromGenius to correctly
predict elution order for over two-thirds of isomer groups,
underscoring the utility of RT as a structural discriminator even in
complex matrices. In the following sections we explore how new
methods predict RT from structure and calibrate RT across systems to
overcome these issues.

Retention time behavior across
chromatographic modalities

Different chromatographic modalities separate molecules based
on different physicochemical interactions, so the retention time
meaningfully reflects different properties in each modality. A
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TABLE 1 Benchmarking of retention time prediction models and datasets across modalities.

10.3389/fpubh.2025.1687056

Dataset/study Chromatographic Size (N, Gradient/RI Model type Performance (MAE/
mode compounds) window (] median error,
transferability)
METLIN SMRT (4) RP-LC (Cyg, 10 min) ~80,000 0-10 min DNN, Gradient MAE ~ 39 s; median ~17 s
Boosting (~5% RT); robust cross-
validation
RepoRT (41) RP-LC + HILIC, 49 methods 8,809 compounds (88,325 Varied (2-30 min Graph Neural Error ~0.3-1.8% of RT; post-
RTs) gradients) Networks (GNN), calibration <0.15 min across
Transfer Learning platforms
HILIC QSRR (33, HILIC (polar stationary phase) 100 s-1,500 10-20 min Random Forest, R? up to 0.97; eliminated
34) Linear QSRR ~40% false positives in
annotation
NIST retention GC-MS, Kovats RI scale ~180,000 RI scale (C8-C40 DL, SVM, RF Median error ~20-40 RI units
index DB (GC) n-alkanes) (~0.5-1% RI scale); correct
ID first-rank in up to 86%
EndoRI (42) RP-UPLC (endo-calibrants, ~200-300 standards + 0-12 min Linear calibration, Reduced inter-batch RT
acylcarnitines) endogenous calibrants meta-learning variability by 95%
(1.5 — 0.15 min)

RPLC datasets (e.g., METLIN SMRT, RepoRT) underpin modern deep learning approaches, achieving approximately seconds-level prediction accuracy. HILIC (hydrophilic interaction liquid
chromatography) datasets are smaller but show strong relative retention time (%RT) prediction performance when models are trained specifically for polar chemistries. GC datasets (Retention

Index, RI) benefit from highly standardized conditions, yielding very low relative errors (~1% of RI scale). Calibration strategies (endoRI, transfer learning) dramatically improve cross-

platform transferability.

comprehensive RT-based identification approach must therefore
account for the specific chromatography used, which include reversed-
phase (RP) LC; hydrophilic interaction LC (HILIC), ion-exchange and
ion-pair LC as well as gas chromatography (GC). Table 1 summarizes
key datasets (e.g., SMRT, RepoRT) and representative model
performances across modalities [RP, HILIC, GC Retention Index
(GC/RI)]: N (compounds), gradient window, train/test split, MAE/
median error, and external-method transfer results.

Reversed-phase (RP) LC

This is the most common modality in metabolomics (e.g., using
C,s columns with aqueous/polar organic mobile phases). Retention
depends on partitioning between the stationary and mobile phase, and
increases with hydrophobicity. Thus, in RP-LC, RT correlates strongly
with measures like octanol-water partition coefficient (logP), number
of nonpolar carbons, and aromaticity. QSRR models for RP often use
descriptors capturing hydrophobic surface area, H-bond donors/
acceptors, etc., which relate to logP. Indeed, a simple linear relationship
between logP and RT is sometimes used for rough predictions or to
filter candidates. Tools like MetFrag® exploit this: given a set of
reference compounds with known RT, MetFrag can derive a linear
model RT = a-(predicted logP) + b, and then score candidates by how
well their predicted logP fits the observed RT. MetFrag2.2 (30)
represents a significant evolution in in silico annotation, integrating
structure-based fragmentation with orthogonal scoring layers such as
predicted RT, database references, and user-defined filters. These
functions make MetFrag2.2 a foundational component of

8 https://github.com/ipb-halle/MetFragTraining
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high-throughput in many exposomic workflows. More advanced RP
models use nonlinear ML to capture subtle effects (e.g., polar groups
that cause shorter RT than logP alone would suggest). Since the
METLIN SMRT dataset is RP-based, most of the recent deep learning
models (DNNs, transformers, etc.) have focused on RP-LC
predictions. The accuracy achieved (median errors on the order of
seconds) shows that RP retention can be predicted very effectively
across diverse chemical classes. However, note that extremely polar or
ionic compounds may be “non-retained” (elute in the void volume)
on RP; these need special treatment (e.g., classification models to
predict if a compound will be non-retained). Aalizadeh et al. (31)
developed QSRR models for thousands of emerging contaminants
across both RPLC and HILIC platforms and introduced OTrAMS and
MCS to map error distributions and define prediction applicability
domains. This combination improves confidence in suspect screening
by reducing false positives and providing formalized acceptance
windows for predicted RTs.

Hydrophilic interaction LC (HILIC)

HILIC, a hybrid technology between normal phase LC (NP-LC)
and RP-LC, uses a polar stationary phase, which would be common
in NP-LC, and combines it with a polar mobile phase containing
solvents common in RP-LC, such as acetonitrile or methanol. It
retains very polar and hydrophilic compounds that are poorly retained
in RP. Retention in HILIC tends to increase with polarity and the
ability to form hydrogen bonds—essentially the opposite trend of
RP. Properties like polar surface area, number of charged or polar
functional groups, and dipole moments become important. HILIC
retention prediction is inherently more complex in some cases due to
possible multiple interaction mechanisms (partitioning and
adsorption). Nonetheless, researchers have developed HILIC-specific
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models. For instance, versions of graph neural networks have been
trained for HILIC retention (“GNN-TL-HILIC”) distinct from RP
models. The availability of HILIC data is more limited than RP, but
growing. A recent report noted successful RT prediction for >1,500
metabolites on 24 different LC systems including HILIC, with median
errors ~0.3-1.8% of the RT (32). This suggests that with proper
training, HILIC RT can also be predicted and used for identification—
albeit one may need separate models or transfer learning from an RP
model. When annotating unknowns in HILIC, one should use a
model trained or calibrated for HILIC to avoid systematic bias. In
HILIC chromatography, where retention behavior is highly nonlinear
and condition-sensitive, Cao et al. (33) achieved a Pearson correlation
of 0.97 between predicted and experimental RTs using a Random
Forest QSRR model. This level of precision allowed systematic
reduction of false positives during peak annotation, even without MS/
MS confirmation. In a foundational study, Creek et al. (34) developed
a QSRR model for HILIC chromatography and demonstrated that RT
prediction improved annotation precision, eliminating 40% of false
positives from exact-mass matches alone. This underscores the
importance of orthogonal RT filtering for increasing annotation
confidence in metabolomics. The approach by Karlberg et al. (35) to
predict hydrophobic interaction chromatography (HIC) retention of
monoclonal antibodies using sequence-, model-, and dynamics-
derived descriptors offers a useful analogy for metabolite RT
modeling. Their success with 3D descriptors suggests that deep
molecular representations may enhance QSRR model performance in
highly diverse exposomic datasets.

lon-exchange and ion-pair LC

These modalities separate compounds based on charge
interactions. In ion-exchange chromatography, a charged stationary
phase (cation or anion exchanger) retains oppositely charged
analytes. Retention depends on the ionic strength, the charge of the
molecule (which in turn depends on pH and pKa), and how
strongly that charge interacts with the stationary phase. For
metabolomics, ion-exchange is less commonly used in untargeted
profiling (since it is highly selective), but it can appear in targeted
methods (e.g., analysis of amino acids or organic acids). Ion-pair
LC is a variant of RP where an ionic reagent in the mobile phase
forms ion pairs with analytes, effectively allowing charged molecules
to be retained, for example, on a C,3 column. Predicting retention
in such systems requires understanding of both hydrophobic and
ionic characteristics. QSAR models might include descriptors for
pKa, net charge at the working pH, and interactions with counter-
ions. While fewer public studies exist on machine learning for
ion-exchange LC, conceptually one could train a model if a dataset
of retention times for charged metabolites (with a given ion-pair
reagent or ion-exchange column) is available (36). Calibration is
particularly important here: small changes in mobile phase pH or
salt can shift RT substantially. Including internal standards of
known pKa/charge can help model the retention. In summary,
while ion-exchange modes are not as prevalent in untargeted
workflows, the same principles apply - one would need a method-
specific retention model, and using RT for identification in these
modes works best when the unknown and references share similar
ionic properties.
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Gas chromatography (GC)

GC separates compounds based on volatility, vapor pressure and
partitioning between the stationary phase and carrier gas (often
correlating with boiling point and hydrophobicity). In metabolomics,
GC-MS (usually with electron ionization, EI) is commonly used for
volatile metabolites and requires derivatization for polar compounds.
Retention indices (RI) in GC are well-established for compound
identification. Libraries like NIST and Wiley contain thousands of
spectra with associated retention indices on standard columns (e.g.,
DB-5 or polar columns), allowing dual matching: spectral pattern and
RI. In unknown identification, if the experimental RI of a feature
matches a library compound’s RI within a tolerance (e.g., £10 index
units) and the spectra match, the identification is considered
confident. RT prediction in GC can leverage the vast RI libraries.
Researchers have applied deep learning to predict Kovats retention
indices: for example, a study by de Cripan et al. (39) demonstrated
deep learning (DL) prediction of RI on polar and mid-polar columns,
marking the first use of DL for GC retention (37). Another study
focused on trimethylsilylated metabolites (common in GC
derivatization) built an SVM-based model that predicted RI with
~37 units median error (40). They showed that using predicted RI to
rank candidates could reliably identify the correct structure among
isomers. The advantage in GC is that, thanks to RI calibration with
standards (n-alkanes), the predicted RI can be directly compared to
literature/library values, which are highly reproducible (unlike
absolute RT in LC). Thus, integrating Al-predicted RI with GC-MS
libraries can flag which candidate is most plausible. For instance, if an
unknown’s EI spectrum matches several compounds but their
literature RIs differ, one can compute which candidate’s RI is closest to
the observed. In practice, GC identification already uses retention as
a key factor; Al simply enhances this by predicting RI for compounds
not yet experimentally measured. As more metabolite RI data become
available (e.g., via the MetaboLights (38), FiehnLib,” or HMDB'" GC
libraries), we anticipate even better predictive models.

In summary, each chromatographic modality requires a tailored
approach to RT prediction. The fundamental strategy remains: train
or apply a model appropriate to that modality, and calibrate if
necessary, using reference compounds. RPLC and GC are currently
the most mature in terms of available data and models, but HILIC and
others are catching up. An ideal pipeline in untargeted metabolomics
might involve running samples on multiple platforms (e.g., RPLC- and
HILIC-MS, plus GC-MS for volatile fraction) and using RT
predictions in each domain to aid identifications. This would cover a
wide swath of metabolome polarity and use RT information optimally
in all cases.

Retention time prediction (QSRR) for
candidate ranking

Retention time prediction models (QSRR) use molecular
descriptors or structural fingerprints to predict a compound’s RT on

9 https://fiehnlab.ucdavis.edu/projects/fiehnlib
10 https://www.hmdb.ca
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a given chromatographic system. These are essentially quantitative
structure-retention relationship models, akin to QSAR models for
activity or other properties. By training on compounds with known
structures and RTs, a model can learn the relationship between
molecular features (e.g., hydrophobicity, polarity, functional groups)
and retention. The model can then predict RT for new compounds
and thereby assist identification (4, 6, 7, 30, 40, 48). In practice, one
would take the list of candidate structures (proposed by matching m/z
or MS/MS to databases) and rank or filter them by comparing
predicted RT to the observed RT of the unknown feature. Candidates
whose predicted RT deviates greatly from the experimental RT are less
likely to be correct.

Studies have demonstrated that RT-based ranking significantly
improves the chance of including the correct structure among top hits.
For example, Garcia et al. (4) trained machine learning regressors
(including deep neural networks and gradient boosting) on ~80,000
compounds’ RTs (the METLIN SMRT dataset) for a reversed-phase
LC system. They integrated these predictions into a metabolite
annotation workflow, assigning a probabilistic score (z-score) based
on how well a candidate’s predicted RT matches the observed RT after
accounting for prediction uncertainty. In a test where candidates were
filtered by mass and then ranked by this RT score, the correct molecule
was among the top 3 candidates in 68% of cases—a substantial
improvement over mass-based ranking alone, where baseline values
were around 51-60% depending on the dataset. This highlights that
using RT as an additional criterion can greatly enhance identification
success. Similarly, in GC-MS, where RT indices are routinely used, a
recent machine learning model predicted retention indices for
trimethylsilyl-derivatized metabolites with median error ~37 index
units, and using these predictions to rank candidates placed the true
identity first in up to 86.7% of cases with two candidates (and
significantly improved top-3 ranking for multiple candidates) (39).
Although RT predictions may not perfectly eliminate all false hits,
they prioritize the most plausible structures. Indeed, one study found
that the ranking power of predicted RT was comparable to that of MS/
MS spectral matching—combining both yields the best results (28).

It is important that RT predictions have to be reasonably accurate
(on the order of a few seconds to at most a minute error for LC, or a
few RI units for GC) to be useful. Early QSRR models suffered from
limited accuracy due to small training sets (hundreds of compounds).
This typically restricted models to narrow chemical classes or yielded
only rough retention order predictions. The situation has improved
dramatically with larger datasets. The METLIN SMRT dataset release
(80 k compounds) “renewed interest in RT prediction” and enabled
general models covering diverse small molecules. Modern ML models
now achieve mean absolute errors on the order of seconds: for
example, evaluating performance using the Mean Absolute Error
(MAE) and the Median Absolute Error (MEDAE), both reported in
seconds, the best model by Garcia et al. (4) had ~39.2 + 1.2 s mean
error (17.2 s median) on a ~ 10-min gradient, which is typically within
~5% of RT. Another advanced model (RT-Transformer, 2024)
achieved ~27-33 s error in tests, and importantly maintained accuracy
across different chromatographic methods via transfer learning (40).
Such accuracy is sufficient to discriminate many isomers or to flag
candidates with clearly mismatched RT. In practical workflows, one
would usually set an RT tolerance window or score function. For
instance, if an unknown elutes at 5.00 min, and one candidate is
predicted at 4.9 min while another at 8.0 min, the first will score much
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higher. Inclusion of RT scores in tools like MetFrag has shown drastic
improvements: Ruttkies et al. (30) reported that adding retention
information (along with other metadata) improved the top-rank
identification rate from only ~6-9% (using mass and MS/MS alone)
to 71-89% when RT and reference data were considered. Clearly,
QSRR models provide a powerful filter to reduce false positives
in annotation.

Fitch et al. (41) proposed a standardizable Chromatographic
Hydrophobicity Index (CHI) and CHIbt, a standardized RT-shift
descriptor for interpreting Phase I drug biotransformations. By
linking CHI to physicochemical descriptors like clogP and hydrogen
bond donors, they enabled metabolite annotation using predicted RT
behavior—a strategy that could be adapted to untargeted
xenobiotic exposomics.

Calibration of retention time and
retention indices

One of the main hurdles in using RT broadly is variability: RT can
shift due to instrument differences, column aging, or subtle changes
in mobile phase or temperature. Therefore, calibration strategies are
essential to correct RT shifts and make predicted RT applicable across
different runs and machines. Calibration can be achieved by using
well-characterized reference substances—either spiked standards or
endogenous compounds—with known retention behavior. The idea is
to adjust the RT scale of an experiment to a reference scale (or model)
via a mapping function (Figure 1).

A simple calibration approach is the use of retention index (RI)
systems, analogous to GC. In GC-MS, a series of n-alkane standards
is often run, and each compound’s RT is converted to an index (e.g.,
Kovats index) relative to those standards. This compensates for
differences in temperature ramp or column length. For LC, various
RI schemes have been proposed. For example, the chromatographic
hydrophobicity index (CHI) uses a set of standard compounds to
create a reproducible scale for reversed-phase HPLC. More recently,
researchers have explored using endogenous metabolites as
calibrants. Chen et al. (42) developed an “endogenous retention
index” (endoRI) method for ‘RP ultra performance liquid
chromatography (RP-UPLC).
acylcarnitines present in biological samples as internal calibrants.

By leveraging straight-chain
Since acylcarnitines (C, to Cy, etc.) are naturally found in plasma/
serum, they provide a built-in homologous series. The team
established a quantitative relationship between acylcarnitine chain
length and RT, and used this to correct RTs in each run. The result
was a dramatic reduction of RT variability: inter-batch and inter-
platform RT differences dropped from ~1.5 min to 0.15 min (95%
reduction) for 95% of metabolites after endoRI correction. In other
words, using internal compounds to normalize the RT axis allowed
data from different days or instruments to be directly compared
with only a few seconds discrepancy.

Retention time prediction using support vector regression (SVR)
and random forests trained on 3D molecular interaction field (MIF)-
based descriptors has shown high utility in identifying unknowns in
untargeted UPLC-MS workflows. In a study using over 400 authentic
standards, Wolfer et al. (43) demonstrated >80% reduction in false
positives and effective applicability domain modeling via self-
organizing maps (SOMs).
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FIGURE 1

Illustrative workflow for integrating retention time prediction and calibration into metabolite annotation. To start, a machine learning model is trained
on a large RT dataset. From these, a projection (calibration) function is learned to map RTs to given LC or GC measurement conditions. A small number
of known reference molecules in the sample (with known identities and RTs, e.g., human blood metabolites as discussed later) are used to calibrate
experimental vs. predicted RT. The model's expected RT for all candidate structures is adjusted to the current chromatographic conditions, yielding a
“projected RT.” For an unknown feature, its experimental RT is compared to the projected RTs to find matching candidates, and candidates are ranked
by how close their RT is (accounting for uncertainty via a z-score). This approach allows retention time to be used alongside m/z for more accurate

10.3389/fpubh.2025.1687056

metabolite annotation.

More generally, calibration can use any set of known
compounds spanning the RT range of interest. In practice, one
might include a mix of standards in each run, or rely on identified
endogenous metabolites, to act as anchors. These anchors are run
through the same LC-MS method and their known identities allow
one to either: (a) adjust the RT prediction model (e.g., via linear
regression, bias correction, or more complex projection) or (b)
create an index. Approaches like the Bayesian meta-learning
projection by Garcia et al. (4) require as few as 10 known molecules
in an experiment to calibrate predictions to that specific method.
The model uses the small set of observed RTs to learn a mapping
(with uncertainty estimates) from predicted RT to actual RT for
that method. Once calibrated, the predicted RTs are converted to
“projected” RTs for that run, which can be directly compared to
experimental values. This not only accounts for systematic shifts
(e.g., all compounds eluting 0.5 min later than predicted) but can
also handle differences in gradient length or column chemistry to
some extent. The use of z-scores or confidence intervals, as
implemented by Garcia et al. (4), means that the ranking considers
prediction uncertainty—a candidate whose projected RT falls well
within the experimental RT error band will score higher than one
at the edge of the range.

Best results are often achieved by multi-point calibration covering
the chromatographic range. A recent comprehensive study by Zhou
etal. (28) evaluated cross-method RT projection using 30 different LC
methods and 330 compounds, with various sets of calibrants. They
found that using 30-70 carefully selected calibrants that span different
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retention behaviors allowed accurate projection between very different
chromatographic setups. When source and target methods were
similar (e.g., same C,3 column and mobile phase), projected RTs had
<0.5min error (<3% of gradient). Even between quite different
methods, errors were mostly within ~2 min after calibration. This
underscores that with a sufficient and representative calibrant set, one
can translate RT predictions from one modality to another with
high fidelity.

A recent breakthrough in LC-MS retention alignment is the
development of a system-agnostic RI, proposed by Aalizadeh
et al. (31), which allows mapping RT across labs and platforms
using 18 carefully selected calibrants. This harmonization makes
retention time a transportable identifier, analogous to Kovats
indices in GC. The RI approach holds particular promise for
multi-cohort exposomic studies and should be evaluated in
blood-based untargeted workflows.

In summary, calibration strategies—whether using a fixed index
scale or adaptive modeling with internal standards—are crucial to
unlock RT’s full potential for unknown identification. We recommend
that analysts include a set of known metabolites (endogenous or
spiked) in each batch as RT calibrants. Notably, human blood has
many well-characterized metabolites (glucose, amino acids, lipids,
etc.) that can serve this role without needing exotic standards. By
modeling RT against these references, labs can correct drift and even
share comparable RT data across instruments. This makes retention
transferable identifier ~rather than a

time a robust,

lab-specific observation.
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Al and machine learning for RT and
physicochemical property prediction

Recent years have seen rapid growth in Al and machine learning
methods for predicting retention time and related physicochemical
properties. Traditional QSRR approaches used linear regressions or
simple machine learning (like partial least squares or random forests)
on computed molecular descriptors. Artificial neural networks
(ANNs) have shown promise for RT prediction across large and
diverse chemical sets. Bade et al. (44) trained an ANN that achieved
95% RT prediction accuracy within 2 min, enabling high-confidence
screening of drug metabolites and transformation products in
wastewater without reference standards. Modern approaches
increasingly leverage deep learning to automatically learn features
from molecular structures, often outperforming descriptor-based
models. Heinonen et al. (45) pioneered a two-step ML method
(FingerID) to predict molecular fingerprints from MS/MS spectra and
match them to PubChem structures, enabling de novo metabolite
annotation even in the absence of reference spectra. This framework
underpins many modern identification algorithms and supports
discovery beyond known databases. In a comprehensive
benchmarking study, Bouwmeester et al. (46) evaluated seven ML
algorithms for retention time prediction across 36 LC-MS datasets.
While no single method outperformed others across all conditions,
gradient boosting consistently ranked among the top performers with
minimal overfitting risk. Their findings underscore the need for
tailored algorithm selection or model blending to optimize RT
prediction in diverse exposomic contexts. Below we highlight key
advancements in deep neural networks, graph neural networks,
transfer learning and meta-learning, physicochemical property
prediction, and other Al applications in identification.

Deep neural networks (DNNs)

Multilayer feed-forward neural nets can model complex nonlinear
relationships between structural features and RT. Garcia et al. (4) used
a deep neural network (with advanced training tricks like cosine
annealing and weight averaging) to achieve state-of-the-art accuracy
on the SMRT dataset. The DNN outperformed other regressors,
indicating that enough training data can unlock the predictive power
of deep learning. DNNGs treat molecular descriptors or fingerprints as
input; one challenge is deciding how to represent the molecule. In
Garcia’s work, they provided over 5,000 molecular descriptors
(alvaDesc) plus 2,214 binary fingerprints as input features. The
network then learned which features correlate with retention. The
result was a median error of ~17 s, which was (at the time) the most
accurate published result for small-molecule RT prediction. This
demonstrates that with enough data, a neural network can implicitly
learn classical retention trends (like hydrophobicity) as well as more
subtle structural effects (ring systems, functional group interactions
with the column, etc.). Garcia et al. (4) introduced a probabilistic
annotation framework that combines deep learning-based RT
prediction with Bayesian meta-learning for method-specific
projection. Their approach converts predicted RTs into probabilistic
z-scores relative to a small set of identified metabolites, enabling
accurate ranking of annotation candidates even across different
chromatographic systems. In GC-MS-based metabolomics, de Cripan
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et al. (39) showed that accurate retention index prediction of
trimethylsilyl (TMS) derivatives can be achieved using support vector
machines and Dragon molecular fingerprints. They further
demonstrated that prediction accuracy correlates strongly with the
Tanimoto similarity of training-test structures, providing a
quantitative confidence estimate for each RI prediction. In lipidomics,
where chromatographic behavior varies due to matrix complexity and
compound polarity, Noreldeen (47) developed a robust RT prediction
model based on molecular descriptors and validated across human
and mouse datasets. Crucially, the study demonstrated successful RT
calibration across LC-MS instruments using a linear transformation
equation, enabling direct reuse of RT-annotated libraries across
systems. Matyushin et al. (37) applied deep learning to GC retention
index prediction across polar and mid-polar stationary phases,
achieving MAEs as low as 16 RI units. Their layered architecture
supports extension to 2D-GC applications, making it highly suitable
for exposome workflows reliant on derivatized compounds. A
comprehensive review by Liu et al. (5) highlighted the surge in deep
learning RT models following the release of SMRT (48) and RepoRT
datasets, emphasizing transferability, representation artifacts, and the
need for curated multi-CM training data. Their summary affirms the
trend toward harmonized RT-informed annotation pipelines across
experimental conditions.

Graph Neural Networks (GNNs)

Instead of relying on pre-computed descriptors, GNNs operate
directly on molecular graphs (atoms as nodes, bonds as edges). They
perform message-passing to learn an embedding that captures the
molecule’s structure. GNNs have shown excellent performance in
many chemistry tasks and are naturally suited to generalize to novel
structures. For RT prediction, various GNN architectures have been
tested. Kwon et al. (60) introduced a graph convolution model that
achieved good RT predictions by learning from molecular graphs and
was later extended with transfer learning for HILIC vs. RP differences.
One advantage of GNNGs is that they can inherently capture structural
isomer differences that might be lost in simple descriptors. For
example, two isomers with the same formula can have different RT; a
GNN can be trained to distinguish those by subtle structural cues (like
branching versus linear structure affecting hydrophobic surface area).
Some models combine GNNs with other deep learning components -
Retentive Time Transformer (RT-Transformer) (Figure 2) is a notable
example combining a graph attention network (to encode structure)
with a transformer network (to encode learned fingerprints in
sequence). Xue et al. (38) introduced RT-Transformer, a state-of-
the-art hybrid deep learning model combining graph attention
networks with 1D-transformers to predict RT across diverse
chromatographic systems. Pre-trained on over 80,000 molecules, the
model supports transfer learning and achieves a mean absolute error
of 27.3 s on external datasets. Its scalability and accessibility make it a
valuable tool for RT-informed metabolite annotation in exposomics.
This hybrid model was pre-trained on the large SMRT dataset and
then fine-tuned on specific chromatographic conditions via transfer
learning. The result is a highly flexible model that can “adapt” to any
LC method given a small fine-tuning dataset. RT-Transformer
achieved competitive accuracy and demonstrated excellent scalability,
i.e., the same model architecture can handle RP, HILIC, or other
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FIGURE 2
Overview of the RT-transformer deep learning approach for retention time prediction across chromatographic methods. A large dataset of RTs (SMRT,
reversed-phase etc.) is used to train a base model (graph neural network + transformer). Through transfer learning, this model can be fine-tuned on
new chromatographic methods (CM 1, 2, ... N) using smaller datasets of known compounds. The resulting model predicts retention times for the
specific method with high accuracy. This approach greatly improves scalability and allows retention prediction to assist metabolite identification under
varied conditions, as demonstrated by improved annotation accuracy when incorporating predicted RTs.

gradients with minimal loss of accuracy. This is a significant
advancement because it means labs could leverage a pre-trained RT
predictor and just calibrate it with a few dozen known compounds for
their custom method, rather than needing to train from scratch. It
essentially automates the projection concept with deep learning.

Transfer learning and meta-learning

As mentioned, models like RT-Transformer explicitly use transfer
learning to handle different methods. Another approach is meta-
learning, where the model is trained to quickly adapt to new tasks.
Garcia et al’s (4) Bayesian meta-learning can be seen as a lightweight
version: it learns how to adjust predictions with few samples. In both
cases, the underlying principle is that retention mechanisms share
commonalities (e.g., a very polar compound will likely elute early in
RP, and perhaps later in HILIC—the model can learn such patterns)
and differences (the scale and exact ordering differ by method). AI
models that can leverage large, pooled data but specialize to local
conditions are crucial for practical use, since each labs method
has quirks.

Physicochemical property prediction
Besides direct RT prediction, AI is used to predict

intermediate properties that correlate with RT. For instance, log
P (octanol-water partition coefficient) can be predicted from
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structure using machine learning. SIRIUS’s interface uses a
computed XLogP to filter candidates by expected RT range."
Abrahamsson et al. (49) recently proposed a novel approach that
integrates measurements of equilibrium partition ratios between
different organic solvents and water (Ksy) to predictions of
molecular structures. This information can be used as a
fingerprint and, using machine learning, converted into a series
of functional groups that can be used to search chemical
databases. Another property is pKa—knowing a molecule’s pKa
can help predict if it will be ionized under LC conditions, which
drastically affects retention (especially for ion-exchange or if
buffers cause partial ionization). Tools like ACD Labs or open-
source models can predict pKa, and this information could be fed
into retention models or used qualitatively (e.g., expecting that a
molecule that is highly ionized might elute early on RP). Deep
learning has been applied to many such properties (logP, pKa,
solubility, etc.), often achieving better accuracy than older
methods. The integration of these predictions in metabolite ID is
an emerging area. For example, one could imagine using
predicted pKa to choose the correct isomer of an organic acid
that matches an ion-exchange retention time. In practice,
however, since we can now often predict RT directly, the need for
intermediate property prediction is reduced—the model
implicitly accounts for them. Still, having accurate property

11 https://github.com/AspirinCode/sirius
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predictors can aid understanding: if a candidate has a predicted
logP of 1 but requires logP ~4 to elute at 10 min in a given RP
method, that is a quick sanity check to discard it.

Other Al applications in identification

Beyond RT, AI is heavily used in other aspects of
metabolomics. CSI:FingerID (50) uses kernel-SVM methods to
predict a molecular fingerprint from MS/MS spectra, which is
then compared to database structures. This is an example of ML
improving structure ranking by spectral features. CSI:FingerID
transformed database searching by inferring molecular
fingerprints from MS/MS spectra using supervised machine
learning. This allowed metabolite annotation beyond spectrum
libraries and became foundational for follow-on tools like SIRIUS
and COSMIC. Deep learning has also been used to generate
in-silico spectra (to expand MS/MS libraries) and even to propose
novel structures from spectra [e.g., MSNovelist (51), MassGenie
(52)]. These advances complement RT prediction; a future
Al-driven identification pipeline might predict both the spectrum
and retention of candidate structures and score everything
together against the observed data. Some research already heads
this direction, combining multi-modal prediction to boost
confidence. As of 2024, the field recognizes that multi-parameter
scoring (m/z, MS/MS, RT, even ion mobility CCS) is the way to
break the bottleneck of unknown identification. AI provides the
tools to predict each parameter with associated confidence,
enabling a more holistic comparison between an unknown and
candidate structures. The KGMN approach by Zhou et al. (28)
unites three network layers-reaction pathways, MS2 similarity,
and chromatographic coelution-to propagate annotations from
knowns to unknowns recursively. This hybrid model outperforms
MS2-only methods by recognizing in-source fragments and
prioritizing biochemically plausible transformations.

In summary, AI and machine learning have become
indispensable for retention time prediction. They offer accuracy
and generalization far beyond what earlier QSAR models could
achieve. By deploying deep learning models (either pre-trained
or trained on in-house data), researchers can routinely obtain RT
predictions to within a few seconds or a few percent error. These
predictions, when properly calibrated and combined with other
evidence, significantly enhance the reliability of metabolite
identification. As datasets continue to grow (e.g., community-
driven sharing of RT data) and models improve, we expect
retention prediction to become even more robust, possibly
incorporating explainability (so one can rationalize why a
compound is predicted to elute later—e.g., “due to having a long
alkyl chain,” etc.). The key takeaway is that ML-predicted RT is
now a viable, validated tool for metabolomics, and its adoption
is accelerating.

Tools and databases for integrated
identification

Al critically depends on the availability of Big Data. Several
software tools and databases can facilitate the integration of RT
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predictions with traditional MS-based identification. Table 2 shows a
number of these tools and databases.

Here we review some prominent ones and how they utilize (or
could utilize) retention time and Al predictions:

SIRIUS and CSI:FingerID

SIRIUS” is a widely used framework for small molecule
identification from MS and MS/MS data, focusing on molecular formula
determination and fragmentation trees. CSI:FingerID (integrated with
SIRIUS) then scores candidate structures by comparing predicted versus
observed fragmentation patterns (53). Historically, SIRIUS/CSI did not
use RT, focusing on spectral data. However, recent updates have added
features to incorporate RT heuristics. The SIRIUS GUI can import
retention times and even allows the user to apply a logP-based filter: it
calculates an approximate XLogP for each candidate (using the
Chemistry Development Kit) and provides a slider to filter candidates by
logP range, which indirectly corresponds to an RT range. For example,
if an unknown eluted at a very hydrophilic region, one might slide to
only allow candidates with XLogP below a certain threshold (i.e., polar
compounds). This is a rudimentary use of RT, but effective in pruning
obvious mismatches. In future, we anticipate SIRIUS will integrate more
advanced RT scoring—possibly by taking predicted RT (from an
external model or a built-in one) and adding it to the overall score. A
workflow developed in 2023 called COSMIC (Confidence of Small
Molecule Identifications) already suggests combining in silico structure
generation with retention filtering for higher confidence (52). COSMIC
provides a breakthrough in high-confidence annotation of unknowns
absent from spectral libraries by combining machine learning with
probabilistic scoring. When applied to 17,400 metabolomics datasets, it
recovered 1,715 novel structures with FDR control-enabling scale-
compatible confidence filtering in exposomics. As SIRTUS development
continues, users should watch for plugins or options related to RT. Even
now, one best practice is: after obtaining a candidate list from SIRTUS/
CSI, manually cross-check if the candidates’ predicted or known RTs
align with the experimental RT, eliminating those that do not fit.

MetFrag

MetFrag" is an in silico fragmentation tool that scores candidates
based on how well they explain the observed MS/MS peaks. Critically,
MetFrag has been at the forefront of incorporating non-spectral
information as additional scoring terms. The 2016 “MetFrag
relaunched” version introduced the ability to use retention time in
two ways: (1) Internal RT model—if the user provides a file of known
compounds’ RTs in the same method, MetFrag will build a linear
regression model between those compounds’ predicted logP and
their RT. It then predicts a logP for each candidate and uses the
regression to estimate an expected RT; candidates get penalized if
their expected RT deviates from the observed RT of the unknown.
(2) User-defined score—the user can separately compute any

12 https://github.com/sirius-ms/sirius
13 https://ipb-halle.github.io/MetFrag/
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TABLE 2 Software tools and databases for integrated retention time (RT) predictions.

10.3389/fpubh.2025.1687056

Database Owner/institution Purpose/focus Public/non- Number of Number of
public samples/spectra  chemicals
identified
Repository for
European Bioinformatics metabolomics 270,403 samples, 439,537 | 1,687,165 metabolites/
MetaboLights Public
Institute (EMBL-EBI) experiments and derived data files unknowns/features
information
Repository for
Metabolomics National Institutes of ~2,200 MS and NMR ~174,000 metabolite
metabolomics data and Public
workbench (NMDR) Health (NIH) studies structures
metadata
~490,000 mass
Natural product mass
University of California spectrometry files, 1.2
GNPS/MassIVE spectrometry data Public Not specified
San Diego billion tandem mass
repository
spectra
Chemicals detected in 41,474 achiral structures
Blood exposome database | UC Davis/Fiehn Lab Public Not specified
human blood specimens (65,957 PubChem CIDs)
International Agency for
Biomarkers of exposure to 908 dietary and pollutant
Exposome-explorer Research on Cancer Public Not specified
environmental risk factors biomarkers
(IARC)
Environmental toxicants,
950,000 + unique small
METLIN exposome Scripps Research Institute | food contaminants, drugs | Public Not specified
molecules
identification
Small molecule
Human metabolome 253,245 metabolites (3,444
University of Alberta metabolites found in the Public Not specified
database (HMDB) detected and quantified)
human body
Circulating metabolomic
UK biobank UK Biobank/Nightingale Public (restricted 120,000 participants
biomarkers in population 249 metabolic measures
metabolomics Health access) (expanding to 500,000)
cohort
Environmental exposures
European Research during early life 31,472 mother—child
HELIX study Public Not specified
Consortium (pregnancy and pairs
childhood)
Storage and annotation
PeakForest MetaboHUB/INRAE services for metabolic Public Not specified Not specified
profiles
3,700 toxic compounds
Toxic compounds and
T3DB (toxin database) University of Alberta Public Not specified linked to 2,086 protein/DNA
their protein/DNA targets
targets
Drug, drug-target and
11,891 drugs (4,563 FDA
DrugBank University of Alberta pharmaceutical Public Not specified
approved)
information
Small molecule pathway 55,700 metabolites (non-
SMPDB University of Alberta Public Not specified
database redundant)
FooDB University of Alberta Food component database | Public Not specified ~24,000 food chemicals

retention score (e.g., using an external QSRR model or simply an

absolute difference from expected RT) and feed it into MetFrag as an

additional column in the candidate list. MetFrag will then include

that in the final score weighting. These features allow a flexible

integration of RT. The impact is huge: as noted earlier, including

retention data improved MetFrag’s top-rank identifications by many-

fold. Using MetFrag with RT requires a bit more effort (one needs

either reference data or an external predictor), but it is a highly
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recommended practice. For example, if analyzing a batch of plasma

metabolites on an LC-MS, one can identify a subset of known

metabolites first (using standards or library matches), fit a quick RT

vs. logP curve, and then run MetFrag with that model to prioritize

candidates for the unknowns. The result will favor chemically

plausible candidates that fit the chromatography. MetFrag’s

documentation and training materials provide guidance on how to

format the RT training file or custom score input.
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HMDB (human metabolome database)

HMDB (54) is a rich database of human metabolites, including
structures, concentrations, and in many cases experimental spectra.
The Human Metabolome Database (HMDB 5.0) now catalogs over
217,000 annotated metabolites and more than 1.5 million
derivatized entries, including predicted RT, MS/MS, and NMR data.
These additions significantly enhance identification coverage in
untargeted exposomics, especially for blood exposome compounds
and microbial or food-derived metabolites identification. HMDB
serves as a reference library—one can search by m/z or formula to
find possible matches that are known human metabolites. While
HMDB is not an identification software per se, it is invaluable for
prioritizing biologically relevant candidates. Retention times in
HMDB: HMDB does include some GC-MS and LC-MS spectral
data for certain entries (e.g., from literature or experimental assays),
and these often come with RT or RI information. For instance,
HMDB’s MS spectra section may list a retention index for a
metabolite’s GC spectrum, or an LC retention time if available.
However, these are not standardized and only apply if the exact
same method was used. HMDB 5.0 (2022 update) expanded content
but still does not offer a unified retention index system. Instead of
direct RT usage, HMDB’s role in our context is: provide a filtered
search space (metabolites likely present in blood). If a candidate is
in HMDB, it is more likely to be a real endogenous compound.
Additionally, HMDB contains predicted properties (like logP, pKa)
for many metabolites—those can be quickly accessed to sanity-
check RT expectations. For example, if your unknown has an m/z
matching glucose and another compound, and your chromatography
is such that only a very polar compound would elute where it did,
HMDB tells you glucose is highly polar (logP —3.24) whereas the
other candidate is hydrophobic (logP +2). Such data, coupled with
the observation, would favor glucose. In summary, HMDB is a
database to cross-reference structures and their known data
(though it does not perform the matching automatically, many
analysis pipelines incorporate HMDB queries).

PubChem

PubChem is the largest public chemical database, containing
millions of compounds. Many identification workflows (including
SIRIUS, MetFrag, and others) query PubChem for candidate
structures by formula or mass. PubChem ensures we cast a wide net—
the true identity could be a xenobiotic or unusual compound not in
HMDB or other metabolic databases. However, PubChem provides
almost no chromatographic data, as it is a general chemical repository.
There are calculated properties (PubChem predicts logP, water
solubility, etc., through its services), which could be used similarly to
HMDB’s data for rough filtering. Some tools (like the PubChem search
in MetFrag) can rank by the number of references, implying
compounds commonly studied (e.g., drugs, natural products) rank
higher. When using PubChem results, applying RT filtering is critical
because the list can be enormous. This is where an automated RT
prediction tool (like an QSRR model) is extremely useful: one can take
all PubChem candidates and score them by RT fit to narrow down. So
while PubChem itself does not aid directly with RT, it provides the
candidate pool on which we apply our RT+AlI filters.
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GNPS (global natural products social
platform)

GNPS is primarily a platform for sharing and matching MS/MS
spectra (especially for natural products and metabolites). It excels at
spectral networking—grouping unknown spectra to known
compounds or to each other based on similarity. GNPS’s library search
can identify known compounds if an exact or similar spectrum is
present in its extensive database. Retention time in GNPS: currently,
GNPS spectral libraries do not systematically include retention
indices; they focus on spectral data (though some contributors include
a field for RT in their metadata). GNPS does incorporate optional
retention time windows in some workflows—for example, when
aligning features, one can set an RT tolerance to consider two features
the same if their RTs are close. But in terms of identification, GNPS
outputs a candidate match (with a spectral score) and often leaves it
to the user to verify RT separately. In an unknown identification
scenario, GNPS might tell you: “this spectrum best matches
lysoPC(18:1) with score X It is then up to you to check if the RT is
reasonable for a Cy4:1 lysophosphatidylcholine in your LC method. If
you had a predictive RT model for lipids, you could confirm that. In
fact, one study used a machine learning model to predict RT of lipids
in an LC-HRMS lipidomics workflow and showed it helped confirm
lipid annotations (62). So GNPS provides the spectral match, and an
external RT model (or empirical expectation) provides an orthogonal
check. We recommend incorporating RT filters when using GNPS
outputs: for instance, if GNPS gives 5 candidate matches for an
unknown, see if any have known or predicted RT close to your
observation. Databases like LipidBlast' or the Committee on
Analytical Measurement (CITAC)" Evaporative Light Scattering
Detector (ELSD) retention index for lipids can be helpful
reference points.

Other tools/databases

There are many more resources in metabolomics. MassBank/
MoNA (MassBank of North America)'® contains thousands of spectra
often with retention information. A recent review compiled that
MassBank (as of late 2023) had ~81,167 LC data records with RT and
even 1,761 GC records with RI (5). These repositories could be mined
to train better RT models or simply used to cross-check if an
unknown’s RT matches a library entry for a given compound. PredRet
(32) is a database specifically of experimental RTs across multiple
systems, which was used to test RT projection methods. There are also
vendor libraries (e.g., Agilents MassHunter Personal Compound
Database and Library (PCDL)" or Bruker’s HMDB library'®) that
include retention indices for GC or RT for LC under defined methods.

14 https://fiehnlab.ucdavis.edu/projects/lipidblast

15 https://www.eurachem.org/images/stories/Guides/pdf/
QUAM2012_P1.pdf

16 https://mona.fiehnlab.ucdavis.edu/

17 https://www.agilent.com/cs/library/usermanuals/public/G3336-90030_
PCDLManager_QuickStart.pdf

18 https://store.bruker.com/products/
bruker-hmdb-metabolite-library-2-0
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These can directly support identification by matching your data to
entries that have both spectral and RT matches. NIST’s Retention
Index Database' is another example of a specialized collection. For
software, beyond MetFrag and SIRIUS, there is MS-DIAL® and
MS-FINDER* which are free tools that also support retention indices
for GC-EI data and have fields for LC retention (though they require
user to input some reference values for LC). Retip* (described earlier)
is available as an R/Python tool to build RT prediction models with
integrated databases—it is worth noting it comes pre-loaded with
some retention libraries from Riken and UC Davis for certain
conditions, which could be directly applicable if your method is
similar. The Retip R package is a powerful open-source framework
that integrates five different machine learning algorithms to predict
RT with high accuracy across HILIC and RPLC. By incorporating
Retip into MS-DIAL and MS-FINDER, Bonini et al. (55) achieved a
68% reduction in candidate annotations in a test dataset,
demonstrating that coupling RT prediction with MS/MS scoring
substantially improves metabolite identification confidence.

A comprehensive LC-Orbitrap screening workflow developed by
Angeles et al. (56) highlights how stringent RT and MS2 filtering
(5 ppm mass error, isotope presence, replicate consistency) can reduce
false discovery rates in large-scale exposomics. Their detection of
penilloic and penicilloic acid across six countries illustrates the utility
of such workflows for global-scale chemical surveillance.

In conclusion, the ecosystem of tools and databases is increasingly
supportive of multi-parameter identification. Best practice is to use a
pipeline that combines complementary tools: for example, use
SIRIUS/CSI or GNPS for MS/MS-based candidate generation, then
use MetFrag or an in-house script to apply RT scoring to those
candidates, utilizing databases like HMDB for biologically relevant
filtering. Always cite the sources of your RT data or predictions when
reporting an identification—this transparency helps build confidence
in the result and allows others to reproduce the reasoning [e.g.,
“Compound X was identified as the likely structure because its
predicted RT of 5.2 min matches the observed 5.0 min (within error),
whereas other isomers had predicted RTs > 8 min”]. By leveraging the
available software and DBs, analysts can vastly improve the throughput
and reliability of unknown identification in untargeted metabolomics.

Using known blood substances as
internal calibrants

Calibrants dramatically improve RT transferability across labs.
Zhang et al. (57) propose a post—projection calibration strategy that
improves RT projection accuracy across chromatographic methods.
Using 35 calibrants, their ReProjection model reduced projection
errors below 3.2% and offers a generalizable route for integrating
public RT resources into local annotation pipelines. However, these
have to be added before measurements, so that they cannot help with
existing measurements.

19 https://chemdata.nist.gov/dokuwiki/doku.php
20 https://systemsomicslab.github.io/compms/msdial/main.html
21 https://systemsomicslab.github.io/compms/msfinder/main.html

22 https://www.retip.app

Frontiers in Public Health

10.3389/fpubh.2025.1687056

Human blood plasma and serum, the principal matrices of
exposomics, offer a unique opportunity as they have a core set of
metabolites that appear in virtually every sample (glucose, lactate,
amino acids like alanine and glutamine, essential fatty acids, etc.).
These known endogenous compounds can serve as convenient
internal calibrants for retention time in each run. The concept is to
take advantage of compounds already present in the sample matrix,
whose identities can be confirmed (either via standards or strong
database matches) and use them to adaptively model the RT behavior
for that specific run or batch.

Steps to utilize internal calibrants:

1. Identify a set of known metabolites in the sample. These could
be confirmed by running pure standards or by confident library
matches. Priority should be given to compounds covering a
range of RTs—e.g., an early-eluting polar metabolite (like citric
acid), a mid-eluting one (like caffeine or tryptophan), and a
late-eluting hydrophobic one (like cholesterol if doing broad
lipidomic runs, or a long-chain fatty acid). The more points and
the more spread-out they are, the better the calibration. In
practice, even 5-10 compounds can be sufficient, as
demonstrated by Garcia et al. (4).

2. Obtain their experimental RTs and theoretical RT predictions.
The theoretical predictions can come from a generic model
(trained on a large dataset for that modality) or even from
literature if the compound’s RT under identical conditions is
known. Often, one might just use the model’s prediction
(which could initially be off due to method differences, but that
is fine). Now you have pairs of (predicted RT, observed RT) for
each calibrant.

3. Fit a calibration model. This could be as simple as a linear
regression (adjusting slope and intercept), or more complex
(polynomial, or a warping function). Often a linear shift +
scale is enough if the method differences are primarily
gradient timing or flow rate differences (causing a nearly
uniform shift/stretch of RT). For instance, if most
compounds elute 20% earlier than predicted, a calibration
might derive a factor to multiply predicted RTs by 0.8.
Sometimes a second-order fit might capture slight
curvature (if early and late “eluters” shift differently). In
Garcia et al’s (4) meta-learning approach, they effectively
learn a small Bayesian model for this mapping that also
outputs uncertainty. The output is a function that can input
any predicted RT and output a calibrated RT for the
current run.

4. Apply the calibrated model to all candidate predictions. If
you have a list of candidate structures (from formula matching),
predict their RT with the base model, then adjust via the
calibration function to get an estimated RT specific to your run.
This yields what Figure 2 (above) calls the “projected
database” of RTs.

5. Compare unknown features to the calibrated predictions. For
each unknown feature with an observed RT, find which
candidate structures have a projected RT near that value. One
can calculate a difference or z-score (difference divided by the
prediction error). Rank candidates by this score—smaller
difference (within error) = better rank. If the difference is

beyond a reasonable threshold, that candidate can
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be considered incompatible. Known substances in blood thus
act as an adaptive model: if today the column is a bit slower, all
predictions get shifted accordingly; if a different gradient is
used, the model automatically compensates once it learns from
the calibrants.

An example of this in practice: suppose an untargeted LC-MS of
serum identifies metabolites like caffeine (RT 4.2 min observed) and
leucine (RT 2.1 min). The global model predicted caffeine at 4.5 and
leucine at 2.5 min for the standard gradient. The calibration fit might
realize a factor of ~0.93 on RT (since both came out ~7-20% earlier).
After calibration, the model predicts another compound, say
hypotaurine, to elute at 1.0 min instead of 1.2 min it originally
thought. If you indeed see a feature ~1.0min that matches
hypotaurine’s m/z, that bolsters the identification. Conversely, if a
candidate was predicted (after calibration) to appear at 8 min but your
unknown is at 3 min, you can drop that candidate.

One must be cautious that the calibrants themselves must
be correctly identified (garbage in, garbage out). Thus, it is ideal to use
high-confidence metabolites (possibly level 1 IDs confirmed with
standards). Many labs include a mixture of authentic standards of
common metabolites spiked into a representative matrix as part of their
quality control—these can double as RT calibrants. Alternatively, natural
ubiquitous metabolites suffice if you are confident in their annotation.

Another consideration is matrix effects: in complex blood
extracts, very early or very late RT extremes might have fewer features.
If your unknown falls outside the RT range covered by calibrants,
extrapolation of the calibration model can be less reliable. To mitigate
this, try to have calibrants near the boundaries of your chromatogram
(e.g., a sugar that elutes at void volume, and a long-chain lipid that
elutes near the end). If not, be more conservative in interpreting RT
match for compounds beyond the calibrant range.

Using known blood metabolites as calibrants is essentially
creating an in situ retention index system: instead of referencing an
external standard mix, you reference inherent compounds. This has
the benefit of no additional sample preparation and captures any

10.3389/fpubh.2025.1687056

matrix-induced shifts as well (since calibrants experience the same
matrix). The Talanta study using acylcarnitines is a prime example—
they leveraged metabolites naturally present to create a quantitative
RT scale (endoRI) (43). We encourage metabolomics researchers to
adopt similar strategies: for any dataset, list a few confidently
identified compounds and use them to “lock” the RT scale of that
dataset. This can be done post hoc too—for existing datasets, if
you can retrospectively identify some features, you can recalibrate
and re-search unknowns with improved accuracy.

Advances in RT prediction models and
their integration into workflows

Traditional QSRR models, such as linear regression or small
nonlinear approaches using physicochemical descriptors (e.g., logP,
polar surface area, hydrogen-bond donors/acceptors), offer the
advantages of interpretability and require relatively few training
compounds. However, their predictive accuracy tends to plateau,
especially when applied across chemically diverse datasets. By
contrast, deep learning and graph-based models (e.g., DNNs,
RT-Transformer, GraphRT) exploit large-scale datasets such as SMRT
or RepoRT to achieve far higher accuracy, often reducing prediction
errors to mere seconds on RPLC gradients. These models can capture
complex, nonlinear retention patterns and subtle structural effects
(such as branching or isomerism), but function more as “black boxes”
with limited mechanistic transparency.

An emerging middle ground is provided by transfer learning and
meta-learning techniques, which retain the power of global models
while adapting to local conditions with minimal additional data. For
example, the Bayesian meta-learning approach described by Garcia
et al. (4) enabled recalibration of a global DNN predictor using only a
handful of calibrants, consistently achieving cross-laboratory errors
below 0.3 min. This represents a major practical benefit, as it reduces
the need for each lab to retrain models from scratch while maintaining
accuracy across diverse chromatographic systems.

TABLE 3 Use of retention time (RT/RI) in major annotation tools and workflows.

Tool/workflow

RT/RI input capability

Use of RT in
scoring/ranking

Calibration or RT
alignment options

Outputs/integration

MetFrag (30) Accepts observed RT; can
incorporate predicted RTs (from

QSRR/ML).

RT deviation penalizes
candidates; requires external

predicted RT source.

No internal calibration; external = Ranked list of candidates with

RT model calibration composite score (can include

recommended. RT).

SIRIUS/CSI:FingerID (SIRIUS | No direct RT input; LogP slider

manual) acts as a proxy filter.

RT.

N/A (filter only); user can
exclude candidates

inconsistent with expected

None. Ranked formulas/structures by

MS/MS score only.

KGMN Zhou et al. (61) Uses chromatographic co-elution

RT contributes indirectly

Not applicable (relative within- Annotation network linking

filter externally.

patterns between known and (binary co-elution link); no sample). unknowns to known
unknown features; does not use numerical RT scoring. metabolites; confidence scores,
absolute RT values. no explicit RT score.

COSMIC (52) RT not used in scoring; users can | Confidence score based on None. Candidate list with ML-based

MS/MS fragmentation and

metadata; no RT term.

confidence score; RT verification

possible post hoc.

MetFrag is currently the most flexible in incorporating RT explicitly, provided users supply predicted RTs or calibrants. SIRIUS/CSI:FingerID offers an indirect proxy via logP filtering but does
not yet integrate RT in scoring. KGMN leverages relative RT through co-elution rather than absolute values. COSMIC focuses on large-scale confidence scoring without RT, though external

RT filtering can complement its workflow.
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The integration of calibration strategies also highlights trade-offs
between RI-based approaches and model-based projection methods
(Table 3). RI systems, such as Kovats indices for GC or chromatographic
hydrophobicity index (CHI) for LC, provide absolute, portable scales
that facilitate reproducibility and data sharing across laboratories. In
contrast, model-projection strategies (e.g., z-score calibration using
local calibrants) can more flexibly fine-tune global models to the
specific conditions of a given experiment, often yielding higher within-
study accuracy. Endogenous calibrants (endoRI), such as acylcarnitines
in plasma, further extend this concept by leveraging compounds
inherently present in biological samples to anchor RT scales.

Taken together, these comparisons underscore that no single
approach is universally superior. Instead, QSRR and AI-based methods,
index systems and projection approaches, offer complementary
strengths: interpretability versus accuracy, reproducibility versus
flexibility. Explicitly articulating these trade-offs helps ensure that
researchers adopt RT-aware workflows that are both scientifically
robust and practically feasible across different experimental settings.

Best practices and recommendations

Bringing together the insights above, here are best-practice
recommendations for improving unknown metabolite identification
by integrating retention time, QSAR models, and Al predictions:

o Incorporate RT from the start: Always record accurate retention
times for all features during LC-MS/GC-MS data acquisition
(ensure your data processing exports RT for each peak). Treat RT
as a standard part of the feature annotation (just like m/z and
MS/MS spectrum).

o Use multi-modal evidence in identification: Do not rely on m/z or
spectral match alone. Use retention time as a critical filter or
scoring factor. If a library hit has a vastly different RT (or RI) than
your unknown, consider it suspect even if spectra match.
Conversely, if an unknown’s RT matches a predicted or literature
RT for a candidate, give that candidate a higher priority.

o Build or apply RT prediction models appropriate to your
chromatography: If working in RPLC, you can leverage published
models (e.g., those trained on SMRT). Tools like Retip allow
you to train a custom model using ~300 known compounds—
consider doing this if you have a rich in-house library. For HILIC
or other less common systems, try transfer learning from a base
model or gather a small training set of standards. Always test the
model’s accuracy on a handful of knowns to gauge its error.

o Calibrate retention times for each run/batch: Implement a
retention index or calibration scheme. For LC, you can simply
inject a standard mix (e.g., a mixture of amino acids or a
commercial RT calibration mix) or rely on endogenous calibrants
as discussed. Perform calibration early in your data analysis. For
GC, always calculate retention indices for unknowns using
alkane standards (if your method allows)—most GC libraries
expect RI for matching.

Leverage software capabilities: Use MetFrags retention time
scoring option if doing in silico fragmentation ranking. In
SIRIUS, use the logP filter slider to remove implausible
candidates (and stay tuned for more RT integration in future
versions). In MS-DIAL or other pipelines, make use of any
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retention time alignment and annotation features—for instance,
MS-DIAL can match features to a database with RT constraints
if you provide one.

o Utilize databases and literature: Before assigning an ID, check
resources like HMDB or publications for reported retention
times of that metabolite under similar conditions. For GC,
compare your measured RI to known RI values (NIST webbook
or literature)—a match within ~+ 10 index units strongly
supports the ID. For LC, if a metabolite was previously identified
in a similar method, use that as supporting evidence (keeping in
mind method differences).

o Combine Al predictions with expert knowledge: Al models are
powerful, but still benefit from chemical intuition. If a model
predicts an RT that seems off given known behavior (e.g., it
predicts a very polar molecule to elute extremely late on Cy),
double-check and consider alternative models or descriptor
checks. Use predicted properties (logP, pKa) to sanity-check: e.g.,
if a candidate is extremely hydrophobic but your unknown eluted
early in a polar fraction, that is a red flag.

o Internal standard usage: In prospective studies, include a set of
internal standards spanning the polarity range. Isotopically
labeled versions of metabolites can be ideal as they co-elute with
natives. These will ensure precise RT references and also help
monitor any chromatographic drifts during the run.

o Continuous model validation: As you confidently identify more
compounds in your dataset, iteratively feed those back to refine
your RT model. This adaptive approach (akin to active learning)
can improve predictions for the remaining unknowns. Many of
the mentioned tools allow dynamic addition of calibrants or
re-training.

o Document and report the RT evidence: When publishing or
reporting identifications, note the retention time and how it was
used. For example: “Compound X was putatively identified as Y;
supporting evidence includes an observed RT of 5.3 min, which
closely matches the predicted RT of 5.1 min (error ~4%) for Y on
our C,3 method. Other isomers had predicted RTs of >8 min,
making them unlikely.” This not only justifies the ID but also
contributes to collective knowledge of RT data.

o Stay updated with new models and tools: The field is evolving —
new deep learning models (like retention time transformers,
graph neural nets) are being published. New databases (like
expanded MassBank (59), PredRet (32) updates, etc.) are coming
online with more retention data. Keep an eye on these
developments, as they can be quickly applied to improve your
analyses. For instance, if a new model drastically improves HILIC
RT prediction, adopting it could resolve some ambiguous IDs
that were previously uncertain.

To promote reproducibility and harmonization of RT-informed
metabolomics workflows, we recommend that authors include the
items listed in Box 1 when reporting retention time calibration.

By following these practices, researchers can achieve more
accurate and confident identifications in untargeted metabolomics
and exposomics (see Box 2). The combination of high-resolution MS
data with AI-driven RT prediction and proper calibration constitutes
a powerful approach to tackle unknown features. What used to be a
bottleneck (having tens of thousands of “unknown unknowns” in a
metabolomic profile) can gradually be alleviated by systematically
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BOX 1 Retention time calibration checklist.

1. Calibration compounds and range

« List the internal or external calibrant compounds used, including their

identities and concentrations (or source, if endogenous).

« Report the retention time span they cover, ensuring early- and late-eluting
compounds are included.

2. Chromatographic method details

« Specify stationary phase (column chemistry, dimensions), mobile phase

gradient program, flow rate, column temperature, and buffer

composition/pH.

o These parameters are critical for contextualizing retention times and
enabling reproducibility.

3. Calibration function/model

« Describe the mathematical function used to relate predicted and observed
RT (e.g., linear regression, polynomial fit, retention index scale).

« Note if a z-score or probabilistic correction was applied.

4. Calibration performance

o Report residuals or error statistics for calibrants (e.g., RMSE, median
absolute error, R2).

« Provide a statement such as: “Calibration achieved residuals <0.2 min for
95% of calibrants.”

5. Reference scale or index

« Indicate whether a standardized retention index (e.g., Kovats RI, CHI) or

endogenous retention index (endoRI) system was used.

o State the reference compounds (e.g., n-alkanes, acylcarnitines).

6. Quality control information

« Document how calibration was checked over time (e.g., across batches,

runs, or instruments).

o If calibration stability was monitored, report any drift or corrections
applied.

BOX 2 Getting started tomorrow: integrating RT into your
metabolite ID workflow.

1.

Record all retention times: ensure your LC-MS or GC-MS data
processing exports accurate RTs (or Rls) for every detected feature.
Treat RT as a standard piece of metadata for each peak, just like m/z or
MS/MS spectrum.

. Calibrants at hand: select a set of reference compounds (endogenous

metabolites or spiked standards) that span the chromatographic range -
from early to late eluters. Run these in your system to serve as
RT calibrants.

. Pick a prediction tool: choose a QSRR/RT prediction model suitable for

your needs. You can use open tools (e.g., Retip in R, or published deep
learning models) and/or train a simple model using ~20-50 known
compounds from your labs library.

. Calibrate and predict: apply the model to predict RTs for candidate

structures. Use your reference compounds to calibrate or align
predictions to your instrument (simple linear fit or retention index).
Then for each unknown, compare its observed RT to predicted RTs—
filter out candidates that fall outside an acceptable window (e.g., > + 5%
deviation).

. Verify and report: for top candidate IDs, cross-check against literature

or databases for matching RT (under similar conditions). Document
how RT was used to support identifications in your report or
supplementary info (include predicted vs. observed RT, calibration
details, etc.). This transparency will strengthen confidence in your
results.
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narrowing possibilities and pinpointing structures that make sense
both in mass and in chromatographic behavior.

Limits and caveats

While RT prediction has advanced substantially, several limitations
and edge cases remain important for practical implementation.
Awareness of these applicability domain (AD) constraints can help
researchers avoid misinterpretation and overconfidence in predictions.

Non-retained compounds in RPLC

Highly polar or ionic compounds may be essentially unretained
in reversed-phase LC, eluting near the void volume. Such early-eluting
features fall outside the useful range of most RPLC QSRR models, and
predictions in this regime are often unreliable. Aalizadeh et al. (31)
addressed this issue by developing a classifier to flag non-retention on
C18 columns, illustrating that a dedicated check for non-retention is
feasible. In practice, we recommend that analysts first assess whether
a compound is likely to be unretained (e.g., predicted to elute at
<0.5 min or with extremely high polarity) before applying an RPLC-
based RT prediction.

lon-pair and ion-exchange
chromatography idiosyncrasies

Specialized chromatographic modes such as ion-pairing LC or
ion-exchange LC rely on unique ionic interactions that general RPLC
models cannot capture. Even subtle changes in conditions (e.g., mobile
phase pH, buffer composition, salt concentration, counter-ion
identity) can dramatically shift retention times, narrowing the
applicability domain for predictive models. Consequently, if an
unknown was analyzed under ion-pair or ion-exchange conditions, a
standard RPLC model should not be applied blindly. Instead, a mode-
specific model or at minimum a locally calibrated approach is
required. Users should verify that the model’s training data include
similar ionic conditions, or consider re-training with appropriate
calibrants before relying on predictions.

Chemical-space distance versus error
growth

RT prediction models, like other QSAR/QSRR frameworks, are
most reliable within the chemical space they were trained on.
Prediction error tends to grow as a compound’s structure diverges
from the training set, for example in the case of novel scaffolds or
extreme physicochemical properties. Users can apply simple AD
checks, such as examining whether a compound’s descriptors fall
within the training range, or by calculating leverage values in PCA
space. Several modern tools (e.g., Retip, QSRR Automator) provide
automated AD warnings or prediction confidence intervals; if an
unknown has a very high uncertainty or lies outside the AD, its RT
prediction should be interpreted cautiously. These checks help avoid
misidentification due to model overreach.
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Extrapolation beyond calibrant range

Calibration strategies should not be extrapolated beyond the
range covered by calibrants. For example, if calibrants span 1-10 min
but a compound elutes at 12 min, the calibrated model is operating in
extrapolation mode, where errors may be large and unpredictable. To
should bracket the entire
chromatographic run, ideally including an early-eluting polar

minimize this risk, calibrants
compound (near the void) and a late-eluting hydrophobic compound
(near column wash). If such coverage is not achievable, identifications
outside the calibrant range should be treated with greater caution. The
inclusion of a calibrant panel spanning the RT range provides a
practical safeguard against over-extrapolation.

Taken together, these caveats emphasize that RT prediction, while
powerful, is not universally reliable. Proper consideration of
chromatographic modality, retention regime, chemical space, and
calibrant coverage ensures more robust application and prevents over
interpretation of results.

Conclusion

Untargeted metabolomics is entering an era where integrated data
analysis—combining m/z, MS/MS, retention time, and even ion
mobility—is the norm for rigorous metabolite identification.
Chromatographic retention time, once considered a secondary or
even nuisance parameter, is now recognized as an independent
structural signature that can greatly aid identification when used
intelligently. By developing RT prediction models (QSRR models and
modern ML predictors) and calibrating them to specific experimental
conditions, we can exploit RT to rank candidates and reduce false
positives. This is a transformative improvement: studies show major
boosts in correct identification rates when RT information is included
in annotation workflows. The approach spans all chromatographic
modalities—from reversed-phase and HILIC in LC to gas
chromatography—each benefiting from tailored models and
calibration techniques. Al and deep learning methods, empowered by
large datasets, are key enablers, delivering accurate predictions and
even the flexibility to transfer those predictions across different
chromatographic setups.

Crucially, the tools to implement this strategy are increasingly at
our disposal: algorithms like RT-Transformer for retention prediction,
platforms like SIRIUS and MetFrag that incorporate multi-criteria
scoring, and databases like HMDB and GNPS providing reference
points. As we have outlined, using known blood metabolites as
internal RT calibrants is a practical way to adapt these innovations to
real-world samples without extensive extra work—your sample
inherently contains a roadmap for RT alignment if you know where
to look.

When incorporated into candidate ranking algorithms, RT
prediction significantly improves annotation confidence. In landmark
studies, correct metabolite IDs were recovered among top-ranked
candidates in 68-86% of cases when RT predictions were included—
compared to far lower performance using mass-based scores alone.
This leap in performance is especially impactful for metabolites with
few or no spectral matches in existing databases, which is often the
case in exposome research.
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To fully leverage RT as an identifier, however, three key
developments are needed: (1) Reliable RT Prediction Models
Across  Modalities: Deep learning architectures, such as
RT-Transformer and graph neural networks, have achieved mean
absolute errors of <30 s for RP-LC and promising transferability
to HILIC and GC systems. These models allow structure-based
RT prediction even for compounds lacking experimental RT
entries, including emerging contaminants. (2) Run-Specific
Calibration for RT Transferability: Because RTs shift between
instruments and over time, the development of robust calibration
strategies using endogenous metabolites (e.g., acylcarnitines,
amino acids) as internal calibrants is essential. Methods such as
Bayesian meta-learning and endogenous retention index
(endoRI) scaling correct systematic bias and enable comparison
across datasets. (3) Integration with Candidate Scoring
Frameworks: Platforms like MetFrag and SIRIUS now support RT
filtering or scoring, enabling users to weight candidate structures
by predicted RT proximity. This approach is especially effective
when MS/MS spectra are absent, and it harmonizes with suspect
screening workflows increasingly used in environmental
exposomics.
that all
metabolomics and exposomics studies adopt a mindset of

In conclusion, we recommend untargeted
integrative identification—leveraging retention time alongside
spectral data and leveraging Al-based QSAR models for
prediction. By doing so, the community will accelerate the
identification of “unknown” features, improve the consistency of
metabolite annotation across labs, and ultimately extract more
biological insight from metabolomics data. With best practices in
place, retention time will no longer be an underused feature, but
rather an indispensable element of the metabolomics
identification toolkit, supported by QSAR, AI, and sound
analytical calibration. This holistic approach positions us to
tackle the long tail of unknown metabolites with greater
confidence and accuracy than ever before.
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