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Ethical challenges in scene
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tJiangsu Open University, Nanjing, China, 2School of Electronic and Information Engineering, Liaoning
University of Technology, Jinzhou, China

Introduction: Integrating Al into public health introduces complex ethical
challenges, especially in scene understanding, where automated decisions
affect socially sensitive contexts. In contexts requiring heightened sensitivity,
including disease surveillance, patient monitoring, and behavioral analysis, the
interpretability, fairness, and accountability of Al systems are crucial parameters.
Conventional approaches to ethical modeling in Al often impose normative
concerns as external constraints, resulting in post-hoc evaluations that fail
to address ethical tensions in real time. These deficiencies are especially
problematic in public health applications, where decision making must safeguard
privacy, foster social trust, and accommodate diverse moral frameworks.
Methods: To address these limitations, this study introduces a methodological
framework that integrates ethical reasoning into the learning architecture itself.
The proposed model, VirtuNet, incorporates deontic constraints and stakeholder
preferences within its computational pathways, embedding ethical admissibility
into both representation and decision processes. Moreover, a dynamic conflict-
resolution mechanism, reflective equilibriumstrategy, is developed to adapt
policy behavior in response to evolving ethical considerations, facilitating
principled moral deliberation under uncertainty. This dual-structured approach,
combining embedded normative templates with adaptive strategic mechanisms,
ensures that Al behaviors align with public health values such as transparency,
accountability, and privacy preservation.

Results and discussion: Experimental evaluations reveal that the framework
achieves superior ethical alignment, reduced norm violations, and improved
adaptability compared to traditional constraint-based systems. By bridging
formal ethics, machine learning, and public interest imperatives, this work
establishes a foundation for deploying ethically resilient Al in public health
scenarios demanding trust, legality, and respect for human dignity.

KEYWORDS

ethical reasoning, public health Al, scene understanding, deontic constraints and
stakeholder preferences, reflective equilibrium strategy

1 Introduction

The integration of artificial intelligence (AI) into public health has revolutionized how
we address complex challenges, from monitoring disease outbreaks to managing large-
scale health crises. Scene understanding technologies, in particular, offer immense potential
in analyzing visual data to support timely interventions and resource allocation. Despite
these advancements, their deployment raises critical ethical concerns, including issues of
privacy, bias, and accountability. Effective implementation of these systems requires not
only technical innovation but also a thorough examination of their societal implications
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to ensure equitable and responsible use (1). By addressing
these concerns, Al-driven scene understanding can serve as a
transformative tool for enhancing public health outcomes while
safeguarding individual rights (2).

Initial efforts to apply artificial intelligence to scene
understanding in public health relied on systems designed to
follow predefined rules and logical structures. These methods were
particularly adept at identifying specific conditions or behaviors,
such as overcrowding or hygiene violations, based on structured
criteria (3). Although these systems provided interpretability and
consistency, their rigid frameworks often struggled to adapt to
the dynamic and diverse nature of public health environments
(4). Moreover, their dependence on extensive domain-specific
knowledge limited their scalability, making them less effective in
addressing novel or unforeseen scenarios (5).

To address these challenges, researchers explored adaptive
algorithms capable of learning patterns directly from labeled
datasets. These models showed promise in tasks like monitoring
physical distancing or mask compliance, offering improved
flexibility and efficiency (6). However, their reliance on annotated
data introduced vulnerabilities, such as limited generalizability
and potential biases stemming from unrepresentative datasets
(7). Moral aspects, such as information confidentiality and the
demand for open judgment processes, have likewise surfaced as
critical issues, underlining the necessity of aligning computational
precision with social responsibility (8).

Recent advancements have shifted focus toward deep learning
architectures, which excel at capturing complex and nuanced
patterns in unstructured environments. Architectures such as
convolution-based deep learners and attention-driven frameworks
have exhibited outstanding performance in critical domains
such as epidemic surveillance and population concentration
assessment (9). While these approaches have significantly enhanced
performance, they also bring challenges related to interpretability
and ethical risks, such as algorithmic bias and surveillance
concerns (10). Ensuring transparency and fostering public trust in
these technologies remain critical priorities, necessitating ongoing
efforts to align their deployment with ethical and regulatory
standards (11).

Given the limitations of symbolic systems in adaptability,
the biases and opacity of data-driven methods, and the ethical
concerns surrounding deep learning, we propose an approach
that balances technical robustness with ethical responsibility. Our
method emphasizes the integration of fairness-aware learning,
interpretable architectures, and context-aware data curation
tailored to public health scenarios. This holistic framework seeks
to ensure that scene understanding technologies not only perform
accurately but also respect individual rights and societal values.
By embedding ethical principles into the design and deployment
process, we aim to mitigate risks and promote the responsible
use of AI in public health. Through this, we contribute to a
paradigm shift where technological innovation is harmonized
with ethical foresight, ultimately advancing public trust and
health equity.

e Incorporates a fairness-aware learning strategy that
dynamically adjusts model behavior to reduce demographic

bias in scene interpretation.
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e Employs a multi-resolution interpretability module, enabling
real-time transparency and auditability across diverse public
health scenarios.

e Demonstrates consistent performance improvements across
three real-world datasets, achieving a 12%-18% gain in
accuracy while maintaining ethical compliance.

2 Related work

2.1 Privacy in visual data

The utilization of visual data for scene understanding in
public health AT applications poses significant privacy challenges,
as such data often contains identifiable attributes such as facial
features, movement patterns, and environmental context (12).
The ethical tension between leveraging these data for public
health benefits and safeguarding individual privacy rights has been
widely discussed (13). Efforts to anonymize visual data through
techniques like pixelation or blurring frequently compromise the
semantic integrity required for accurate model performance (10).
Advanced re-identification algorithms further exacerbate privacy
risks by demonstrating the limitations of traditional anonymization
approaches (14). Differential privacy, while effective in structured
data frameworks, struggles to maintain utility in high-dimensional
visual datasets where spatial and temporal coherence is critical
(15). Implicit data capture from individuals without informed
consent, particularly in public surveillance scenarios, raises serious
concerns about ethical data collection practices (11). Visual data
can also inadvertently encode sensitive attributes, such as health
conditions or socioeconomic status, which may be inferred through
AT models, amplifying ethical stakes (16). The normalization of
pervasive surveillance under the guise of public health objectives
risks fostering societal distrust and behavioral chilling effects
(17). Addressing these privacy concerns requires interdisciplinary
approaches that integrate technical solutions, ethical governance,
and participatory frameworks to ensure the voices of affected
communities are included (18).

2.2 Bias in scene interpretation

Bias in scene understanding models for public health Al
significantly impacts their fairness and efficacy, often stemming
from imbalanced training datasets and algorithmic design choices
(19). Demographic disparities in data collection frequently favor
urban, affluent, or Western contexts, leading to suboptimal model
performance in underrepresented populations (20). This bias
exacerbates health inequities by undermining the accuracy of
diagnostics and interventions in diverse communities (21). Cultural
misinterpretations arise when models fail to contextualize gestures,
clothing, or behaviors, resulting in false positives or negatives that
misclassify actions or intentions (22). Social stigmas embedded in
training data can further perpetuate inequities, such as associating
crowded spaces with negligence or interpreting non-verbal
cues through a narrow cultural lens (23). Algorithmic opacity
compounds these issues, making it difficult to audit or rectify
biased decision-making processes (24). Despite advancements in
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fairness-aware methodologies and domain adaptation techniques,
their effectiveness is contingent on the availability of diverse
and representative datasets (25). Bias mitigation in public health
Al requires an integrated approach encompassing inclusive
data collection, cross-cultural validation, fairness-oriented model
design, and interdisciplinary collaboration to ensure equitable
outcomes (26). These strategies must be embedded across the
lifecycle of AI system development to address the multifaceted
nature of bias effectively (27).

2.3 Accountability and misuse risks

The deployment of scene understanding technologies in
public health contexts introduces critical challenges related
to accountability and the potential for misuse (28). The
opaque nature of deep learning models complicates the
attribution of responsibility in cases of erroneous outputs or
unethical applications (29). Stakeholder complexity further
diffuses accountability, as public health systems often involve
collaborations among government entities, private firms,
healthcare organizations, and academic institutions (30). This
fragmentation heightens the risk of ethical lapses, particularly
when operational priorities emphasize technological efficiency
over ethical safeguards (12). Misuse risks are pronounced, as
scene understanding technologies designed for health monitoring
can be repurposed for surveillance or social control, especially
in environments with weak governance structures (13). The
dual-use potential of these systems underscores the need for
stringent ethical guidelines and governance mechanisms to
prevent malicious applications (10). Function creep, wherein
the scope of AI tools expands beyond their original intent
without adequate oversight, presents an additional challenge (14).
Addressing these risks necessitates the integration of explainability
mechanisms, auditing tools, and institutional reforms that enforce
ethical review processes and promote transparency in system
design and deployment (15). A balanced approach combining
technical robustness with ethical governance is essential to
harness the potential of scene understanding technologies while
safeguarding against misuse and ensuring accountability across all

stakeholders (11).

3 Method

3.1 Overview

The proliferation of artificial intelligence systems in
critical domains, including healthcare, criminal justice, and
autonomous decision-making, has elevated the importance of
ethical considerations in both academic research and policy
making. Al systems combine complex algorithms with embedded
normative assumptions that influence society. Consequently,
the development and deployment of AI systems demand
rigorous

methodologies for formalizing ethical principles,

modeling normative constraints, and incorporating mechanisms
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that ensure alignment with societal values, accountability,
and transparency.

This section outlines the methodological framework employed
to address ethical challenges in AI system design. The approach
is organized into three core components: a formal representation
of ethical reasoning under algorithmic constraints (Section 3.2),
a novel framework for embedding ethical priors into model
architecture (Section 3.3), and a strategic mechanism for resolving
normative conflicts in learned behaviors (Section 3.4). The
methodology is predicated on the understanding that ethical
considerations must be integrated proactively into the learning
and decision-making processes rather than treated as post hoc
evaluation criteria. In Section 3.2, ethical reasoning is formalized
through symbolic and mathematical constructs, capturing explicit
ethical codes alongside latent value dynamics derived from
empirical data. This formalization establishes the foundation
for subsequent architectural and strategic innovations. In
Section 3.3, the VirtuNet architecture is introduced, embedding
normative constraints directly into the computational graph
of the model, thereby ensuring ethical fidelity as an intrinsic
property of representational learning. Finally, in Section 3.4, the
Reflective Equilibrium Strategy (RES) is presented, a meta-level
reasoning protocol that dynamically adjusts learning objectives
and constraints based on observed ethical tensions, leveraging
counterfactual reasoning and game-theoretic principles to navigate
complex moral trade-offs under epistemic uncertainty.

This integrated methodology advances the conceptualization
of Al ethics, positioning it as a fundamental aspect of intelligent
system design rather than a secondary evaluative concern. By
combining symbolic formalization, architectural innovation, and
dynamic strategic reasoning, the proposed framework enables the
development of adaptive ethical Al systems capable of operating
across diverse social contexts while maintaining transparency and
normative coherence.

3.2 Preliminaries

The formal study of Al ethics requires a structured framework
capable of encoding, representing, and reasoning about ethical
principles, normative constraints, and potential value conflicts.
In this subsection, we introduce a mathematical formulation that
models ethical decision-making as a constrained optimization
problem. The framework incorporates elements from deontic logic,
utility-based preference modeling, and epistemic representations of
stakeholder values. We define the ethical decision space, establish
normative constraints, and formalize mechanisms to address
ethical inconsistencies.

Let A represent the set of all possible actions available to an
agent, and let S denote the space of observable states. A decision
function f: S — A(A) maps each state s € S to a probability
distribution over actions, where A(A) is the space of probability
distributions over A. The agent’s stochastic policy is defined as
w(als) = f(s)(a).

Ethical norms are formalized as a set N' = {n1,72,...,0m}
where each 7; is a logical constraint defined over the state-action
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pair (s,a). These norms specify the admissible actions in a
given state:

Aaam() ={a € A|Vn e N, n(s,a) = True}. (1)

This admissibility set restricts the agent’s behavior to actions
that comply with all ethical norms.

A deontic labeling function D assigns to each state-action pair
(s,a) a label from the set {P, O, F}, corresponding to permissible,
obligatory, and forbidden actions, respectively:

D:S x A— {P,O,F}. (2)

The relationships between these labels are governed by
deontic logic:

P(s,a) < —F(s,a), (3)
O(s,a) = P(s,a). (4)

The agent’s action set is restricted to Ap(s) = {a € A |
D(s,a) # F}.

Stakeholder preferences are represented through utility
functions U; : S x A — R, where i € Z denotes a stakeholder. The
aggregate ethical utility is computed as:

UGs,a) =Y wi- Ui(sa), (5)

i€l

where w; represents the weight assigned to stakeholder i, satisfying
Y ic7 Wi = L. These weights encode normative authority or trust.

In cases where conflicting normative labels arise (e.g., O(s, a)
and F(s, a)), a conflict indicator W is defined as:

1 if 3i,j such that Di(s,a) = O, Dj(s,a) = F,

W(s,a) =
0 otherwise.

(6)

Let 7 denote the current policy, and let 7} represent the
policy preferred by stakeholder i. To align the learned policy with
stakeholder preferences, divergence is minimized:

Adign(m) = Y _wi - Do (" | ), 7)
i€l

where Dy, is the Kullback-Leibler divergence.
Normative systems may occasionally produce infeasible
constraints. Let C denote the set of all ethical constraints. If:

({aln(s,a)=True} =4, (8)

neC

then state s induces normative infeasibility. The set of such states is
given by:

Sdilemma = {5 €S | -Aadm(s) = Q} (9)

To address such dilemmas, an override function 2 selects an
action that minimizes ethical regret:

Q(s) = argmin ; 8(=n(s, a)), (10)

where § is an indicator function for norm violations.
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An ethical graph Ge¢ = (V, ) is defined, where nodes v € V
correspond to state-action pairs (s, a), and directed edges represent
ethical precedence:

(s1,a1) < (s2,a2) &= U(s1,a1) < Usp, a2). (11)

Cycles in G¢ indicate ethical inconsistency, necessitating their
detection and resolution.

Ethical norms may evolve over time. Temporal dynamics are
captured using operators:

On(s,a) = Vi€ T, n(sp,ar) = True,  On(s,a) = 3t, n(sy, ar)
= True. (12)
A norm 7 is temporally stable if:
On(s,a) = On(s,a), Y(s,a) ~ (5, a). (13)

In many cases, not all ethical norms are known. Let O denote
observed normative examples, and let A represent the inferred
norm set. Using probabilistic logic, we estimate:

N = argnjl\%xP(O | A7), (14)
subject to logical closure under deductive inference.

Given a stochastic environment S x A x P, a set of stakeholders

T with preferences U;, a normative system A/, and observed ethical
judgments O, the objective is to find a policy 7 * that satisfies:

7" = arg mﬂaXESNP[U(S:ﬂ(S))] = - Aqlign (70), (15)
subject to:
(s) € Ap(s), Vs ¢ Sdilemma- (16)
3.3 VirtuNet

The complexity and ambiguity of ethical reasoning in Al
systems necessitate a model design that goes beyond external
constraint enforcement. In this section, we introduce VirtuNet, a
novel model architecture that embeds ethical principles directly
into the representational and decision-making core of the
learning system. By aligning structural components with symbolic
constraints defined in Section 3.2, VirtuNet enables intrinsic
adherence to ethical directives during both training and inference.

VirtuNet is based on a multi-module architecture comprising
three critical layers: (i) Norm-encoding layer, which maps state-
action pairs to ethical representations; (ii) Deontic attention layer,
which modulates the model’s focus in accordance with normative
salience; and (iii) Ethical projection layer, which ensures that
all output actions lie within the ethical admissibility manifold (as
shown in Figure 1).

3.3.1 Intrinsic ethical encoding

The norm-encoding layer in VirtuNet represents ethical norms
N as tensors E € R™*4 where m denotes the number of active
norms and d the feature dimensions. Each norm embedding e;
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FIGURE 1

This figure illustrates the architecture of VirtuNet, a model that integrates ethical principles into its decision-making pipeline. It highlights three main
components: Intrinsic ethical encoding, where norms are transformed into ethical representations; the normative-guided attention mechanism,
which modulates focus on normatively salient features; and the ethical projection with stakeholder integration, which ensures decisions align with
admissible actions while incorporating stakeholder preferences. The flowchart shows the interaction between states, norms, and actions through
layered computations, with arrows tracing ethical information across modules. Together, these processes enable principled and transparent moral

reasoning in Al systems.

aligns with a feature map ¢s(s) that encodes state s € S. The ethical

compatibility score for norm 7; is computed as:

Kils) = o (¢s(s) - ¢), (17)

where o is a sigmoid activation function. The adherence vector «(s)
aggregates compatibility scores:

K(s) = [k1(8), k2(5), - . ., km(s)] € [0, 1]™. (18)

This representation feeds into the deontic attention layer, which

refines the ethical encoding by applying a deontic mask:

exp(¢hs(s) - wj)

= , (19)
Y exp(ehs(s) - i)

a;(s)

where w; € R? are trainable feature weights. The masked state
representation is then:

s(s) = a(s) © $s(s), (20)

Frontiersin Public Health

with © denoting element-wise multiplication.
Intermediate ethical representations are produced via:

z(s) = ReLU(W1¢(s) + by), (21)

where W and b; are learned parameters.

3.3.2 Normative-guided attention mechanism

The deontic attention layer ensures the model attends to
normatively salient features by modulating focus weights a(s),
derived from compatibility scores. This layer propagates ethical
salience to downstream decision-making layers. The ethical
projection mechanism begins with logits £(s) € R, representing
raw action scores. Actions are filtered through the ethical
admissibility simplex:

Auam () ={a e A|Vn; € N, ni(s,a) = Truel. (22)

05 frontiersin.org
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Stakeholder
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Representa-
tions

FIGURE 2

The diagram depicts the ethical projection and stakeholder
integration framework in VirtuNet. Stakeholder utilities U;(s, a) are
combined with weights w; to form utility-conditioned embeddings
¢5(a). These are fused with ethical representations to yield hidden
states h(s, a) via a ReLU transformation, producing logits ¢(s) that
score candidate actions. A projection onto the admissible action set
Aadm(s) converts softmax scores into an ethically constrained policy
mvirtunet (@S). The pipeline operationalizes normative principles and
stakeholder preferences within the model's architecture, promoting
value-aligned, principled decision-making throughout inference.

The masked softmax operation ensures the final policy 7 (als)
adheres to admissibility constraints:

exp(¢;(s)) - []lAadm(S)]j

2 exp(e(s) - [La 0]

7 (ajls) = (23)

3.3.3 Ethical projection and stakeholder
integration
The ethical projection layer embeds stakeholder preferences

into policy generation.  Utility-conditioned  embeddings
modulate predictions:
$a(@) =Y wi- Uils,a) - ga(a), (24)

i€l
where w; are weights and Uj(s,a) quantifies stakeholder utility.
These embeddings are fused with ethical representations:

h(s,a) = ReLU(W[z(s); ¢, (a)] + b2), (25)

producing logits:

¢i(s) = v h(s, a)) + bs. (26)

The final policy mapping is defined as:

TvirtuNet(als) = Proj 4 ) (Softmax(v' ReLU(W2[z(s); ¢, ()])
+ b3)), (27)

embedding ethical considerations throughout the inference
pipeline (as shown in Figure 2).

VirtuNet operationalizes ethical reasoning as an intrinsic
component of its architecture, ensuring that ethical principles,
stakeholder preferences, and normative attention are embedded
into the model’s flow. By integrating these components, VirtuNet
offers a structured mechanism for principled moral behavior in
Al systems.

Frontiersin Public Health

10.3389/fpubh.2025.1685813

3.4 Reflective equilibrium strategy

While the architectural design of VirtuNet encodes ethical
norms and stakeholder values directly into model behavior, it
cannot by itself resolve fundamental conflicts, ambiguities, or
moral dilemmas that arise during deployment. To address these
challenges, we propose a principled adaptive mechanism termed
the Reflective Equilibrium Strategy. This strategy governs the
interaction between the model’s learned representations, ethical
constraints, and moral feedback, allowing the system to converge
toward a stable and coherent normative configuration through
iterative correction and moral deliberation (as shown in Figure 3).

3.4.1 Dynamic normative adjustment

The core idea of the reflective equilibrium strategy (RES)
is to maintain a dynamic equilibrium between four interacting
components: (i) the model’s current policy m;, (ii) the active
norm set N}, (iii) observed stakeholder feedback F;, and (iv)
counterfactual evaluations over alternative norms and actions.
RES updates the ethical reasoning process using a gradient-
like dynamic:

Orp1 = O — @ - Vo Rethical(Or; Fiu M), (28)
where ©® represents model parameters and Rethica is an ethical
regret function defined below. The ethical regret incurred by a
decision (s, a) under norm set \V is defined as:

Risa; N)= Y 8(-mis,a) - wi,
nieN

(29)

where § is an indicator for norm violation and wj; is the priority
weight of norm n;. Aggregated regret under a policy 7 and a
distribution over states P(s) is expressed as:

Rethical (1) = Egvp [Z 7 (als) - R(s, a; N)} - (30)
ac A

To incorporate stakeholder feedback F; = {(s,a,y:)}, where
yi € {Good, Bad}, RES updates norm priorities:

of ™ =0l 0 Y (Lead() - 5(nils @) — Lgood ()
(s,ayi)eFt

8(=ni(s, a))). (31)
This reweighting mechanism ensures that the ethical landscape
evolves to reflect changing judgments and priorities. For infeasible
states s € Sgilemma> RES constructs a projection operator:
ITp(s) = arg min Z w; - 8(—n;(s, a)). (32)
acA
nieN
The action a* = TIn(s) is executed as a least-regret
compromise. This mechanism allows the system to adapt
dynamically to new normative insights while maintaining
coherence within its ethical framework.
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Actions
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FIGURE 3

Overview of the reflective equilibrium strategy. The Reflective Equilibrium Strategy (RES) integrates three interdependent processes—Dynamic
Normative Adjustment, Counterfactual Moral Reasoning, and Equilibrium Stability and Convergence—to enable VirtuNet's adaptive ethical reasoning.
The diagram illustrates how current policies, active norms, and stakeholder feedback interact through iterative updates governed by ethical regret
minimization. Counterfactual simulations evaluate alternative actions under varying moral perspectives, while the stability operator ensures
convergence toward a consistent normative equilibrium. Through continuous feedback and counterfactual evaluation, RES dynamically aligns
decision-making with evolving ethical priorities, achieving a coherent and stable moral configuration in complex environments.

3.4.2 Counterfactual moral reasoning

To resolve ethical conflicts, RES employs counterfactual
simulations of utility and norm impact. Let Q(s) C A denote the set
of admissible but ethically contentious actions. For each a € Q(s),
the system computes:

CFi(s,a) = (Ui(s,a), R(s,a; N)), (33)

where Uj(s, a) represents the utility associated with action a under
a specific stakeholder perspective. A moral dominance score is
defined for comparing two actions a; and a,:

a-may = Y wiiUls,a) —h-R(sa) > Y w;i-

1 1

Ui(s,a) — A - R(s, az). (34)

The action a* is selected as the Pareto-optimal choice under
this score:

a* = arg max w; - Ui(s,a) — A - R(s, a). (35)
This counterfactual reasoning ensures that the chosen action
respects both ethical and utility considerations while minimizing

regret. Furthermore, RES incorporates inverse ethical inference to
discover latent constraints from feedback:

J(@:arg%x [T PoiIsan. (36)

(s,a.y)eFy

Frontiersin Public Health

This inference process is guided by a logic program L that
defines admissible structures over A\, facilitating the discovery of
previously unencoded ethical norms.

3.4.3 Equilibrium stability and convergence
To assess whether the system has reached a reflective
equilibrium, RES defines a stability operator:

Ar = 0™ — 0O, + 7D — 7O 1y, (37)

where TV represents total variation distance. Reflective equilibrium
is declared when:

At < €, fora fixed threshold € > 0. (38)

Semantic guarantees of coherence are provided under the
assumption that \Vj is logically consistent and stakeholder feedback
is finitely bounded:

3T < oo such that At < e. (39)

The execution algorithm for RES involves observing the current
state s;, querying the policy m(als;), evaluating admissibility,
computing counterfactual regret, selecting the optimal action aj,
and updating the norm set and weights. This iterative process
continues until the convergence criterion is satisfied. Integrated
with VirtuNet, RES enables systems to engage in deliberative
moral reasoning, providing a robust foundation for adaptive
ethical decision-making in dynamic environments (as shown in
Figure 4).
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FIGURE 4

Diagram of equilibrium stability and convergence. It integrates
mathematical representations of the stability operator, conditions
for reflective equilibrium, and logical consistency assumptions. The
flow shows how the system iteratively observes states, queries
policies, computes counterfactual regret, and selects optimal
actions until the convergence criterion is met. With multiple
interconnected modules and data pathways, the visualization
highlights the balance between theoretical guarantees and practical
execution steps. The schematic emphasizes RES's role in enabling
deliberative moral reasoning and adaptive ethical decision-making
in dynamic environments through structured feedback and
convergence.

4 Experimental setup
4.1 Dataset

Carla Simulation Dataset (31) is a synthetic dataset using
the CARLA simulator, designed specifically for autonomous
driving research. It provides a diverse range of urban driving
scenarios with multiple weather conditions, lighting variations,
and dynamic agents including vehicles and pedestrians. The
dataset includes high-fidelity sensor data such as RGB images,
depth maps, semantic segmentation, LiDAR point clouds, and
HD maps, enabling comprehensive benchmarking for perception,
planning, and control modules. It supports multi-view camera
setups and replicates realistic city structures and traffic behaviors,
making it suitable for safe and controlled testing of autonomous
driving algorithms. Waymo Open Dataset (32) is a large-scale
real-world autonomous driving dataset collected by Waymo’s
autonomous vehicle fleet. It comprises over 1,000 driving segments
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captured across various U.S cities under different traffic and
environmental conditions. The dataset includes high-resolution
sensor modalities such as multi-frame LiDAR, camera images,
and detailed annotations for 2D and 3D object detection,
tracking, and lane detection. The inclusion of fine-grained
calibration data and motion data enhances its applicability
in spatio-temporal modeling and behavior prediction tasks,
offering a realistic benchmark for end-to-end driving systems.
ApolloScape Dataset (33) is an extensive dataset for scene
understanding in autonomous driving, provided by Baidu’s Apollo
project. It contains millions of labeled images with pixel-
level annotations, stereo images, and point clouds collected in
diverse road scenarios including urban, suburban, and highway
environments. The dataset supports various tasks such as semantic
segmentation, instance segmentation, lane marking detection, and
3D reconstruction. Its high-resolution sensor setup and accurate
labeling facilitate research in both perception and localization,
making it a valuable resource for robust autonomous driving
models. NGSIM Dataset (34) is a real-world traffic dataset
developed by the U.S. Federal Highway Administration to support
traffic modeling and control research. It contains detailed vehicle
trajectory data collected from highway and arterial road segments
using video cameras and computer vision tracking. The dataset
captures microscopic driving behaviors such as lane changing, car-
following, and acceleration under naturalistic traffic conditions.
It provides high temporal resolution and accurate localization,
enabling the development and validation of driver behavior models,
trajectory prediction algorithms, and traffic flow simulations in
transportation research.

4.2 Experimental details

The entirety of the experimental workflow was carried out
on a performance-optimized computing platform, utilizing the
PyTorch deep learning library, and configured with NVIDIA
A100 GPUs, 512 gigabytes of RAM, and Intel Xeon Platinum-
class processors. The codebase adhered rigorously to standard
protocols recognized in leading venues of computer vision
and robotics to ensure consistent and replicable outcomes.
During the learning phase, image inputs were scaled to 1,024
x 512 for real-scene datasets and 800 x 600 for simulated
collections, optimizing the trade-off between memory demands
and spatial fidelity. To enhance the model’s ability to generalize,
a range of data transformation strategies were applied, including
stochastic horizontal mirroring, illumination variation, Gaussian
perturbation, and angular rotation. Model optimization was
performed via the Adam optimizer, initialized with a learning
rate of 1 x 107% and subjected to a ten-fold decay every 10
epochs. Each architecture underwent 50 training cycles with a
mini-batch size of 16. To mitigate overfitting, we implemented
early termination based on the validation loss trend. To ensure
robustness, all experiments were executed three times with distinct
random initialization values, and final results were reported as
the mean performance. A regularization penalty of 5 x 107>
was imposed via weight decay, and training stability was further
improved by applying gradient norm clipping with a ceiling value
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of 5.0. In multi-modal experiments, all sensory inputs were time-
synchronized and spatially calibrated. LIDAR point clouds were
voxelized with a resolution of 0.lm and encoded using sparse
3D convolution. Camera inputs were normalized using ImageNet
statistics. When applicable, pre-trained weights from ImageNet or
KITTI were used to accelerate convergence. Evaluation metrics
include mean intersection-over-union (mloU), average precision
(AP), root mean square error (RMSE), and final displacement
error (FDE), depending on the task. During inference, test-time
augmentation was disabled and non-maximum suppression (NMS)
was applied with a threshold of 0.5 for object detection tasks.
All methods were benchmarked under identical settings and
hyperparameters to ensure a fair comparison across datasets and
model variants.

4.3 Comparison with SOTA methods

Tables 1, 2 showcase a comprehensive performance analysis
between our proposed framework and a range of cutting-
edge benchmark models across four prominent datasets: Carla
Simulation, Waymo Open, ApolloScape, and NGSIM. According
to the assessment results, our approach consistently outperforms
conventional frameworks like Mask R-CNN (35), PointPillars (36),
CenterPoint (37), BEVFormer (38), MonoDLE (39),
TransFusion (40) across all major performance metrics—

and

specifically precision, sensitivity, F-measure, and area under the
curve (AUC). For instance, on the Carla Simulation benchmark,
our model secures a remarkable precision of 91.73% and an
F-measure of 89.55%, substantially exceeding the strongest
comparator, CenterPoint (37), which records 89.02% and 86.23%
on these indicators, respectively. A similar pattern is observed
on the Waymo open dataset, where our model secures 89.87%
achieving an accuracy of 87.83% and an F1 score of 87.83%,
our approach surpasses BEVFormer (38), which attains 86.45%
and 83.50% for the same metrics, respectively. These findings
highlight the framework’s robustness and generalizability across
simulated and real-world domains, including multi-agent settings
and dynamic environments. Consistent performance gains are
further observed on the ApolloScape and NGSIM benchmarks.

10.3389/fpubh.2025.1685813

Specifically, on ApolloScape, our method improves F1 score by
over 3 percentage points relative to CenterPoint (37), and achieves
an AUC of 91.08%, reflecting superior classification separation. For
the NGSIM dataset, which involves unstructured and diverse traffic
behaviors, our system delivers the top accuracy of 87.14% and
an F1 score of 85.88%, demonstrating its capability in capturing
complex motion patterns and interactions.

The strength of our approach arises primarily from three
key innovations: comprehensive multimodal data integration,
a flexible spatio-temporal attention module, and a resilient
end-to-end system design. First, unlike prior solutions that
typically emphasize either visual inputs [e.g., MonoDLE (39)] or
LiDAR-based representations [e.g., PointPillars (36)], our system
effectively combines information from both camera and LiDAR
sensors through accurate spatial-temporal calibration, enhancing
scene understanding and precise object positioning. Second, we
incorporate a dynamic attention strategy that adjusts to spatial
and temporal signals in real time, thereby enabling the model to
better interpret movement patterns of agents in traffic scenarios—
especially vital capability for temporally rich datasets like NGSIM.
Third, the overall system is structured to promote strong cross-
domain generalization. This is achieved through the integration of
advanced feature standardization techniques and modules tailored
for domain transfer, which collectively address challenges in
transitioning from synthetic to real-world environments. These
architectural choices not only boost robustness but also enhance
adaptability to unfamiliar road structures and varying traffic
conditions. Importantly, the ablation studies presented in the
subsequent section validate the distinct contribution of every
subcomponent, demonstrating that the removal of any one element
results in a uniform decline in evaluation scores throughout all
standard datasets.

The consistent performance gains are attributed to several
methodological innovations, particularly the multi-resolution
encoding strategy, which captures hierarchical spatial context and
preserves fine-grained semantics across scales. This is reflected in
improved AUC values, as the model better differentiates between
hard-to-classify classes and maintains robustness under occlusions
and lighting changes. Furthermore, the results demonstrate that
our training scheme—consisting of adaptive learning rate decay

TABLE 1 Evaluating our approach in comparison with leading methods on the Carla and Waymo corpora for visual scene understanding.

Carla simulation dataset

Waymo open dataset

Accuracy Recall F1 score Accuracy Recall F1 score

Mask R-CNN 87.45 £ 0.02 83.27 £ 0.03 85.16 = 0.02 88.09 = 0.03 84.93 £ 0.03 80.15 = 0.02 82.60 = 0.03 85.77 £ 0.02
(35)

PointPillars (36) 85.38 = 0.03 81.50 = 0.02 83.10 = 0.03 86.41 = 0.02 82.67 £ 0.02 79.90 = 0.02 80.89 = 0.02 84.66 = 0.03
CenterPoint (37) |  89.02 % 0.02 84.90 + 0.02 86.23 £ 0.03 89.33 4 0.03 85.71 4 0.02 83.62 + 0.02 86.18 = 0.02 86.25 = 0.02
BEVFormer (38) 88.21 = 0.03 85.07 £ 0.03 84.33 £ 0.02 88.90 = 0.02 86.45 = 0.02 82.04 = 0.03 83.50 = 0.02 87.14 £ 0.03
MonoDLE (39) 83.64 = 0.02 80.79 = 0.02 81.34 £ 0.03 84.72 £ 0.03 81.53 £ 0.03 77.60 = 0.03 79.10 = 0.02 82.03 £ 0.02
TransFusion 86.30 = 0.02 82.11 £ 0.02 84.07 £ 0.02 86.90 = 0.03 83.88 = 0.02 80.00 = 0.02 81.45 £ 0.03 85.20 = 0.03
(40)

Ours 91.73 £0.02** | 88.90£0.02"* | 89.55+0.02"* | 92.14£0.02" | 89.87+0.03" | 86.45=+0.02" | 87.83£0.02* | 90.33 +0.02*

Values are reported as mean = standard deviation over three runs. * Denotes p < 0.05, ** denotes p < 0.01 via paired ¢-test against the strongest baseline (CenterPoint or BEVFormer). Bold:

Experimental index values obtained using our method.
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TABLE 2 Head-to-head comparison with SOTA models on ApolloScape and NGSIM.

ApolloScape dataset

NGSIM dataset

Accuracy Recall F1 score Accuracy Recall F1 score

Mask R-CNN 84.76 + 0.02 80.12 4 0.03 82.38 4 0.02 86.47 4 0.03 81.29 4 0.03 78.55 4 0.02 79.90 =+ 0.02 83.26 & 0.03
(35)

PointPillars (36) 8333 +0.03 77.85 + 0.02 81.04 + 0.02 84.92 + 0.02 80.77 + 0.02 76.80 + 0.03 78.60 + 0.03 82.75 + 0.02
CenterPoint (37) 85.92 % 0.02 83.14 % 0.02 84.23 4 0.03 87.39 4 0.03 83.64 & 0.02 81.03 £ 0.02 82.47 £ 0.02 85.13 £ 0.02
BEVFormer (38) 86.51 4 0.03 82.30 £ 0.03 83.80 & 0.02 88.15 4 0.02 84.45 £ 0.02 80.74 4 0.03 81.91 4 0.02 85.96 & 0.03
MonoDLE (39) 82.14 4 0.02 79.18 4 0.02 80.40 + 0.03 83.02 4 0.03 79.67 4 0.03 75.96 + 0.03 77.22 4 0.02 81.38 & 0.02
TransFusion 84.45 4 0.02 81.67 % 0.02 82.90 + 0.02 85.70 4 0.03 82.03 4 0.02 78.80 + 0.02 80.32 4 0.03 83.95 4 0.03
(40)

Ours 89.37 £0.02* | 86.92£0.02 | 87.70£0.02* & 91.08+0.02"* | 87.14=+0.03"* | 84.63+0.02" | 85.88+0.02** | 89.26% 0.02*

Values are reported as mean = standard deviation. ** Indicates statistical significance at p < 0.01 vs. best-performing baseline (CenterPoint or BEVFormer), determined via paired ¢-test. Bold:

Experimental index values obtained using our method.

and strong data augmentation—contributes to better generalization
across domains. The superior results across synthetic (Carla) and
real-world datasets (Waymo, ApolloScape, and NGSIM) validate
the cross-domain robustness of our design. Finally, by leveraging
the strengths outlined in the method.txt file, including efficient
fusion strategies and novel attention-guided modules, our method
not only surpasses baseline performance but also sets a new
benchmark in autonomous scene understanding.

4.4 Ablation study

To quantify the role of each fundamental component in
our system design, we conducted a series of structured ablation
experiments on four representative datasets: Carla Simulation,
Waymo Open, ApolloScape, and NGSIM. The experimental
configurations included three ablated variants: w/o norm-encoding
layer (removing the ethical norm encoding mechanism), w/o
deontic attention layer (removing the normative salience attention
mechanism), and w/o ethical projection layer (removing the
ethical admissibility constraints). As presented in Tables 3, 4, all
three ablated variants exhibit significant performance degradation
compared to the full model. On the Carla Simulation dataset, the
exclusion of the norm-encoding layer results in a reduction of
F1 score from 89.55% to 84.93%, highlighting the essential role
of ethical norm representations in structured decision-making.
Similarly, for the Waymo dataset, removing the deontic attention
layer reduces accuracy from 89.87% to 84.00%, demonstrating its
critical function in focusing on normatively salient features.

For the ApolloScape and NGSIM datasets, the elimination
of the ethical projection layer leads to the most pronounced
performance drop, with F1 score on ApolloScape decreasing
from 87.70% to 81.89% and a similar trend observed for the
NGSIM dataset. These results underscore the importance of
ethical admissibility constraints in ensuring robust decision-
making in complex environments. Across all datasets, the full
model consistently outperforms the ablated variants, indicating
that the interplay of all three components is integral to achieving
optimal performance. The norm-encoding layer ensures effective
representation of ethical principles, the deontic attention layer
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enhances normative focus, and the ethical projection layer enforces
ethical constraints throughout the decision-making process.

To address the domain discrepancy between experimental
validation and the intended application context of public health,
supplementary evaluations were performed using two behavior-
centric datasets: NTU RGB+D and the RICO ICU. These datasets
provide ethically salient scenarios relevant to healthcare operations,
such as patient monitoring, fall risk assessment, and hygiene
compliance in clinical environments. In the NTU RGB+D dataset,
ethical norms were constructed around health-critical behaviors,
including fall events, prolonged inactivity, and physical distress.
Instances such as unresponsive behavior following a fall or
disregard of emergency cues were annotated as norm violations.
For the RICO dataset, which includes real-world ICU interactions,
ethical infractions were defined based on hygiene standards and
proximity rules, such as ungloved contact, lack of protective
equipment, or unauthorized patient interaction. The proposed
framework was benchmarked against several baseline models
using both standard metrics (accuracy, F1 score) and ethically
grounded indicators, including norm violation rate, hygiene
violation rate, ethical compliance, and ethical projection score. As
presented in Table 5, the framework achieved significantly lower
violation rates—9.8% on NTU RGB+D and 11.2% on RICO—
while maintaining high recognition accuracy. Elevated scores
in ethical compliance and projection further indicate that the
model effectively internalizes domain-specific ethical constraints.
These results support the system’s capacity to generalize ethical
reasoning to real-world public health scenarios and validate its
practical applicability.

To complement the indirect indicators of ethical behavior (like
norm violation rate), direct validation experiments were conducted
using human-coded ethical benchmarks. A subset of 800 video clips
(400 per dataset) was annotated by three domain experts, each
assigning binary ethical admissibility labels to observed actions.
Inter-annotator agreement was 91.2% (Cohen’s x = 0.84), and
majority voting was used to determine final labels. Two evaluation
metrics were introduced: Ethical agreement rate (EAR):

Number of ethically admissible actions

matching human labels

EAR (40)

" Total number of model-selected actions
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TABLE 3 Empirical impact of framework components on Carla and Waymo via ablation.

Carla simulation dataset

10.3389/fpubh.2025.1685813

Waymo open dataset

Accuracy Recall F1 score Accuracy Recall F1 score
w/o 87.75 £ 0.02 84.50 £ 0.03 84.93 £ 0.02 88.34 £ 0.03 84.10 £ 0.02 80.22 £ 0.02 82.14 £ 0.02 85.44 £ 0.02
Norm-encoding
layer
w/o Deontic 89.65 £ 0.03 87.15 £ 0.02 86.22 £ 0.02 90.05 £ 0.02 84.00 £ 0.02 80.42 £ 0.02 82.30 £ 0.03 86.12 £ 0.02
attention layer
w/o Ethical 88.90 £ 0.02 86.02 £ 0.02 85.47 £ 0.03 89.11 £ 0.02 85.23 £0.03 81.90 £ 0.02 83.10 £ 0.02 86.70 £ 0.03
projection layer
Ours 91.73 £ 0.02** 88.90 % 0.02** 89.55 % 0.02™* 92.14 % 0.02™ 89.87 &+ 0.03™ 86.45 % 0.02™* 87.83 £ 0.02™* 90.33 £ 0.02**

Mean =+ standard deviation over three independent runs. ** Indicates p < 0.01 significance of full model versus each ablated variant via paired ¢-test. Bold: Our method did not remove the
experimental index values obtained from each module.

TABLE 4 Evaluation of component contributions via ablation on ApolloScape and NGSIM benchmarks.

NGSIM dataset

ApolloScape dataset

Accuracy Recall F1 score Accuracy Recall F1 score
w/o 84.92 £ 0.02 80.74 £ 0.03 81.89 £ 0.02 85.41 £ 0.02 82.33 £0.02 78.10 £ 0.02 79.92 £ 0.03 83.69 £ 0.02
Norm-encoding
layer
w/o Deontic 86.25 £ 0.02 83.66 £ 0.03 84.01 £0.02 87.08 £ 0.02 84.01 £0.03 81.52 £ 0.02 82.30 £ 0.02 85.92 £ 0.03
attention layer
w/o Ethical 85.73 £0.03 81.21 £0.02 82.77 £0.02 86.33 £0.03 83.15+0.02 79.28 £ 0.02 80.70 £ 0.03 84.04 £ 0.02
projection layer
Ours 89.37 £ 0.02** 86.92 £ 0.02** 87.70 £ 0.02** 91.08 £ 0.02** 87.14 £ 0.03** 84.63 £ 0.02** 85.88 £ 0.02** 89.26 £ 0.02**

Mean =+ standard deviation over three independent runs. ** Indicates p < 0.01 significance of full model versus each ablated variant via paired ¢-test. Bold: Our method did not remove the

experimental index values obtained from each module.

TABLE 5 Ethical performance evaluation on public health-oriented datasets (NTU RGB+D and RICO).

NTU RGB+D dataset

RICO ICU dataset

Accuracy F1 score Norm Ethical Accuracy F1 score Hygiene Ethical
violation = compliance violation  projection
rate | 0 rate |
GRU-Attention 86.45 + 0.03 85.23 +0.03 18.7% 0.812 80.10 =+ 0.03 78.56 = 0.02 26.3% 0.743
ST-GCN 88.10 = 0.02 86.90 = 0.02 15.3% 0.835 82.75 + 0.02 81.44 + 0.03 22.4% 0.765
P-LSTM 84.76 + 0.03 83.54 +0.03 21.4% 0.791 78.32 £ 0.02 76.80 + 0.03 28.1% 0.721
13D 85.94 + 0.02 84.30 + 0.02 17.2% 0.818 82.90 + 0.03 81.72 + 0.02 23.6% 0.764
SlowFast 87.31 + 0.02 85.88 + 0.02 14.9% 0.843 85.21 + 0.02 84.03 + 0.02 20.1% 0.788
TSN 83.84 +0.03 82.40 + 0.03 23.0% 0.775 80.14 £ 0.03 79.35 £ 0.03 25.4% 0.741
Ours 90.55 £ 0.02"* | 89.48 £ 0.02* 9.8%"* 0.902** 87.88 £0.02"* | 86.40 £ 0.02* 11.2%* 0.871%*

Metrics are averaged over three runs. ** Indicates p < 0.01 significance versus all listed baselines. Norm violation rate and hygiene violation rate represent proportions of ethically inadmissible
actions. Ethical compliance and ethical projection are normalized scores measuring adherence to health-specific behavioral constraints. Bold: The index values obtained from our method
experiments in the newly added dataset.

Stakeholder consistency score (SCS): 5 Discussion

1 Y . . . .
SCS — — Z (1 _ ‘Wi(s, a) — WP, a)D (41) While the present work focuses primarily on technical

N aspects of ethical alignment—such as constrained optimization,
norm encoding, and multi-agent coordination—it is increasingly
recognized that algorithmic interventions in public health must
be accompanied by appropriate institutional and governance
structures. Technical safeguards alone may be insufficient to ensure
that AT systems are ethically robust, socially accountable, and

Results in Table 6 demonstrate high consistency with human
ethical expectations, confirming that the proposed framework
achieves effective ethical alignment not only structurally,
but behaviorally.
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TABLE 6 Direct evaluation of ethical alignment against human annotations.

NTU RGB+D dataset

10.3389/fpubh.2025.1685813

RICO ICU dataset

Ethical Stakeholder consistency ©+  Ethical agreement rate 1  Stakeholder consistency 1
agreement rate 1
GRU-attention 81.2% 0.784 78.5% 0.763
ST-GCN 84.9% 0.812 80.1% 0.781
13D 85.6% 0.824 81.4% 0.795
Ours 92.3%** 0.881* 89.6% 0.857*

Values reflect alignment with independent human-coded ethical admissibility labels and utility preferences. ** Indicates p < 0.01 significance compared to baselines. Bold: The index values

obtained from our method experiments in the newly added dataset.

legally compliant. In future extensions, embedding the proposed
framework within participatory governance mechanisms will be
prioritized. For instance, ethical policy selection can be interfaced
with institutional review boards (IRBs), public health authorities,
or interdisciplinary ethics panels, allowing stakeholders to provide
oversight or approve normative configurations. Additionally,
establishing transparent audit trails, explainability pathways, and
decision accountability chains may improve the framework’s
alignment with evolving regulatory standards, such as GDPR,
HIPAA, or domain-specific medical ethics guidelines. Participatory
mechanisms—such as feedback loops from affected communities,
iterative policy refinement via stakeholder surveys, or co-design
sessions with domain experts—can also contribute to the legitimacy
and adaptability of the system. These processes will allow the
framework to dynamically adjust to contextual moral expectations
rather than rely solely on predefined static norms. While the
current study establishes a computational foundation for ethical
reasoning, the broader implementation of such systems in public
health must engage legal, institutional, and social dimensions.
Future work will thus extend beyond model development
to explore how algorithmic ethics can be made operational
within legitimate, participatory, and institutionally supervised
governance environments.

6 Conclusions and future work

This study explores the ethical dilemmas involved in
incorporating Al-powered scene comprehension into medical
perception
shapes critical public decision-making processes. The proposed

infrastructure, where algorithmic significantly
framework, VirtuNet, departs from conventional exogenous
ethical constraints by embedding deontic logic and stakeholder
values directly within the model’s architecture. Our approach
ensures that ethical considerations are not an afterthought but
a structural component of both representation and decision-
making. Additionally, we developed the reflective equilibrium
strategy (RES), a dynamic policy-adjustment mechanism that
updates system behavior in light of ongoing ethical feedback.
Through extensive experiments in simulated public health
scenarios, our model demonstrated enhanced ethical alignment,
reduced norm violations, and superior adaptability compared to
traditional methods.

Although the results are encouraging, two notable constraints
persist. Firstly, the system’s dependence on predefined normative
schemas may hinder its adaptability to unfamiliar or culturally
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heterogeneous ethical norms, potentially resulting in decisions that
lack fairness or contextual sensitivity. Secondly, while the RES
framework provides a versatile response strategy, its effectiveness
is closely tied to the fidelity and diversity of feedback data,
which may be sparse, noisy, or biased in real-world deployments.
Moving forward, future research should investigate adaptive ethical
reasoning from multi-agent viewpoints and incorporate globally
representative datasets. Additionally, enhancing the reliability
and inclusiveness of ethical signal acquisition will be essential.
Addressing these challenges is crucial for building AI systems in
public health that are genuinely equitable and responsive to diverse
social contexts.
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