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The rapid advancement of ophthalmic medicine has significantly improved global 
visual health but concurrently imposed substantial ecological costs, creating an 
environmental paradox between efficient treatment and sustainability. This review 
explores the multifaceted carbon footprint of ophthalmic practices through a 
three-dimensional analysis: spatially, revealing stark cross-national differences in 
surgical emissions; temporally, tracking the environmental impact of technological 
evolution from extracapsular cataract extraction to phacoemulsification and vitreous 
surgery; and technologically, highlighting the role of disposable instruments, 
biomaterials, and energy consumption. It further presents an innovation matrix 
for “green ophthalmology,” encompassing technological breakthroughs, process 
optimizations, and behavioral interventions. The review emphasizes the need to 
integrate the “triple bottom line” (clinical, economic, environmental) into practice 
and policy, proposing future directions such as blockchain-based certification 
systems and standardized environmental assessment tools. Ultimately, it calls for 
multi-level actions-from individual clinicians to global governance-to reconcile 
high-quality eye care with ecological sustainability.
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1 The environmental paradox in ophthalmic 
healthcare: the duality of efficient treatment and 
ecological costs

The rapid advancement of ophthalmic medicine has improved global visual health, 
but it has also incurred significant ecological costs, attributable to multiple factors. Take 
cataract surgery as an example: literature indicates that the greenhouse gas emissions 
from phacoemulsification cataract surgeries performed in UK hospitals are over 20 times 
higher than those of the same procedure in India (1). This discrepancy underscores the 
potential excessive environmental burden incurred by high-income countries in their 
pursuit of healthcare safety standards. Beyond the impacts of cataract surgery, the 
widespread adoption of anti-VEGF therapies, while addressing blinding conditions such 
as diabetic retinopathy, has also increased the carbon footprint due to issues like poor 
patient compliance (2), the short half-life of the drugs (3), and the requirements for cold 
chain transportation. As one of the most frequently accessed specialties within the 
healthcare system, the expansion of ophthalmic services-particularly in the Asia-Pacific 
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region-necessitates a re-evaluation of the balance between 
“efficiency” and “sustainability.” The case of Indian hospitals has 
proven that process optimization can achieve a win-win situation 
for both clinical efficacy and ecological benefits.

A vicious cycle exists between climate change and eye health: on 
the one hand, ophthalmic healthcare activities contribute 8.5% of the 
total greenhouse gas emissions from the global healthcare system (4); 
on the other hand, global warming threatens visual health through 
multiple pathways. Enhanced ultraviolet radiation accelerates the 
development of pterygium and cataracts, while air pollution (such as 
PM2.5) is positively correlated with age-related macular degeneration 
(5, 6). Studies have pointed out that environmental degradation 
exacerbates climate vulnerability in fragile regions like Somalia (7), a 
pattern that also applies to ophthalmic diseases in low-income 
countries. When responding to outbreaks of climate-related eye 
diseases, responders are often forced to adopt emergency medical 
solutions with high environmental costs.

From the interdisciplinary perspective of environmental 
medicine, it is imperative to establish standardized assessment 
systems (such as life cycle assessment) to measure the full-chain 
ecological impacts of ophthalmic interventions. Simultaneously, 
the development of climate-adaptive treatment strategies is 
necessary to break this negative feedback loop (8, 9).

2 Three-dimensional analysis of 
ophthalmic carbon footprint

2.1 Spatial dimension: cross-national 
comparative studies

Based on existing literature analysis, there are significant 
cross-national differences in the carbon footprint of ophthalmic 
surgeries. Studies have shown that the amount of waste generated 
per surgery in India’s Aravind Eye Care System is only 0.504 kg, 
which is far lower than the 2–3 kg per surgery in Western 
countries (10). This discrepancy mainly stems from three factors: 
(1) Divergent strategies in the use of high-value consumables, 
with India adopting centralized procurement and strict cost 
control; (2) Differences in anesthesia methods, as developing 
countries rely more on local anesthesia; (3) Equipment recycling 
mechanisms, where the Aravind system achieves optimal resource 
allocation through large-scale surgeries (over 50 cases per day 
on average).

As previously mentioned, the carbon emissions from cataract 
surgeries in UK hospitals are over 20 times higher than those in 
their Indian counterparts, primarily due to differences in energy 
structures and patient transportation-related emissions—India 
utilizes more renewable energy sources (1). In U. S. operating 
rooms, carbon emission hotspots are concentrated in the 
production of disposable consumables (accounting for 27–43%) 
and inhaled anesthetic gasses (11, 12). In contrast, India has 
reduced environmental impact through innovative practices such 
as standardized instrument disinfection and customized surgical 
kits (13). These findings suggest that the intensive operational 
models of low-income countries may provide emission reduction 
insights for high-income countries, though adjustments must 
be made by localized medical regulations (4).

2.2 Temporal dimension: history of 
technological evolution

The technological evolution from extracapsular cataract extraction 
(ECCE) to phacoemulsification has led to a significant increase in 
environmental costs, primarily driven by the high energy consumption 
resulting from the continuous upgrading and iteration of operating 
room equipment in high-income countries (14), accompanied by the 
use of disposable consumables and anesthetic gasses. In vitreous 
surgery, the application of long-acting gasses (such as SF6 and C3F8) 
has improved the success rate of retinal reattachment; however, their 
global warming potential (GWP) is 23,900 times that of CO₂ (in the 
case of SF6) (4), creating a contradiction between therapeutic 
breakthroughs and environmental costs.

Temporal dimension analysis shows that the carbon footprint of 
phacoemulsification is mainly concentrated in the intraoperative 
phase (approximately 100–241 kg CO₂e per case) (11, 15), with 
biomedical waste and energy consumption being the dominant 
contributors. The carbon footprint of vitreous surgery, on the other 
hand, must account for the long-term impact of gas emissions-for 
instance, SF6 persists in the atmosphere for up to 3,200 years. Current 
research calls for balancing clinical efficacy and environmental 
sustainability through measures such as optimizing the recycling of 
consumables, improving gas recovery technologies (e.g., replacing SF6 
with C2F6 can reduce GWP by 68%) (16), and establishing 
regionalized surgical centers to reduce transportation emissions.

2.3 Technical dimension

The use of disposable ophthalmic instruments significantly 
increases the surgical carbon footprint. Studies have shown that the 
carbon footprint of a single surgery ranges from 6 to 814 kg CO₂e, 
with 23% of instrument types contributing 80% of the emissions (such 
as single-use surgical drapes, surgical gowns, etc.) (15). The 
environmental sustainability of biomaterials needs to balance the 
degradation cycle with intraocular application requirements: although 
electrospun intelligent biomaterials have degradability and 
antibacterial properties (17), single-use products such as contact 
lenses still pose a high pollution risk, with annual waste in the 
United  States reaching 2.8 billion pieces (18) Reusable processed 
instruments can reduce the carbon footprint by 50–67% (19), but 
issues such as biocompatibility of intraocular implants and residual 
sterilization need to be addressed (20, 21). Optimization from the 
technical dimension should integrate life cycle assessment (LCA), 
focusing on energy efficiency and material innovation (22).

3 Innovation matrix for green 
ophthalmology

3.1 Technological innovation

The innovative application of intelligent drug delivery systems in 
the field of ophthalmology has significantly improved treatment 
accuracy and reduced drug waste (23). Studies have shown that 
biodegradable drug carriers (LDBCs) responsive to the tumor 
microenvironment can achieve efficient combination therapy, with 
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their pH-responsive properties increasing the drug release rate in 
target tissues to 70% (only 15% in a neutral environment) (24, 25). 
Meanwhile, biodegradable hydrogels developed using 
photopolymerization 3D printing technology can realize localized 
drug-controlled release, and such materials have been successfully 
applied in the treatment of retinal and optic nerve injuries (9, 26).

Ophthalmic intelligent delivery systems are moving toward 
nanotechnology, including cutting-edge fields such as gene delivery, 
cell therapy, and retinal implant devices (27, 28). In terms of carbon-
neutral operating room design, 8.5% of greenhouse gas emissions 
from the U.S. healthcare system come from ophthalmic surgeries (4), 
making the research and development of biodegradable surgical 
materials a key priority. Biodegradable polymers are not only used in 
sutures and implants but can also serve as platforms for the sustained 
release of therapeutic agents (29).

Virtual reality surgical training systems reduce resource 
consumption in actual surgeries through 3D stereoscopic vision and 
haptic feedback (30). In addition, the intelligent food packaging 
technology using natural carbon dots has inspired green innovation 
paths for operating room consumables (31). Together, these 
technologies form a comprehensive solution for carbon neutrality in 
ophthalmic surgeries (32).

3.2 Improvement of treatment processes

In terms of process reengineering for green ophthalmology, 
resource integration in day surgery centers significantly reduces 
carbon emissions by optimizing equipment utilization and reducing 
energy consumption. Previous studies have highlighted the 
environmental cost issues of surgical processes in high-income 
countries (1). The surgical carbon footprint can be  reduced by 
adopting reusable surgical instruments, improving operating room 
energy efficiency, and optimizing processes (12).

In addition, the time–space optimization strategy for anti-VEGF 
therapy can enhance sustainability by reducing the frequency of 
patient visits and drug waste. Since anti-VEGF biosimilars entered the 
U.S. market in 2022, their standardized production processes and 
optimized cold chain transportation have further reduced the 
treatment-related environmental burden (33).

Tele-ophthalmology makes a significant contribution to reducing 
carbon emissions by decreasing patients’ transportation needs. A 
systematic evaluation shows that telemedicine can reduce patient 
travel-related carbon footprints, especially in low-resource areas. 
AI-assisted remote screening (such as community-based fundus 
disease screening) can achieve dual optimization of environmental 
and cost benefits (34, 35). The tele-ophthalmology model supported 
by digital technologies (such as 5G and the Internet of Things) not 
only reduces transportation emissions by 90% but also improves 
service accessibility through process reengineering (36).

3.3 Behavioral interventions

In the field of green ophthalmology, the Nudge theory can 
enhance the environmental protection behaviors of medical staff 
through intervention strategies such as environmental cues, default 
options, and social norms (37). Studies have shown that environmental 

responsibility training based on social identity theory can significantly 
strengthen the green innovation behaviors of medical staff (38), while 
dynamic norm intervention has a significant effect on raising 
awareness of reducing plastic waste (but attention should be paid to 
possible reverse effects) (39, 40).

For patient education, the nudge strategy combined with self-
determination theory (SDT) can increase the predictive validity of 
environmental attitudes on behavioral intentions by 81% (41), but it 
is necessary to pay attention to the cost threshold effect of behavior 
change-only low-cost behaviors are easy to change (39). The Nudge 
design in electronic health records can simultaneously improve 
clinical decision-making and ecological practices (42).

4 Sustainable development balancing 
act: the triple bottom line of clinical, 
economic, and environmental factors

Studies have shown that integrating the “triple bottom line” 
framework (economic, environmental, and social sustainability) into 
healthcare quality improvement is crucial (43, 44).

	 I	 In terms of infection control thresholds, in scenarios involving 
the reuse of instruments, it is necessary to evaluate infection 
prevention measures using five economic analysis methods 
(cost-effectiveness, cost-utility, etc.) (45), among which the 
incremental cost-effectiveness ratio (ICER) is a key indicator 
for assessing intervention measures (46). Research suggests 
adopting a risk-based stratified implementation strategy rather 
than a universally uniform approach (47).

	 II	 Cost–benefit analysis indicates that sustainable healthcare 
measures need to balance initial investment and long-term 
returns. Innovative methods such as membrane technology 
can improve both efficiency and cost-effectiveness by 
optimizing processes (48), while biochar catalysts play an 
important role in environmental protection due to their 
cost-effectiveness and multifunctional properties (49). Cost-
utility analysis of digital healthcare strategies shows that 
certain interventions can achieve cost-effectiveness 
advantages after price adjustments (50).

	III	 At the policy and regulatory level, establishing a standardized 
sustainable healthcare evaluation system is an urgent task (51, 
52). Research recommends drawing on the “5R” principle 
(Refuse, Reduce, Reuse, Repurpose, Recycle) to formulate 
operating room emission reduction policies (53), while it is 
necessary to improve the regulatory framework to coordinate 
the dimensions of sustainable development (54). The 
hypercyclic healthcare model needs to integrate elements such 
as green leadership and green finance (55) and achieve dual 
improvement in environmental and cost-effectiveness by 
optimizing manufacturing processes (56).

5 Future vision of ophthalmic 
environmental protection

Previous studies have shown that patients undergoing 
ophthalmic surgery are more likely to seek medical treatment 

https://doi.org/10.3389/fpubh.2025.1685240
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Lin et al.� 10.3389/fpubh.2025.1685240

Frontiers in Public Health 04 frontiersin.org

across different regions, which is consistent with the phenomenon 
we have observed in clinical practice (57). When seeking medical 
care across regions, patients may face situations where inspection 
results cannot be mutually recognized between different hospitals 
and medical records cannot be synchronized, leading to repeated 
examinations. Blockchain technology can specifically address this 
issue. Essentially, blockchain technology is a decentralized 
distributed ledger technology, characterized by core features of 
“immutable, traceable, transparent, and openly verifiable” data. 
Data is serially linked in chronological order in the form of 
“blocks,” and each node (e.g., hospitals, medical consumable 
manufacturers, regulatory authorities) can participate in data 
recording and verification without relying on a single central 
institution. This enables it to effectively address the challenges of 
data trust and traceability (58, 59). This technology is conducive 
to solving the current pain points in green ophthalmology 
practice, such as opaque data, difficult traceability, and 
inconsistent standards, while avoiding risks associated with 
unrecognized inspection data and waste caused by 
repeated examinations.

In terms of carbon trading, blockchain with PoS consensus 
mechanisms, such as Ethereum, can reduce carbon footprints by 
99% (60), providing technical support for building an ophthalmic 
carbon trading market. Existing studies have pointed out that 
climate-smart medical measures such as optimizing supply chains, 
promoting telemedicine, and adopting bioaffinity designs can 
significantly reduce carbon emissions (61, 62).

In the future, it is necessary to develop standardized 
environmental assessment tools, combine blockchain with the 
Internet of Things, and build a closed-loop system covering 
consumables traceability, energy management, and carbon asset 
trading (63, 64), ultimately realizing the quantifiable and traceable 
environmental benefits of ophthalmic diagnosis and treatment.

6 Action initiatives: from individual 
practice to global governance

Promoting environmental sustainability in the field of 
ophthalmology requires multi-level actions—spanning individual 
clinicians, professional bodies, regional institutions, and 
transnational alliances—to translate theoretical insights into 
tangible practice. Clinicians can lay the groundwork by using 
standardized tools for measuring environmental impacts (1), 
which help quantify carbon emissions from daily procedures and 
identify reduction opportunities. Professional associations, 
meanwhile, should establish unified environmental performance 
indicators (65) and promote the spatial spillover effects of green 
financial policies (66) —providing frameworks and incentives for 
institutions to adopt sustainable practices, as exemplified by 
China’s localized reforms and global adaptive models below.

6.1 Practical lessons from the Chinese 
context

The Chinese ophthalmic community has developed hybrid 
sustainability models by selectively integrating Western 

technologies with Indian efficiency principles. At our center, 
we recognized the need to align ophthalmic development with 
low-carbon environmental protection in 2020 and thus initiated 
reforms by adopting targeted measures: we established a recycling 
system while upholding EU-grade sterilization protocols and 
integrated it into our daily clinical operations. Concurrently, 
we  participated in building provincial tele-ophthalmology 
networks to expand access to eye care in rural areas. According to 
our 2024 annual statistics, these reforms have yielded tangible 
results—compared to 2020, we have reduced surgical waste by 
34% without compromising safety, and the tele-ophthalmology 
networks now covering over 10 million rural residents have cut 
patient travel emissions by 26%. These experiences demonstrate 
that green ophthalmology is operationally feasible when 
combining the quality standards of high-income countries with 
the circular economy approaches of low-resource settings.

Transnational industrial alliances need to reconcile the 
contradictions between environmental goals and ophthalmic 
operational costs (67), facilitate inter-enterprise cooperation through 
big data technologies (68), and address specific issues such as drug 
redistribution (69).

6.2 Implementation roadmap for global 
practitioners

For health systems seeking immediate action, we recommend 
three priority steps: (1) Establish mutual recognition systems for 
diagnostic results among regional medical institutions to eliminate 
redundant testing; (2) Transition from disposable to reusable 
surgical textiles where clinically appropriate, and rationalize the 
use of pre-packaged pharmaceuticals and implants based on 
actual clinical needs to reduce unnecessary production and waste; 
(3) Develop regional equipment sharing platforms (e.g., for costly 
ophthalmic diagnostic or surgical equipment) inspired by 
successful international models but tailored to local regulatory 
frameworks, utilizing smart management systems for optimal 
scheduling and maintenance to maximize utilization rates. This 
phased approach strikes a balance between immediate 
improvements and long-term systemic transformation.
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