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The rapid advancement of ophthalmic medicine has significantly improved global
visual health but concurrently imposed substantial ecological costs, creating an
environmental paradox between efficient treatment and sustainability. This review
explores the multifaceted carbon footprint of ophthalmic practices through a
three-dimensional analysis: spatially, revealing stark cross-national differences in
surgical emissions; temporally, tracking the environmental impact of technological
evolution from extracapsular cataract extraction to phacoemulsification and vitreous
surgery; and technologically, highlighting the role of disposable instruments,
biomaterials, and energy consumption. It further presents an innovation matrix
for “green ophthalmology,” encompassing technological breakthroughs, process
optimizations, and behavioral interventions. The review emphasizes the need to
integrate the “triple bottom line” (clinical, economic, environmental) into practice
and policy, proposing future directions such as blockchain-based certification
systems and standardized environmental assessment tools. Ultimately, it calls for
multi-level actions-from individual clinicians to global governance-to reconcile
high-quality eye care with ecological sustainability.
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1 The environmental paradox in ophthalmic
healthcare: the duality of efficient treatment and
ecological costs

The rapid advancement of ophthalmic medicine has improved global visual health,
but it has also incurred significant ecological costs, attributable to multiple factors. Take
cataract surgery as an example: literature indicates that the greenhouse gas emissions
from phacoemulsification cataract surgeries performed in UK hospitals are over 20 times
higher than those of the same procedure in India (1). This discrepancy underscores the
potential excessive environmental burden incurred by high-income countries in their
pursuit of healthcare safety standards. Beyond the impacts of cataract surgery, the
widespread adoption of anti-VEGF therapies, while addressing blinding conditions such
as diabetic retinopathy, has also increased the carbon footprint due to issues like poor
patient compliance (2), the short half-life of the drugs (3), and the requirements for cold
chain transportation. As one of the most frequently accessed specialties within the
healthcare system, the expansion of ophthalmic services-particularly in the Asia-Pacific
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region-necessitates a re-evaluation of the balance between
“efficiency” and “sustainability” The case of Indian hospitals has
proven that process optimization can achieve a win-win situation
for both clinical efficacy and ecological benefits.

A vicious cycle exists between climate change and eye health: on
the one hand, ophthalmic healthcare activities contribute 8.5% of the
total greenhouse gas emissions from the global healthcare system (4);
on the other hand, global warming threatens visual health through
multiple pathways. Enhanced ultraviolet radiation accelerates the
development of pterygium and cataracts, while air pollution (such as
PM2.5) is positively correlated with age-related macular degeneration
(5, 6). Studies have pointed out that environmental degradation
exacerbates climate vulnerability in fragile regions like Somalia (7), a
pattern that also applies to ophthalmic diseases in low-income
countries. When responding to outbreaks of climate-related eye
diseases, responders are often forced to adopt emergency medical
solutions with high environmental costs.

From the interdisciplinary perspective of environmental
medicine, it is imperative to establish standardized assessment
systems (such as life cycle assessment) to measure the full-chain
ecological impacts of ophthalmic interventions. Simultaneously,
the development of climate-adaptive treatment strategies is
necessary to break this negative feedback loop (8, 9).

2 Three-dimensional analysis of
ophthalmic carbon footprint

2.1 Spatial dimension: cross-national
comparative studies

Based on existing literature analysis, there are significant
cross-national differences in the carbon footprint of ophthalmic
surgeries. Studies have shown that the amount of waste generated
per surgery in India’s Aravind Eye Care System is only 0.504 kg,
which is far lower than the 2-3 kg per surgery in Western
countries (10). This discrepancy mainly stems from three factors:
(1) Divergent strategies in the use of high-value consumables,
with India adopting centralized procurement and strict cost
control; (2) Differences in anesthesia methods, as developing
countries rely more on local anesthesia; (3) Equipment recycling
mechanisms, where the Aravind system achieves optimal resource
allocation through large-scale surgeries (over 50 cases per day
on average).

As previously mentioned, the carbon emissions from cataract
surgeries in UK hospitals are over 20 times higher than those in
their Indian counterparts, primarily due to differences in energy
structures and patient transportation-related emissions—India
utilizes more renewable energy sources (1). In U. S. operating
rooms, carbon emission hotspots are concentrated in the
production of disposable consumables (accounting for 27-43%)
and inhaled anesthetic gasses (11, 12). In contrast, India has
reduced environmental impact through innovative practices such
as standardized instrument disinfection and customized surgical
kits (13). These findings suggest that the intensive operational
models of low-income countries may provide emission reduction
insights for high-income countries, though adjustments must
be made by localized medical regulations (4).
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2.2 Temporal dimension: history of
technological evolution

The technological evolution from extracapsular cataract extraction
(ECCE) to phacoemulsification has led to a significant increase in
environmental costs, primarily driven by the high energy consumption
resulting from the continuous upgrading and iteration of operating
room equipment in high-income countries (14), accompanied by the
use of disposable consumables and anesthetic gasses. In vitreous
surgery, the application of long-acting gasses (such as SF6 and C3F8)
has improved the success rate of retinal reattachment; however, their
global warming potential (GWP) is 23,900 times that of CO, (in the
case of SF6) (4), creating a contradiction between therapeutic
breakthroughs and environmental costs.

Temporal dimension analysis shows that the carbon footprint of
phacoemulsification is mainly concentrated in the intraoperative
phase (approximately 100-241 kg CO,e per case) (11, 15), with
biomedical waste and energy consumption being the dominant
contributors. The carbon footprint of vitreous surgery, on the other
hand, must account for the long-term impact of gas emissions-for
instance, SF6 persists in the atmosphere for up to 3,200 years. Current
research calls for balancing clinical efficacy and environmental
sustainability through measures such as optimizing the recycling of
consumables, improving gas recovery technologies (e.g., replacing SF6
with C2F6 can reduce GWP by 68%) (16), and establishing
regionalized surgical centers to reduce transportation emissions.

2.3 Technical dimension

The use of disposable ophthalmic instruments significantly
increases the surgical carbon footprint. Studies have shown that the
carbon footprint of a single surgery ranges from 6 to 814 kg CO,e,
with 23% of instrument types contributing 80% of the emissions (such
as single-use surgical drapes, surgical gowns, etc.) (15). The
environmental sustainability of biomaterials needs to balance the
degradation cycle with intraocular application requirements: although
electrospun intelligent biomaterials have degradability and
antibacterial properties (17), single-use products such as contact
lenses still pose a high pollution risk, with annual waste in the
United States reaching 2.8 billion pieces (18) Reusable processed
instruments can reduce the carbon footprint by 50-67% (19), but
issues such as biocompatibility of intraocular implants and residual
sterilization need to be addressed (20, 21). Optimization from the
technical dimension should integrate life cycle assessment (LCA),

focusing on energy efficiency and material innovation (22).

3 Innovation matrix for green
ophthalmology

3.1 Technological innovation

The innovative application of intelligent drug delivery systems in
the field of ophthalmology has significantly improved treatment
accuracy and reduced drug waste (23). Studies have shown that
biodegradable drug carriers (LDBCs) responsive to the tumor
microenvironment can achieve efficient combination therapy, with
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their pH-responsive properties increasing the drug release rate in
target tissues to 70% (only 15% in a neutral environment) (24, 25).
biodegradable
photopolymerization 3D printing technology can realize localized

Meanwhile, hydrogels  developed  using
drug-controlled release, and such materials have been successfully
applied in the treatment of retinal and optic nerve injuries (9, 26).

Ophthalmic intelligent delivery systems are moving toward
nanotechnology, including cutting-edge fields such as gene delivery,
cell therapy, and retinal implant devices (27, 28). In terms of carbon-
neutral operating room design, 8.5% of greenhouse gas emissions
from the U.S. healthcare system come from ophthalmic surgeries (4),
making the research and development of biodegradable surgical
materials a key priority. Biodegradable polymers are not only used in
sutures and implants but can also serve as platforms for the sustained
release of therapeutic agents (29).

Virtual reality surgical training systems reduce resource
consumption in actual surgeries through 3D stereoscopic vision and
haptic feedback (30). In addition, the intelligent food packaging
technology using natural carbon dots has inspired green innovation
paths for operating room consumables (31). Together, these
technologies form a comprehensive solution for carbon neutrality in

ophthalmic surgeries (32).

3.2 Improvement of treatment processes

In terms of process reengineering for green ophthalmology,
resource integration in day surgery centers significantly reduces
carbon emissions by optimizing equipment utilization and reducing
energy consumption. Previous studies have highlighted the
environmental cost issues of surgical processes in high-income
countries (1). The surgical carbon footprint can be reduced by
adopting reusable surgical instruments, improving operating room
energy efficiency, and optimizing processes (12).

In addition, the time-space optimization strategy for anti-VEGF
therapy can enhance sustainability by reducing the frequency of
patient visits and drug waste. Since anti-VEGF biosimilars entered the
U.S. market in 2022, their standardized production processes and
optimized cold chain transportation have further reduced the
treatment-related environmental burden (33).

Tele-ophthalmology makes a significant contribution to reducing
carbon emissions by decreasing patients’ transportation needs. A
systematic evaluation shows that telemedicine can reduce patient
travel-related carbon footprints, especially in low-resource areas.
Al-assisted remote screening (such as community-based fundus
disease screening) can achieve dual optimization of environmental
and cost benefits (34, 35). The tele-ophthalmology model supported
by digital technologies (such as 5G and the Internet of Things) not
only reduces transportation emissions by 90% but also improves
service accessibility through process reengineering (36).

3.3 Behavioral interventions

In the field of green ophthalmology, the Nudge theory can
enhance the environmental protection behaviors of medical staff
through intervention strategies such as environmental cues, default
options, and social norms (37). Studies have shown that environmental
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responsibility training based on social identity theory can significantly
strengthen the green innovation behaviors of medical staff (38), while
dynamic norm intervention has a significant effect on raising
awareness of reducing plastic waste (but attention should be paid to
possible reverse effects) (39, 40).

For patient education, the nudge strategy combined with self-
determination theory (SDT) can increase the predictive validity of
environmental attitudes on behavioral intentions by 81% (41), but it
is necessary to pay attention to the cost threshold effect of behavior
change-only low-cost behaviors are easy to change (39). The Nudge
design in electronic health records can simultaneously improve
clinical decision-making and ecological practices (42).

4 Sustainable development balancing
act: the triple bottom line of clinical,
economic, and environmental factors

Studies have shown that integrating the “triple bottom line”
framework (economic, environmental, and social sustainability) into
healthcare quality improvement is crucial (43, 44).

I In terms of infection control thresholds, in scenarios involving
the reuse of instruments, it is necessary to evaluate infection
prevention measures using five economic analysis methods
(cost-effectiveness, cost-utility, etc.) (45), among which the
incremental cost-effectiveness ratio (ICER) is a key indicator
for assessing intervention measures (46). Research suggests
adopting a risk-based stratified implementation strategy rather
than a universally uniform approach (47).

II Cost-benefit analysis indicates that sustainable healthcare
measures need to balance initial investment and long-term
returns. Innovative methods such as membrane technology
can improve both efficiency and cost-effectiveness by
optimizing processes (48), while biochar catalysts play an
important role in environmental protection due to their
cost-effectiveness and multifunctional properties (49). Cost-
utility analysis of digital healthcare strategies shows that
certain interventions can achieve cost-effectiveness

advantages after price adjustments (50).

III At the policy and regulatory level, establishing a standardized
sustainable healthcare evaluation system is an urgent task (51,
52). Research recommends drawing on the “5R” principle
(Refuse, Reduce, Reuse, Repurpose, Recycle) to formulate
operating room emission reduction policies (53), while it is
necessary to improve the regulatory framework to coordinate
the dimensions of sustainable development (54). The
hypercyclic healthcare model needs to integrate elements such
as green leadership and green finance (55) and achieve dual
improvement in environmental and cost-effectiveness by
optimizing manufacturing processes (56).

5 Future vision of ophthalmic
environmental protection

Previous studies have shown that patients undergoing
ophthalmic surgery are more likely to seek medical treatment
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across different regions, which is consistent with the phenomenon
we have observed in clinical practice (57). When seeking medical
care across regions, patients may face situations where inspection
results cannot be mutually recognized between different hospitals
and medical records cannot be synchronized, leading to repeated
examinations. Blockchain technology can specifically address this
issue. Essentially, blockchain technology is a decentralized
distributed ledger technology, characterized by core features of
“immutable, traceable, transparent, and openly verifiable” data.
Data is serially linked in chronological order in the form of
“blocks,” and each node (e.g., hospitals, medical consumable
manufacturers, regulatory authorities) can participate in data
recording and verification without relying on a single central
institution. This enables it to effectively address the challenges of
data trust and traceability (58, 59). This technology is conducive
to solving the current pain points in green ophthalmology
practice, such as opaque data, difficult traceability, and
inconsistent standards, while avoiding risks associated with
unrecognized inspection data and waste caused by
repeated examinations.

In terms of carbon trading, blockchain with PoS consensus
mechanisms, such as Ethereum, can reduce carbon footprints by
99% (60), providing technical support for building an ophthalmic
carbon trading market. Existing studies have pointed out that
climate-smart medical measures such as optimizing supply chains,
promoting telemedicine, and adopting bioaffinity designs can
significantly reduce carbon emissions (61, 62).

In the future, it is necessary to develop standardized
environmental assessment tools, combine blockchain with the
Internet of Things, and build a closed-loop system covering
consumables traceability, energy management, and carbon asset
trading (63, 64), ultimately realizing the quantifiable and traceable

environmental benefits of ophthalmic diagnosis and treatment.

6 Action initiatives: from individual
practice to global governance

Promoting environmental sustainability in the field of
ophthalmology requires multi-level actions—spanning individual
clinicians, professional bodies, regional institutions, and
transnational alliances—to translate theoretical insights into
tangible practice. Clinicians can lay the groundwork by using
standardized tools for measuring environmental impacts (1),
which help quantify carbon emissions from daily procedures and
identify reduction opportunities. Professional associations,
meanwhile, should establish unified environmental performance
indicators (65) and promote the spatial spillover effects of green
financial policies (66) —providing frameworks and incentives for
institutions to adopt sustainable practices, as exemplified by
China’s localized reforms and global adaptive models below.

6.1 Practical lessons from the Chinese
context

The Chinese ophthalmic community has developed hybrid

sustainability models by selectively integrating Western
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technologies with Indian efficiency principles. At our center,
we recognized the need to align ophthalmic development with
low-carbon environmental protection in 2020 and thus initiated
reforms by adopting targeted measures: we established a recycling
system while upholding EU-grade sterilization protocols and
integrated it into our daily clinical operations. Concurrently,
we participated in building provincial tele-ophthalmology
networks to expand access to eye care in rural areas. According to
our 2024 annual statistics, these reforms have yielded tangible
results—compared to 2020, we have reduced surgical waste by
34% without compromising safety, and the tele-ophthalmology
networks now covering over 10 million rural residents have cut
patient travel emissions by 26%. These experiences demonstrate
that green ophthalmology is operationally feasible when
combining the quality standards of high-income countries with
the circular economy approaches of low-resource settings.

Transnational industrial alliances need to reconcile the
contradictions between environmental goals and ophthalmic
operational costs (67), facilitate inter-enterprise cooperation through
big data technologies (68), and address specific issues such as drug
redistribution (69).

6.2 Implementation roadmap for global
practitioners

For health systems seeking immediate action, we recommend
three priority steps: (1) Establish mutual recognition systems for
diagnostic results among regional medical institutions to eliminate
redundant testing; (2) Transition from disposable to reusable
surgical textiles where clinically appropriate, and rationalize the
use of pre-packaged pharmaceuticals and implants based on
actual clinical needs to reduce unnecessary production and waste;
(3) Develop regional equipment sharing platforms (e.g., for costly
ophthalmic diagnostic or surgical equipment) inspired by
successful international models but tailored to local regulatory
frameworks, utilizing smart management systems for optimal
scheduling and maintenance to maximize utilization rates. This
a balance between immediate

phased approach strikes

improvements and long-term systemic transformation.
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