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Background: Ambient particulate matter poses long-term and geographically 
uneven health risks, warranting assessment of global burden and regional 
disparities.
Methods: GBD 2019 data was used to assess age standardized rates of mortality 
(ASMR) and DALY (ASDR) from five chronic diseases due to ambient particulate 
matter from 1990 to 2019, focusing on temporal trends and cross-regional 
disparities using the Socio-demographic Index (SDI).
Results: In 2019, ischemic heart disease (IHD) and stroke accounted for the 
greatest burdens attributable to ambient particulate matter, with global ASMRs 
of 30 and 26 per 100,000, respectively, followed by chronic obstructive 
pulmonary disease (COPD) at 16, tracheal bronchus and lung (TBL) cancer at 
6.8, and diabetes mellitus at 4.5. From 1990 to 2019, COPD showed a marked 
decline with an AAPC on ASMR of −0.47, while diabetes and TBL cancer rose 
sharply, with AAPCs of 1.57 and 0.75, respectively. ASDR for the five disease had 
similar patterns. Southeast Asia, East Asia, and Oceania carried the heaviest TBL 
cancer and stroke burden from 2000 on, North Africa and the Middle East ranked 
consistently highest for IHD and diabetes mellitus, and South Asia emerged as 
the global hotspot for COPD after 2005. TBL cancer was concentrated in higher-
SDI regions, whereas COPD and diabetes mellitus rose disproportionately 
in lower-SDI areas. Population growth and aging were the primary drivers of 
increases across all diseases. Health inequality analysis further showed a general 
shift of burdens from high- to low-SDI countries, with indices declining from 
high positive values to lower or even negative values between 1990 and 2019.
Conclusion: Ambient particulate matter continues to drive unequal disease 
burdens, especially in low- and middle-SDI regions, and more targeted efforts 
are thus needed.
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1 Introduction

Air pollution, a major environmental threat to human health, has 
been responsible for approximately seven million deaths annually 
worldwide, according to the 2021 World Health Organization (WHO) 
Global Air Quality Guidelines, with adverse effects from both long- and 
short-term exposure (1). In the realm of environmental air pollutants, 
PM2.5, which has an aerodynamic diameter of ≤ 2.5 microns, warrants 
special attention because an estimated 92% of the global population lives 
in areas where PM2.5 levels exceed 10 μg/m3, recommended annual 
average concentration established by the WHO based on the air quality 
guideline in 2005 (2). However, mounting evidence suggests that potential 
health impacts related to PM2.5 have greatly surpassed earlier scientific 
understanding. Despite recommended value at 5 μg/m3 by the WHO in 
2021, new causal modeling has shown a higher risk of all-cause mortality 
exposed to lower levels of PM2.5 (3). To date, researchers have confirmed 
that health conditions from PM2.5 exposure include not only respiratory 
but also cardio-cerebral vascular, nervous, and endocrine diseases (4).

International efforts to reduce PM2.5 pollution have been ongoing 
but less than ideal. The Global Burden of Disease Study 2019 (GBD 2019) 
revealed that over the past 10 years, although the summary exposure 
values of indoor air pollution from solid fuels decreased by a yearly mean 
of 3.70%, exposure to ambient particulate matter increased by 1.46% 
annually (5). Moreover, ambient particulate matter pollution intensified 
its impact on the middle-aged and older population in 2019, ranking as 
the fifth and sixth contributors to disability-adjusted life years (DALYs) 
for the age groups 50–74 and 75+, respectively, which was higher than 
overall seventh position across all ages (5). The regional disparities in the 
distribution of ambient particulate pollution are undeniable, with the 
main contributors to global growth since 2011 being South Asia, the 
Middle East, and Africa, primarily comprised of low- and middle-income 
countries (LMICs), despite a slowdown in upward trends (6). Given the 
delayed health effects of particulate matter and the irreversible trend of 
population aging, there is a need for continuous and enhanced academic 
focus on its potential adverse outcomes, particularly concerning the 
associated burden of chronic non-communicable diseases.

Previous literature has thoroughly analyzed the effects of ambient 
particulate pollution on the total disease burdens globally; however, 
integrative analyses that simultaneously contrast the attributable 
burden of multiple chronic non-communicable diseases while 
accounting for geographic variation remain critically underexplored 
(7–11). In response, this research systematically compared five 
representative chronic diseases attributable to particulate matter 
across regions using GBD 2019 data, aiming to deepen scientific 
insights and inform evidence-based interventions on the long-term 
health impacts of environmental exposures.

2 Materials and methods

2.1 Data sources

The data were selected from GBD 2019,1 where disease burden 
estimates originated from various sources, including population 

1  https://vizhub.healthdata.org/gbd-results/

surveys, health registries, and risk surveillance (12). Considering 
the public accessibility of GBD data and the absence of identifiable 
information, there was no requirement for ethical approval or 
informed consent (Detailed strategies for data search were 
provided in Text S1). The Socio-demographic Index (SDI) was 
created to represent health development status using three key 
indicators: total fertility rate for those under 25, average education 
level for those 15 and older, and per capita income adjusted for 
distribution lags (13). SDI data were obtained directly from the 
GBD 2019 estimates provided by the Institute for Health Metrics 
and Evaluation (IHME) (SDI data for 204 countries and territories 
were provided in Text S2). Based on the GBD 2019 framework, 
204 countries and territories were categorized into five groups of 
SDI, namely, low (0–0.4658), low-middle (0.4658–0.6188), middle 
(0.6188–0.7120), high-middle (0.7120–0.8103), and high 
(0.8103–1.0).

Five chronic non-communicable diseases attributable to ambient 
particulate matter pollution, i.e., tracheal bronchus and lung (TBL) 
cancer, ischemic heart disease (IHD), stroke, chronic obstructive 
pulmonary disease (COPD), diabetes mellitus, all defined by the 
International Classification of Diseases, 10th Edition (ICD-10) (5) 
(Text S3 gave accurate codes of the five diseases).

2.2 Statistical analysis

In this study, which targeted individuals aged 25 years and older, 
extending up to 95 + years, rather than the general population, 
age-standardized mortality rates (ASMRs) and age-standardized 
DALY rates (ASDRs) were recalculated using the GBD world standard 
population as a reference. The original standard includes all ages; 
however, a new standard population was created by extracting ages 
25–95+, and the direct age-standardization method was applied (14). 
Uncertainty intervals (UIs) of 95% for all estimates were calculated 
through 1,000 iterations of each computation step and derived from 
the 25th and 975th percentiles of the ordered data. To estimate 
temporal trends of age-standardized rates over a specific interval, 
average annual percentage changes (AAPCs) were determined using 
joinpoint regressions (15). Optimal points, identified by changes in 
slope, were connected through logarithmic linear models, allowing for 
a maximum of five joint points (16). The joinpoint regression formula 
is as follows:

	 ( ) ( ) ( )β β δ δ+ + −τ +…+ −τ +…= 0 1 1 1| k kx x xE y x e

where k denoted turning points, τk denoted unknown turning 
points, β0 denoted constant, β1 denoted regression coefficient, and 
δk denoted regression coefficient of the kth piecewise function. 
Changes in disease burden were decomposed to quantify the 
contributions of population growth, population aging, and 
epidemiological change, with population growth reflecting 
increasing population size, aging reflecting shifts in the population 
age structure, and epidemiological change reflecting variations in 
disease-specific rates independent of population size and age (17). 
The slope index of inequality was calculated by regressing national 
rates across all age groups on an SDI-related relative position scale, 
defined by the midpoint of the cumulative range of the population 
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ranked by SDI. The concentration index was calculated by 
integrating the area beneath the fitted Lorenz concentration curve, 
using the cumulative fraction of burden and the cumulative relative 
distribution of the population ranked by SDI. All analyses were 
conducted using R version 4.3.3 software (Institute for Statistics and 
Mathematics, Austria). A two-sided p < 0.05 was considered 
statistically significant.

3 Results

3.1 Trends of TBL cancer due to ambient 
particulate matter

In 2019, the global ASMR and ASDR for TBL cancer attributed 
to ambient particulate matter were 6.8 and 150 per 105, with China 
and Serbia recording the highest values, respectively (Table  1; 
Supplementary Tables S1–S3; Figure 1; Supplementary Figure S1). 
From 1990 to 2019, the overall ASMR and ASDR significantly rose 
with AAPCs of 0.75 and 0.48, respectively, the highest occurred 
in Equatorial  Guinea and the lowest in Finland (Table  1; 
Supplementary Tables S1–S3; Figure 2; Supplementary Figure S2). 
Southeast Asia, East Asia, and Oceania saw significant increases 
in burden, mainly before 2010, while South Asia and Sub-Saharan 
Africa showed steady upward trends from extremely low levels 
(Figure 3; Supplementary Figure S3). High-middle SDI areas have 
shown the highest ASMR and ASDR over the past 30 years, with 
similar patterns observed among individuals aged 45–74 
(Figures 3, 4; Supplementary Figures S3, S4).

3.2 Trends of IHD due to ambient 
particulate matter

In 2019, IHD attributed to ambient particulate matter had an 
overall ASMR of 30 per 105 and an ASDR of 700 per 105, with 
Uzbekistan recording the highest ASMR and Egypt the highest ASDR 
(Table  1; Supplementary Tables S1–S3; Figure  1; 
Supplementary Figure S1). From 1990 to 2019, the total ASMR and 
ASDR displayed only slight fluctuations, with Norway showing the 
lowest AAPCs, and the highest observed in Equatorial  Guinea 
(ASMR) and Bhutan (ASDR) (Table 1; Supplementary Tables S1–S3; 
Figure 2; Supplementary Figure S2). In North Africa and Middle East, 
the trend was uncertain though rates remained highest, whereas 
Southeast Asia, East Asia, and Oceania, as well as South Asia and 
sub-Sahara, saw a notable increase in burden (Figure  3; 
Supplementary Figure S3). High-middle SDI areas initially had the 
highest ASMR and ASDR but showed continuous declines, whereas 
middle SDI areas later ranked first with persistent growth; a pattern 
echoed in ages 70–94 (Figures 3, 4; Supplementary Figures S3, S4).

3.3 Trends of stroke due to ambient 
particulate matter

In 2019, stroke attributable to ambient particulate matter reached 
an ASMR of 26 per 105 and an ASDR of 630 per 105, with the highest 

rates recorded in North Macedonia and Mongolia, respectively 
(Table  1; Supplementary Tables S1–S3; Figure  1; 
Supplementary Figure S1). From 1990 to 2019, ASMR showed no clear 
change, while ASDR rose significantly (AAPC: 0.30), with Estonia 
recording the lowest AAPCs and Cabo Verde and Equatorial Guinea 
the highest for ASMR and ASDR, respectively (Table  1; 
Supplementary Tables S1–S3; Figure  2; Supplementary Figure S2). 
Although Southeast Asia, East Asia, and Oceania took the lead after 
2000, the marked growth in South Asia and Sub-Saharan Africa 
remained noteworthy (Figure  3; Supplementary Figure S3). High-
middle SDI areas initially held the highest ASMR and ASDR before 
declining, but after 2000, middle SDI regions surged to the lead with 
persistent growth, a shift also reflected in ages 65–94 (Figures 3, 4; 
Supplementary Figures S3, S4).

3.4 Trends of COPD due to ambient 
particulate matter

In 2019, COPD due to ambient particulate matter showed 
global ASMR and ASDR of 16 and 350 per 105, respectively, with 
Nepal reporting the highest rates (Table  1; 
Supplementary Tables S1–S3; Figure 1; Supplementary Figure S1). 
From 1990 to 2019, ASMR and ASDR declined significantly, with 
AAPCs of −0.47 and −0.34, respectively; Nicaragua and 
Equatorial Guinea recorded the highest values, while Singapore and 
Lithuania had the lowest for ASMR and ASDR, respectively 
(Table  1; Supplementary Tables S1–S3; Figure  2; 
Supplementary Figure S2). The dominance of Southeast Asia, East 
Asia, and Oceania in ASMR or ASDR gradually diminished due to 
continuous declines, while South Asia overtook them after 2005, 
showing uninterrupted growth thereafter (Figure  3; 
Supplementary Figure S3). ASMR and ASDR, initially highest in 
middle SDI regions, declined steadily, while low-middle SDI regions 
later assumed the lead with sustained growth, paralleling rates in 
ages 70–84 (Figures 3, 4; Supplementary Figures S3, S4).

3.5 Trends of diabetes mellitus due to 
ambient particulate matter

In 2019, the global ASMR and ASDR for diabetes mellitus due 
to ambient particulate matter were 4.5 and 200 per 105, respectively, 
with Bahrain ranking first worldwide (Table  1; 
Supplementary Tables S1–S3; Figure 1; Supplementary Figure S1). 
From 1990 to 2019, significant upward trends were discovered in 
ASMR (AAPC: 1.57) and ASDR (AAPC: 2.2), with Cabo Verde and 
Equatorial Guinea showing the highest increases, and Singapore 
and Sweden the lowest (Table  1; Supplementary Tables S1–S3; 
Figure  2; Supplementary Figure S2). Except for high-income 
regions, all GBD super-regions showed some growth in ASMR and 
ASDR, while North Africa and the Middle East remained the 
top-ranked regions (Figure 3; Supplementary Figure S3). ASMR 
and ASDR increased in all SDI regions except high-SDI, with 
middle-SDI regions leading; parallel trends were observed in death 
and DALY rates among ages 60–94 and 45–94, respectively 
(Figures 3, 4; Supplementary Figures S3, S4).
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TABLE 1  The deaths of non-communicable diseases attributed to ambient particulate matter pollution in 2019, and their temporal trends from 1990 to 
2019.

Location TBL cancer IHD Stroke COPD Diabetes mellitus

Global

 � Deaths in 2019 (million) 0.308 (0.225, 0.396) 1.332 (0.995, 1.698) 1.143 (0.871, 1.417) 0.695 (0.544, 0.870) 0.197 (0.136, 0.259)

 � ASMR in 2019 (per 100,000) 6.835 (4.998, 8.794) 30.024 (22.384, 38.336) 25.794 (19.626, 32.000) 16.198 (12.653, 20.275) 4.460 (3.085, 5.880)

 � AAPC on ASMR, 1990–2019 0.747 (0.564, 0.929) −0.031 (−0.245, 0.184)* 0.095 (−0.196, 0.387)*
−0.473 (−0.622, 

−0.324)
1.569 (1.421, 1.717)

Male

 � Deaths in 2019 (million) 0.216 (0.281, 0.156) 0.807 (1.029, 0.604) 0.654 (0.813, 0.495) 0.412 (0.516, 0.318) 0.099 (0.132, 0.069)

 � ASMR in 2019 (per 100,000) 10.458 (7.528, 13.592) 39.407 (29.389, 50.353) 32.264 (24.434, 40.160) 22.132 (17.096, 27.771) 5.000 (3.473, 6.632)

 � AAPC on ASMR, 1990–2019 0.367 (0.163, 0.571) 0.041 (−0.175, 0.258)* 0.346 (0.080, 0.613)
−0.607 (−0.768, 

−0.445)
1.870 (1.683, 2.057)

Female

 � Deaths in 2019 (million) 0.091 (0.119, 0.065) 0.525 (0.682, 0.383) 0.489 (0.625, 0.363) 0.283 (0.373, 0.205) 0.097 (0.129, 0.067)

 � ASMR in 2019 (per 100,000) 3.771 (2.697, 4.922) 21.682 (15.839, 28.173) 20.204 (14.993, 25.794) 11.661 (8.427, 15.340) 4.018 (2.754, 5.323)

 � AAPC on ASMR, 1990–2019 1.638 (1.493, 1.783) −0.173 (−0.384, 0.038)* −0.227 (−0.494, 0.041)*
−0.404 (−0.611, 

−0.198)
1.301 (1.160, 1.442)

Low SDI

 � Deaths in 2019 (million) 0.005 (0.003, 0.008) 0.062 (0.037, 0.093) 0.047 (0.027, 0.071) 0.053 (0.036, 0.073) 0.009 (0.005, 0.015)

 � ASMR in 2019 (per 100,000) 1.804 (1.033, 2.780) 23.204 (13.667, 34.549) 18.117 (10.554, 27.488) 24.970 (17.095, 34.153) 3.913 (2.035, 6.283)

 � AAPC on ASMR, 1990–2019 3.270 (2.859, 3.683) 2.981 (2.520, 3.443) 2.237 (1.716, 2.760) 2.071 (1.551, 2.593) 3.637 (3.433, 3.842)

Low-middle SDI

 � Deaths in 2019 (million) 0.026 (0.017, 0.035) 0.269 (0.184, 0.358) 0.216 (0.147, 0.287) 0.238 (0.173, 0.307) 0.041 (0.026, 0.058)

 � ASMR in 2019 (per 100,000) 3.531 (2.311, 4.773) 37.132 (25.370, 49.462) 30.629 (20.859, 40.674) 38.073 (27.590, 49.019) 6.176 (3.928, 8.682)

 � AAPC on ASMR, 1990–2019 3.515 (3.309, 3.721) 3.335 (2.890, 3.782) 2.519 (2.072, 2.968) 1.737 (1.072, 2.406) 4.565 (4.056, 5.077)

Middle SDI

 � Deaths in 2019 (million) 0.125 (0.090, 0.164) 0.558 (0.427, 0.697) 0.516 (0.395, 0.639) 0.257 (0.201, 0.326) 0.086 (0.061, 0.112)

 � ASMR in 2019 (per 100,000) 9.478 (6.779, 12.367) 43.941 (33.478, 55.064) 40.891 (31.184, 50.797) 23.234 (18.076, 29.471) 6.852 (4.831, 8.916)

 � AAPC on ASMR, 1990–2019 2.925 (2.581, 3.271) 1.437 (1.247, 1.628) 0.962 (0.722, 1.202)
−1.256 (−1.454, 

−1.058)
2.535 (2.432, 2.639)

High-middle SDI

 � Deaths in 2019 (million) 0.109 (0.080, 0.140) 0.352 (0.253, 0.464) 0.308 (0.235, 0.387) 0.118 (0.088, 0.158) 0.041 (0.029, 0.054)

 � ASMR in 2019 (per 100,000) 9.557 (7.005, 12.300) 31.817 (22.861, 42.039) 27.705 (21.087, 34.838) 10.840 (8.060, 14.531) 3.701 (2.599, 4.849)

 � AAPC on ASMR, 1990–2019 0.574 (0.242, 0.907) −1.078 (−1.433, −0.723)
−1.112 (−1.561, 

−0.660)

−2.382 (−2.614, 

−2.149)
0.602 (0.494, 0.710)

High SDI

 � Deaths in 2019 (million) 0.043 (0.028, 0.062) 0.090 (0.055, 0.137) 0.056 (0.038, 0.079) 0.028 (0.017, 0.042) 0.018 (0.011, 0.028)

 � ASMR in 2019 (per 100,000) 4.001 (2.590, 5.776) 8.535 (5.307, 12.853) 5.167 (3.541, 7.275) 2.340 (1.422, 3.502) 1.632 (1.001, 2.427)

 � AAPC on ASMR, 1990–2019
−2.063 (−2.179, 

−1.946)
−4.108 (−4.257, −3.959)

−3.592 (−3.757, 

−3.426)

−2.411 (−2.633, 

−2.188)
−1.888 (−2.148, −1.627)

Central Europe, Eastern Europe, and Central Asia

 � Deaths in 2019 (million) 0.020 (0.014, 0.027) 0.150 (0.096, 0.216) 0.082 (0.057, 0.114) 0.012 (0.008, 0.017) 0.009 (0.006, 0.013)

 � ASMR in 2019 (per 100,000) 5.716 (3.979, 7.662) 43.535 (27.691, 62.740) 23.698 (16.311, 32.839) 3.451 (2.290, 4.825) 2.652 (1.780, 3.621)

 � AAPC on ASMR, 1990–2019
−1.471 (−1.872, 

−1.068)
−1.509 (−2.041, −0.975)

−2.125 (−2.613, 

−1.635)

−3.133 (−3.429, 

−2.835)
1.419 (1.212, 1.626)

High-income

 � Deaths in 2019 (million) 0.044 (0.028, 0.065) 0.081 (0.045, 0.130) 0.051 (0.032, 0.077) 0.030 (0.017, 0.045) 0.020 (0.012, 0.031)

(Continued)
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3.6 Decomposition of burden changes due 
to ambient particulate matter

Between 1990 and 2019, population growth and aging largely 
drove the increases in deaths and DALYs for TBL cancer, IHD, stroke, 
COPD, and diabetes mellitus (Figure 5; Supplementary Figure S5; 
Supplementary Tables S4, S5). More precisely, for TBL cancer, 
population growth and aging accounted for 59 and 20% of the rise in 
deaths, and 66 and 18% of the increment in DALYs; for IHD, the 
corresponding contributions were 72 and 27% for deaths, and 71 and 
18% for DALYs; for stroke, 70 and 27% for deaths, and 70 and 18% for 
DALYs; for COPD, 83 and 39% for deaths, and 86 and 30% for DALYs; 
and for diabetes, 45 and 19% for deaths, and 42 and 11% for DALYs.

3.7 Correlation between SDI and burdens 
due to ambient particulate matter

Correlations with SDI showed disease-specific disparities for 
ASMR (Figures 6, 7) and ASDR (Supplementary Figures S6, S7). For 
TBL cancer, both ASMR and ASDR had a significant positive 

correlation with SDI in 2019 (ρ = 0.43 and 0.40, respectively; p < 0.05), 
a trend that persisted from 1990 to 2019 (both ρ = 0.67; p < 0.05). In 
contrast, IHD exhibited a pronounced negative correlation in 2019 
(ρ = −0.145 and −0.170, respectively; p < 0.05), though this pattern was 
not consistent over time. Stroke also demonstrated a negative 
correlation in 2019 (both ρ = −0.36; p < 0.05), which did not persist 
across past 30 years. For COPD, the negative correlation observed in 
2019 (both ρ = −0.55; p < 0.05) was consistent with the long-term trend 
(ρ = −0.47 and −0.49, respectively; p < 0.05). Finally, for diabetes, only 
ASMR (ρ = −0.177; p < 0.05), not ASDR, was negatively correlated with 
SDI in 2019, continuing a trend evident since 1990 (ρ = −0.33; p < 0.05).

3.8 Health inequality in burdens due to 
ambient particulate matter by SDI

Between 1990 and 2019, health inequalities in burdens from 
ambient particulate matter across SDI levels, as reflected by the slope 
(Figure  8; Supplementary Figure S8) and concentration indices 
(Figure 9; Supplementary Figure S9), generally narrowed for all five 
diseases, with a few metrics turning negative. For TBL cancer, the 

TABLE 1  (Continued)

Location TBL cancer IHD Stroke COPD Diabetes mellitus

 � ASMR in 2019 (per 100,000) 3.689 (2.303, 5.428) 6.474 (3.598, 10.454) 3.952 (2.496, 5.957) 2.150 (1.261, 3.273) 1.558 (0.918, 2.365)

 � AAPC on ASMR, 1990–2019
−2.349 (−2.554, 

−2.144)
−4.794 (−4.934, −4.655)

−4.335 (−4.491, 

−4.180)

−2.522 (−2.717, 

−2.326)
−2.311 (−2.470, −2.153)

Latin America and Caribbean

 � Deaths in 2019 (million) 0.009 (0.006, 0.012) 0.050 (0.033, 0.071) 0.030 (0.021, 0.041) 0.016 (0.011, 0.022) 0.024 (0.016, 0.033)

 � ASMR in 2019 (per 100,000) 2.723 (1.884, 3.662) 15.816 (10.416, 22.452) 9.449 (6.590, 12.896) 5.338 (3.618, 7.334) 7.631 (5.071, 10.443)

 � AAPC on ASMR, 1990–2019
−0.376 (−0.582, 

−0.169)
−1.236 (−1.428, −1.044)

−1.930 (−2.214, 

−1.644)

−1.143 (−1.343, 

−0.942)
0.654 (0.535, 0.773)

North Africa and Middle East

 � Deaths in 2019 (million) 0.015 (0.011, 0.019) 0.178 (0.132, 0.230) 0.075 (0.057, 0.095) 0.021 (0.015, 0.028) 0.020 (0.014, 0.026)

 � ASMR in 2019 (per 100,000) 6.480 (4.689, 8.480) 80.323 (59.265, 103.651) 34.847 (26.360, 44.213) 10.767 (7.704, 14.327) 9.552 (6.755, 12.553)

 � AAPC on ASMR, 1990–2019 0.887 (0.625, 1.150) −0.219 (−0.603, 0.166)* 0.074 (−0.122, 0.270)* 0.019 (−0.424, 0.464)* 1.160 (0.856, 1.465)

South Asia

 � Deaths in 2019 (million) 0.024 (0.016, 0.033) 0.386 (0.279, 0.502) 0.214 (0.152, 0.280) 0.308 (0.224, 0.395) 0.051 (0.034, 0.070)

 � ASMR in 2019 (per 100,000) 3.190 (2.170, 4.305) 51.659 (37.205, 67.311) 29.506 (20.946, 38.746) 49.235 (35.872, 63.214) 7.732 (5.080, 10.572)

 � AAPC on ASMR, 1990–2019 3.360 (2.854, 3.868) 2.796 (2.019, 3.578) 1.989 (0.998, 2.990) 1.597 (0.628, 2.576) 4.345 (3.527, 5.170)

Southeast Asia, East Asia, and Oceania

 � Deaths in 2019 (million) 0.191 (0.136, 0.253) 0.451 (0.333, 0.577) 0.650 (0.488, 0.817) 0.295 (0.227, 0.386) 0.058 (0.040, 0.078)

 � ASMR in 2019 (per 100,000) 13.279 (9.488, 17.539) 34.276 (25.273, 43.904) 47.851 (35.889, 60.225) 25.060 (19.193, 32.924) 4.237 (2.901, 5.672)

 � AAPC on ASMR, 1990–2019 3.134 (2.861, 3.408) 2.804 (2.497, 3.113) 0.946 (0.618, 1.274) −2.292 (−2.776, 

−1.806)

2.998 (2.758, 3.239)

Sub-Saharan Africa

 � Deaths in 2019 (million) 0.005 (0.003, 0.007) 0.035 (0.022, 0.052) 0.042 (0.026, 0.061) 0.014 (0.009, 0.019) 0.013 (0.008, 0.020)

 � ASMR in 2019 (per 100,000) 2.126 (1.372, 2.982) 16.111 (10.044, 23.725) 18.795 (12.017, 27.318) 7.115 (4.904, 9.843) 6.543 (4.133, 9.433)

 � AAPC on ASMR, 1990–2019 1.873 (1.669, 2.076) 2.051 (1.747, 2.356) 1.748 (1.418, 2.078) 0.964 (0.652, 1.277) 3.143 (2.886, 3.400)

TBL, tracheal, bronchus, and lung; IHD, ischemic heart disease; COPD, chronic obstructive pulmonary disease; ASMR, age-standardized mortality rate; AAPC, average annual percent change. 
*NOT statistically significant since p value > 0.05.
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FIGURE 1

ASMRs of ambient particulate matter-attributed non-communicable diseases in 2019.

FIGURE 2

AAPCs on ASMRs of ambient particulate matter-attributed non-communicable diseases from 1990 to 2019.
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FIGURE 3

Trends of ASMR of non-communicable diseases attributed to ambient particulate matter from 1990 to 2019.

FIGURE 4

Trends of age-specific death rate of non-communicable diseases attributed to ambient particulate matter from 1990 to 2019.
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slope index in death rates declined from 6.2 to 4.2 and the 
concentration index from 0.35 to 0.22, with comparable declines in 
DALYs. For IHD, values decreased from 32 to 6.9 and from 0.24 to 
−0.05 in death rates, respectively, with similar trends in DALYs. Stroke 
showed reductions from 16 to −1.93 and from 0.107 to 0.0118 in 
death rates, respectively, mirrored by those in DALYs. For COPD, the 
slope index of death rate fell from 1.84 to −0.62, while the 
concentration index remained stable; DALYs followed the same 
pattern. For diabetes, declines were observed from 3.2 to 1.14 and 
from 0.24 to −0.074  in death rates, respectively, with changes 
paralleling mortality in DALYs.

4 Discussion

The current research investigated the burden of 
non-communicable diseases linked to ambient particulate pollution 
from 1990 to 2019. Distinct from prior GBD studies that typically 
focused on a single disease, this job compared five major 
non-communicable diseases to provide a more integrated perspective. 
Substantial declines were observed in COPD, but upward trends were 
evident in TBL cancer and diabetes. By incorporating inequality 
metrics, clearly persistent cross-country disparities were also 
identified, with disproportionate increases in low-SDI regions such as 

FIGURE 5

The changes in the deaths of ambient particulate matter-attributed non-communicable diseases driven by aging, population growth, and 
epidemiological change from 1990 to 2019.

FIGURE 6

The correlation between SDI and ASMR in 2019 for ambient particulate matter-attributed non-communicable diseases.
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South Asia and Sub-Saharan Africa. Together, these findings not only 
refine the understanding of disease-specific trends but also emphasize 
global health inequities that warrant policy attention.

It was observed in 2019 that although males generally suffered 
from a higher particle pollutants-induced chronic disease burden than 
females, an exception occurred among senior citizens over 75 years 
old with females surpassing males, particularly in diabetes mellitus 
(Supplementary Figures S10, S11). Some scholars have previously 
identified notable gender differences in short-term health effects 
associated with ambient atmospheric pollution, particularly in 
hospitalization and mortality rates for respiratory and circulatory 
issues (18). However, further exploration is required to understand the 
patterns of gender differences in the relationship between long-term 
exposure and health response. It should be noted that sex-stratified 
results are beyond the scope of this study, as the principal focus is 
cross-country inequality in non-communicable disease burden. The 
observed gender patterns, including a generally higher burden in 
males and a diabetes-specific exception among older females, 
especially postmenopausal women surpassing men, have been noted 
in prior literature (19). Future work with sex-specific data is warranted 
to better elucidate the mechanisms underlying the observed diabetes-
related gender differences in older adults.

Another noteworthy discovery was that the peak age for DALYs of 
the same disease tended to precede the peak age for mortality, 
suggesting that disability and premature death among middle-aged 
would result in a greater loss of life expectancy, yielding more adverse 
socioeconomic consequences (20). Notably, although older adults 
exhibit higher absolute mortality rates, the earlier peak of DALYs 
indicates that premature deaths in midlife lead to greater losses of life 
expectancy, as individuals are deprived of decades of potential working 

years, family responsibilities, and social contributions, thereby offering 
a complementary view to mortality-based assessments. Therefore, the 
target population for future interventions addressing the health hazards 
of ambient airborne particles should gradually transition to younger 
cohorts. Actually, as this study has uncovered, population growth 
emerged as the primary determinant of changes in the burden of 
particulate matter-attributed chronic diseases.

The cross-region inequalities in particulate pollution hazards not 
only existed but also evolved over time, necessitating adaptable 
adjustments to complementary intervention strategies whenever 
necessary. As early as the GBD 2015 study, PM2.5 was identified as the 
fifth leading risk factor for mortality in 2015, with 59% of the related 
deaths occurring in East and South Asia (21). Extending these 
findings, this study reveals that over the last three decades, particle 
pollutant-related disease burden in higher-SDI regions has either 
experienced a decrease or continued to rise with a noticeably slowed 
momentum, while the burden has consistently increased without 
interruption in regions with lower SDI. The observed divergent trends 
across SDI levels can be attributed to multiple factors. In higher-SDI 
areas, slower population growth, effective air quality regulations, and 
better healthcare infrastructure likely contributed to decreases in 
non-communicable disease burden attributed to ambient particulate 
matter. Conversely, lower SDI-areas experienced rapid population 
growth, ongoing industrialization with limited pollution control, and 
under-resourced healthcare systems, collectively driving the observed 
increases burden.

Similarly, during the same period, nearly all slope and 
concentration indices have decreased from initially higher positive 
values to lower positives or even negatives, strongly suggesting a 
gradual shift of health consequences associated with atmospheric 

FIGURE 7

The correlation between SDI and ASMR from 1990 to 2019 for ambient particulate matter-attributed non-communicable diseases.
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particulate pollution from developed to less developed regions. 
Interestingly, a survey focusing on the health impacts of PM2.5 also 
confirmed that between 1960 and 2019, despite a decrease in 
attributable health burdens in Europe and the United States, Asian 
countries with China and India as representatives continued to 
dominate the increase in attributable health burdens (22). The 
conditions in sub-Sahara and South Asia were observed to be relatively 
unfavorable, which might be ascribed to the rapid population growth, 
insufficiency of healthcare facilities, and underdevelopment of 
environmental surveillance. Consequently, attention should be paid 
to the potential for future climate change to exacerbate existing health 
inequalities, especially in vulnerable regions and populations in 
sub-Saharan Africa and South Asia (23).

During global monitoring from 1998 to 2018, it was observed that 
more than 60% of people in East Asia and South Asia were perpetually 
exposed to PM2.5 levels above 35 μg/m3 per year, greatly exceeding 
the WHO’s 2021 guideline of 5 μg/m3, which could also account for 
why the atmospheric particulates-attributed TBL cancer burden had 
been substantially greater in Southeast Asia, East Asia, and Oceania 
since the year 2000 (24). Mechanistically, inhaled particulate matter 
can trigger lung inflammation and DNA damage, promoting tumor 
development. However, since Asia has become the biggest producer 
and consumer of tobacco worldwide, it is difficult to attribute local 
TBL cancer exclusively to particulate matter (25). According to a 

U.S. investigation, long-term exposure to PM2.5 could modestly 
elevate the lung cancer mortality rate among lifelong never-smokers, 
and similar risks are likely to exist among Asian non-smokers (26). 
From 2010 on, the slowdown in haze-reduced TBL cancer growth 
rates in East Asia and Southeast Asia could be primarily ascribed to 
the drastic reduction in air pollutant emissions, thanks to the Clean 
Air Action enforced by leading countries, notably China (27). In 2019, 
the ASMR for TBL cancer in high-middle SDI regions was higher than 
that for other non-communicable diseases. This elevated burden may 
be  attributed to a combination of elevated ambient particulate 
exposure, high smoking prevalence, and industrialization-related 
environmental pollution. These factors likely act synergistically to 
increase the lung cancer burden in these regions, despite relatively 
better healthcare infrastructure and declining trends in other 
non-communicable diseases.

It has been noted that over the past three decades, North Africa 
and Middle East have continually topped the charts of ambient 
particulate-induced IHD burdens, with early research convincingly 
attributing this to a substantial rise in  local particulate pollution 
exposure during the same period (28). Literature on the health effects 
of air pollution in this region is relatively scarce, however, a few 
foundational studies, for example, the Isfahan case-crossover design 
in Iran, have verified the correlation between exposure to PM2.5 and 
PM10-2.5 and cardiovascular disease hospitalizations (29). Underlying 

FIGURE 8

Health inequality curves for the deaths of ambient particulate matter-attributed non-communicable diseases from 1990 to 2019 across the world.
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mechanisms shows that particulate matter can trigger systemic 
inflammation, oxidative stress, and endothelial dysfunction, 
promoting ischemic heart disease. Additionally, age-standardized 
rates of particulate matter-attributed IHD burden were found to 
be negatively correlated with the SDI in 2019, with concentration 
indices declining from positive values in 1990 to negative values in 
2019. Such alteration signified a gradual relocation of airborne 
particle-induced IHD burden from developed to developing countries, 
indicating the growth in South Asia and Sub-Saharan Africa, 
exemplified by Bhutan and Equatorial Guinea, respectively, was of 
special interest.

We’ve noticed that the burden of particulate pollution-induced 
stroke in Central Europe Eastern Europe, and Central Asia, was once 
the highest globally, hitting its peak in 1995 before gradually declining, 
which aligned with the observed decrease in PM2.5 levels in rural 
Central Europe between the mid-1990s and 2009/10 (30). Beginning 
in 2000, Southeast Asia, East Asia, and Oceania have experienced a 
growing burden of airborne particle-attributed stroke, progressively 
widening the disparity with other regions. This emphasizes the 
importance of addressing not only conventional stroke risk factors like 
smoking and hypertension prevalent in Asians but also the potential 
threats posed by particulate pollution (31). Functionally, inhaled 
particulate matter can trigger systemic inflammation, endothelial 
dysfunction, and atherosclerosis, thereby increasing the risk of stroke. 

The shift of both stroke mortality and DALY rates attributable to 
particle pollutants from positive values in 1990 to negative values in 
2019 signaled a reversal of cross-region inequality, with the burden 
transferred from higher- to lower-income nations. Hence, it is 
imperative to consider particulate matter as a risk factor when 
formulating stroke intervention strategies in underdeveloped areas.

Despite significant reductions in airborne particulate-induced 
COPD across most areas in the last 30 years, the increasing trends in 
South Asia and Sub-Saharan Africa, notably in low/lower-middle SDI 
regions, remained concerning. Earlier spatiotemporal studies also 
noted the annual increase in PM2.5 concentrations from 1998 to 
2016 in India and the Sub-Sahara, closely correlated with population 
growth, in stark contrast to the “decoupling” phenomenon observed 
in high-income Western countries, where PM2.5 levels and population 
growth have diverged (32). Such increasing trend is mechanistically 
linked to chronic inhalation of fine particulate matter, causing airway 
inflammation and progressive lung function decline, which elevates 
COPD risk and mortality. South Asia, particularly Nepal, has faced a 
much more severe threat, recording the highest global ASMR and 
ASDR in 2019, while in India, 54.5% of premature deaths caused by 
PM2.5 in the first decade of this century were attributable to COPD 
(33). Moreover, recent analyses have revealed extreme cross-region 
inequality in the burden of particulate pollution-related COPD, 
evidenced by a negative correlation between age-standardized rates 

FIGURE 9

Health concentration curves for the deaths of ambient particulate matter-attributed non-communicable diseases from 1990 to 2019 across the world.
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and SDI, and a shift in the slope index of inequality from positive to 
negative values.

Over the past three decades, a global increase in the burden of 
diabetes mellitus induced by particulate matter was spotted, except in 
high-income countries. This increase was particularly pronounced in 
LMICs, aligning with previous findings (34). In North Africa and 
Middle East, not only did the burden rank the highest, but it also 
continued to rise, consistent with another review that noted the 
ongoing concerns about the rising incidence of diabetes in the Middle 
East and the failure to translate these concerns into effective action 
(35). The circumstances in Latin America and Caribbean, coming in 
second, were also not optimistic, as reviews have suggested that the 
actual numbers of diabetes cases were likely underestimated (36). 
Traditionally, obesity, dyslipidemia, and hypertension have been 
recognized as primary risk factors for diabetes mellitus. Biologically, 
chronic exposure to particulate matter may induce systemic 
inflammation and insulin resistance, contributing to the development 
of diabetes. However, the role of particulate matter exposure in the 
incidence of diabetes mellitus still demands further population-based 
studies to establish strong causal relationships, especially in less 
developed regions.

The disparities observed in particulate matter-attributed disease 
burden suggest the need for multi-level interventions. Evidence indicates 
that modest improvements in PM2.5 can lead to substantial health benefits 
in relatively clean regions such as North America and Europe, whereas 
heavily polluted regions like China and India require major reductions to 
achieve comparable gains, underscoring pronounced geographic 
inequalities in the global air pollution burden (37). Implementation of 
WHO Air Quality Guidelines and emission control policies could reduce 
population exposure, while climate change mitigation efforts may provide 
co-benefits for air quality. The health and economic costs associated with 
air pollution are largely preventable, making it critical to assess their scale 
for guiding policies and interventions (38). Moreover, strengthening health 
system preparedness, particularly in low- and middle-SDI regions, is 
important to manage uprising rates of respiratory, cardiovascular, and 
metabolic diseases. These measures collectively highlight potential 
strategies to mitigate health inequalities and inform future public health 
planning, though further context-specific analyses are warranted.

Before coming to the conclusions, some inherent limitations of this 
study should be  acknowledged. Although GBD 2019 reports health 
outcomes from ambient particulate matter, it omitted some conditions (e.g., 
asthma, Alzheimer’s) and considered only mortality and DALYs, excluding 
incidence due to survey challenges. Secondly, while GBD 2019 provided 
authoritative global estimates of particulate matter-related disease burden, 
its reliance on annual average concentrations at coarse spatial resolution 
limited the ability to capture local variations in exposure, seasonal patterns, 
and short-term peak events (39). Third, inconsistencies arising from 
variable data quality and surveillance delays may have compromised the 
reliability of these findings. Moreover, some other cohort-based models like 
the Global Exposure Mortality Model (GEMM) suggested that estimates 
of PM2.5-attributed burden may be underestimated, particularly at high 
exposure levels, due to assumptions of equal toxicity across particle sources 
and the inclusion of non-outdoor exposure (40). In addition, excluding 
populations under 25 may underestimate overall disease burden, potentially 
overlooking early-onset cases of conditions such as diabetes. Finally, this 
study relied on the widely cited GBD 2019 estimates, but newer iterations 
(e.g., GBD 2021) may reflect significant methodological refinements that 
could inform future analyses (41).

5 Conclusion

This study not only highlighted the unfavorable global situation 
regarding interventions for chronic diseases attributed to ambient 
particulate matter, primarily lower respiratory tract cancers and 
diabetes mellitus, over the last three decades but also underscored 
the presence of cross-region inequalities in the atmospheric aerosol-
induced health impacts, with the particularly alarming persistent 
and rapid growth in underdeveloped areas like South Asia and 
Sub-Saharan Africa. Therefore, the future management of air 
pollution-related chronic diseases should pay closer attention to the 
rational allocation of health resources across different populations 
and regions.
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