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Background: Stanford Type A aortic dissection (TAAD) is a life-threatening
condition involving the ascending aorta and requires urgent surgery. This study
developed 11 machine learning regression models to predict operative duration
and identify key clinical factors influencing surgical time in TAAD.

Materials and methods: In this single-center retrospective cohort study of
505 patients who underwent surgery from December 2017 to March 2023.
Specifically, 11 machine learning models were construct using 47 preoperative
and intraoperative features to predict operative duration. Model performance
was assessed by R?, RMSE, and MAE, and SHAP analysis enhanced interpretability.
Results: The study primarily consisted of middle-aged patients, comprising
73.4% males and 26.6% females. Furthermore, most patients underwent complex
aortic procedures under time-constrained preoperative conditions. Procedures
involving root replacement and total arch replacement were associated with
longer surgical durations. The Extralrees Regressor had the highest predictive
accuracy. SHAP analysis revealed five key features: Duration of extracorporeal
circulation, Duration of aortic occlusion, Intraoperative blood transfusion,
Treatment method for the aortic arch, and Treatment method for the aortic root.
Conclusion: This study developed high-performance predictive models to
identify key features affecting operative duration in TAAD surgery. Complex
reconstructions prolong procedures, and longer aortic occlusion further
contributes to this effect. The findings highlight the major influence of surgical
strategies and intraoperative management on surgical duration. Special
consideration remains warranted for specific patient subgroups.
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1 Introduction

Aortic dissection (AD) is a catastrophic vascular emergency
initiated by a tear in the aortic intima, through which blood enters the
medial layer, creating a false lumen and leading to separation of the
aortic wall layers (1). This condition necessitates prompt medical and
often surgical intervention (2). A previous study showed that the
weighted annual incidence of aortic dissection at approximately 2.79
cases per 100,000 people (3). Among patients with untreated acute
aortic dissection, the mortality rate increases by approximately 1-2%
per hour after symptom onset (4), with in-hospital mortality reaching
up to 52% in those who do not undergo surgical intervention (5). Even
with treatment, the 5-year survival rate for patients with acute aortic
dissection ranging from 45 to 88% (6). AD poses a significant clinical
challenge in critical care medicine, requiring a multidisciplinary
response and intervention. The Stanford classification system
categorizes AD into Type A (involving the ascending aorta) and Type
B (not involving the ascending aorta) (7). Stanford Type A aortic
dissection (TAAD) is more severe and typically necessitates urgent
open-chest surgery for aortic replacement and reconstruction (8). Due
to the extensive nature of the procedure, which involves cardiac and
cerebral perfusion management, TAAD is associated with a
substantially higher frequency of sudden events during surgery and
elevated mortality compared to Type B (9, 10).

In TAAD surgery, intraoperative parameters such as surgical
duration and the duration of extracorporeal circulation are closely
associated with patient outcomes. Studies have identified surgical
duration, duration of extracorporeal circulation, and aortic cross-
clamp time as independent risk factors for postoperative mortality
(11). Surgical duration is also directly linked to resource utilization.
Longer anesthesia and extended cardiopulmonary bypass time often
lead to extended surgical durations. This may require prolonged
postoperative ICU monitoring, which increases the consumption of
medical resources and overall healthcare costs (12, 13). These factors
underscore the importance of tightly controlling surgical duration to
improve patient outcomes and optimize hospital resource allocation.
Therefore, the critical importance of accurately predicting surgical
duration for clinical management, reliable prediction remains
challenging in current clinical practice (14). Surgical duration is
influenced by numerous factors, including patient-specific
characteristics, procedural complexity, and intraoperative events (15).
The previous studies have demonstrated that adverse environmental
conditions are significant triggers for acute cardiovascular events,
including aortic dissection (16, 17). From this broader
pathophysiological perspective, patients presenting under such
conditions may arrive in a more severe or unstable baseline state,
which can indirectly increase procedural complexity and operative
duration. Moreover, traditional estimation methods based on surgeon
experience or historical averages often lack precision and are subject
to considerable variability (18).

In recent years, increasing attention has been given to the
integration of clinical research and machine learning, reflecting a
broader trend toward combining data-driven algorithms with medical
practice to improve prediction, evaluation, and decision-making in
healthcare (19-21). Recent work in machine learning-based operative
prediction has shown promising results in forecasting postoperative
outcomes in cardiac surgery, including mortality, complications, and
ICU stays (22-24). Furthermore, cutting-edge ML approaches have
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been increasingly applied to optimize cardiovascular surgical
strategies and perioperative decision-making using multimodal
clinical data, highlighting their potential to refine risk stratification
and improve surgical outcomes (25-27). Clinical studies have
highlighted that operative duration in aortic surgery is influenced by
multiple perioperative factors, including aneurysm diameter, extent
of reconstruction, and perfusion strategy, which are consistently
linked with prolonged cardiopulmonary bypass and ischemic times
(22, 28, 29). Furthermore, recent work has developed prognostic tools
and risk models that incorporate intraoperative variables to better
capture predictors of prolonged surgery and adverse outcomes in
aortic and major cardiovascular operations (26, 30).

As a highly complex cardiovascular procedure, TAAD surgery is
both time-consuming and technically demanding. However, current
clinical research lacks an in-depth analysis of the specific factors
influencing its operative duration. The purpose of this study is to
comprehensively analyze preoperative and intraoperative factors
associated with surgical duration using machine learning. Both
preoperative and intraoperative variables were included to reflect the
overall influencing factors of operation duration. Accurate prediction
of surgical duration can facilitate efficient operating room scheduling,
optimize anesthesia and cardiopulmonary bypass management,
enhance surgical safety, and reduce healthcare costs.

2 Materials and methods
2.1 Informed consent

This study was approved by the Ethics Committee of the Affiliated
Hospital of Qingdao University (No. QDFY WZLL 29835). Data were
collected between December 2017 and March 2023, and written
informed consent was obtained from all participants.

2.2 Data collection

This single-center retrospective cohort included 675 consecutive
patients who underwent surgery for acute type A aortic dissection at
the Affiliated Hospital of Qingdao University between December 2017
and March 2023. Two complementary approaches were employed to
justify the sample size. Firstly, based on a precision-based sample size
calculation derived from our dataset with a desired 95% confidence
interval half-width of 15 min, the minimum required sample size was
estimated at 311 patients. The detailed formula used for this
calculation is provided in the Supplementary materials. As our study
included 675 patients, the available sample size substantially exceeded
this requirement, thereby ensuring adequate statistical precision (31).
Secondly, given the aim of analyzing factors associated with operative
duration, this study included 47 features and justified the sample size
by considering expected effect size (32). Following Green’s rules of
thumb, at least 50 + 8 m observations are recommended for testing
the overall model and at least 104 + m for testing an individual
regression coefficient, where m denotes the number of features (33).
In this study (m = 47), the sample size of 675 patients substantially
exceeded the corresponding thresholds (426 and 151). Furthermore,
compared with other similar studies, the enrolled sample size in this
study can be considered appropriate (34, 35).
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This study identified candidate predictor variables for potential
inclusion in our models from a review of the literature (16, 17, 36-38).
In addition to clinical features, climate features were included in this
study to explore the potential influence of environmental factors on
operative duration. All 47 features were shown as follows: (a)
preoperative features, Surgery Preparation Time, ICU stay days before
surgery, Gender, Age, Height, Weight, Heart rate, Body temperature,
Systolic blood pressure, Diastolic blood pressure, Hypertension,
Diabetes, Heart disease, Lung disease, Marfan syndrome, Smoking
quantity, Alcohol consumption, Loss of consciousness, White blood
cells, Red blood cell count, Hemoglobin, Platelets, C-reactive protein,
Albumin, Alanine transaminase, Aspartate transaminase, Creatinine,
Troponin I or T, D-dimer, Minimum temperature, Maximum
temperature, Relative humidity, Air Quality Index (AQI), Fine
particulate matter (PM2.5), Coarse particulate matter (PM10),
Carbon Monoxide (CO), Nitrogen dioxide (NO,), Sulfur dioxide
(SO,), 8-h average Ozone concentration (Os-gh). (b) intraoperative
features, Treatment method for the aortic root, Treatment method for
the aortic arch, Intraoperative blood transfusion, Duration of
extracorporeal circulation, Duration of aortic occlusion, Duration of
deep low-temperature shutdown cycle, Duration of ventilator use,
Aortic valve insufficiency. To ensure clarity and reproducibility, all
variables used in the analysis and their corresponding units are
summarized in Supplementary Table S1.

2.3 Data cleaning

To ensure data accuracy and completeness, data cleaning was
conducted in accordance with the study objectives. A total of 675
patients diagnosed with AD were initially screened. After excluding
74 patients with non-TAAD, 93 patients who did not undergo surgery,
and 3 patients with more than 50% missing data, 505 cases were
included in the final analysis. Baseline information of excluded
patients is provided in Supplementary Table S2. The data selection
process is illustrated in Figure 1.

2.4 Data processing

Continuous variables were standardized, and missing values were
imputed using Multiple Imputation by Chained Equations. The

10.3389/fpubh.2025.1682339

distribution of the outcome variable was examined and found to
be well-balanced. Therefore, no additional resampling or correction
for class imbalance was required. This method constructs a regression
model for each missing variable, uses other variables as predictive
factors, and iteratively fills in missing values multiple times to obtain
relatively stable and reasonable interpolation results (39) (Figure 2).

The dataset was randomly split into training (70%), testing (20%),
and validation (10%) subsets using a fixed random seed (42).

2.5 Statistical methods

For all clinical features, statistical comparisons were conducted
according to variable type. Specifically, categorical variables with two
levels were analyzed using the independent samples ¢-test, continuous
variables were evaluated for linear correlation with operative duration
using Pearson’s correlation analysis, and categorical variables with
more than two levels were assessed by one-way analysis of variance
(ANOVA). A two-tailed p < 0.05 was considered statistically significant.

2.6 Regression models

To accurately predict surgical duration in TAAD surgery, this
study developed and compared 11 representative machine learning
regression models, encompassing a range of approaches including
linear regression, regularized regression, tree-based models, ensemble
learning methods, and kernel-based techniques. All analyses were
performed in Python (version 3.8) using scikit-learn (version
1.4.1 post1).

Linear regression: linear regression fits a linear relationship
between input features and the target variable. It is easy to interpret
but sensitive to outliers and assumes linearity among variables.

Elastic net: elastic net combines both L1 and L2 regularization to
perform variable selection while maintaining model stability. It
performs well when dealing with correlated features.

Decision tree regressor: the decision tree regressor splits the feature
space into regions based on feature thresholds to predict continuous
outcomes. It captures nonlinear relationships but is prone
to overfitting.

Random forest regressor: random forest builds an ensemble of
decision trees and averages their outputs to improve prediction

Data collection Data cleaning

74 Non-stanford type A patients
93 Non-surgical patients

675 patients

3 patients data missing more than 50%

505 patients were included in this study
etc

FIGURE 1
Data collection and preprocessing.
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FIGURE 2
Distribution of surgical duration by gender.

Gender

accuracy. It is robust against overfitting and effectively handles high-
dimensional data.

ExtraTrees regressor: ExtraTrees is similar to random forest but
introduces more randomness in the splitting process by selecting
thresholds at random. This increases training speed and
reduces variance.

Gradient boosting regressor: the gradient boosting algorithm
sequentially trains weak learners to correct residual errors of previous
learners. It offers strong predictive power but is sensitive to parameter
tuning and noise.

XGBoost Regressor: XGBoost is an optimized gradient boosting
algorithm that incorporates regularization and efficiently handles
missing data. It is widely adopted due to its high speed and accuracy.

CatBoost regressor: CatBoost is designed to handle categorical
variables efficiently and mitigate prediction shift during training. It
offers enhanced stability and performance over traditional
boosting methods.

AdaBoost regressor: AdaBoost combines multiple weak learners in
a sequential manner, assigning higher weights to previously
mispredicted samples. It performs well on clean datasets with
low noise.

Support vector regressor: SVR constructs a hyperplane that fits the
data within a defined margin of tolerance, based on support vector
machine principles. It is suitable for small-to-medium-sized datasets
and models nonlinear relationships.

K-Nearest neighbors regressor: KNN regressor predicts target
values by averaging the outputs of the K most similar training samples.
It is simple to implement but sensitive to feature scaling and less
effective in high-dimensional spaces.
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Hyperparameters for all models were optimized using a grid
search. Linear Regression was fitted without regularization. For tree-
based models (Decision Tree, Random Forest, ExtraTrees),
parameters such as max_depth, min_samples_leaf, min_samples_
split, and n_estimators were tuned. For boosting models (Gradient
Boosting, XGBoost, CatBoost, AdaBoost), tuning focused on
learning_rate, n_estimators, and max_depth, with additional
regularization parameters included. For Elastic Net, the mixing
parameter and regularization strength were optimized. For SVR, the
penalty parameter and kernel parameters were tuned. For KNN, the
number of neighbors and distance metric were considered. Model
performance was evaluated using the coefficient of determination
(R?, mean absolute error (MAE), and root mean squared error
(RMSE), consistent with established practice in regression-
based prediction.

Model performance was evaluated using a 5-fold cross-validation
procedure. The dataset was randomly divided into five approximately
equal subsets. In each iteration, four folds were used for training and
the remaining fold was used for testing, such that every sample was
evaluated exactly once in an independent test set. Performance
metrics (R%, MAE, and RMSE) were recorded for each fold to provide
an unbiased estimate of the model’s generalization ability on unseen
data. This approach was selected as a balance between computational
efficiency and robustness of performance estimation for a cohort of
this size (n = 505).

Coefficient of determination (R?): R*> measures the proportion of
the variance in the dependent variable that is predictable from the
independent variables. Its value ranges from —oo to 1, where a value
closer to 1 indicates better model performance.
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where y; is the observed value, y; is the predicted value, and ¥ is
the mean of the observed values.

Root mean squared error (RMSE): RMSE reflects the standard
deviation of prediction errors and penalizes larger errors more
severely. A lower RMSE indicates a better fit.

1 .
RMSE = ;Z(y,-—yi)z
i=1

Mean absolute error (MAE): MAE quantifies the average
magnitude of errors between predicted and actual values, without
considering their direction.

R .
MAEzleyi—yil
ne
i=1

2.7 Code and data availability

The Python programming codes used for data preprocessing,
model development, and generation of study outputs are publicly
accessible through an open-access repository at https://github.com/
ddc1103274511/TAAD.git. The dataset used in this study is available
from the corresponding author upon reasonable request and with
approval from the Ethics Committee of Qingdao University.

3 Results
3.1 Demographic characteristics

A total of 505 patients with TAAD were included in this study, as
summarized in Table 1. The majority of patients were male (73.4%),
with a mean age of 54.0 years (SD = 12.6). The average height and
weight were 170.1cm (SD=10.9) and 77.4kg (SD =15.3).
Preoperative vital signs showed a mean heart rate of 80.9 beats per
minute (SD = 18.1), a mean systolic blood pressure of 134.4 mmHg
(SD =68.8), a mean diastolic blood pressure of 69.0 mmHg
(SD = 17.1), and a mean body temperature of 36.5 °C (SD = 0.4). In
terms of medical history, the prevalence of hypertension was 61.1%,
and diabetes mellitus 98.0%.
Laboratory findings indicated a generally elevated inflammatory

cardiovascular disease 93.4%,

response. The mean white blood cell count was 12.0 x 10°/L
(SD =4.2), the mean C-reactive protein level was 38.6 mg/L
(SD =41.1), and the mean D-dimer concentration was 6752.0 pug/L
FEU (SD =8437.4), suggesting that most patients exhibited a
pronounced systemic inflammatory response and hypercoagulable
state before surgery. In terms of surgical preparation and
environmental factors, patients had a short preoperative preparation
period, with a mean time from admission to surgery of 0.8 days
(SD = 2.4), and a mean preoperative ICU stay of 0.6 days (SD = 1.6),

Frontiers in Public Health

10.3389/fpubh.2025.1682339

reflecting that most procedures were performed as emergencies. To
assess the potential impact of environmental stressors on surgery,
preoperative external climate variables including ambient
temperature, humidity, PM2.5, and AQI were also collected. In terms
of surgical approach, 57.2% of patients underwent root replacement
combined with ascending aorta procedures (‘root upgrade +
replacement’), and 90.9% underwent total arch replacement,
indicating the complexity of TAAD surgical procedures. The overall
mean operative time for TAAD surgery was 452.7 min with a
standard deviation (SD) of 134.9 min.

The statistical analysis of baseline characteristics and their
associations with operative duration is summarized in Table 1.
Significant demographic features included Age (p =0.0096) and
Weight (p =0.023), while others were non-significant. Among
comorbidities, Lung disease (p=0.0129), Loss of consciousness
(p=0.00038), and Aortic valve insufficiency (p<0.001) were
important features. Laboratory findings highlighted White blood cells,
Hemoglobin, C-reactive protein, Albumin, Troponin I or T, and
D-dimer as significant correlates. Surgical related features, including
Surgery Preparation Time, Intraoperative blood transfusion, Duration
of extracorporeal circulation, Duration of aortic occlusion, and
Duration of deep low-temperature shutdown cycle, were highly
significant (all p <0.001), while climate features showed no
associations. Overall, operative duration was primarily influenced by

patient condition and intraoperative management.

3.2 Surgical strategies and operative
outcomes

A total of 505 patients were operated on by three different
surgeons. As shown in Tab. S3, the distribution of cases was 118
(23.4%) for Surgeon A, 161 (31.9%) for Surgeon B, and 226 (44.7%)
for Surgeon C. The mean surgical durations were 449.12 + 144.44 min,
449.74 + 104.85 min, and 456.64 + 138.95 min, respectively. Statistical
analysis showed no significant difference in surgical duration among
the three surgeons (p = 0.828), indicating that surgical duration was
not substantially influenced by the operating surgeon.

Surgical duration differed significantly across treatment methods
for the aortic root (p < 0.01). In Tab. S4, aortic valve replacement
(n =198, 39.3%) had a mean duration of 474.1 + 141.0 min, with
Wheats (461.2 + 25.5 min), Bentall (468.5 + 133.0 min), and Bentall
with coronary artery bypass grafting (528.8 + 178.1 min). Valve-
sparing aortic root replacement (1 = 307, 60.7%) were associated with
shorter operative times (438.9 + 114.8 min), including ascending
aortic replacement (436.9 + 109.4 min), selective sinus replacement
(464.3 + 16.9 min), ascending aortic replacement with coronary artery
bypass grafting (447.5 + 38.5 min) and David (537.2 + 49.2 min).

Surgical duration varied significantly across different treatment
methods for the aortic arch (p < 0.01). Tab. S5 shows that total arch
replacement was the predominant strategy (n = 459, 90.9%), with a
mean duration of 459.2 + 126.7 min. Among these, FET procedures
(n = 411, 81.4%) averaged 465.7 £ 127.5 min, whereas non-FET
procedures (n = 48, 9.5%) averaged 403.5+ 118.0 min. No arch
intervention cases (n= 39, 7.7%) had a mean duration of
384.2 + 93.9 min. Partial arch replacement (n = 6, 1.2%) had a mean
duration of 406.2 + 40.9 min, and debranching (n = 1, 0.2%) required
419.6 min.
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TABLE 1 Patient data involved in the study (including demographic, clinical, and climatic characteristics).

10.3389/fpubh.2025.1682339

Characteristics Mean/count (+SD/%) P-value
Demographics

Gender 0.13
Male 371 (73.4%)

Female 134 (26.5%)

Age 54.0 (+12.6) 0.0096
Height (cm) 170.1 (£10.9) 0.054
Weight (kg) 774 (+15.3) 0.023
Heart rate (bpm) 80.9 (+18.1) 0.534
Body temperature (°C) 36.5 (+£0.4) 0.299
Systolic blood pressure (mmHg) 134.4 (+68.8) 0.504
Diastolic blood pressure (mmHg) 69.0 (£17.1) 0.507
Comorbidities

Hypertension 309 (61.1%) 0.865
Diabetes 495 (98.0%) 0.396
Heart disease 472 (93.4%) 0.905
Lung disease 141 (27.9%) 0.0129
Marfan syndrome 5(0.9%) 0.396
Loss of consciousness 37 (7.3%) 0.00038
Aortic valve insufficiency <0.001
Mild 302 (59.8%)

Mild to Moderate 7 (1.4%)

Moderate 10 (2.0%)

Moderate to Severe 4 (0.8%)

Severe 182 (59.8%)

Laboratory

White blood cells (x10°/L) 12.0 (+4.2) 0.0048
Red blood cells (x10°/L) 4.2 (£1.5) 0.850
Hemoglobin (g/L) 125.5 (£20.2) 0.0080
Platelets (x10°/L) 164.4 (£59.1) 0.275
C-reactive protein (mg/L) 38.6 (+41.1) 0.030
Albumin (g/L) 37.2 (+4.7) 0.0126
Alanine transaminase (U/L) 85.6 (£545.1) 0.410
Aspartate transaminase (U/L) 115.7 (£600.1) 0.567
Creatinine (umol/L) 110.2 (£97.3) 0.291
Troponin I or T (ng/mL) 0.52 (£2.2) 0.044
D-dimer (ug/L) 6752.0 (+8437.4) 0.00022
Lifestyle Factors

Smoking history 162 (32%) 0.422
Drinking history 88 (17.4%) 0.411
Surgical related data

Surgery Preparation Time (day) 0.8 (+2.4) 0.016
ICU stay days before surgery (day) 0.6 (+1.6) 0.168
Minimum temperature (°C) 9.7 (£8.8) 0.191
Maximum temperature (°C) 15.3 (£8.9) 0.131
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TABLE 1 (Continued)

10.3389/fpubh.2025.1682339

Characteristics Mean/count (+SD/%) P-value
Relative humidity 0.7 (+0.2) 0.709
AQI 51.6 (+36.2) 0.073
PM2.5 (pug/m?) 31.8 (+28.9) 0.356
PM10 (pg/m?) 62.4 (£42.8) 0.139
CO (pg/m’) 0.6 (+0.3) 0911
NO2 (pg/m®) 33.0 (£17.0) 0.137
SO2 (pg/m’) 8.3 (+4.1) 0.213
03 (pg/m?) 92.8 (£36.3) 0.853
Treatment method for the aortic root <0.001
Ascending aortic replacement 289 (57.2%)

Selective Sinus Replacement 4(0.8%)

Wheats 5(1.0%)

David 4(0.8%)

Bentall 174 (34.5%)

Ascending aortic replacement with coronary artery bypass grafting 10 (2.0%)

Bentall with coronary artery bypass grafting 19 (3.8%)

Treatment method for the aortic arch <0.001
No arch intervention 39 (7.7%)

Total arch replacement 459 (90.9%)

Partial arch replacement 6(1.2%)

Debranching 1(0.2%)

Intraoperative blood transfusion (ml) 3942.4 (+1816.9) <0.001
Duration of extracorporeal circulation (min) 222.7 (¥94.1) <0.001
Duration of aortic occlusion (min) 124.9 (+40.9) <0.001
Duration of deep low-temperature shutdown cycle (min) 19.7 (£6.5) <0.001
Duration of ventilator use (h) 180.5 (+330.6) 0.00053
Surgical duration (min) 452.7 (£134.9) /
Male 457.9 (£144.3)

Female 438.0 (£124.3)

A significant positive correlation was identified between aortic
occlusion time and operative duration (r = 0.64, p < 0.01). As shown
in Supplementary Figure S1, patients with longer aortic occlusion
times generally experienced prolonged surgical durations. Linear
regression analysis further indicated a clear upward trend, suggesting
that surgical duration increased proportionally with the extension of
aortic occlusion time.

3.3 Predictive performance of ML models

To achieve accurate prediction of surgical duration for TAAD
patients, this study constructed and compared the performance of 11
mainstream machine learning regression models, including Linear
Regression, Elastic Net, Decision Tree Regression, Random Forest
Regression, ExtraTrees Regression, Gradient Boosting Regression,
XGBoost, CatBoost, AdaBoost, Support Vector Regression, and
K-Nearest Neighbors Regression. The model evaluation indicators
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included the coefficient of determination (R?), root mean square error
(RMSE), and mean absolute error (MAE).

As shown in Table 2, ExtraTrees Regressor (configured with
n_estimators = 100, max_depth = 10, min_samples_split = 2, and
min_samples_leaf = 2) achieved the best performance among all
models on the test set, with an R? of 0.7101, indicating that it
explained approximately 71.01% of the variability in surgical
duration. Additionally, its MAE was 43.54 min and RMSE was
59.42 min, both of which are the lowest among all models. The
scatter plot comparing the actual and predicted values of the
regression model as shown in Figure 3, further supports these
findings. The predicted points of the ExtraTrees regressor were
densely distributed around the ideal fitting line (y = x), with the
smallest degree of deviation, indicating that the model achieved
high fitting and consistency for surgical duration. The residual
distribution shown in Figure 4 demonstrated that the residuals of
the ExtraTrees model were approximately normally distributed,
with most values concentrated around zero and without obvious
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TABLE 2 Model performance on the test set.

Model B
Linear Regression —1.1302 67.31 159.31
Elastic Net 0.5421 55.19 72.55
Decision Tree Regressor 0.5501 55.63 72.15
Random Forest Regressor 0.6415 49.36 65.74
ExtraTrees Regressor 0.7101 43.54 59.42
Gradient Boosting Regressor 0.5954 54.29 70.28
XGBoost Regressor 0.6219 49.33 68.36
CatBoost Regressor 0.6285 51.65 66.29
AdaBoost Regressor 0.6003 51.71 70.79
Support Vector Regressor —0.3017 66.32 129.77
K-Nearest Neighbors Regressor 0.2914 74.01 94.65

skewness or heteroscedasticity, suggesting stable predictive
performance across different time periods and strong generalization
ability. As shown in Figure 5, the comparison chart reflected that
the predicted curve generated by ExtraTrees closely followed the
fluctuation trend of the actual surgical duration, accurately
capturing multiple peaks and troughs, which demonstrates robust
responsiveness to dynamic changes. In contrast, although XGBoost
Regressor (R* = 0.6219, MAE = 49.33, RMSE = 68.36) and CatBoost
Regressor (R*=0.6285) also showed good performance, their
performance in residual distribution and trend fitting were
relatively limited compared to ExtraTrees, indicating reduced
stability in handling clinical data with high noise and complex
features. The traditional linear regression (R* = —1.1302) and SVR
(R* = —0.3017) exhibited the poorest performance, as they failed to
capture nonlinear patterns and were unsuitable for this task. As
shown in Tab. S6, the ExtraTrees Regressor again achieved the
best performance on the validation set (R*=0.7574,
MAE = 46.19 min, RMSE =58.60 min), surpassing all other
models. Supplementary Figures S2-54 confirmed its superior
fitting, stable residual distribution, and close alignment of predicted
with actual values, supporting strong robustness and generalization.
Overall, ExtraTrees Regressor performed the best in this research
task and can be used as the optimal model for predicting the
surgical duration of TAAD patients.

3.4 Feature importance

To further explore the decision-making mechanism of the
ExtraTrees Regressor model in predicting the surgical duration of
patients with TAAD, this study applied the SHapley Additive
exPlanations (SHAP) method to analyze the feature contributions and
visualized them using beeswarm and bar plots.

As shown in Figure 6a, the duration of extracorporeal circulation
had the most significant positive impact on the model output, with
high values (red) generally increasing the predicted surgical
duration. Intraoperative blood transfusion and duration of aortic
occlusion also significantly prolonged the surgical time, indicating
that the intensity of intraoperative intervention is closely related to
the duration of surgery. Other features, such as treatment method for
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the aortic root and arch, loss of consciousness, and C-reactive
protein, also showed a certain degree of positive contribution,
indicating the identifiable importance of the patient’s pathological
status and surgical complexity in the model. Figure 6b quantifies the
average impact of each variable on the overall predictions. The
average SHAP value of extracorporeal circulation time was 58.58,
making it the most influential feature. Duration of aortic occlusion
(13.08) and intraoperative blood transfusion (9.72) followed,
emphasizing the importance of intraoperative physiological load in
predicting surgical duration. The treatment strategies for the aortic
arch and root were also among the top contributors, highlighting
that the choice of surgical approach and operational complexity were
key factors affecting the duration of surgery. In addition, patient
baseline factors such as age, weight, and history of hypertension also
have moderate impact, while variables like gender, and height
contribute relatively less. Figures 5d, 6¢ show the corresponding
analysis in the test set, which were largely consistent with the training
set. Additionally, the case study presented in Figure 6e confirmed
that extracorporeal circulation time remained the dominant factor,
while the relative contributions of other features aligned with the
overall trend.

Figures 6f-j provide detailed SHAP scatter plots for the top
five most influential features. As shown in Figure 6f, the duration
of extracorporeal circulation exhibited a positive correlation with
SHAP values, indicating that longer extracorporeal circulation
generally contributed to increased predicted surgical durations. A
similar trend was observed in Figure 6g, where the duration of
aortic occlusion showed a linear increase in SHAP value,
supporting its direct time-consuming nature during surgical
manipulation. In Figure 6h, when intraoperative blood transfusion
volume was relatively low (<3,000 mL), its impact on surgical
duration was minimal. In the high transfusion range, SHAP values
increased rapidly, suggesting that massive bleeding was associated
with more complex intraoperative procedures. Figures 6i,j depict
the influence of aortic root and aortic arch treatment strategies,
respectively. Both the Bentall procedure and the Full Bow
approach showed substantially positive SHAP contributions,
indicating that these complex surgical techniques were consistently
linked to extended operative times in the model’s interpretation.

Overall, the SHAP analysis results were highly consistent with
clinical cognition, which enhanced the interpretability of the model
and supports its practical application value in preoperative risk
assessment and surgical planning.

4 Discussion

4.1 Comparison with the traditional
methods

In traditional surgical duration prediction, common methods
have included linear regression models and estimation based on a
doctor’s experience. Linear models are constrained by the assumption
of linear relationships between variables, making it difficult to capture
complex nonlinear interactions and individual differences during
surgery (40, 41). Prediction based on clinical experience is highly
subjective and influenced by factors such as surgeon experience and
patient anatomy, often resulting in significant errors (42, 43),
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especially in complex diseases like TAAD, which involves substantial ~ advantages in processing high-dimensional, multimodal inputs (44).
variations in surgical pathways. In contrast, machine learning  For example, Martinez found that ensemble learning models
algorithms have demonstrated superior predictive abilities in multiple  significantly improved the accuracy of surgical duration
clinical studies due to their nonlinear modeling capabilities and  prediction (45).
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4.2 Impact of surgical strategies on surgical
duration

The similarity in operative times across different surgeons suggests
a high level of consistency in surgical practice within this center. This
finding reflects the impact of standardized surgical training, which
helps to minimize inter-operator variability (46, 47).

The long operative duration observed for aortic valve repair in this
cohort reflects its greater complexity, as repair procedures often
require meticulous leaflet assessment, cusp resuspension or patch
augmentation, and precise reconstruction of valve geometry to ensure
competence (48). Valve replacement procedures place lower demands
on leaflet preservation and therefore tend to be associated with shorter
surgical duration. Both Wheat and Bentall belong to this category.
However, Bentall procedures generally require longer root
management because they involve concomitant coronary button
reimplantation, in contrast to Wheat procedures (49).

In this study, the no arch intervention strategy was associated
with the shortest surgical duration, as no additional arch
reconstruction was required. In total arch replacement, the frozen
elephant trunk (FET) technique requires additional steps for stent
deployment and distal anastomosis in the descending aorta (50).
Although the circulatory arrest time for these maneuvers is only
prolonged by a few minutes compared with non-FET procedures
(51), the associated increase in bleeding risk often results in a
substantially longer hemostasis phase (52). The results of this study
demonstrated that the average operative duration in FET cases was
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extended by nearly 1 h compared with non-FET arch replacement.
Partial arch replacement showed shorter surgical duration than total
arch replacement. This approach still required circulatory arrest
under deep hypothermia, but operative time was reduced because
supra-arch branches did not need reconstruction (53). Debranching
procedures required no deep hypothermic circulatory arrest, and
their operative times were between those of full arch and right half
arch replacement (54).

Prolonged aortic occlusion time was closely associated with
increased operative duration. This relationship reflects not only the
extended time required for complex root and arch reconstruction but
also the additional period needed for myocardial protection and
meticulous hemostasis (55). Longer occlusion times have been linked
to impaired coagulation and greater intraoperative blood loss, which
further prolong surgical procedures (56).

4.3 Analysis of model performance

Among the multiple regression models applied in this study to
predict the surgical duration of TAAD patients, traditional linear
regression, support vector regression (SVR), and K-nearest
neighbor (KNN) generally performed poorly. The main reason is
that such models are unable to fully capture the multivariate
interactions inherent in highly nonlinear and high-dimensional
clinical data. The linear model assumes linear relationship between
variables and is thus ineffective in addressing multifactorial
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problems (57, 58). Although SVR is theoretically suitable for
nonlinear modeling, its performance is highly dependent on kernel
selection and parameter tuning, making it prone to underfitting or
overfitting (59, 60). The KNN algorithm is more sensitive to outliers
and feature scaling, and tends to suffer from the “curse of
dimensionality” in high-dimensional feature spaces, which
substantially compromises predictive accuracy (61). In contrast,
ensemble models are better able to capture nonlinear interactions
between variables without relying on feature scaling or
distributional assumptions, making them more robust to variable
scales and types (57, 62). The ExtraTrees Regressor employs an
extremely randomized partitioning strategy, selecting both features
and thresholds at random during tree construction (63). This highly
decorrelated strategy effectively reduces model variance and
enhances generalization ability (64). Furthermore, ExtraTrees trains
each tree using full sample set, which reduces model bias to some
extent and helps better exploit available sample information (65).

In this study, ExtraTrees demonstrated superior performance in
predicting the duration of TAAD surgery, confirming its capacity for
modeling multifactorial, nonlinear, and interaction-rich problems.
Overall, compared with traditional regression models, ensemble
learning methods are more suitable for the complex prediction task of
TAAD surgery duration.

4.4 Characteristics and clinical relevance

This study identified the top five key factors affecting the surgical
duration of TAAD patients using SHAP value analysis (66): Duration
of extracorporeal circulation, Duration of aortic occlusion,
Intraoperative blood transfusion, Treatment method for the aortic
arch, and Treatment method for the aortic root. These factors directly
reflected the surgical complexity and were closely related clinically to
operative duration.
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Duration of extracorporeal circulation and duration of aortic
occlusion were direct measures of intraoperative process duration.
They correlated with prolonged total operative time, especially in
surgeries involving more extensive reconstruction or older patients
who require tailored perfusion strategies (67, 68). Intraoperative
blood transfusion was frequently observed in cases with significant
bleeding or coagulation disturbances and was consistently
associated with longer operative times. This reflected the additional
hemostatic interventions and procedural complexity required in
these settings, as reported in recent TAAD cohorts (69). In TAAD
surgery, the arch strategy and root strategy were closely linked to
operative duration, serving as indicators of procedural complexity.
Total arch replacement was repeatedly shown to involve
substantially longer cardiopulmonary bypass and circulatory arrest
times compared with hemiarch replacement (70). Likewise, the
choice of aortic root procedure affected ischemic and perfusion
times, with valve-sparing root replacement generally associated
with a longer operative duration than composite root replacement
(71, 72). These relationships should be interpreted as indicators of
procedural complexity rather than independent preoperative causal
determinants. They highlighted how surgical techniques and
intraoperative conditions influence operative time, providing
mechanistic insight into why certain TAAD procedures were
substantially longer and technically more demanding.

In addition to the five main factors mentioned above, this study
also included variables such as patient age, gender, physical indicators,
symptom presentation (including preoperative loss of consciousness),
laboratory indicators (such as C-reactive protein and D-dimer), and
surgery preparation time. Compared with the dominant intraoperative
variables, these factors demonstrated substantially lower SHAP values,
indicating a relatively limited contribution to predicting of surgical
duration. This indicates that the duration of surgery was primarily
influenced by the technical difficulty and process events of the surgery
itself, while the patient’s basic condition and preoperative preparation
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may affect the overall surgical risk but have a relatively small direct
impact on the duration of surgery (73).

Although Marfan syndrome was not among the features with the
highest SHAP values, the broader category of heritable thoracic aortic
diseases, which it exemplifies, warrants dedicated discussion due to its
clinical and genetic significance.

Heritable Thoracic Aortic Disease (HTAD) encompasses a
heterogeneous group of conditions, including syndromic forms
such as Marfan syndrome and Loeys-Dietz syndrome, as well as
congenital abnormalities like bicuspid aortic valve (BAV) and
coarctation of the aorta. Accumulating evidence suggests that the
presence of HTAD increases surgical complexity and consequently
prolongs operative duration in TAAD (74). For instance, BAV
patients require simultaneous replacement of the aortic valve
during valve disease surgery, resulting in longer surgical time (75).
Coarctation of the aorta often results in deformities of the aortic
arch and descending aorta, which increase the technical difficulty
of intraoperative management and consequently prolong surgical
time (76). Marfan and Loeys-Dietz are characterized by fragile
aortic tissues, leading to more complex root and arch
reconstructions that likely extend surgical duration (77, 78). It is
important to consider HTAD subtypes, as their distinct features
significantly influence intraoperative complexity and contribute to
prolonged operative duration in TAAD.

4.5 Limitations

The data in this study mainly comes from a single center, and the
sample size is relatively limited, which may lead to a decrease in the
predictive performance of the model on independent external
samples or regional bias. It is reccommended that future research
adopt larger-scale, multi-center, prospective designs. Another
limitation is that several of the top features identified are only
available intraoperatively, which restricts the model’s applicability for
preoperative prediction. Nevertheless, the results underscore the
critical influence of intraoperative complexity on operative duration
and indicate potential targets for procedural optimization and
resource allocation. Accordingly, our model should be interpreted as
providing explanatory insights into surgical complexity rather than
functioning as a direct preoperative prediction tool, while future
studies are needed to incorporate richer preoperative data to improve
predictive utility. Moreover, this study did not include an external
validation cohort, which limits the generalizability of the findings.
Future work should incorporate multi-center datasets for
prospective validation.

5 Conclusion

The study constructed and validated 11 regression models for
analyzing the duration of TAAD surgery, using data from Qingdao
University Affiliated Hospital. The ExtraTrees Regressor model
has the best performance (R*>=0.7101, MAE =43.54,
RMSE = 59.42). Compared with traditional prediction methods,
machine learning models can integrate multidimensional features
such as demographics, clinical indicators, environment, and
surgical types, and significantly improve prediction performance
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by learning complex nonlinear relationships and interactions.
Surgical duration in TAAD is varied substantially with procedural
strategies. Complex root and arch management strategies are
associated with prolonged operative duration, and extended aortic
occlusion time further contributes to this increase. The model
identified Duration of extracorporeal circulation, Intraoperative
blood transfusion, Duration of aortic occlusion, Treatment
method for the aortic arch, and Treatment method for the aortic
root as the five most influential factors affecting operative
duration, all of which warrant careful consideration by cardiac
surgeons during preoperative planning. The impact of Marfan
syndrome on surgical duration is not significant in this study.
Nonetheless, HTAD is characterized by underlying connective
tissue abnormalities that can increase intraoperative technical
challenges, and its potential influence on surgical outcomes
warrants further investigation in larger cohorts. This study
provides an explanatory analysis of factors influencing operative
duration in Stanford type A aortic dissection. The inclusion of
intraoperative variables offers important insights into procedural
complexity and clinical management, although it limits immediate
preoperative application. Future research will focus on models
based solely on preoperative features with external validation to
enable real-time prediction and broader clinical use.
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