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Background: Stanford Type A aortic dissection (TAAD) is a life-threatening 
condition involving the ascending aorta and requires urgent surgery. This study 
developed 11 machine learning regression models to predict operative duration 
and identify key clinical factors influencing surgical time in TAAD.
Materials and methods: In this single-center retrospective cohort study of 
505 patients who underwent surgery from December 2017 to March 2023. 
Specifically, 11 machine learning models were construct using 47 preoperative 
and intraoperative features to predict operative duration. Model performance 
was assessed by R2, RMSE, and MAE, and SHAP analysis enhanced interpretability.
Results: The study primarily consisted of middle-aged patients, comprising 
73.4% males and 26.6% females. Furthermore, most patients underwent complex 
aortic procedures under time-constrained preoperative conditions. Procedures 
involving root replacement and total arch replacement were associated with 
longer surgical durations. The ExtraTrees Regressor had the highest predictive 
accuracy. SHAP analysis revealed five key features: Duration of extracorporeal 
circulation, Duration of aortic occlusion, Intraoperative blood transfusion, 
Treatment method for the aortic arch, and Treatment method for the aortic root.
Conclusion: This study developed high-performance predictive models to 
identify key features affecting operative duration in TAAD surgery. Complex 
reconstructions prolong procedures, and longer aortic occlusion further 
contributes to this effect. The findings highlight the major influence of surgical 
strategies and intraoperative management on surgical duration. Special 
consideration remains warranted for specific patient subgroups.

KEYWORDS

Stanford Type A aortic dissection, machine learning, prediction models, surgical 
duration, SHapley Additive exPlanations

OPEN ACCESS

EDITED BY

João Manuel R. S. Tavares,  
University of Porto, Portugal

REVIEWED BY

Biswarup Purkayastha,  
Greenlane Clinical Centre, New Zealand
Muhammed Bayram,  
Mehmet Akif Ersoy Thoracic and 
Cardiovascular Surgery Training and Research 
Hospital, Türkiye

*CORRESPONDENCE

Kunmeng Liu  
 liukunmeng@sdutcm.edu.cn  

Benzheng Wei  
 wbz99@sina.com

†These authors have contributed equally to 
this work and share first authorship

RECEIVED 08 August 2025
ACCEPTED 20 October 2025
PUBLISHED 31 October 2025

CITATION

Deng D, Zhang X, Feng X, Liu G, Wang P, 
Cong J, Li X, Liu K and Wei B (2025) Machine 
learning-based analysis of factors influencing 
surgical duration in type A aortic dissection.
Front. Public Health 13:1682339.
doi: 10.3389/fpubh.2025.1682339

COPYRIGHT

© 2025 Deng, Zhang, Feng, Liu, Wang, Cong, 
Li, Liu and Wei. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  31 October 2025
DOI  10.3389/fpubh.2025.1682339

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2025.1682339&domain=pdf&date_stamp=2025-10-31
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1682339/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1682339/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1682339/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1682339/full
mailto:liukunmeng@sdutcm.edu.cn
mailto:wbz99@sina.com
https://doi.org/10.3389/fpubh.2025.1682339
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2025.1682339


Deng et al.� 10.3389/fpubh.2025.1682339

Frontiers in Public Health 02 frontiersin.org

1 Introduction

Aortic dissection (AD) is a catastrophic vascular emergency 
initiated by a tear in the aortic intima, through which blood enters the 
medial layer, creating a false lumen and leading to separation of the 
aortic wall layers (1). This condition necessitates prompt medical and 
often surgical intervention (2). A previous study showed that the 
weighted annual incidence of aortic dissection at approximately 2.79 
cases per 100,000 people (3). Among patients with untreated acute 
aortic dissection, the mortality rate increases by approximately 1–2% 
per hour after symptom onset (4), with in-hospital mortality reaching 
up to 52% in those who do not undergo surgical intervention (5). Even 
with treatment, the 5-year survival rate for patients with acute aortic 
dissection ranging from 45 to 88% (6). AD poses a significant clinical 
challenge in critical care medicine, requiring a multidisciplinary 
response and intervention. The Stanford classification system 
categorizes AD into Type A (involving the ascending aorta) and Type 
B (not involving the ascending aorta) (7). Stanford Type A aortic 
dissection (TAAD) is more severe and typically necessitates urgent 
open-chest surgery for aortic replacement and reconstruction (8). Due 
to the extensive nature of the procedure, which involves cardiac and 
cerebral perfusion management, TAAD is associated with a 
substantially higher frequency of sudden events during surgery and 
elevated mortality compared to Type B (9, 10).

In TAAD surgery, intraoperative parameters such as surgical 
duration and the duration of extracorporeal circulation are closely 
associated with patient outcomes. Studies have identified surgical 
duration, duration of extracorporeal circulation, and aortic cross-
clamp time as independent risk factors for postoperative mortality 
(11). Surgical duration is also directly linked to resource utilization. 
Longer anesthesia and extended cardiopulmonary bypass time often 
lead to extended surgical durations. This may require prolonged 
postoperative ICU monitoring, which increases the consumption of 
medical resources and overall healthcare costs (12, 13). These factors 
underscore the importance of tightly controlling surgical duration to 
improve patient outcomes and optimize hospital resource allocation. 
Therefore, the critical importance of accurately predicting surgical 
duration for clinical management, reliable prediction remains 
challenging in current clinical practice (14). Surgical duration is 
influenced by numerous factors, including patient-specific 
characteristics, procedural complexity, and intraoperative events (15). 
The previous studies have demonstrated that adverse environmental 
conditions are significant triggers for acute cardiovascular events, 
including aortic dissection (16, 17). From this broader 
pathophysiological perspective, patients presenting under such 
conditions may arrive in a more severe or unstable baseline state, 
which can indirectly increase procedural complexity and operative 
duration. Moreover, traditional estimation methods based on surgeon 
experience or historical averages often lack precision and are subject 
to considerable variability (18).

In recent years, increasing attention has been given to the 
integration of clinical research and machine learning, reflecting a 
broader trend toward combining data-driven algorithms with medical 
practice to improve prediction, evaluation, and decision-making in 
healthcare (19–21). Recent work in machine learning-based operative 
prediction has shown promising results in forecasting postoperative 
outcomes in cardiac surgery, including mortality, complications, and 
ICU stays (22–24). Furthermore, cutting-edge ML approaches have 

been increasingly applied to optimize cardiovascular surgical 
strategies and perioperative decision-making using multimodal 
clinical data, highlighting their potential to refine risk stratification 
and improve surgical outcomes (25–27). Clinical studies have 
highlighted that operative duration in aortic surgery is influenced by 
multiple perioperative factors, including aneurysm diameter, extent 
of reconstruction, and perfusion strategy, which are consistently 
linked with prolonged cardiopulmonary bypass and ischemic times 
(22, 28, 29). Furthermore, recent work has developed prognostic tools 
and risk models that incorporate intraoperative variables to better 
capture predictors of prolonged surgery and adverse outcomes in 
aortic and major cardiovascular operations (26, 30).

As a highly complex cardiovascular procedure, TAAD surgery is 
both time-consuming and technically demanding. However, current 
clinical research lacks an in-depth analysis of the specific factors 
influencing its operative duration. The purpose of this study is to 
comprehensively analyze preoperative and intraoperative factors 
associated with surgical duration using machine learning. Both 
preoperative and intraoperative variables were included to reflect the 
overall influencing factors of operation duration. Accurate prediction 
of surgical duration can facilitate efficient operating room scheduling, 
optimize anesthesia and cardiopulmonary bypass management, 
enhance surgical safety, and reduce healthcare costs.

2 Materials and methods

2.1 Informed consent

This study was approved by the Ethics Committee of the Affiliated 
Hospital of Qingdao University (No. QDFY WZLL 29835). Data were 
collected between December 2017 and March 2023, and written 
informed consent was obtained from all participants.

2.2 Data collection

This single-center retrospective cohort included 675 consecutive 
patients who underwent surgery for acute type A aortic dissection at 
the Affiliated Hospital of Qingdao University between December 2017 
and March 2023. Two complementary approaches were employed to 
justify the sample size. Firstly, based on a precision-based sample size 
calculation derived from our dataset with a desired 95% confidence 
interval half-width of 15 min, the minimum required sample size was 
estimated at 311 patients. The detailed formula used for this 
calculation is provided in the Supplementary materials. As our study 
included 675 patients, the available sample size substantially exceeded 
this requirement, thereby ensuring adequate statistical precision (31). 
Secondly, given the aim of analyzing factors associated with operative 
duration, this study included 47 features and justified the sample size 
by considering expected effect size (32). Following Green’s rules of 
thumb, at least 50 + 8 m observations are recommended for testing 
the overall model and at least 104 + m for testing an individual 
regression coefficient, where m denotes the number of features (33). 
In this study (m = 47), the sample size of 675 patients substantially 
exceeded the corresponding thresholds (426 and 151). Furthermore, 
compared with other similar studies, the enrolled sample size in this 
study can be considered appropriate (34, 35).
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This study identified candidate predictor variables for potential 
inclusion in our models from a review of the literature (16, 17, 36–38). 
In addition to clinical features, climate features were included in this 
study to explore the potential influence of environmental factors on 
operative duration. All 47 features were shown as follows: (a) 
preoperative features, Surgery Preparation Time, ICU stay days before 
surgery, Gender, Age, Height, Weight, Heart rate, Body temperature, 
Systolic blood pressure, Diastolic blood pressure, Hypertension, 
Diabetes, Heart disease, Lung disease, Marfan syndrome, Smoking 
quantity, Alcohol consumption, Loss of consciousness, White blood 
cells, Red blood cell count, Hemoglobin, Platelets, C-reactive protein, 
Albumin, Alanine transaminase, Aspartate transaminase, Creatinine, 
Troponin I  or T, D-dimer, Minimum temperature, Maximum 
temperature, Relative humidity, Air Quality Index (AQI), Fine 
particulate matter (PM2.5), Coarse particulate matter (PM10), 
Carbon Monoxide (CO), Nitrogen dioxide (NO₂), Sulfur dioxide 
(SO₂), 8-h average Ozone concentration (O₃₋₈h). (b) intraoperative 
features, Treatment method for the aortic root, Treatment method for 
the aortic arch, Intraoperative blood transfusion, Duration of 
extracorporeal circulation, Duration of aortic occlusion, Duration of 
deep low-temperature shutdown cycle, Duration of ventilator use, 
Aortic valve insufficiency. To ensure clarity and reproducibility, all 
variables used in the analysis and their corresponding units are 
summarized in Supplementary Table S1.

2.3 Data cleaning

To ensure data accuracy and completeness, data cleaning was 
conducted in accordance with the study objectives. A total of 675 
patients diagnosed with AD were initially screened. After excluding 
74 patients with non-TAAD, 93 patients who did not undergo surgery, 
and 3 patients with more than 50% missing data, 505 cases were 
included in the final analysis. Baseline information of excluded 
patients is provided in Supplementary Table S2. The data selection 
process is illustrated in Figure 1.

2.4 Data processing

Continuous variables were standardized, and missing values were 
imputed using Multiple Imputation by Chained Equations. The 

distribution of the outcome variable was examined and found to 
be well-balanced. Therefore, no additional resampling or correction 
for class imbalance was required. This method constructs a regression 
model for each missing variable, uses other variables as predictive 
factors, and iteratively fills in missing values multiple times to obtain 
relatively stable and reasonable interpolation results (39) (Figure 2).

The dataset was randomly split into training (70%), testing (20%), 
and validation (10%) subsets using a fixed random seed (42).

2.5 Statistical methods

For all clinical features, statistical comparisons were conducted 
according to variable type. Specifically, categorical variables with two 
levels were analyzed using the independent samples t-test, continuous 
variables were evaluated for linear correlation with operative duration 
using Pearson’s correlation analysis, and categorical variables with 
more than two levels were assessed by one-way analysis of variance 
(ANOVA). A two-tailed p < 0.05 was considered statistically significant.

2.6 Regression models

To accurately predict surgical duration in TAAD surgery, this 
study developed and compared 11 representative machine learning 
regression models, encompassing a range of approaches including 
linear regression, regularized regression, tree-based models, ensemble 
learning methods, and kernel-based techniques. All analyses were 
performed in Python (version 3.8) using scikit-learn (version 
1.4.1 post1).

Linear regression: linear regression fits a linear relationship 
between input features and the target variable. It is easy to interpret 
but sensitive to outliers and assumes linearity among variables.

Elastic net: elastic net combines both L1 and L2 regularization to 
perform variable selection while maintaining model stability. It 
performs well when dealing with correlated features.

Decision tree regressor: the decision tree regressor splits the feature 
space into regions based on feature thresholds to predict continuous 
outcomes. It captures nonlinear relationships but is prone 
to overfitting.

Random forest regressor: random forest builds an ensemble of 
decision trees and averages their outputs to improve prediction 

FIGURE 1

Data collection and preprocessing.
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accuracy. It is robust against overfitting and effectively handles high-
dimensional data.

ExtraTrees regressor: ExtraTrees is similar to random forest but 
introduces more randomness in the splitting process by selecting 
thresholds at random. This increases training speed and 
reduces variance.

Gradient boosting regressor: the gradient boosting algorithm 
sequentially trains weak learners to correct residual errors of previous 
learners. It offers strong predictive power but is sensitive to parameter 
tuning and noise.

XGBoost Regressor: XGBoost is an optimized gradient boosting 
algorithm that incorporates regularization and efficiently handles 
missing data. It is widely adopted due to its high speed and accuracy.

CatBoost regressor: CatBoost is designed to handle categorical 
variables efficiently and mitigate prediction shift during training. It 
offers enhanced stability and performance over traditional 
boosting methods.

AdaBoost regressor: AdaBoost combines multiple weak learners in 
a sequential manner, assigning higher weights to previously 
mispredicted samples. It performs well on clean datasets with 
low noise.

Support vector regressor: SVR constructs a hyperplane that fits the 
data within a defined margin of tolerance, based on support vector 
machine principles. It is suitable for small-to-medium-sized datasets 
and models nonlinear relationships.

K-Nearest neighbors regressor: KNN regressor predicts target 
values by averaging the outputs of the K most similar training samples. 
It is simple to implement but sensitive to feature scaling and less 
effective in high-dimensional spaces.

Hyperparameters for all models were optimized using a grid 
search. Linear Regression was fitted without regularization. For tree-
based models (Decision Tree, Random Forest, ExtraTrees), 
parameters such as max_depth, min_samples_leaf, min_samples_
split, and n_estimators were tuned. For boosting models (Gradient 
Boosting, XGBoost, CatBoost, AdaBoost), tuning focused on 
learning_rate, n_estimators, and max_depth, with additional 
regularization parameters included. For Elastic Net, the mixing 
parameter and regularization strength were optimized. For SVR, the 
penalty parameter and kernel parameters were tuned. For KNN, the 
number of neighbors and distance metric were considered. Model 
performance was evaluated using the coefficient of determination 
(R2), mean absolute error (MAE), and root mean squared error 
(RMSE), consistent with established practice in regression-
based prediction.

Model performance was evaluated using a 5-fold cross-validation 
procedure. The dataset was randomly divided into five approximately 
equal subsets. In each iteration, four folds were used for training and 
the remaining fold was used for testing, such that every sample was 
evaluated exactly once in an independent test set. Performance 
metrics (R2, MAE, and RMSE) were recorded for each fold to provide 
an unbiased estimate of the model’s generalization ability on unseen 
data. This approach was selected as a balance between computational 
efficiency and robustness of performance estimation for a cohort of 
this size (n = 505).

Coefficient of determination (R2): R2 measures the proportion of 
the variance in the dependent variable that is predictable from the 
independent variables. Its value ranges from −∞ to 1, where a value 
closer to 1 indicates better model performance.

FIGURE 2

Distribution of surgical duration by gender.
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2.7 Code and data availability

The Python programming codes used for data preprocessing, 
model development, and generation of study outputs are publicly 
accessible through an open-access repository at https://github.com/
ddc1103274511/TAAD.git. The dataset used in this study is available 
from the corresponding author upon reasonable request and with 
approval from the Ethics Committee of Qingdao University.

3 Results

3.1 Demographic characteristics

A total of 505 patients with TAAD were included in this study, as 
summarized in Table 1. The majority of patients were male (73.4%), 
with a mean age of 54.0 years (SD = 12.6). The average height and 
weight were 170.1 cm (SD = 10.9) and 77.4 kg (SD = 15.3). 
Preoperative vital signs showed a mean heart rate of 80.9 beats per 
minute (SD = 18.1), a mean systolic blood pressure of 134.4 mmHg 
(SD = 68.8), a mean diastolic blood pressure of 69.0 mmHg 
(SD = 17.1), and a mean body temperature of 36.5 °C (SD = 0.4). In 
terms of medical history, the prevalence of hypertension was 61.1%, 
cardiovascular disease 93.4%, and diabetes mellitus 98.0%. 
Laboratory findings indicated a generally elevated inflammatory 
response. The mean white blood cell count was 12.0 × 109/L 
(SD = 4.2), the mean C-reactive protein level was 38.6 mg/L 
(SD = 41.1), and the mean D-dimer concentration was 6752.0 μg/L 
FEU (SD = 8437.4), suggesting that most patients exhibited a 
pronounced systemic inflammatory response and hypercoagulable 
state before surgery. In terms of surgical preparation and 
environmental factors, patients had a short preoperative preparation 
period, with a mean time from admission to surgery of 0.8 days 
(SD = 2.4), and a mean preoperative ICU stay of 0.6 days (SD = 1.6), 

reflecting that most procedures were performed as emergencies. To 
assess the potential impact of environmental stressors on surgery, 
preoperative external climate variables including ambient 
temperature, humidity, PM2.5, and AQI were also collected. In terms 
of surgical approach, 57.2% of patients underwent root replacement 
combined with ascending aorta procedures (‘root upgrade + 
replacement’), and 90.9% underwent total arch replacement, 
indicating the complexity of TAAD surgical procedures. The overall 
mean operative time for TAAD surgery was 452.7 min with a 
standard deviation (SD) of 134.9 min.

The statistical analysis of baseline characteristics and their 
associations with operative duration is summarized in Table  1. 
Significant demographic features included Age (p = 0.0096) and 
Weight (p = 0.023), while others were non-significant. Among 
comorbidities, Lung disease (p = 0.0129), Loss of consciousness 
(p = 0.00038), and Aortic valve insufficiency (p < 0.001) were 
important features. Laboratory findings highlighted White blood cells, 
Hemoglobin, C-reactive protein, Albumin, Troponin I  or T, and 
D-dimer as significant correlates. Surgical related features, including 
Surgery Preparation Time, Intraoperative blood transfusion, Duration 
of extracorporeal circulation, Duration of aortic occlusion, and 
Duration of deep low-temperature shutdown cycle, were highly 
significant (all p < 0.001), while climate features showed no 
associations. Overall, operative duration was primarily influenced by 
patient condition and intraoperative management.

3.2 Surgical strategies and operative 
outcomes

A total of 505 patients were operated on by three different 
surgeons. As shown in Tab. S3, the distribution of cases was 118 
(23.4%) for Surgeon A, 161 (31.9%) for Surgeon B, and 226 (44.7%) 
for Surgeon C. The mean surgical durations were 449.12 ± 144.44 min, 
449.74 ± 104.85 min, and 456.64 ± 138.95 min, respectively. Statistical 
analysis showed no significant difference in surgical duration among 
the three surgeons (p = 0.828), indicating that surgical duration was 
not substantially influenced by the operating surgeon.

Surgical duration differed significantly across treatment methods 
for the aortic root (p < 0.01). In Tab. S4, aortic valve replacement 
(n = 198, 39.3%) had a mean duration of 474.1 ± 141.0 min, with 
Wheats (461.2 ± 25.5 min), Bentall (468.5 ± 133.0 min), and Bentall 
with coronary artery bypass grafting (528.8 ±  178.1 min). Valve-
sparing aortic root replacement (n = 307, 60.7%) were associated with 
shorter operative times (438.9 ±  114.8 min), including ascending 
aortic replacement (436.9 ± 109.4 min), selective sinus replacement 
(464.3 ± 16.9 min), ascending aortic replacement with coronary artery 
bypass grafting (447.5 ± 38.5 min) and David (537.2 ± 49.2 min).

Surgical duration varied significantly across different treatment 
methods for the aortic arch (p < 0.01). Tab. S5 shows that total arch 
replacement was the predominant strategy (n = 459, 90.9%), with a 
mean duration of 459.2 ± 126.7 min. Among these, FET procedures 
(n =  411, 81.4%) averaged 465.7 ±  127.5 min, whereas non-FET 
procedures (n =  48, 9.5%) averaged 403.5 ±  118.0 min. No arch 
intervention cases (n =  39, 7.7%) had a mean duration of 
384.2 ± 93.9 min. Partial arch replacement (n = 6, 1.2%) had a mean 
duration of 406.2 ± 40.9 min, and debranching (n = 1, 0.2%) required 
419.6 min.
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TABLE 1  Patient data involved in the study (including demographic, clinical, and climatic characteristics).

Characteristics Mean/count (±SD/%) P-value

Demographics

Gender 0.13

Male 371 (73.4%)

Female 134 (26.5%)

Age 54.0 (±12.6) 0.0096

Height (cm) 170.1 (±10.9) 0.054

Weight (kg) 77.4 (±15.3) 0.023

Heart rate (bpm) 80.9 (±18.1) 0.534

Body temperature (°C) 36.5 (±0.4) 0.299

Systolic blood pressure (mmHg) 134.4 (±68.8) 0.504

Diastolic blood pressure (mmHg) 69.0 (±17.1) 0.507

Comorbidities

Hypertension 309 (61.1%) 0.865

Diabetes 495 (98.0%) 0.396

Heart disease 472 (93.4%) 0.905

Lung disease 141 (27.9%) 0.0129

Marfan syndrome 5 (0.9%) 0.396

Loss of consciousness 37 (7.3%) 0.00038

Aortic valve insufficiency <0.001

Mild 302 (59.8%)

Mild to Moderate 7 (1.4%)

Moderate 10 (2.0%)

Moderate to Severe 4 (0.8%)

Severe 182 (59.8%)

Laboratory

White blood cells (×109/L) 12.0 (±4.2) 0.0048

Red blood cells (×109/L) 4.2 (±1.5) 0.850

Hemoglobin (g/L) 125.5 (±20.2) 0.0080

Platelets (×109/L) 164.4 (±59.1) 0.275

C-reactive protein (mg/L) 38.6 (±41.1) 0.030

Albumin (g/L) 37.2 (±4.7) 0.0126

Alanine transaminase (U/L) 85.6 (±545.1) 0.410

Aspartate transaminase (U/L) 115.7 (±600.1) 0.567

Creatinine (umol/L) 110.2 (±97.3) 0.291

Troponin I or T (ng/mL) 0.52 (±2.2) 0.044

D-dimer (μg/L) 6752.0 (±8437.4) 0.00022

Lifestyle Factors

Smoking history 162 (32%) 0.422

Drinking history 88 (17.4%) 0.411

Surgical related data

Surgery Preparation Time (day) 0.8 (±2.4) 0.016

ICU stay days before surgery (day) 0.6 (±1.6) 0.168

Minimum temperature (°C) 9.7 (±8.8) 0.191

Maximum temperature (°C) 15.3 (±8.9) 0.131

(Continued)
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A significant positive correlation was identified between aortic 
occlusion time and operative duration (r = 0.64, p < 0.01). As shown 
in Supplementary Figure S1, patients with longer aortic occlusion 
times generally experienced prolonged surgical durations. Linear 
regression analysis further indicated a clear upward trend, suggesting 
that surgical duration increased proportionally with the extension of 
aortic occlusion time.

3.3 Predictive performance of ML models

To achieve accurate prediction of surgical duration for TAAD 
patients, this study constructed and compared the performance of 11 
mainstream machine learning regression models, including Linear 
Regression, Elastic Net, Decision Tree Regression, Random Forest 
Regression, ExtraTrees Regression, Gradient Boosting Regression, 
XGBoost, CatBoost, AdaBoost, Support Vector Regression, and 
K-Nearest Neighbors Regression. The model evaluation indicators 

included the coefficient of determination (R2), root mean square error 
(RMSE), and mean absolute error (MAE).

As shown in Table 2, ExtraTrees Regressor (configured with 
n_estimators = 100, max_depth = 10, min_samples_split = 2, and 
min_samples_leaf = 2) achieved the best performance among all 
models on the test set, with an R2 of 0.7101, indicating that it 
explained approximately 71.01% of the variability in surgical 
duration. Additionally, its MAE was 43.54 min and RMSE was 
59.42 min, both of which are the lowest among all models. The 
scatter plot comparing the actual and predicted values of the 
regression model as shown in Figure  3, further supports these 
findings. The predicted points of the ExtraTrees regressor were 
densely distributed around the ideal fitting line (y = x), with the 
smallest degree of deviation, indicating that the model achieved 
high fitting and consistency for surgical duration. The residual 
distribution shown in Figure 4 demonstrated that the residuals of 
the ExtraTrees model were approximately normally distributed, 
with most values concentrated around zero and without obvious 

TABLE 1  (Continued)

Characteristics Mean/count (±SD/%) P-value

Relative humidity 0.7 (±0.2) 0.709

AQI 51.6 (±36.2) 0.073

PM2.5 (μg/m3) 31.8 (±28.9) 0.356

PM10 (μg/m3) 62.4 (±42.8) 0.139

CO (μg/m3) 0.6 (±0.3) 0.911

NO2 (μg/m3) 33.0 (±17.0) 0.137

SO2 (μg/m3) 8.3 (±4.1) 0.213

O3 (μg/m3) 92.8 (±36.3) 0.853

Treatment method for the aortic root <0.001

Ascending aortic replacement 289 (57.2%)

Selective Sinus Replacement 4 (0.8%)

Wheats 5 (1.0%)

David 4 (0.8%)

Bentall 174 (34.5%)

Ascending aortic replacement with coronary artery bypass grafting 10 (2.0%)

Bentall with coronary artery bypass grafting 19 (3.8%)

Treatment method for the aortic arch <0.001

No arch intervention 39 (7.7%)

Total arch replacement 459 (90.9%)

Partial arch replacement 6 (1.2%)

Debranching 1 (0.2%)

Intraoperative blood transfusion (ml) 3942.4 (±1816.9) <0.001

Duration of extracorporeal circulation (min) 222.7 (±94.1) <0.001

Duration of aortic occlusion (min) 124.9 (±40.9) <0.001

Duration of deep low-temperature shutdown cycle (min) 19.7 (±6.5) <0.001

Duration of ventilator use (h) 180.5 (±330.6) 0.00053

Surgical duration (min) 452.7 (±134.9) /

Male 457.9 (±144.3)

Female 438.0 (±124.3)
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skewness or heteroscedasticity, suggesting stable predictive 
performance across different time periods and strong generalization 
ability. As shown in Figure 5, the comparison chart reflected that 
the predicted curve generated by ExtraTrees closely followed the 
fluctuation trend of the actual surgical duration, accurately 
capturing multiple peaks and troughs, which demonstrates robust 
responsiveness to dynamic changes. In contrast, although XGBoost 
Regressor (R2 = 0.6219, MAE = 49.33, RMSE = 68.36) and CatBoost 
Regressor (R2 = 0.6285) also showed good performance, their 
performance in residual distribution and trend fitting were 
relatively limited compared to ExtraTrees, indicating reduced 
stability in handling clinical data with high noise and complex 
features. The traditional linear regression (R2 = −1.1302) and SVR 
(R2 = −0.3017) exhibited the poorest performance, as they failed to 
capture nonlinear patterns and were unsuitable for this task. As 
shown in Tab. S6, the ExtraTrees Regressor again achieved the  
best performance on the validation set (R2 = 0.7574, 
MAE = 46.19 min, RMSE = 58.60 min), surpassing all other 
models. Supplementary Figures S2–S4 confirmed its superior 
fitting, stable residual distribution, and close alignment of predicted 
with actual values, supporting strong robustness and generalization. 
Overall, ExtraTrees Regressor performed the best in this research 
task and can be  used as the optimal model for predicting the 
surgical duration of TAAD patients.

3.4 Feature importance

To further explore the decision-making mechanism of the 
ExtraTrees Regressor model in predicting the surgical duration of 
patients with TAAD, this study applied the SHapley Additive 
exPlanations (SHAP) method to analyze the feature contributions and 
visualized them using beeswarm and bar plots.

As shown in Figure 6a, the duration of extracorporeal circulation 
had the most significant positive impact on the model output, with 
high values (red) generally increasing the predicted surgical 
duration. Intraoperative blood transfusion and duration of aortic 
occlusion also significantly prolonged the surgical time, indicating 
that the intensity of intraoperative intervention is closely related to 
the duration of surgery. Other features, such as treatment method for 

the aortic root and arch, loss of consciousness, and C-reactive 
protein, also showed a certain degree of positive contribution, 
indicating the identifiable importance of the patient’s pathological 
status and surgical complexity in the model. Figure 6b quantifies the 
average impact of each variable on the overall predictions. The 
average SHAP value of extracorporeal circulation time was 58.58, 
making it the most influential feature. Duration of aortic occlusion 
(13.08) and intraoperative blood transfusion (9.72) followed, 
emphasizing the importance of intraoperative physiological load in 
predicting surgical duration. The treatment strategies for the aortic 
arch and root were also among the top contributors, highlighting 
that the choice of surgical approach and operational complexity were 
key factors affecting the duration of surgery. In addition, patient 
baseline factors such as age, weight, and history of hypertension also 
have moderate impact, while variables like gender, and height 
contribute relatively less. Figures  5d, 6c show the corresponding 
analysis in the test set, which were largely consistent with the training 
set. Additionally, the case study presented in Figure 6e confirmed 
that extracorporeal circulation time remained the dominant factor, 
while the relative contributions of other features aligned with the 
overall trend.

Figures 6f–j provide detailed SHAP scatter plots for the top 
five most influential features. As shown in Figure 6f, the duration 
of extracorporeal circulation exhibited a positive correlation with 
SHAP values, indicating that longer extracorporeal circulation 
generally contributed to increased predicted surgical durations. A 
similar trend was observed in Figure 6g, where the duration of 
aortic occlusion showed a linear increase in SHAP value, 
supporting its direct time-consuming nature during surgical 
manipulation. In Figure 6h, when intraoperative blood transfusion 
volume was relatively low (<3,000 mL), its impact on surgical 
duration was minimal. In the high transfusion range, SHAP values 
increased rapidly, suggesting that massive bleeding was associated 
with more complex intraoperative procedures. Figures 6i,j depict 
the influence of aortic root and aortic arch treatment strategies, 
respectively. Both the Bentall procedure and the Full Bow 
approach showed substantially positive SHAP contributions, 
indicating that these complex surgical techniques were consistently 
linked to extended operative times in the model’s interpretation.

Overall, the SHAP analysis results were highly consistent with 
clinical cognition, which enhanced the interpretability of the model 
and supports its practical application value in preoperative risk 
assessment and surgical planning.

4 Discussion

4.1 Comparison with the traditional 
methods

In traditional surgical duration prediction, common methods 
have included linear regression models and estimation based on a 
doctor’s experience. Linear models are constrained by the assumption 
of linear relationships between variables, making it difficult to capture 
complex nonlinear interactions and individual differences during 
surgery (40, 41). Prediction based on clinical experience is highly 
subjective and influenced by factors such as surgeon experience and 
patient anatomy, often resulting in significant errors (42, 43), 

TABLE 2  Model performance on the test set.

Model R2 MAE RMSE

Linear Regression −1.1302 67.31 159.31

Elastic Net 0.5421 55.19 72.55

Decision Tree Regressor 0.5501 55.63 72.15

Random Forest Regressor 0.6415 49.36 65.74

ExtraTrees Regressor 0.7101 43.54 59.42

Gradient Boosting Regressor 0.5954 54.29 70.28

XGBoost Regressor 0.6219 49.33 68.36

CatBoost Regressor 0.6285 51.65 66.29

AdaBoost Regressor 0.6003 51.71 70.79

Support Vector Regressor −0.3017 66.32 129.77

K-Nearest Neighbors Regressor 0.2914 74.01 94.65
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especially in complex diseases like TAAD, which involves substantial 
variations in surgical pathways. In contrast, machine learning 
algorithms have demonstrated superior predictive abilities in multiple 
clinical studies due to their nonlinear modeling capabilities and 

advantages in processing high-dimensional, multimodal inputs (44). 
For example, Martinez found that ensemble learning models 
significantly improved the accuracy of surgical duration 
prediction (45).

FIGURE 3

Comparison chart of the real and predicted effects of all models on the test set. (a), Linear Regression. (b), Elastic Net. (c), Decision Tree Regressor. (d), 
Random Forest Regressor. (e), ExtraTrees Regressor. (f), Gradient Boosting Regressor. (g), XGBoost Regressor. (h), CatBoost Regressor. (i), AdaBoost 
Regressor. (j), Support Vector Regressor. (k), K-Nearest Neighbors Regressor.

FIGURE 4

Residual Distribution of all models on the test set. (a), Linear Regression. (b), Elastic Net. (c), Decision Tree Regressor. (d), Random Forest Regressor. (e), 
ExtraTrees Regressor. (f), Gradient Boosting Regressor. (g), XGBoost Regressor. (h), CatBoost Regressor. (i), AdaBoost Regressor. (j), Support Vector 
Regressor. (k), K-Nearest Neighbors Regressor.
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4.2 Impact of surgical strategies on surgical 
duration

The similarity in operative times across different surgeons suggests 
a high level of consistency in surgical practice within this center. This 
finding reflects the impact of standardized surgical training, which 
helps to minimize inter-operator variability (46, 47).

The long operative duration observed for aortic valve repair in this 
cohort reflects its greater complexity, as repair procedures often 
require meticulous leaflet assessment, cusp resuspension or patch 
augmentation, and precise reconstruction of valve geometry to ensure 
competence (48). Valve replacement procedures place lower demands 
on leaflet preservation and therefore tend to be associated with shorter 
surgical duration. Both Wheat and Bentall belong to this category. 
However, Bentall procedures generally require longer root 
management because they involve concomitant coronary button 
reimplantation, in contrast to Wheat procedures (49).

In this study, the no arch intervention strategy was associated 
with the shortest surgical duration, as no additional arch 
reconstruction was required. In total arch replacement, the frozen 
elephant trunk (FET) technique requires additional steps for stent 
deployment and distal anastomosis in the descending aorta (50). 
Although the circulatory arrest time for these maneuvers is only 
prolonged by a few minutes compared with non-FET procedures 
(51), the associated increase in bleeding risk often results in a 
substantially longer hemostasis phase (52). The results of this study 
demonstrated that the average operative duration in FET cases was 

extended by nearly 1 h compared with non-FET arch replacement. 
Partial arch replacement showed shorter surgical duration than total 
arch replacement. This approach still required circulatory arrest 
under deep hypothermia, but operative time was reduced because 
supra-arch branches did not need reconstruction (53). Debranching 
procedures required no deep hypothermic circulatory arrest, and 
their operative times were between those of full arch and right half 
arch replacement (54).

Prolonged aortic occlusion time was closely associated with 
increased operative duration. This relationship reflects not only the 
extended time required for complex root and arch reconstruction but 
also the additional period needed for myocardial protection and 
meticulous hemostasis (55). Longer occlusion times have been linked 
to impaired coagulation and greater intraoperative blood loss, which 
further prolong surgical procedures (56).

4.3 Analysis of model performance

Among the multiple regression models applied in this study to 
predict the surgical duration of TAAD patients, traditional linear 
regression, support vector regression (SVR), and K-nearest 
neighbor (KNN) generally performed poorly. The main reason is 
that such models are unable to fully capture the multivariate 
interactions inherent in highly nonlinear and high-dimensional 
clinical data. The linear model assumes linear relationship between 
variables and is thus ineffective in addressing multifactorial 

FIGURE 5

Prediction Trend of all models on the test set. (a), Linear Regression. (b), Elastic Net. (c), Decision Tree Regressor. (d), Random Forest Regressor. (e), 
ExtraTrees Regressor. (f), Gradient Boosting Regressor. (g), XGBoost Regressor. (h), CatBoost Regressor. (i), AdaBoost Regressor. (j), Support Vector 
Regressor. (k), K-Nearest Neighbors Regressor.
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problems (57, 58). Although SVR is theoretically suitable for 
nonlinear modeling, its performance is highly dependent on kernel 
selection and parameter tuning, making it prone to underfitting or 
overfitting (59, 60). The KNN algorithm is more sensitive to outliers 
and feature scaling, and tends to suffer from the “curse of 
dimensionality” in high-dimensional feature spaces, which 
substantially compromises predictive accuracy (61). In contrast, 
ensemble models are better able to capture nonlinear interactions 
between variables without relying on feature scaling or 
distributional assumptions, making them more robust to variable 
scales and types (57, 62). The ExtraTrees Regressor employs an 
extremely randomized partitioning strategy, selecting both features 
and thresholds at random during tree construction (63). This highly 
decorrelated strategy effectively reduces model variance and 
enhances generalization ability (64). Furthermore, ExtraTrees trains 
each tree using full sample set, which reduces model bias to some 
extent and helps better exploit available sample information (65).

In this study, ExtraTrees demonstrated superior performance in 
predicting the duration of TAAD surgery, confirming its capacity for 
modeling multifactorial, nonlinear, and interaction-rich problems. 
Overall, compared with traditional regression models, ensemble 
learning methods are more suitable for the complex prediction task of 
TAAD surgery duration.

4.4 Characteristics and clinical relevance

This study identified the top five key factors affecting the surgical 
duration of TAAD patients using SHAP value analysis (66): Duration 
of extracorporeal circulation, Duration of aortic occlusion, 
Intraoperative blood transfusion, Treatment method for the aortic 
arch, and Treatment method for the aortic root. These factors directly 
reflected the surgical complexity and were closely related clinically to 
operative duration.

Duration of extracorporeal circulation and duration of aortic 
occlusion were direct measures of intraoperative process duration. 
They correlated with prolonged total operative time, especially in 
surgeries involving more extensive reconstruction or older patients 
who require tailored perfusion strategies (67, 68). Intraoperative 
blood transfusion was frequently observed in cases with significant 
bleeding or coagulation disturbances and was consistently 
associated with longer operative times. This reflected the additional 
hemostatic interventions and procedural complexity required in 
these settings, as reported in recent TAAD cohorts (69). In TAAD 
surgery, the arch strategy and root strategy were closely linked to 
operative duration, serving as indicators of procedural complexity. 
Total arch replacement was repeatedly shown to involve 
substantially longer cardiopulmonary bypass and circulatory arrest 
times compared with hemiarch replacement (70). Likewise, the 
choice of aortic root procedure affected ischemic and perfusion 
times, with valve-sparing root replacement generally associated 
with a longer operative duration than composite root replacement 
(71, 72). These relationships should be interpreted as indicators of 
procedural complexity rather than independent preoperative causal 
determinants. They highlighted how surgical techniques and 
intraoperative conditions influence operative time, providing 
mechanistic insight into why certain TAAD procedures were 
substantially longer and technically more demanding.

In addition to the five main factors mentioned above, this study 
also included variables such as patient age, gender, physical indicators, 
symptom presentation (including preoperative loss of consciousness), 
laboratory indicators (such as C-reactive protein and D-dimer), and 
surgery preparation time. Compared with the dominant intraoperative 
variables, these factors demonstrated substantially lower SHAP values, 
indicating a relatively limited contribution to predicting of surgical 
duration. This indicates that the duration of surgery was primarily 
influenced by the technical difficulty and process events of the surgery 
itself, while the patient’s basic condition and preoperative preparation 

FIGURE 6

Top 20 feature importance. (a), SHAP Beeswarm plot of the training set. (b), SHAP Bar plot of the training set. (c), SHAP Beeswarm plot of the test set. 
(d), SHAP Bar plot of the test set. (e), SHAP plot for a case study from the test set. (f), SHAP value for Duration of extracorporeal circulation. (g), SHAP 
value for Duration of aortic occlusion. (h), SHAP value for Intraoperative blood transfusion. (i), SHAP value for Treatment method for the aortic root. (j), 
SHAP value for Treatment method for the aortic arch. Each point represents a patient sample, and the colors from blue to red indicate the feature 
values from low to high.

https://doi.org/10.3389/fpubh.2025.1682339
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Deng et al.� 10.3389/fpubh.2025.1682339

Frontiers in Public Health 12 frontiersin.org

may affect the overall surgical risk but have a relatively small direct 
impact on the duration of surgery (73).

Although Marfan syndrome was not among the features with the 
highest SHAP values, the broader category of heritable thoracic aortic 
diseases, which it exemplifies, warrants dedicated discussion due to its 
clinical and genetic significance.

Heritable Thoracic Aortic Disease (HTAD) encompasses a 
heterogeneous group of conditions, including syndromic forms 
such as Marfan syndrome and Loeys–Dietz syndrome, as well as 
congenital abnormalities like bicuspid aortic valve (BAV) and 
coarctation of the aorta. Accumulating evidence suggests that the 
presence of HTAD increases surgical complexity and consequently 
prolongs operative duration in TAAD (74). For instance, BAV 
patients require simultaneous replacement of the aortic valve 
during valve disease surgery, resulting in longer surgical time (75). 
Coarctation of the aorta often results in deformities of the aortic 
arch and descending aorta, which increase the technical difficulty 
of intraoperative management and consequently prolong surgical 
time (76). Marfan and Loeys–Dietz are characterized by fragile 
aortic tissues, leading to more complex root and arch 
reconstructions that likely extend surgical duration (77, 78). It is 
important to consider HTAD subtypes, as their distinct features 
significantly influence intraoperative complexity and contribute to 
prolonged operative duration in TAAD.

4.5 Limitations

The data in this study mainly comes from a single center, and the 
sample size is relatively limited, which may lead to a decrease in the 
predictive performance of the model on independent external 
samples or regional bias. It is recommended that future research 
adopt larger-scale, multi-center, prospective designs. Another 
limitation is that several of the top features identified are only 
available intraoperatively, which restricts the model’s applicability for 
preoperative prediction. Nevertheless, the results underscore the 
critical influence of intraoperative complexity on operative duration 
and indicate potential targets for procedural optimization and 
resource allocation. Accordingly, our model should be interpreted as 
providing explanatory insights into surgical complexity rather than 
functioning as a direct preoperative prediction tool, while future 
studies are needed to incorporate richer preoperative data to improve 
predictive utility. Moreover, this study did not include an external 
validation cohort, which limits the generalizability of the findings. 
Future work should incorporate multi-center datasets for 
prospective validation.

5 Conclusion

The study constructed and validated 11 regression models for 
analyzing the duration of TAAD surgery, using data from Qingdao 
University Affiliated Hospital. The ExtraTrees Regressor model 
has the best performance (R2 = 0.7101, MAE = 43.54, 
RMSE = 59.42). Compared with traditional prediction methods, 
machine learning models can integrate multidimensional features 
such as demographics, clinical indicators, environment, and 
surgical types, and significantly improve prediction performance 

by learning complex nonlinear relationships and interactions. 
Surgical duration in TAAD is varied substantially with procedural 
strategies. Complex root and arch management strategies are 
associated with prolonged operative duration, and extended aortic 
occlusion time further contributes to this increase. The model 
identified Duration of extracorporeal circulation, Intraoperative 
blood transfusion, Duration of aortic occlusion, Treatment 
method for the aortic arch, and Treatment method for the aortic 
root as the five most influential factors affecting operative 
duration, all of which warrant careful consideration by cardiac 
surgeons during preoperative planning. The impact of Marfan 
syndrome on surgical duration is not significant in this study. 
Nonetheless, HTAD is characterized by underlying connective 
tissue abnormalities that can increase intraoperative technical 
challenges, and its potential influence on surgical outcomes 
warrants further investigation in larger cohorts. This study 
provides an explanatory analysis of factors influencing operative 
duration in Stanford type A aortic dissection. The inclusion of 
intraoperative variables offers important insights into procedural 
complexity and clinical management, although it limits immediate 
preoperative application. Future research will focus on models 
based solely on preoperative features with external validation to 
enable real-time prediction and broader clinical use.
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