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nanoplastics exposure on human
health: focus on neurological
effects from ingestion
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Microplastics (MPs) and nanoplastics (NPs) have become pervasive contaminants
in food, water, and air, leading to widespread human exposure, primarily through
ingestion. Although MPs are increasingly detected in human tissues, including
the placenta, blood, and brain, their long-term health implications are poorly
understood. This review compiles emerging evidence on the systemic distribution
and biological effects of ingested MPs, particularly on neurological risks. MPs can
disrupt gut microbiota, breach intestinal and blood—-brain barriers, and accumulate
in neural tissues. Mechanistic studies reveal that MPs induce oxidative stress,
neuroinflammation, protein aggregation, and neurotransmitter alterations, which
may contribute to the development of cognitive dysfunction and neurodegenerative
disease pathways. Recent work using brain organoids, single-cell and multi-omics
technologies provides deeper mechanistic insights, linking MP/NP exposure to
mitochondrial injury, inflammatory signaling, and impaired protein homeostasis.
We also identify important gaps in exposure assessment, NPs detection, and
epidemiological evidence. Human studies remain scarce but initial reports
associating elevated MP/NP burdens in brain tissue with dementia highlight the
urgency of this research. To address these gaps, we suggest critical next steps
in the research agenda, integrating omics technologies, real-world exposure
models, and human-relevant in vitro systems. As MP contamination grows, it is
critical to understand its neurotoxic potential for informing public health policy
and protecting vulnerable populations.

KEYWORDS

microplastics, nanoplastics, environmental health, neurological effects, public health,
plastic pollution

Introduction

Microplastics (MPs), defined as plastic particles <5 mm (with nanoplastics (NPs) generally
<1 pm) (1), arise either from the fragmentation of larger plastics (secondary MPs) or are
manufactured as small particles (primary MPs, e.g., microbeads, resin pellets) (2). These
particles are now pervasive across ecosystems, detected in marine and freshwater
environments, soil, and air (3-5). Primary sources include single-use plastics, synthetic fibers,
personal care products, and tire wear particles (4, 6, 7). Human exposure occurs through
ingestion of contaminated food and water, inhalation and dermal contact (8-10).

MPs are ingested through diverse dietary items. They have been detected in seafood
(particularly shellfish consumed whole), sea salt, tap and bottled water, and even fruits and
vegetables (11-15). Cox et al. (16) estimated annual human ingestion at tens to hundreds of
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thousands of particles, equating to several grams per week. A 2019
study by Schwabl et al., found MPs in all analyzed stool samples, with a
median of 20 particles per 10 g of feces (17), confirming routine dietary
exposure. MPs have also been identified in human tissues such as the
placenta and breast milk (18, 19) raising significant concerns about
potential health impacts on infants and children. This review focuses on
how ingested MPs enter and distribute in the body, their general health
effects (on gastrointestinal, cardiovascular, immune, and reproductive
systems), and, most critically, their emerging neurological implications.

To identify relevant literature, we conducted a structured search of
PubMed, Web of Science, and Scopus for publications from 2015 through
January 2025. Search terms included combinations of “microplastics,”
“nanoplastics,” “neurotoxicity, “ingestion,” “blood-brain barrier;” and
“gut-brain axis” We included peer-reviewed primary research and review

10.3389/fpubh.2025.1681776

articles that addressed exposure, toxicokinetics, systemic or neurological
health effects, and human biomonitoring. Studies not published in
English or lacking relevance to human or mammalian systems were
excluded. References summarized in Tables 1-4 as well as those discussed
in the main text, were identified through this process.

Mechanisms of microplastic ingestion
and absorption

Sources of ingestion

Humans continuously ingest micro- and nanoplastics (MNPs)
through food and beverages. Both tap and bottled water contain MPs,

TABLE 1 Summary of key neurological findings from experiments across various animal models.

Animal model

Plastic types and

Exposure

Key neurological

Major behavioral

References

group sizes* methods findings effects
Zebrafish Models PS: 0.1-20 pm; PS-NPs: Water exposure: Blood-brain barrier Hyperactive swimming; (84-92)
(Danio rerio) 1-10 pm; PS 5-30 days penetration; transcriptional altered predator
(~2 mg/L) £ Cu* (25 changes in brain; elevated avoidance; reduced
ug/L) brain apoptosis; locomotor activity;
neurodevelopmental abnormal swimming
disruption; patterns; social behavior
neuroinflammation; oxidative | alterations; cognitive
stress in brain tissue; altered impairment
dopaminergic signaling
Laboratory Rodents PS-NPs: 20-500 nm; Oral gavage (28- BBB penetration; Memory impairment; (70, 76, 93-97)
(Mice and Rats) PS-MPs: 5-20 pm; PE- 90 days); IV injection neuroinflammation via anxiety-like behavior;
MPs: 1-50 pm (24-72 h); intranasal microglial activation; cerebral | neurobehavioral
(7-28 days) thrombosis; vascular abnormalities; motor
obstruction; neuronal dysfunction; altered
damage; altered exploratory behavior;
neurotransmitter levels; olfactory dysfunction;
astrocyte reactivity learning/memory deficits
Fish Species (Goldfish, PS-MPs: 1-500 pm; PE- Water/dietary Brain accumulation; Altered swimming (98-105)
Carp, Medaka, Sea Bass, | MPs: 10-1,000 pm; Mixed | exposure: 7-60 days neuroinflammation; BBB behavior; reduced
Tilapia, Trout) MPs: 1-100 pm dysfunction; lipid feeding activity;
peroxidation; altered brain behavioral alterations;
gene expression; stress responses; altered
neurodevelopmental toxicity; | larval behavior; reduced
altered neurotransmitter survival; altered predator
metabolism response
Invertebrate Models (C. PS-NPs: 20-200 nmy; Culture medium/food: | Neuronal dysfunction; altered | Reduced chemotaxis; (106-109)

developmental disruption

elegans, Drosophila, PS-MPs: 0.1-1 pm 24 h-14 days neurotransmission; altered feeding behavior;
Artemia) cholinergic system reduced climbing ability;
disruption; altered circadian
neurodegeneration; altered rhythms; reduced
brain morphology; acute swimming activity;
neurotoxicity; neuronal cell paralysis
death
Developmental Models PS-NPs: 100-500 nm Oral gavage during Maternal-fetal brain transfer; | Offspring behavioral (110, 111)
(Pregnant mice, gestation placental transfer; abnormalities
offspring) developmental neurotoxicity;

*PS, Polystyrene; PE, Polyethylene; MP, Microplastic; NP, Nanoplastic.
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TABLE 2 Summary of human studies on microplastics/nanoplastics (MNPs) in the human brain.

10.3389/fpubh.2025.1681776

Study type MP/NP type* Findings* Population or sample Citation
Autopsy Case Series—(first Microplastics (~5.5-26 pm Detected MPs in olfactory bulb of Human brain (olfactory bulb) (42)
report of MPs in human brain particles; fibers ~21 pm). 8/15 cadavers, indicating that
tissue) Identified polymers: mainly inhaled particles can reach the brain
polypropylene (~44%), plus via the olfactory nerve pathway
other synthetic fibers/
fragments
Observational Clinical Study - MP/NPs (PS, PE, PP, PVC) All patients’ CSF contained some Cerebrospinal fluid from 28 (75)
(Blood-Brain-Barrier MPs (PP, PE, PS, PVC); patients hospital patients (14 with severe
impairment study) with CNS infection (leaky BBB) had | CNS infection and 14 without)
significantly higher CSF levels of PP | in China;
and PE; Demonstrates that BBB
damage allows greater MNP entry
into the central nervous system
Autopsy Cross-Sectional Study | MPs and NPs (~1 nm- Higher MP burden in brain (~0.5% Human brains from 52 (43)
(Brain vs. other organs over 500 pm). The predominant of brain tissue mass on average was decedents in New Mexico, plus
time) polymer was PE (x75% of plastic), than liver/kidney; 27 archival brain samples
brain MNPs). Many particles accumulation over last decade;
were nanoscale “shard-like” Brains of dementia patients
plastic fragments contained ~6-fold higher
microplastic concentrations than
brains of non-dementia patients.
Case Report Unspecified MPs MPs detected in cerebral thrombi; Cerebral blood clots (70)
speculated role in stroke
Tissue Biomonitoring Plastic particles >700 nm MPs detected in human blood; ‘Whole blood from healthy adults (34)
suggest systemic circulation
Theoretical/Review-Based MPs with neurotoxic potential | Linked to Alzheimer’s, Parkinson’s Synthesized from animal/human (1)
via proposed mechanisms data
Theoretical/Review-Based MPs with neurotoxic potential = Proposed chronic microplastic Synthesized from emerging (69)
exposure as a novel risk factor for human and animal evidence
dementia; mechanisms include
oxidative stress, neuroinflammation,
and amyloid aggregation
Observational Clinical Study Micron-scale microplastics in | Four polymer types of MPs were Cerebrospinal fluid from 32 (71)
(CSF in Alzheimer’s disease vs. | CSF (identified polymers: PP, detected in the CSF of all subjects; older adults in China: 17
controls) PVC, PE, PS); Frequency of AD patients had significantly higher | amyloid-positive AD patients vs.
bottled-water drinking CSF levels of PE and PVC than 15 controls (baseline
correlated with higher CSF controls. In AD patients, higher CSF | comparison), plus 11 additional
MP load. PE levels were linked to lower CSF AD patients in a validation
AP42 (greater amyloid pathology), cohort. All AD-diagnosed
lower cognitive scores (MMSE) and | individuals were followed for
faster cognitive decline. 1 year of cognitive assessment.

*PS, Polystyrene; PE, Polyethylene; PP, Polypropylene; PVC, Polyvinyl chloride.

with plastic bottles showing particularly high loads (1). Heatingliquids ~ Fate post-ingestion
in plastic teabags or baby bottles can also release large quantities of
MPs (20). Seafood, especially species consumed whole, are known Most MPs are excreted via feces; infants show significantly higher
vectors due to marine contamination (11, 21). Other foods, including  levels than adults (20). However, smaller particles, especially NPs, can
salt, sugar, honey, beer, and produce, may contain MPs due to  cross the intestinal barrier (24-27). MPs < 150 pm may penetrate the
environmental or processing contamination (1). Additionally, indoor  gut lining, particularly via M-cells in Peyer’s patches and mucosal
dust and synthetic fibers shed from textiles contribute to unintentional ~ immune tissues (28, 29). While larger particles remain in the GI tract,
ingestion (22). Fang et al. (23) estimated that atmospheric deposition ~ smaller ones may enter circulation, depending on their size, charge,

alone can contribute up to 1 million MPs per year to the human diet.  and surface chemistry. Continuous dietary exposure ensures a steady
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TABLE 3 Integrated mechanisms of micro- and nanoplastic (MNP)-induced neurotoxicity.

Mechanism

Key processes/molecular pathways

Supporting
evidence
(Refs)

10.3389/fpubh.2025.1681776

Neurological outcomes

Oxidative Stress and
Mitochondrial

Dysfunction

ROS overproduction; electron leak at ETC, Complex I/IIT; NOX activation;
redox-active additives catalyzing Fenton-like reactions; impaired Nrf2/
Keapl antioxidant signaling; lipid peroxidation (tMDA/4-HNE);

ferroptosis/cuproptosis features

(1,32,67,76)

Memory deficits, neuronal death,

cognitive impairment

Microglial Activation and

Neuroinflammation

Microglial uptake of NPs — M1-like pro-inflammatory phenotype; cytokine
release (IL-1pB, TNF-a, IL-6); NOX2-driven ROS; impaired autophagy (/LC3

flux, 1p62) reducing clearance of aggregates

(32,67, 72-74)

Chronic neuroinflammation, synaptic
dysfunction, accelerated AD/PD
pathology

transporter (DAT), vesicular monoamine transporter (VMAT); ERK/MAPK

signaling disruptions

Blood-Brain Barrier Tight junction protein loss (claudin-5, occludin, ZO-1); endothelial stress; (33, 67,75) Increased brain permeability and
(BBB) Disruption cytokine-driven permeability; caveolin-1-mediated transcytosis microplastic/nanoplastic
accumulation

Protein Aggregation and Particle corona promotes nucleation of a-synuclein, amyloid-f, TDP-43; (72,77,78) AD: amyloid plaques; PD: Lewy

Misfolding lysosomal dysfunction (cathepsin leakage, impaired clearance); abnormal bodies; Amyotrophic lateral sclerosis
phase separation (ALS): TDP-43 inclusions

Neurotransmitter Inhibition of AChE — facetylcholine; altered dopamine/glutamate/ GABA (67,76) Cognitive decline, anxiety-like

Dysregulation turnover; oxidative damage to monoamine oxidase (MAQ), dopamine behaviors, locomotor changes

Gut-Brain Axis

Dysbiosis (| short-chain fatty acid (SCFA) producers, Tpro-inflammatory
strains); | butyrate; gut barrier failure — endotoxemia (1LPS); systemic
cytokines; altered microbial amino acid metabolism (including possible

effects on tryptophan pathways), bile acid shifts

(20, 44-48, 73)

Indirect neuroinflammation, impaired
myelination, cognitive/behavioral

dysfunction

Vascular and Clearance

Pathways

Endothelial activation; platelet aggregation; cerebral thrombi formation;

impaired glymphatic/lymphatic clearance of MPs

(33,70, 75)

Stroke risk; chronic brain retention;

neurodegeneration acceleration

ETG, electron transport chain; NOX, NADPH oxidase; Nrf2, nuclear factor erythroid 2-related factor 2; Keap1, Kelch-like ECH-associated protein 1; MDA, malondialdehyde; 4-HNE,
4-hydroxynonenal; LC3, microtubule-associated protein 1A/1B-light chain 3; p62, sequestosome-1; BBB, blood-brain barrier; AD, Alzheimer’s disease; PD, Parkinson’s disease; ALS,
amyotrophic lateral sclerosis; AChE, acetylcholinesterase; GABA, gamma-aminobutyric acid; MAO, monoamine oxidase; DAT, dopamine transporter; VMAT, vesicular monoamine
transporter; ERK/MAPK, extracellular signal-regulated kinase/mitogen-activated protein kinase; SCFA, short-chain fatty acid; LPS, lipopolysaccharide.

internal presence of MPs, underscoring the need to understand their
bioavailability and health implications.

Toxicokinetics of microplastics in the
human body

Once ingested, MPs™ absorption and distribution are primarily
governed by particle size and physicochemical properties (30, 31).
Larger particles (>150 pm) are typically confined to the gastrointestinal
tract and excreted, acting locally within the gut. In contrast, smaller
MPs (<150 pm), especially NPs (<1 pm), can cross the intestinal
barrier to some extent (31). Toxicological data estimate that <0.3% of
small MPs may be absorbed, while NPs may achieve higher uptake,
potentially several percent (31). Experimental studies confirm that
polystyrene NPs between 20 and 100 nm can penetrate the intestinal
lining and enter the bloodstream in rodents (32), likely through
endocytosis or paracellular transport (33).

Once in the systemic circulation, MPs can travel to various organs.
A landmark biomonitoring study detected particles >700 nm in
human whole blood, including polyethylene and polyethylene
terephthalate (PET), in 77% of donors (34). This confirms the systemic
bioavailability of MPs in humans. Subsequent studies have found MPs
in human lungs (35, 36), liver (37, 38), spleen (37), kidney (39), and
placenta (40, 41). Notably, MPs were detected on both maternal and

Frontiers in Public Health

fetal sides of the placenta, demonstrating their ability to cross
placental barriers.

Of critical concern is the brain. Animal studies have shown
that NPs can cross the blood-brain barrier (BBB). For example,
mice fed 30-50 nm polystyrene NPs showed brain accumulation
and cognitive impairment (32). Two main routes are proposed: (1)
via the bloodstream, where particles may breach the BBB by
forming a protein corona or exploiting endothelial pathways (33),
and (2) via the olfactory nerve, where inhaled particles migrate
directly from the nasal cavity to the olfactory bulb (42). One
autopsy case series detected polypropylene fragments in the
olfactory bulbs of 8 of 15 human cadavers (42), suggesting direct
nose-to-brain translocation.

Once in tissues, MPs may persist due to limited clearance. A
2023 autopsy study found higher concentrations of MPs in brain
tissue than in the liver or kidney of the same individuals (43).
Many particles were nanoscale, shard-like fragments consistent
with environmental degradation products. Alarmingly, the total
plastic burden in brains appeared to increase over the past decade
(43). While clearance may occur via immune cells or the
glymphatic system, recent findings suggest NPs may impair
glymphatic clearance mechanisms (1).

Thus, the neurotoxic potential of MPs is strongly influenced by their
physicochemical properties, particularly particle size and shape. Smaller
NPs are more likely to cross biological barriers such as the intestinal

frontiersin.org
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epithelium and blood-brain barrier, while shape characteristics (e.g.,
rod-like or spiked forms) may enhance tissue penetration and cellular
interactions. Table 4 summarizes how these properties affect brain
accumulation and neurotoxicity based on current evidence.

Taken together, MPs show minimal absorption when large, but
measurable systemic uptake when small, with the ability to cross
biological barriers—including the placenta and BBB—and accumulate
particularly in the brain. This underscores their potential for chronic
internal exposure and associated neurological risks.

General health effects of microplastic
exposure

Although human data remains limited, growing evidence suggests
that ingested MPs may pose risks to gastrointestinal, immune,
cardiovascular, and reproductive health.

Gastrointestinal (Gl) tract

The GI tract is the primary site of contact with ingested MPs and
is particularly vulnerable (44-46). Physical interactions between MPs
and intestinal linings can cause irritation, inflammation, and even
microlesions (45-47). Polystyrene MPs have been shown to disrupt
intestinal integrity in animals and induce inflammatory responses (36,
47). A significant concern is the impact on the gut microbiome: MPs
can lead to dysbiosis, shifting microbial balance toward
pro-inflammatory organisms (44-48). These shifts are observed across
species, from fish to rodents to humans, and beyond disrupting the
microbiome, MPs also increase gut permeability, commonly referred

10.3389/fpubh.2025.1681776

to as ‘leaky gut. The weakening of tight junctions between intestinal
cells (44-46) allows microbes and particles to translocate into
circulation, potentially triggering systemic inflammation. These
changes are associated with chronic disorders like inflammatory bowel
disease and metabolic syndrome (45-47). Human data are still
emerging, but the GI tract remains a critical site of concern for MP
exposure with potential consequences extending along the gut-liver
and gut-brain axes.

Immune and inflammatory responses

MPs can elicit immune activation as foreign particles, especially
when they cross mucosal barriers (49). Human immune cells
internalize MPs in vitro. The result is the release of pro-inflammatory
cytokines and Reactive Oxygen Species (ROS), a typical cellular
response to MPs (49, 50). Persistent exposure may cause low-grade
systemic inflammation. Chronic immune activation raises concern for
links to autoimmune conditions, although direct evidence remains
limited (51, 52).

Additionally, MPs can act as carriers for bacteria and toxins.
Environmental MPs have been shown to adsorb pathogens and
microbial metabolites, which may exacerbate immune responses (53,
54). They also bind heavy metals like lead and cadmium, but the
health risks of such co-exposures remain underexplored (55, 56).
Overall, MP-induced oxidative stress and immune activation likely
underlie many health disturbances. These immune responses may not
only affect peripheral systems but may also influence brain health.
Chronic inflammation and cytokine signaling can disrupt the blood-
to neuroinflammation and

brain barrier and contribute

neurodegenerative risks.

TABLE 4 Influence of microplastic physicochemical properties on neurotoxicity and brain penetration.

Particle property

Typical size range
involved

Key mechanisms

Neurotoxic outcomes Evidence/citation

Smaller Size (Nano) <1 pm Enhanced translocation across Greater brain accumulation; (1,32, 33)
intestinal and blood-brain barriers memory impairment; oxidative
via endocytosis and paracellular stress
transport

Larger Size (Micro) 1-5,000 pm Limited absorption; mostly Reduced neurotoxicity; gut (30,31)
retained in GI tract; local gut effects | dysbiosis with indirect brain

effects

Rod Shape Variable Higher surface area and binding Increased brain uptake; sustained (1)
potential; stronger cellular inflammation
interaction

Spherical Shape Variable Symmetric geometry; less Lower uptake and accumulation (1)
membrane disruption in brain tissues

Sharp/Spiked Shape Variable Facilitated membrane piercingand | Cellular damage, oxidative injury, (1, 26)
internalization possibly stronger neurotoxicity

Chemical Composition Varies by polymer Different affinities for protein Varied inflammatory responses (33, 66)
corona formation; affects immune and toxicity profiles
recognition

Surface Charge and Variable Influences interaction with cell Cationic surfaces associated with (33,78)

Chemistry membranes, protein corona, and stronger toxicity
biodistribution
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Cardiovascular and metabolic effects

Though research is still in the early stages, there is growing
concern about cardiovascular toxicity. MPs entering the
bloodstream may damage the vascular endothelium and promote
inflammation, a driver of atherosclerosis (57-59). MNPs have been
detected in human atherosclerotic plaques, and higher burdens
correlate with myocardial infarction, stroke, and mortality (58, 60).
MPs also transport endocrine-disrupting additives (e.g., bisphenol
A, phthalates) that are linked to obesity, insulin resistance, and
cardiovascular disease (61). Disruption of gut microbiota by MPs
may further exacerbate these effects through metabolic
inflammation (61). Notably, MPs have been found in the cardiac
tissues of patients undergoing surgery, though their pathological
significance remains uncertain (59). Collectively, cardiovascular
and metabolic disturbances provide plausible indirect routes to
neurological harm via vascular injury, impaired cerebral perfusion,
and systemic inflammation.

Reproductive health

MPs have been detected in reproductive tissues, raising concerns
about their impact on fertility and fetal development. The presence of
MPs in the human placenta (“plasticenta”) suggests possible
interference with placental function (62). Though the pregnancies in
those studies were clinically normal, MPs may cause localized
inflammation or oxidative stress that impairs nutrient exchange.
Recent studies also found MPs in testicular tissue, correlating with
reduced sperm quality (63). Endocrine-disrupting additives (e.g.,
phthalates, bisphenols) could further disrupt spermatogenesis and
hormone signaling. Animal studies corroborate these risks: female or
maternal exposure reduces fertility and offspring size (64). Maternal
MP exposure has also been linked to lower birth weights and
metabolic disturbances in offspring. While human data remain
limited, reproductive and developmental effects are relevant to
neurodevelopmental

vulnerability, particularly via placental

inflammation, endocrine disruption, and early-life

metabolic programming.

Other health considerations

Respiratory exposure to airborne MPs may contribute to lung
inflammation or fibrosis (65). There is also concern about
carcinogenesis. MPs can carry carcinogenic compounds like polycyclic
aromatic hydrocarbons (PAHs), and chronic inflammation from
particle exposure is a recognized risk factor for cancer (65, 66).
However, human evidence for MP-induced carcinogenicity remains
inconclusive. Most insights currently derive from in vitro systems or
high-dose animal studies. Although MPs clearly have biological
activity, their long-term effects in humans, especially at real-world
exposure levels, require further investigation (66).

In summary, MP ingestion has been associated with multi-system
inflammation and dysfunction. These gastrointestinal, immune,
cardiovascular, and reproductive perturbations create conditions like
systemic inflammation, endothelial/vascular injury, endocrine
disruption, and microbiome-mediated signaling that potentially
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heighten vulnerability of the nervous system. We next examine
mechanistic links to neurotoxicity.

Neurological effects of microplastic
exposure

Emerging evidence from experimental studies suggests that
exposure to MNPs can lead to neurological impairments, including
cognitive and behavioral dysfunctions. There are ethical and practical
barriers to direct human studies, but animal models provide
compelling insights. Numerous animal studies have provided
mechanistic insights into how MNPs impair brain function. These
studies span diverse species and exposure regimens, consistently
reporting neurobehavioral changes, oxidative stress, and protein
aggregation. Table 1 provides a summary of key experimental findings
across various animal models.

In rodent models, oral exposure to polystyrene NPs (10-20 mg/
kg/day) over several weeks has resulted in significant memory and
learning deficits without affecting general health or motor function
(32). These findings suggest subtle but specific neurobehavioral
toxicity. Similarly, aquatic models such as zebrafish and nematodes
have exhibited behavioral abnormalities, ranging from reduced
exploration and impaired prey capture to locomotor disruption and
convulsive activity at high MP concentrations (67). Collectively, these
studies indicate that MPs may impair core neurological functions.

Human epidemiological data directly linking MP exposure to
neurological outcomes are still lacking, but recent autopsy and case
reports raise important concerns. Microplastics have been found in
human brain tissue, including in individuals with dementia (43, 68).
A recent autopsy study by Nihart et al. (43) reported that microplastic
concentrations were significantly higher in human brain tissue
compared to liver or kidney, and that dementia patients had markedly
higher brain plastic burdens than non-dementia patients. Similarly,
Gecegelen et al. (69) proposed chronic microplastic exposure as a
novel risk factor for dementia. These findings provide compelling
human evidence linking chronic microplastic accumulation to
neurodegenerative risk. Although causality cannot be inferred from
most cross-sectional findings, the accumulation of MPs in brain
regions like the cortex and olfactory bulb (42) certainly raises the
possibility of neurotoxic effects. Additionally, MPs have been detected
in cerebral thrombi, prompting speculation that they may contribute
to stroke risk by inducing microvascular obstruction (70). Detection
of these particles in the human brain/CNS, although preliminary,
raises important questions about chronic exposure and neurotoxicity.
As summarized in Table 2, multiple recent human studies, including
cerebrospinal fluid analyses (71) and brain autopsy series (43) provide
direct clinical evidence of microplastics in the central nervous system.
In their study He et al. reported microplastics in CSF along the AD
continuum and linked higher CSF polyethylene and PVC to worse
cognitive trajectories, reinforcing the clinical relevance of CSF plastic
burden. These studies not only underscore the clinical relevance of
microplastic neurotoxicity but also strengthen the rationale for
links with
neurodegenerative outcomes.

investigating dementia and other
A particularly provocative area of investigation is the potential
link between chronic MP exposure and neurodegenerative diseases.

Preclinical studies suggest MPs may accelerate pathological processes
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underlying Alzheimer’s Disease (AD), Parkinson’s Disease (PD), and
Multiple Sclerosis (MS). For instance, when in sufficient quantities,
polystyrene NPs have been shown to promote alpha-synuclein
aggregation, a hallmark of PD. (72) Other studies report that MPs
facilitate amyloid-p aggregation in vitro, enhancing neurotoxicity in
AD models (1). There is also evidence from fetal rat studies that MPs
disrupt myelin formation, which could have relevance for MS. (1)
While these disease-focused studies remain preclinical, they raise
important hypotheses about MPs as environmental risk factors
for neurodegeneration.

Cumulative evidence from animal studies suggests that MPs can
impair memory, learning, and behavior and may promote the
aggregation of neurotoxic proteins. These outcomes mirror features of
neurodevelopmental and neurodegenerative disorders. Although
most findings are from high-dose animal models, they raise critical
questions about whether chronic, low-level human exposures could
cause similar, albeit subtler, effects (67). Addressing this gap is
essential, especially as MP contamination becomes increasingly
pervasive. Overall, experimental data strongly support the
neurotoxicity potential of MPs and underscore the need for
more research.

10.3389/fpubh.2025.1681776

Molecular mechanisms of .
microplastic-induced neurotoxicity

The neurotoxicity of MNPs is based on interconnected biological
processes. The mechanistic pathways can include oxidative stress,
neuroinflammation, disruption of the blood-brain barrier (BBB),
neurotransmitter dysregulation, protein aggregation, and/or
modulation of the gut-brain axis (Figure 1). These mechanisms are
discussed in detail below and an integrated summary of the key

molecular mechanisms is presented in Table 3.

Oxidative stress

Oxidative stress is a consistent and early response to MP
exposure. Both animal models and in vitro studies show that MPs
induce ROS generation in neuronal tissues (1, 67). Excessive ROS
damages cellular biomolecules, leading to impaired neural function
and cell death. Mechanistic studies indicate mitochondrial
dysfunction as a central source of ROS, particularly electron
leakage at complexes I and III of the electron transport chain,

P

Neuroinflammation (microvial activation)

Direct
Olfactory/Nasal
Pathway '
Inhalation £ é 4 :
Ingestion 7

Distribution through ————
systemic circulation

Microbial Dysbiosis,
Intestinal Barrier
Dysfunction, Systemic
inflammation

FIGURE 1

contributing to cognitive, behavioral, and neurodegenerative outcomes.

o —— > Gut-Brain axis

Neurotransmitter Disruption
Oxidative Stress (ROS generation)
Protein Aggregation
Mitochondrial Dysfunction

Blood-Brain-Barrier
disruption

modulation

Neurological Outcomes h
Cognitive Impairment
Behavioral Changes

Memory Deficits
Neuronal cell Death
Neurodegenerative risks

Pathways through which micro- and nanoplastics (MNPs) may cause neurological effects. MNPs from food, water, and air enter the body via ingestion
or inhalation. Inhaled particles may bypass the blood—brain barrier (BBB) via the nasal/olfactory route. Ingested particles can disrupt gut microbiota and
intestinal barriers, leading to systemic inflammation and translocation into circulation, ultimately affecting the brain through BBB disruption and gut-
brain axis modulation. Once in the brain, MNPs may trigger neuroinflammation, oxidative stress, neurotransmitter imbalance, and protein aggregation
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leading to loss of mitochondrial membrane potential and reduced
ATP synthesis (1, 32). In rodents, oxidative injury in the
hippocampus has been linked to memory deficits (32). ROS also
activates signaling pathways like Nuclear Factor kappa-light-chain-
(NF-xB), contributing to
neuroinflammation and apoptosis. In addition, Nrf2/Keapl

enhancer of activated B cells

antioxidant defenses appear downregulated in MNP-exposed
neurons, suggesting impaired adaptive responses (67). Given its
central role in neurodegenerative diseases MP-induced oxidative
stress is considered a major mechanistic trigger of neural
dysfunction (1).

Neuroinflammation and microglial
activation

MPs can provoke inflammatory responses once they enter the
brain. Microglia, the brains resident immune cells, preferentially
internalize NPs (32). They undergo morphological changes upon
uptake and release pro-inflammatory cytokines and ROS, creating a
neurotoxic environment. This is accompanied by activation of
NADPH oxidase (NOX2), which amplifies oxidative and inflammatory
signaling (67). Conditioned media from MP-exposed microglia has
been shown to reduce neuronal firing activity, an effect reversible with
anti-inflammatory inhibitors (32). Chronic microglial activation can
damage neurostructures, driving disease progression. Additionally,
impaired microglial autophagy, reflected in reduced LC3-II flux and
P62 accumulation, further limits clearance of amyloid and a-synuclein
aggregates, compounding proteostatic stress and thus exacerbating
AD and PD pathology (72-74).

Blood—brain barrier disruption

MPs can not only cross the BBB but also compromise its structural
integrity. In vitro models reveal that polystyrene nanoparticles disrupt
tight junction proteins in endothelial cells (33). Key targets include
claudin-5, occludin, and ZO-1, whose downregulation increases
paracellular permeability (33). Inflammatory cytokines released in
response to MP exposure further degrade BBB tightness, potentially
increasing brain exposure to other neurotoxicants (67). Sustained
oxidative stress is another factor that weakens barrier function.
Endothelial activation markers such as caveolin-1, VCAM-1, and
ICAM-1 are also upregulated, suggesting active transcytosis and
immune cell recruitment as additional routes of barrier compromise
(67, 75). Thus, MPs may act both as direct neurotoxicants and
facilitators of broader CNS vulnerability by impairing the brain’s
primary defense.

Neurotransmitter and synaptic effects

MNPs disrupt neurotransmitter systems. Studies have reported
that inhibition of a Acetylcholinesterase (AChE) results in elevated
acetylcholine levels at synapses, disrupting cholinergic signaling
(67). This hypercholinergic state may disrupt normal long-term
potentiation (LTP) and synaptic plasticity, processes essential for
learning and memory. MPs also alter brain levels of dopamine,
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glutamate, and Gamma-Aminobutyric Acid (GABA) (1, 67). These
neurochemical imbalances correspond with behavioral changes
observed in exposed animals. In zebrafish and rodents, MP
exposure has been associated with altered serotonin and dopamine
signaling (67). Evidence also points to oxidative modification of
(DAT)
transporter (VMAT), which impair dopamine reuptake and

dopamine transporter and vesicular monoamine
storage (76). Enzymatic changes affecting neurotransmitter
metabolism (e.g., monoamine oxidase inhibition) have also been
reported. Together these suggest widespread disruption of

synaptic communication.

Protein aggregation and misfolding

Nanoplastics may serve as nucleation sites for the aggregation of

neurodegeneration-related  proteins.  Experimental  studies
demonstrate that polystyrene NPs bind a-synuclein, accelerating its
conversion to insoluble fibrils associated with Parkinson’s disease (77).
MPs

neurotoxicity in AD models (1). MPs also interfere with the normal

Similarly, promote amyloid-p aggregation, enhancing
degradation of proteins. Once internalized, they accumulate in
lysosomes and impair their function, hindering the clearance of
misfolded proteins (77). Lysosomal destabilization causes cathepsin
leakage into the cytoplasm, further promoting neuronal apoptosis and
inflammation (77). Promoting aggregation and inhibiting degradation
contributes to toxic protein buildup, a hallmark of many
neurodegenerative conditions. Additionally, NPs have been shown to
induce TDP-43 aggregation, linked to amyotrophic lateral sclerosis

(ALS) (78).

Gut-brain axis and indirect effects

Ingested MPs may influence brain function indirectly via the
gut-brain axis. MPs disturb the intestinal microbiome, reducing
beneficial bacteria and increasing pro-inflammatory strains (20).
Notably, depletion of butyrate-producing taxa reduces availability
of short-chain fatty acids that are critical for maintaining gut barrier
and microglial homeostasis (44-48). These microbiota shifts can
affect brain health through altered production of microbial
metabolites, e.g., short-chain fatty acids, amino acids and
neurotransmitter precursors with potential downstream effects on
neuroactive compounds (71) MPs also compromise gut barrier
integrity. They promote systemic inflammation, a known
contributor to neuroinflammatory and neurodegenerative
processes. Behavioral and neural changes in MP-exposed rodents
have been associated with these gut-level alterations (20, 73).
Therefore, neurological consequences may result not only from MPs
reaching the brain but also from cascading systemic effects

originating in the gut.

Integrated mechanisms
These mechanisms are not isolated. Oxidative stress can initiate

microglial activation; neuroinflammation can impair BBB integrity,
and disrupted autophagy can intensify protein aggregation. These
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synergistic interactions create positive feedback loops, for example,
BBB disruption increases brain MNP accumulation, which further
exacerbates oxidative and inflammatory stress. MPs can also alter
membrane fluidity and intracellular signaling, which amplifies stress
responses. Experimental studies using single-nucleus RNA sequencing
in MP-exposed mice have revealed widespread transcriptional
changes in neuronal pathways, particularly those regulating energy
metabolism. This implicates mitochondrial dysfunction in MP-related
neurotoxicity (79). Together, these findings indicate that MNPs are
biologically active and capable of perturbing multiple molecular
systems within the Central Nervous System (CNS). The cumulative
effect of these disruptions may increase susceptibility to cognitive
behavioral alterations, and

impairments, progressive

neurodegenerative diseases.

Knowledge gaps

Despite rapid progress in understanding microplastic-induced
neurotoxicity, several critical knowledge gaps remain. These are
concerning human exposure levels, NPs detection, mechanistic
effects of combined

specificity, and the exposures and

individual vulnerability.

Human exposure levels and risk thresholds

We still lack precise data on typical brain exposures to MPs. MP
intake has been quantified at tens of thousands of particles annually
through food and water. They have been detected in blood and tissue
(22, 34), but the internal dose required to cause neurological harm
remains unclear. Moreover, the relationship between MPs’
physicochemical characteristics and their health impacts is poorly
understood. Most toxicological studies use doses that exceed
environmental exposure levels by orders of magnitude (67). Whether
chronic, low-level exposures contribute to subtle neurofunctional
changes has not been explored in humans. The absence of
epidemiological studies linking MP exposure to neurodegenerative
outcomes is a key barrier. This is partly due to the lack of validated
exposure biomarkers. Future work should prioritize the development
of sensitive, non-invasive biomarkers for MP burden.

Detection of nanoplastics

A major technical challenge is the detection and characterization
of NPs (<1 pm) in human tissues because most conventional analytical
methods, such as micro-FTIR or Raman microscopy, have lower
detection limits in the micrometer range (43). NPs, due to their small
size and surface reactivity, are the most likely to cross biological
barriers like the blood-brain barrier and accumulate in the brain (50,
51, 66). Their actual concentration in human tissues may
be significantly underestimated. High-resolution pyrolysis gas
chromatography mass spectrometry (py-GC/MS) or field-flow
fractionation coupled with light scattering are needed to detect,
quantify, and characterize NPs in biological matrices. Without such
tools, risk assessments are likely to overlook the most neurotoxic
fraction of plastic particles.
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Mechanistic specificity

While
neuroinflammation, and protein misfolding have been identified, our

general mechanisms such as oxidative stress,
understanding of how specific MP characteristics drive these effects
remains limited. Particle size, shape, charge, and polymer composition
likely influence toxicity, but systematic comparisons are rare. For
instance, whether spherical MPs are more neurotoxic than fibers or
whether polystyrene elicits stronger microglial activation than
polyethylene is not well established (67). Moreover, most mechanistic
studies have been short-term. The potential for cumulative effects,
such as protein aggregation, synaptic remodeling, or epigenetic
changes, from chronic exposure has not been explored. Longitudinal
studies and multi-omics approaches (transcriptomics, proteomics,
metabolomics) could elucidate molecular pathways and identify

markers of early neurotoxicity.

Combined exposures and real-world
conditions

Environmental MPs do not act in isolation. They often adsorb and
transport other pollutants such as heavy metals, persistent organic
pollutants (POPs), and microbial toxins (51, 66). Yet most laboratory
studies use pristine, single-polymer spheres, which do not reflect the
heterogeneous, weathered particles encountered in the environment
(66). Surface oxidation, changes in hydrophobicity, and chemical
loading can significantly alter toxicity profiles (80, 81). Studies
comparing new vs. aged MPs and those incorporating adsorbed
contaminants are urgently needed. For example, co-exposure models
could test whether MPs carrying lead or per- and poly-fluoroalkyl
substances (PFAS) have synergistic neurotoxic effects. Likewise, MPs
may facilitate microbial translocation or endotoxin delivery across the
intestinal or nasal mucosa, heightening immune responses (53, 54).
Experimental designs must better mirror environmental conditions
to ensure relevance to human health.

Individual vulnerability and life stages

Susceptibility to MP neurotoxicity likely varies. Infants and
children who ingest more MPs per body weight and have developing
nervous systems may be particularly vulnerable (20). However, data
on developmental neurotoxicity are virtually nonexistent. Do prenatal
or early-life exposures affect long-term cognition? Maternal exposure
studies suggest MPs can cross the placenta, but whether they impair
fetal brain development remains unknown. Similarly, the role of MPs
in accelerating age-related neurodegeneration is unexplored. Could
the accumulation of NPs in aging brains worsen outcomes in AD or
PD models? Genetic factors such as polymorphisms in oxidative stress
pathways may also mediate susceptibility. These questions require
targeted studies across life stages and in genetically diverse models.

Thresholds, reversibility, and chronicity

It is unclear whether neurotoxicity from MPs exhibits a dose
threshold or is reversible. Some rodent studies show effects at very low
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doses, while others require much higher exposure to elicit changes
(67). This inconsistency suggests potential nonlinear or threshold-
dependent effects. Longitudinal studies are needed to determine
whether neural changes (e.g., inflammation or synaptic loss) resolve
after exposure ends or persist, potentially leading to lasting
dysfunction. Identifying whether damage accumulates over time or
reaches a plateau will help refine risk assessments. Further, it is not
known whether intermittent vs. continuous exposure has differential
effects on brain accumulation and damage.

Future directions

To advance the field of microplastic (MP) neurotoxicity and
bridge critical knowledge gaps, a coordinated, interdisciplinary
research agenda is essential. Below, we outline streamlined priorities
that integrate epidemiology, exposure science, mechanistic toxicology,
and public health policy.

Advancing human exposure assessment
and epidemiology

Robust epidemiological studies are urgently needed to evaluate
the potential contribution of MP exposure to neurodevelopmental,
neurobehavioral, and neurodegenerative outcomes. Currently, no
population-level data link MP burden to diseases such as AD, PD, or
cognitive decline, largely due to the lack of validated biomarkers of
MP exposure. Research should focus on developing high-throughput,
cost-effective methods to detect MNPs in biological matrices such as
blood, urine, cerebrospinal fluid, and feces. These biomarkers must
consider particle size, polymer type, surface properties, and adsorbed
chemicals. Integrating such tools into existing cohorts (e.g., birth
registries and aging studies) offers a scalable approach to human
data generation.

Improving nanoplastic detection
technologies

The biological detection of nanoplastics remains technically
challenging, particularly due to their small size and complex
interactions with biological matrices. Spectroscopic techniques pFTIR
and pRaman fail to detect the smallest, potentially most toxic particles.
To move the field forward, efforts should focus on refining and
standardizing these techniques for biological samples. Integrative
strategies that combine imaging, spectrometry, and machine learning
may enhance sensitivity and specificity. Establishing validated
protocols and inter-laboratory benchmarks will be critical for
generating reproducible, comparable data across studies.

Mechanistic insights from organoid and
in vitro systems

Advanced human-relevant in vitro systems, including neural

organoids, microfluidic BBB models, and gut-brain-on-chip platforms
enable detailed study of MP-induced neurotoxicity. Recent brain
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organoid studies show NPs reduce neural progenitors/neurons and
perturb neurodevelopmental programs, underscoring translational
relevance for human brain biology (82). These models support high-
resolution investigations of particle size, polymer type, surface
chemistry, and co-contaminant effects. Transcriptomic and proteomic
profiling can identify early molecular changes preceding neurological
damage. Studies using organoids from genetically susceptible donors
(e.g., APOE4 for AD) can help uncover gene-environment interactions
influencing vulnerability.

Systems toxicology and multi-omics
integration

A systems-level understanding of MP effects is needed. Multi-
omics approaches; transcriptomics, metabolomics, epigenomics, and
proteomics can help build integrated toxicity networks. For example,
single-cell RNA-seq in MP-exposed brain tissue has highlighted
disruptions in mitochondrial metabolism and synaptic signaling
pathways (79). Emerging 2024 multi-omics work integrating brain
transcriptomics with metabolomics similarly highlights synaptic and
mitochondrial pathway disruption after MNP exposure, extending
single-cell findings (83). Coupling omics data with functional
assessments (e.g., behavior, electrophysiology) and applying machine
learning can elucidate causal pathways and inform biomarker discovery.

Transdisciplinary collaboration and
stakeholder integration

Addressing MP neurotoxicity requires collaborative efforts across
neuroscience, environmental health, materials science, microbiology,
and computational biology. Equally important is engagement with
policymakers, risk communication experts, and communities.
Transdisciplinary centers and consortia can facilitate data sharing,
method harmonization, and consensus-building on exposure
thresholds. Including citizen science and open-access databases can
increase transparency, trust, and relevance of findings.

Enhancing real-world relevance of exposure
models

Toxicological studies often use pristine MPs, which differ from
environmentally aged particles present in food, air, and water. These
aged MPs exhibit surface oxidation, biofilm accumulation, and
chemical adsorption that alter biological interactions (66). Future
models must simulate realistic exposure conditions, including mixed
MPs, co-contaminants, and chronic low-dose regimens. Studies should
also assess the bio-corona that forms in vivo and its role in MP uptake
and immune interactions.

Identifying vulnerable populations and
windows of susceptibility

The developing brain is especially vulnerable to environmental
insults. Prenatal and early-life exposure to MPs may disrupt
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neurodevelopment, as evidenced in animal studies showing impaired
myelination and neuronal differentiation (1). Aging populations may
also be at risk due to cumulative MP burden and comorbidities. Research
should evaluate sex-based, genetic, and life-stage differences in MP
absorption, distribution, and toxicity. Stratification by risk profiles will
enhance the precision of epidemiological insights and interventions.

Exploring combined effects with
environmental co-stressors

MPs often act synergistically with other pollutants, enhancing the
bioavailability and toxicity of co-adsorbed chemicals such as heavy
metals, PFAS, or microbial toxins (51, 54, 66). Additionally, MPs may
compromise host defenses, including the gut microbiome, immune
system, and blood-brain barrier. Future research must adopt multi-
stressor models that mirror real-world exposures and uncover
interactive effects on neurological health.

Bridging science and policy for risk
reduction

Scientific findings must inform actionable regulations. Despite
recognizing MP contamination, bodies like the World Health
Organization (WHO) and the European Food Safety Authority
(EFSA) have not yet issued enforceable health-based guidelines due
to limited toxicological data. Research should help establish evidence-
based exposure limits, prioritize high-risk plastic sources, and guide
interventions (e.g., safer food contact materials, improved water
filtration, waste reduction policies). Scientists must engage early with
regulators to ensure timely translation of findings. Public outreach and
educational campaigns can empower consumers to adopt exposure-
reducing behaviors, especially among high-risk groups like pregnant
women and children.

Conclusion

Long-term health impacts are a pressing concern, particularly in
the brain, because microplastics are inescapable. They are pervasive in
the environment and have been detected in human tissues.
Experimental studies provide compelling evidence of microplastic-
induced neurotoxicity but direct evidence in humans remains limited.
Addressing this problem will require research integrating human
exposure assessment coupled with advanced in vitro and omics-based
tools and real-world toxicological models. Moving beyond laboratory
findings toward translational science that informs public health and
regulatory action is essential. Ultimately, understanding and
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