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analysis of univariate time-series
forecasting models for disease
mortality rates in the global
burden of disease database: a
case study of global hypertensive
heart disease among women of
childbearing age
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!Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan,
China, 2School of Public Health, Kunming Medical University, Kunming, Yunnan, China

Objective: The mortality rate of hypertensive heart disease (HHD) among women
of childbearing age (WCBA) worldwide is continuously increasing. Accurate
prediction of the mortality rate of HHD among WCBA globally plays a crucial
role in evaluating the effectiveness of intervention measures and predicting
future disease trends. To date, there has been few systematic comparative
evaluations of prediction methods for epidemiological indicators in the field of
disease burden. The purpose of this study was to systematically compare the
performance of univariate prediction models in the global burden of disease
(GBD) database.

Method: Global mortality data on HHD in WCBA (1990-2021) were split into
training and validation sets. We implemented and compared four models:
AutoRegressive Integrated Moving Average (ARIMA), Prophet, eXtreme Gradient
Boosting (XGBoost), and Long Short-Term Memory (LSTM). Model performance
was assessed using Mean Squared Error (MSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and the Diebold-Mariano (DM) test for
statistical significance.

Results: The LSTM model demonstrated superior predictive accuracy on the
validation set, with the lowest error rates across all metrics (MSE: 0.00021;
MAE: 0.00872; MAPE: 0.662%). All the other models demonstrated statistically
significant superiority over ARIMA (MSE: 0.03645; DM test p < 0.05 for all metrics).
According to the DM test, both Prophet and LSTM demonstrated high predictive
accuracy (p = 0.8762 for DM test based on MSE; p = 0.4292 for DM test based
on MAE; p = 04303 for DM test based on MAPE). The LSTM model predicted
that the mortality rate will exhibit an initial decline followed by a stabilization
trend from 2022 to 2030, while the Prophet model predicted that the mortality
rate will continue to rise.

Conclusion: This study provided the first systematic comparison of univariate
forecasting models for HHD mortality in WCBA using GBD data. A key finding
was that both LSTM and Prophet performed exceptionally well statistically,
LSTM achieves superior predictive capability via its gated mechanisms and state
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memory, while Prophet enhances interpretability through its additive model
structure. This study therefore provides practical guidance for health authorities
to select appropriate models based on actual needs to support improved
resource planning for HHD.
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1 Introduction

Global Burden of Disease (GBD) is a global resource created by
WHO and the Institute for Health Metrics and Evaluation (IHME)
to quantify health losses caused by hundreds of diseases, injuries, and
risk factors (1). Hypertensive Heart Disease (HHD), which is a key
component of cardiovascular disease burden of the GBD studies,
often leads to characteristic structural and functional cardiac
abnormalities, due to prolonged hypertension. The pathological
changes of HHD includes left ventricular hypertrophy, myocardial
fibrosis, impaired ventricular diastolic function, and heart failure (2).
Women have a higher risk of hypertension than men, and their blood
pressure regulation is more susceptible to estrogen fluctuations,
menstrual cycle changes, and pregnancy-related hemodynamic
changes than men (3, 4). The childbearing years represent a
physiologically dynamic phase of female reproductive function,
characterized by unique biological events including pregnancy,
lactation, and potential adverse pregnancy outcomes. This life stage
constitutes a high-risk period for the development of hypertension,
with the elevated blood pressure subsequently increasing the
susceptibility to HHD.

In 2015, the United Nations proposed Sustainable Development
Goal 3, outlining the goal of reducing the global maternal mortality rate
to below 70/100,000 by 2030 (5). Accurately predicting the future
burden of HHD in women of childbearing age (WCBA) is crucial for
guiding effective resource allocation and achieving relevant health goals.
The value of predictive research has been demonstrated in studies at the
regional level. For example, research by Qureshi et al, focus on
cardiovascular disease mortality in Sindh, Pakistan, highlighted the
critical importance of accurate predictions for quantifying the future
disease burden of cardiovascular diseases, as well as for formulating
health policies and allocating economic resources (6).

Optimizing forecasting methods is crucial for improving prediction
accuracy. Relevant research has been widely conducted in many fields.
Multilayer Perceptrons (MLP) have shown better performance than
traditional models in the economic and financial forecasting (7, 8).
Ensemble learning, hybrid models, and deep neural networks have
demonstrated higher accuracy in environmental, fintech, and
macroeconomic projection (9-12). Several medical studies have shown
that machine learning and hybrid models are more accurate than
traditional methods in the projection for infectious disease (13-15).
Machine learning plays a more and more important role in modern
forecasting, especially when handling complex time-series
forecasting tasks.

Although the methodological optimization based on machine
learning models has demonstrated significant potential in the field of
public health, the systematic methodological research for the prediction
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based on GBD remains to be improved. The prior research has
predominantly focused on conventional time series approaches-
particularly AutoRegressive Integrated Moving Average (ARIMA),
age-period-cohort (APC) models, and their Bayesian derivatives. These
traditional methodologies failed to capture nonlinear relationships and
multifactorial interactions adequately to represent the inherent
complexity of disease burden dynamics (16), especially when analyzing
disease burden trends that exhibit nonlinear patterns or trend reversals.
Li Wang and Dan Liang et al. used variables such as age, gender, year,
population size and related risk factors to train the XGBoost model,
combining with using Shapley Additive Explanations (SHAP) to
decompose the contribution of each variable to the disease, in the
studies of iodine deficiency, iron deficiency and diarrhea (17-19).
Although these studies expand the selection range of prediction model
for GBD, they were lack of benchmark model comparisons to determine
whether the proposed improvements actually enhanced the predictive
performance. Jinyi Wu et al. compared the performance of different
models in the study on the disease burden of femoral fractures based on
GBD (20), which was lack of the description of the training set and
verification set of the model. And the selection of the time window
during model training was also absent. Moreover, the input variables are
vague and unrestricted. These problems may lead to bias in the
evaluation of models.

Our study carried out a multi-model comparison experiment
under the framework of univariate model for the first time. The
analysis was rigorously confined to using mortality rates of HHD from
WCBA (1990-2021) as the sole input variables, thereby mitigating
potential confounding factors from other covariates. The dataset was
split into training (1990-2015) and validation (2016-2021) sets.
Model performance was then assessed by comparing predicted values
with ground truth.

The model selection was based on the following rationale:
ARIMA: A classical time series forecasting model in disease burden
research, capable of capturing linear trends and serving as the baseline
model in this study. Prophet: Analysis of long-term trends and
periodicity through an additive regression model, with built-in
support for seasonality and changepoint detection, to evaluate
structured time series models (21). XGBoost: A powerful tree-based
ensemble algorithm that has proven particularly effective for time
series forecasting tasks (22). There have been few studies applying
XGBoost with univariate input in disease burden research before. Our
study tested its applicability to univariate time series. LSTM: A
recurrent neural network architecture designed to capture nonlinear
temporal dynamics to evaluate the generalization capability of deep
learning models on univariate time series (23).

Our study employed a controlled-variable design to systematically
compare the inherent performance differences among machine
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learning, traditional statistical methods, and structured temporal
models, for disease burden forecasting using identical univariate
inputs. This approach addressed a critical methodological gap in the
field by providing robust empirical evidence for model selection in
temporal health data analytics. The prediction findings of HHD in the
vulnerable population, WCBA, of this study inform targeted global
health interventions and help policymakers optimize healthcare
resource allocation strategies.

2 Methods

Statistical models (ARIMA), Machine learning models (XGBoost,
LSTM), and the Prophet forecasting procedure were used for modeling
and the prediction of the mortality rate of HHD among WCBA.

2.1 Data sources

Mortality data of females aged from 15 to 49 years of GBD
database' were used for the analysis of the global burden of HHD
among WCBA. Univariate modeling typically refers to prediction
models that rely solely on the time series itself without incorporating
external covariates. The univariate modeling was used for the
prediction of the global mortality rate of HHD among WCBA, where
future values yy,¥t415...,¥1+d were forecasted based solely on
historical temporal patterns y;,y,,..., -1, with d denoting the
prediction window length (in days).

2.2 Data splitting

The global mortality rate time series of HHD among WCBA from
1990 to 2021 was partitioned into the training set and the validation
set. The data from 1990 to 2015 was used for model training and
parameter estimation. And the data from 2016 to 2021, constituting
approximately 30% of the total series, were selected as a validation set.
This temporally separated validation set was crucial for providing an
unbiased evaluation of the models’ predictive performance on unseen,
external data and for mitigating the risk of overfitting.

2.3 Forecasting models

Four different models were employed for modeling, followed by
comparative effectiveness analysis. The four models with their
respective modeling platforms were: ARIMA (R 4.4.3), Prophet
(Python 3.1.1), XGBoost (Python 3.1.1), and LSTM (Python 3.1.1).

The detailed descriptions of each model were as follows:

2.3.1 ARIMA

As a classical time-series forecasting approach, ARIMA is
particularly suitable for stationary time-series data or data sequence
that can be made stationary through differencing. Given its extensive

1 https://vizhub.healthdata.org/gbd-results/
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use as a traditional statistical model within the GBD database system,

ARIMA was selected as the benchmark model here to represent how

conventional statistical modeling methods perform in prediction.
The ARIMA model can be expressed as:

Yr=CctPyrat @yt T @pyrpta
—Oa 1 —bhar 5 —— ant—q

where ¢ is a constant, y; is the observed value of the time series
and p represents the order of the auto-regressive (AR). 1,0, “Pp
are the coeflicients of the AR. g is the order of the moving average
(MA). 91,92,---,9q are the coefficients of the MA. A fundamental
assumption of the model is that the random error term g, follows a
white noise process, being independently and identically distributed
with a mean of zero and a constant variance o,

R 4.4.3 was used for the analysis with visual inspection of the time
series to identify trends, followed by formal stationarity testing using
Augmented Dickey-Fuller (ADF) tests. Autocorrelation (ACF) and
partial autocorrelation (PACF) plots were then checked for guiding
initial parameter selection and detecting the underlying structure of
the time series.

Given that the auto.arima function represents a commonly
employed and objective approach for ARIMA modeling in studies
utilizing the GBD database, it was applied in the study to ensure the
ARIMA model was directly comparable to common practice and to
minimize subjective bias in model specification.

Model quality was assessed using the Akaike Information
Criterion (AIC) before using the auto.arima function from the forecast
package to automatically determine the optimal ARIMA specification,
which produced the ARIMA (0,1,1) model. And the final validation
was confirmed through residual diagnostics including autocorrelation
analysis and Ljung-Box testing. All of these supported the adequacy
of the model, as the residuals exhibited characteristics of white noise
without significant autocorrelation patterns.

2.3.2 Prophet

Prophet is a structured additive time series model that explicitly
decomposes data into interpretable components (trend, seasonality,
and anomalies), integrating strengths of classical statistical methods
and machine learning algorithms. As global HHD mortality data for
WCBA exhibits non-stationary characteristics due to the influence of
policy changes and advancements in healthcare, this study adopts
Prophet to alleviate the effects of anomalous data points. Furthermore,
this model was employed to investigate the efficacy of structured time
series modeling for univariate historical data.

The mathematical formulation of the Prophet model follows an
additive decomposition framework, expressed as:

y(t)=g(t)+s(t)+h(t)+ &

where y(t) represents the observed value at timet. g(t) denotes
the trend component modeling long-term growth. s(t) captures
seasonal variations (daily, weekly, yearly). h (t) accounts for holiday
and special event effects. & is the error term assumed to

be normally distributed.
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The trend component is mathematically formulated as:
g(0)=(k+u(t) e+ u(t)'”)

where k is the growth rate, 4 is the offset parameter and u(t) isa
vector of adjustment factors at time t to account for changepoints. &
and y are vectors of parameters that model the rate and offset
adjustments, respectively.

The seasonal component is mathematically formulated as:

0= ven{ 25 22

n=1

where N is the number of Fourier terms used to approximate the
seasonality (higher N allows for more complex seasonal patterns).c,,
and d,, are the Fourier coeflicients for the n-th term, which are learned
from the data. P is the period of the seasonal component.

Using Prophet in Python 3.1.1, we formatted the data with years
as “ds” (datetime) and mortality rates as “y” per package requirements.
The model was initialized with yearly_seasonality = True to account
for annual patterns, while disabling weekly and daily seasonality given
the yearly timestamp resolution.

2.3.3 XGBoost

Both L1 (lasso) and L2 (ridge) regularization terms are integrated
into XGBoost, enabling it to effectively alleviate overfitting risks when
modeling HHD mortality data for WCBA. This regularization
framework enhances the model’s generalizability for future mortality
predictions while improving forecasting accuracy and stability. As a
state-of-the-art traditional machine learning algorithm, XGBoost was
employed in this study to evaluate the performance of conventional
machine learning approaches in modeling univariate historical time
series data.

The mathematical formulation of XGBoost is as follows:

5=3(5)(x)

j=1

where )//\, is the predicted value for the i-th sample. y; is the
corresponding true observed value. K is the number of decision trees,
and f; (X,-) represents the predicted value from the j-th decision tree
for the i-th sample.

The model was implemented using the XGBoost library in Python
3.11, configured for regression tasks (objective = “reg:squarederror”)
with mean squared error as the loss function. To enable multi-step
forecasting  (9-year horizon), we employed scikit-learn’s
MultiOutputRegressor wrapper, which trained separate XGBoost
models for each output step while maintaining temporal dependencies.
The XGBoost model was initialized with 100 decision trees (n_
estimators = 100) to control ensemble size. Default hyperparameters
included: a learning rate of 0.01 to moderate the contribution of each
tree, maximum tree depth (max_depth) of 3 to limit model complexity,
and L1/L2 regularization terms (=0, A=1) to balance between model
flexibility and generalization capability. These parameter settings were

selected through empirical, iterative manual tuning to optimize
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predictive performance while preventing overfitting. The model was
trained using varying time windows (i.e., different historical data
lengths) to predict future outcomes, while maintaining a fixed forecast
horizon consistent with the validation set. This approach ensured
direct comparability between training and validation results.

2.34LSTM

The LSTM networK’s gated architecture—featuring forget gates,
input gates, and output gates-provides unique capabilities for
capturing long-range temporal dependencies. This structure makes
LSTMs particularly robust when handling noisy real-world datasets
and modeling complex nonlinear relationships in time series data.
Given the high noise levels and complex nonlinear relationships
inherent in our dataset, this study employs the LSTM network for
predictive modeling. As a canonical deep learning framework, LSTM
is especially suitable for assessing the effectiveness of deep neural
networks in the modeling process of univariate historical time-series
data. The LSTM mechanism comprises three fundamental
components: the forget gate, the input gate, and the cell state, with its
mathematical formulation expressed as:

forget gate:

fr=o(Wy[h_1x ]+ by)

where f; represents the forget gate’s output at time step ¢, o
denotes the activation function, Wy is the weight matrix of the forget
gate, h;_; indicates the model’s output at time step ¢-1, x; corresponds
to the input at time step t, and by signifies the bias term of the
forget gate.

input gate:

iy = O'(VV, -[ht_l,xt]+ b,)

where i, represents the input gate’s output at time step t, W;
denotes the input gate’s weight matrix, and b; corresponds to the input
gate’s bias term.

candidate cell state:

C = tanh(Wc -[ht_l,xt ] + hc)

where C, represents the candidate cell state at time step #, tanh
denotes the hyperbolic tangent activation function, W corresponds
to the weight matrix for the candidate state computation, and bg
signifies the bias term of the candidate cell state.

updated cell state:

Ce=fr Coo1+ip-Ct
where C; denotes the cell state at time step t, and C;_; represents
the cell state at time step ¢ —1.

output gate:

0y = O'(Wo -[ht_l,xt]+ bo)
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where o; denotes the output at time step t, W, represents the
weight matrix of the output gate, and b, corresponds to the bias term
of the output gate.

Hidden state (i.e., output):

hy = o; ~tanh(Ct)

The LSTM model was implemented in PyTorch to process
univariate mortality rate time series (input_size =1) through a
two-layer architecture (num_layers = 2) with 64 hidden units per layer
(hidden_size = 64), configured in batch-first format (batch_
first = True). The network’ final output was projected to 6 dimensions
via a fully-connected layer (output_size = 6) to generate annual
mortality predictions for 2016-2021. The same empirical tuning
approach as for XGBoost was applied. Model training employed mean
squared error (MSE) loss minimization using the Adam optimizer
(learning_rate = 0.001), with temporal validation performed through
sliding-window training on 1990-2015 data and fixed-horizon
evaluation on 2016-2021 observations.

2.4 Model evaluation

2.4.1 Evaluation metrics

To systematically evaluate the predictive performance of the
models, this study employed three metrics for comprehensive
comparison: MSE, Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE). All the three metrics are inversely
correlated with prediction accuracy, meaning lower values indicate
better model performance. The evaluation indicators are presented in
Table 1.

The MAPE was expressed as a percentage and served as the
primary standard for accuracy classification. MAPE<10% indicated
high prediction accuracy, 10% < MAPE<20% indicated good
accuracy, 20% < MAPE<50% indicated reasonable accuracy, MAPE>
50% indicated poor accuracy (24). MAPE<20% was set as the
threshold for determining satisfactory prediction accuracy, based on
these established criteria and the specific accuracy requirements of
the study.

2.4.2 Statistical significance test
To determine whether the differences in forecast accuracy
between the models are statistically significant, the Diebold-Mariano

TABLE 1 Univariate forecasting error metrics for global HHD mortality
among WCBA.

i MAE 1en ~
MAE =~ 57 Jer el
ii MSE 1<n ~\2
MSE =311 (er —er)
iii MAPE =
_100% «n e/ —¢
MAPE == =3 L

Where nis the total number of observations, €] is the actual observed value for thel-th
observation, and €] is the predicted value for the |-th observation.
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(DM) test was employed under MSE, MAE and MAPE loss functions
(16). The DM statistic is calculated as follows:

D

§e)

= 1
where D =—Zf_ (Dr is the sample mean of the loss differential
PYSTE

DM =

series. Dy = L(gtm ) - L(gt(z)) denotes the loss differential at time ¢.

Here, L () is the loss function, and g,(l)and gt(z) are the forecast errors
of the two models compared. §? is the estimated long-run variance of
the differential series {Dt } This estimation is robust to autocorrelation
and heteroscedasticity, often computed using the Newey-West
heteroscedasticity- and autocorrelation-consistent (HAC) estimator.
n is the number of forecast observations.

The hypothesis for the DM test is:

Hy: The two models being compared are equally accurate.

H;: The model in the column is more accurate than the model in
the row.

The test was conducted pairwise for all model combinations at a
significance level of @ = 0.05. A p-value less than 0.05 leads to the
rejection of the null hypothesis, indicating a statistically significant
difference in forecasting performance.

2.5 Further forecasting and visualization

Four types of models (ARIMA, Prophet, XGBoost and LSTM)
were used for the projection of disease burden of HHD among WCBA
from 2022 to 2030. Regarding visualization, all figures were generated
using R 4.4.3, except for the Prophet prediction plot which was created
with Python 3.3.1.

3 Results

3.1 Validation results of the ARIMA,
prophet, XGBoost, and LSTM models on
global HHD mortality data among WCBA
during 2016-2021

3.1.1 Validation results of the ARIMA and prophet
models

The validation results are presented in Figure 1.

The ARIMA model exhibited larger deviations between
predicted and actual values that progressively widened over time,
whereas the Prophet model demonstrated superior predictive
accuracy. According to the Prophet model, the actual mortality rate
in 2016 was slightly higher than the predicted value. The actual
mortality rate then showed a minor increase, reaching the peak
value in 2017, while the predicted values remained stable, indicating
the model’s partial failure to capture this temporal variation. The
actual mortality rate then decreased and gradually became relatively
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stabilized since 2018, while the predicted values showed a slow 3.1.3 LSTM model validation results

upward trend, yet consistently underestimated the true values. The Multiple time windows (4, 6, 8, 10, and 12 days) were adopted for
difference between the actual and predicted mortality rates  LSTM model validation, with the comparative results visualized in
decreased by 2021, though the predictions remained below actual ~ Figure 3.

measurements (Figure 1). For the 4-day time window, there was a significant difference

between the actual and predicted from 2016 to 2017. The difference

3.1.2 XGBoost model validation results gradually decreased since 2018, reaching its minimum in 2021. The
Multiple time windows (4, 6, 8, 10, and 12 days) were adopted for ~ predicted values remained higher than the actual values (Figure 3A).

XGBoost model validation, with the visual results presented in For the 6-day time window, predicted mortality rates consistently

Figure 2. overestimated actual values from 2016 to 2020, though the discrepancy

Different time windows had minimal impact on the XGBost  gradually diminished, reaching optimal alignment in 2020. A reversal
model. Figure 2 showed that XGBoost demonstrated low sensitivity ~ occurred with predicted rates underestimating actual mortality,
to time window size variations. The discrepancy between actual and ~ demonstrating divergent trends in 2021 (Figure 3B).
predicted mortality rates progressively widened from 2016 to 2017, For the 8-day time window, predicted mortality rates systematically
while it gradually narrowed since 2018. The predicted mortality trend ~ overestimated actual values from 2016 to 2019, with the magnitude of
largely aligned with actual observations from 2019 to 2021, though  overestimation decreasing annually. A crossover occurred in 2020, where
the predicted values consistently remained below the true  predictions shifted to underestimation, exhibiting an inverse trend

measurements (Figure 2). relative to actual values (Figure 3C).
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Validation results of LSTM under different time windows. (A) 4-day window, (B) 6-day window, (C) 8-day window, (D) 10-day window, (E) 12-day

window.

TABLE 2 Comparison of model forecasting accuracy for HHD mortality in WCBA on the validation set (2016—2021).

Model/evaluation metrics MSE MAE MAPE (%)
ARIMA 0.03645 0.18667 14.162
Prophet 0.00018 0.01322 1.003
XGBoost 0.00038 0.01843 1.398
LSTM 0.00021 0.00872 0.662

For the 10-day time window, predicted mortality rates exhibited
slightly consistent overestimation relative to actual values from 2016 to
2018. A reversal occurred since 2019, with predictions underestimating
actual mortality rates and the divergence progressively widening by 2021
(Figure 3D).

For the 12-day time window, the predicted mortality rate was higher
than the actual mortality rate from 2016 to 2018, while the difference
between the predicted and actual values gradually decreased. The
predicted value was almost the same with the actual value in 2018. Then
the difference between the predicted and actual values slightly increased,
with the predicted values lower than the actual values (Figure 3E).

The results demonstrate that the LSTM model’s predictive accuracy
improves with increasing time window sizes, achieving near-perfect
alignment with ground truth values under the 12-day window
configuration. Only marginal deviations were observed in 2016 and 2021
(Figure 3).

Validation results based on MSE, MAE, and MAPE metrics under
optimal time window conditions are presented in Table 2 and Figure 4.

The DM test provided the statistical evidence for the difference in
the performance of the four types of models in the error metrics
(Tables 3-5).

Validation results of the four models for global HHD mortality rates
among WCBA during 2016-2021 are shown in Figure 5.

The MAPE values of four models were all below 20%, demonstrating
prediction efficiency exceeding 80%. The LSTM model demonstrated
superior predictive accuracy, with the lowest error rates across all metrics
(MSE: 0.00021; MAE: 0.00872; MAPE: 0.662%), confirmed by the
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comparative visualization of MAE and MSE metric (Table 2 and Figures 4,
5). According to the DM test, both Prophet and LSTM demonstrated
higher predictive accuracy than the other models (Tables 3-5). And there
was no significant difference between Prophet and LSTM (p = 0.8762 for
DM test based on MSE; p =0.4292 for DM test based on MAE; and
p =0.4303 for MAPE). The prediction performance of XGBoost was
significantly better than ARIMA (p = 0.0003 for DM test based on MAE),
while weaker than Prophet (p = 0.0341 for DM test based on MAE and
p =0.0339 for DM test based on MAPE). And there was no significant
difference between XGBoost and LSTM (p = 0.1946 for DM test based on
MAE and p =0.1951 for DM test based on MAPE). For ARIMA, the
prediction performance was significantly weaker than the other models
(MSE: 0.03645; DM test p < 0.05). In conclusions, Prophet and LSTM
were the top-performing models. XGBoost was also a powerful prediction
model better than the traditional methods. The model selection of
Prophet and LSTM in application was suggested to be determined by the
factors, such as

non-performance interpretability  and

computational efficiency.

3.2 Predictive analysis of global HHD
mortality among WCBA from 2022 to 2030
using ARIMA, prophet, XGBoost, and LSTM
models

The XGBoost and LSTM models employed their respective
optimal time windows identified during validation as the
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TABLE 3 P-values of the DM test for pairwise model comparisons (using MSE as the loss function).
Models ARIMA Prophet XGBoost LSTM
ARIMA 0 0.0030 0.0032 0.0032
Prophet 0.0030 0 0.0762 0.8762
XGBoost 0.0032 0.0762 0 0.5441
LSTM 0.0032 0.8762 0.5441 0
TABLE 4 P-values of the DM test for pairwise model comparisons (using MAE as the loss function).
Models ARIMA Prophet XGBoost LSTM
ARIMA 0 0.0002 0.0003 0.0005
Prophet 0.0002 0 0.0341 0.4292
XGBoost 0.0003 0.0341 0 0.1946
LSTM 0.0005 0.4292 0.1946 0

superior hyperparameters for predicting global HHD mortality
among WCBA from 2022 to 2030. The comparative forecasting
results of ARIMA, Prophet, XGBoost, and LSTM are shown in
Figure 6-9.

Figure 6 indicated that the ARIMA model predicts a gradual
decline in HHD mortality among WCBA from 2022 to 2030.
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Figure 7 indicated that the Prophet model predicts a gradual
increase in HHD mortality among WCBA from 2022 to 2030.

The XGBoost prediction results revealed a notable discrepancy
between actual 2021 mortality rates and 2022 forecasts. This predicated
mortality exhibited a progressive decline from 2022 to 2027, followed by
a transient increase in 2028 before decrease (Figure 8).
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TABLE 5 P-values of the DM test for pairwise model comparisons (using MAPE as the loss function).

Models ARIMA Prophet XGBoost LSTM
ARIMA 0 0.0002 0.0003 0.0005
Prophet 0.0002 0 0.0339 0.4303
XGBoost 0.0003 0.0339 0 0.1951
LSTM 0.0005 0.4303 0.1951 0
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FIGURE 5
Comparative validation results of the four models for global HHD mortality among WCBA.
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FIGURE 6
Visualization of ARIMA model prediction results.
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The LSTM model predictions demonstrated that the predicted
mortality rate in 2022 was closely aligned with the actual
mortality rate in 2021. Subsequently, the predicted mortality
exhibited a downward trend from 2022 to 2023, and remained
essentially stable from 2024 to 2030, at levels consistent with the
2023 forecast (Figure 9).

Table 6 showed the predicted values for global HHD mortality
among WCBA from 2022 to 2030. The ARIMA model projected

Frontiers in Public Health

a declining trend. The Prophet model forecasted an increasing
trend. XGBoost predictions showed mortality decreasing from
2022 to 2027 followed by an increase before declining again in
2030. The LSTM model predicted a decrease from 2022 to 2023
with subsequent stabilization since 2023. The prediction of the
LSTM model was considered to be most reliable, due to the
superior performance of it demonstrated by the former
validation results.
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4 Discussion

4.1 Feasibility of construction of the
univariate models for global HHD mortality
data among WCBA based on GBD

Univariate time series modeling takes the historical sequence itself

as input to predict future values, with the general

mathematical formulation:

)Tt = V({)’1>J’2>-~-,)’t71};3)

where 9 represents the model parameters and v represents the
prediction model or function.
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Time series data consists of sequentially recorded measurements
collected at regular time intervals. The temporally ordered observations
can be either a single measurement variable (univariate) or multiple
interrelated variables (multivariate) (25). Panel data typically refer to
observations collected for the same set of individuals or units across
multiple time points, combining characteristics of both cross-sectional
data and time-series data. Grouped data (also known as clustered or
stratified data) involve partitioning the dataset into distinct groups (e.g.,
countries, regions, age cohorts), where observations within each group
share similar features or structures. A Lancet study in 2015 by the GBD
Collaboratives demonstrated that disease-specific mortality rates in the
GBD database are stratified by time (year) and geographic region
(country), conforming to a panel data structure while exhibiting
characteristics of grouped data. These data represent small-sample,
univariate time series (26). This study validates the feasibility of univariate
modeling for small-sample time series data using global HHD mortality
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Visualization of LSTM model prediction results.

TABLE 6 Prediction of global HHD mortality in WCBA by different models (2022—-2030).

Model 2022 2023 2024 2025 2026 2027 2028 2029 203
type/year

ARIMA 1.21667 1.19842 1.18017 1.16193 1.14368 1.12543 1.10719 1.08894 1.07069
Prophet 1.32339 1.32571 1.32929 1.33125 1.33233 1.33466 1.33823 1.34019 1.34127
XGBoost 1.32799 1.32388 1.32094 1.31853 131619 1.31508 1.32250 1.32069 1.31844
LSTM 1.31799 1.30677 1.30426 1.30406 1.30309 1.29882 1.30350 1.30370 1.30303

rates among WCBA (1990-2021). The DM test stratifies model
performance into three distinct tiers: (1) Top Tier (Statistically
Equivalent): LSTM and Prophet. (2) Middle Tier: XGBoost, which was
significantly better than ARIMA but showed mixed results against the top
tier. (3) Bottom Tier: ARIMA. The difference in performance
demonstrates that modern flexible models, including structured time
series and deep learning, are more suitable for the forecasting task than
traditional statistical or tree-based models.

Notably, the statistical equivalence between LSTM and Prophet, as
revealed by the DM test, can be further nuanced by the choice of loss
function, with each metric highlighting different model strengths. The
MSE heavily penalizes large deviations, making it sensitive to outliers. The
MAE is more robust to extreme values. In contrast, the MAPE provides a
scale-invariant comparison, which is particularly useful for understanding
relative forecasting accuracy. The fact that LSTM and Prophet remain
statistically equivalent across these diverse metrics—MSE, MAE, and
MAPE—suggests that their performance parity is not an artifact of a
single evaluation perspective but is robust to different measurements of
error. This underscores that both models capture the underlying data
generating process effectively, albeit through different architectural
mechanisms, without consistently producing large errors or systematic
biases that would be penalized differently by each loss function.

The following analysis focus on two key points, data characteristics
and model suitability.

From the perspective of dynamic characteristics of time series, the
research data exhibits typical non-stationary time series features. The time
series exhibits significant trend and autocorrelation characteristics (ADF
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test, p < 0.05), indicating a gradual declining trend in mortality rates over
time. This observed pattern reflects the characteristic progression of HHD,
influenced by both the expanded use of antihypertensive medications
(contributing to a general decline) and concurrent lifestyle changes
(introducing both long-term trends and short-term fluctuations).

The performance hierarchy of the models can be directly attributed
to their inherent capabilities in capturing these specific data characteristics.
The inferior performance of the ARIMA model stems from its linearity
and reliance on stationary assumptions. While it can capture the
deterministic trend, it fails to model the complex nonlinear interactions
and adapt to the non-stationary fluctuations present in the data, such as
those caused by shifting lifestyle factors. In contrast, the superior and
statistically equivalent performance of both LSTM and Prophet models
arises from their respective abilities to handle the dataset’s nonlinearity
and non-stationarity, albeit through fundamentally different mechanisms.
The LSTM network excels through its dynamic gated mechanisms (e.g.,
forget and input gates), which allow it to autonomously learn and adapt
to both the long-term declining trend and the short-term fluctuations by
maintaining a cell state that propagates critical information over long time
intervals. The Prophet model demonstrates its strength via its
decomposable additive framework, which is inherently designed for
non-stationary time series. It explicitly separates and models the long-
term trend and potential seasonality components through highly
interpretable parameters, making it robust against the trends and
fluctuations observed in this 32-year mortality series.

Thus, the superior performance of LSTM and Prophet is not
coincidental but is a direct result of their architectural compatibility

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1681569
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Deng et al.

with the core characteristics of the mortality data. This successful
modeling of complex temporal patterns further demonstrates the
validity of univariate approaches for this type of analysis.

From the model suitability perspective, each model demonstrates
distinct strengths aligned with specific analytical priorities. While all four
models support univariate forecasting, their architectural differences lead
to varied trade-offs between predictive power, interpretability, and
computational efficiency. The LSTM network provides theoretically
superior capability for capturing complex nonlinear dynamics and long-
term dependencies through its gated memory mechanisms, which is
particularly valuable for modeling intricate temporal patterns. In contrast,
Prophet offers exceptional interpretability through its decomposable
additive framework that explicitly models trend, seasonality, and
changepoints via intuitive parameters—this makes it especially suitable
for applications requiring transparent insights into driving factors.
Although statistically equivalent in overall performance for this specific
dataset, the choice among these models ultimately depends on whether
the analytical priority favors predictive sophistication (favoring LSTM) or
interpretability and explanatory power (favoring Prophet).

4.2 Comparative analysis of modeling
performance and disease burden
prediction value among traditional
statistical models, structured time series
models, traditional machine learning, and
deep learning models for univariate
historical data

ARIMA is a classical linear regression model that characterizes time
series through linear combinations of AR and MA components. Its core
assumptions are stationarity and linear additivity of the series. However,
it exhibited significant non-stationary characteristics (ADF test: p < 0.05)
in the study. Despite differencing preprocessing and adequate model
fitting, these inherent data properties resulted in elevated prediction
errors for the ARIMA model on the validation set (MSE = 0.03645;
MAE = 0.18667; MAPE = 14.162%). The DM test confirmed that these
errors were statistically significantly higher than those of all other models
(p <0.05 for all comparisons under MSE, MAE, and MAPE loss),
solidifying ARIMA as the least suitable approach for this data. Specifically,
ARIMAS linear trend assumption fails to capture the gradual deceleration
in mortality decline rates. Setting the maximum autoregressive lag order
at q=1 causes the model to only capture short-term historical
information, failing to account for long-term cyclical patterns. In contrast,
both LSTM and Prophet overcome these limitations through their
inherent architectural advantages. The LSTM model effectively captures
nonlinear trends in time series by introducing gating mechanisms (e.g.,
input gate, forget gate, and output gate) to regulate information flow (21).
The LSTM model addresses the long-term dependency problem in
traditional RNNs by utilizing its internal “memory cells” and “gating
mechanisms” to retain information across extended time sequences (27).
Similarly, Prophet’s additive decomposition framework explicitly models
non-stationary trends and seasonality through interpretable parameters.
Both approaches demonstrated statistically equivalent superiority over
ARIMA across all error metrics, solidifying them as superior choices for
this forecasting task.

Prophet decomposes time series into trend, seasonality, and
holiday effects using an additive framework. Its design emphasizes
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extrapolating dominant historical trends—here, the clear upward
trajectory from 2011 to 2021—leading to a projected mortality
increase from 2022 to 2030 (Figure 7). In contrast, LSTM, as a data-
driven model, learns complex patterns across the entire series
without predefined structural assumptions. This difference in
approach explains the divergence: Prophet extends the recent trend,
while LSTM may emphasize non-trend patterns or cyclical
dynamics, resulting in a decreasing forecast. Despite these divergent
projections, the DM test indicated that LSTM’s performance
advantage over Prophet was not statistically significant (p > 0.05 for
MSE, MAE, and MAPE) for this dataset. Thus, while Prophet’s
forecast is a direct consequence of its design—extending dominant
historical trends—LSTM’s prediction reflects its capacity to
autonomously learn temporal dependencies without being bound to
preset structural forms.

XGBoost is a classical machine learning model based on
gradient-boosted trees. It employs lagged features for time series
modeling, with its performance heavily dependent on the
appropriateness of feature engineering. This study employs a time
window of 4 as input. While this configuration demonstrates a
statistically significant improvement over ARIMA (DM test, p < 0.05
for all metrics), its performance relative to Prophet depends on the
error metric. Based on MAE loss, Prophet was statistically superior
to XGBoost (p = 0.0341); similarly, under MAPE loss, Prophet also
showed a significant advantage (p = 0.0339); however, under MSE
loss, their difference was not statistically significant (p = 0.0762). The
predictive accuracy of our model is significantly influenced by feature
selection. The binary splitting mechanism of decision trees struggles
to capture gradual transitions in time series, resulting in poorer
stability for long-term forecasts. Compared to deep learning models,
XGBoost demonstrates a 78.72% higher MSE than LSTM on the
validation set; however, the DM test indicated that this difference was
not statistically significant (p = 0.5441 for MSE; p = 0.1946 for MAE;
p =0.1951 for MAPE). This finding aligns with the conclusion of
Nguyen et al. (28) for time series forecasting tasks, XGBoost’s
performance lies between traditional statistical models (ARIMA) and
deep learning approaches (LSTM).

LSTM is a pivotal deep learning architecture that effectively
captures long-term dependencies and nonlinear patterns through its
gating mechanism, demonstrating superior performance in our
study. Validation results demonstrate that the LSTM model
(MSE = 0.00021, MAE =0.00872, MAPE =0.662%) achieves a
34.05% reduction in prediction error compared to the Prophet
model. However, the DM test revealed that this performance
advantage was not statistically significant (p =0.8762 for MSE;
p =0.4292 for MAE; p = 0.4303 for MAPE). Its capability to learn
temporal dynamics significantly outperforms other models, making
it a top-performing model suitable for capturing the complex trends
in our dataset, alongside Prophet. There is a significant difference
between the prediction results of Prophet and LSTM, while the
prediction results of LSTM and XGBoost align more closely with each
other (Figures 7-9). This visually demonstrates how different
prediction mechanisms can produce varying outcomes and provides
a methodological cross-validation between the approaches.

Our findings contribute to the existing research particularly in
the statistical equivalence between the complex LSTM and the
structured Prophet model. This equivalence was consistently
observed across three distinct loss functions (MSE, MAE, and
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MAPE), each penalizing different types of forecast errors, which
underscores the robustness of their performance. Previous studies in
infectious disease forecasting (13, 14) have conclusively demonstrated
the superiority of nonlinear models over traditional ARIMA, a
conclusion our research strongly supports for chronic disease burden
data. However, many existing studies in economics (7, 8) and
environmental science (9, 11) tend to focus on declaring a single
“best” model or on building complex ensembles. This study advances
this discourse by demonstrating that for foundational forecasting
tasks, statistical equivalence between top-performing models is a
likely outcome. This shifts the practical question from “which model
is the best?” to “which model is the most appropriate for a specific
decision-making context?”

Through a rigorous comparative evaluation, this study establishes
a practical framework for univariate disease burden forecasting using
GBD data—an area lacking systematic methodological research. Our
findings demonstrate that both LSTM and Prophet significantly
outperform traditional statistical methods and are statistically
equivalent for this task, a conclusion that holds true regardless of
whether absolute errors (MSE, MAE) or relative percentage errors
(MAPE) are considered. This provides crucial evidence-based
guidance for real-world applications: in resource-limited settings
requiring interpretability, Prophet is an excellent choice; for capturing
highly complex temporal patterns without preset assumptions, LSTM
is preferable. By employing a controlled univariate design, we ensure
that the observed performance differences are attributable to the
models’ inherent capabilities rather than exogenous variables, thereby
offering a reliable benchmark for future research.

Limitations. While four representative models were chosen for
univariate comparisons, the relatively narrow range of modeling
approaches included, which is common in this research field, may
constrain the generalizability of the findings. The comprehensive
assessment of how univariate models perform in predicting the
burden of disease still needs to be improved, due to the exclusion of
other relevant models. To address this issue and enhance the
generalizability of the conclusions, follow-up studies should
incorporate longer time-series data, thereby further improving the
reliability and application of the research findings.

5 Conclusion

This study conclusively demonstrated that modern forecasting
models (Prophet, XGBoost, LSTM) significantly outperform traditional
statistical methods (ARIMA) for predicting HHD mortality in
WCBA. The LSTM and Prophet models form a top tier of statistically
equivalent performance, confirmed by the Diebold-Mariano test.
Prophet is ideal for interpretability and communication to stakeholders,
while LSTM shows better performance in capturing the most complex,
non-linear patterns. These findings offer an evidence-based framework
to improve the forecasting tools of disease burden in public health,
which enable the decision-makers to select the most suitable model
based on the practical needs, thereby supporting better global
cardiovascular disease resource allocation. Future studies ought to
include longer time-series data to enhance the generalizability
of conclusions.
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