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Objective: The mortality rate of hypertensive heart disease (HHD) among women 
of childbearing age (WCBA) worldwide is continuously increasing. Accurate 
prediction of the mortality rate of HHD among WCBA globally plays a crucial 
role in evaluating the effectiveness of intervention measures and predicting 
future disease trends. To date, there has been few systematic comparative 
evaluations of prediction methods for epidemiological indicators in the field of 
disease burden. The purpose of this study was to systematically compare the 
performance of univariate prediction models in the global burden of disease 
(GBD) database.
Method: Global mortality data on HHD in WCBA (1990–2021) were split into 
training and validation sets. We  implemented and compared four models: 
AutoRegressive Integrated Moving Average (ARIMA), Prophet, eXtreme Gradient 
Boosting (XGBoost), and Long Short-Term Memory (LSTM). Model performance 
was assessed using Mean Squared Error (MSE), Mean Absolute Error (MAE), 
Mean Absolute Percentage Error (MAPE), and the Diebold-Mariano (DM) test for 
statistical significance.
Results: The LSTM model demonstrated superior predictive accuracy on the 
validation set, with the lowest error rates across all metrics (MSE: 0.00021; 
MAE: 0.00872; MAPE: 0.662%). All the other models demonstrated statistically 
significant superiority over ARIMA (MSE: 0.03645; DM test p < 0.05 for all metrics). 
According to the DM test, both Prophet and LSTM demonstrated high predictive 
accuracy (p = 0.8762 for DM test based on MSE; p = 0.4292 for DM test based 
on MAE; p = 0.4303 for DM test based on MAPE). The LSTM model predicted 
that the mortality rate will exhibit an initial decline followed by a stabilization 
trend from 2022 to 2030, while the Prophet model predicted that the mortality 
rate will continue to rise.
Conclusion: This study provided the first systematic comparison of univariate 
forecasting models for HHD mortality in WCBA using GBD data. A key finding 
was that both LSTM and Prophet performed exceptionally well statistically, 
LSTM achieves superior predictive capability via its gated mechanisms and state 
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memory, while Prophet enhances interpretability through its additive model 
structure. This study therefore provides practical guidance for health authorities 
to select appropriate models based on actual needs to support improved 
resource planning for HHD.
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1 Introduction

Global Burden of Disease (GBD) is a global resource created by 
WHO and the Institute for Health Metrics and Evaluation (IHME) 
to quantify health losses caused by hundreds of diseases, injuries, and 
risk factors (1). Hypertensive Heart Disease (HHD), which is a key 
component of cardiovascular disease burden of the GBD studies, 
often leads to characteristic structural and functional cardiac 
abnormalities, due to prolonged hypertension. The pathological 
changes of HHD includes left ventricular hypertrophy, myocardial 
fibrosis, impaired ventricular diastolic function, and heart failure (2). 
Women have a higher risk of hypertension than men, and their blood 
pressure regulation is more susceptible to estrogen fluctuations, 
menstrual cycle changes, and pregnancy-related hemodynamic 
changes than men (3, 4). The childbearing years represent a 
physiologically dynamic phase of female reproductive function, 
characterized by unique biological events including pregnancy, 
lactation, and potential adverse pregnancy outcomes. This life stage 
constitutes a high-risk period for the development of hypertension, 
with the elevated blood pressure subsequently increasing the 
susceptibility to HHD.

In 2015, the United Nations proposed Sustainable Development 
Goal 3, outlining the goal of reducing the global maternal mortality rate 
to below 70/100,000 by 2030 (5). Accurately predicting the future 
burden of HHD in women of childbearing age (WCBA) is crucial for 
guiding effective resource allocation and achieving relevant health goals. 
The value of predictive research has been demonstrated in studies at the 
regional level. For example, research by Qureshi et  al., focus on 
cardiovascular disease mortality in Sindh, Pakistan, highlighted the 
critical importance of accurate predictions for quantifying the future 
disease burden of cardiovascular diseases, as well as for formulating 
health policies and allocating economic resources (6).

Optimizing forecasting methods is crucial for improving prediction 
accuracy. Relevant research has been widely conducted in many fields. 
Multilayer Perceptrons (MLP) have shown better performance than 
traditional models in the economic and financial forecasting (7, 8). 
Ensemble learning, hybrid models, and deep neural networks have 
demonstrated higher accuracy in environmental, fintech, and 
macroeconomic projection (9–12). Several medical studies have shown 
that machine learning and hybrid models are more accurate than 
traditional methods in the projection for infectious disease (13–15). 
Machine learning plays a more and more important role in modern 
forecasting, especially when handling complex time-series 
forecasting tasks.

Although the methodological optimization based on machine 
learning models has demonstrated significant potential in the field of 
public health, the systematic methodological research for the prediction 

based on GBD remains to be  improved. The prior research has 
predominantly focused on conventional time series approaches-
particularly AutoRegressive Integrated Moving Average (ARIMA), 
age-period-cohort (APC) models, and their Bayesian derivatives. These 
traditional methodologies failed to capture nonlinear relationships and 
multifactorial interactions adequately to represent the inherent 
complexity of disease burden dynamics (16), especially when analyzing 
disease burden trends that exhibit nonlinear patterns or trend reversals. 
Li Wang and Dan Liang et al. used variables such as age, gender, year, 
population size and related risk factors to train the XGBoost model, 
combining with using Shapley Additive Explanations (SHAP) to 
decompose the contribution of each variable to the disease, in the 
studies of iodine deficiency, iron deficiency and diarrhea (17–19). 
Although these studies expand the selection range of prediction model 
for GBD, they were lack of benchmark model comparisons to determine 
whether the proposed improvements actually enhanced the predictive 
performance. Jinyi Wu et al. compared the performance of different 
models in the study on the disease burden of femoral fractures based on 
GBD (20), which was lack of the description of the training set and 
verification set of the model. And the selection of the time window 
during model training was also absent. Moreover, the input variables are 
vague and unrestricted. These problems may lead to bias in the 
evaluation of models.

Our study carried out a multi-model comparison experiment 
under the framework of univariate model for the first time. The 
analysis was rigorously confined to using mortality rates of HHD from 
WCBA (1990–2021) as the sole input variables, thereby mitigating 
potential confounding factors from other covariates. The dataset was 
split into training (1990–2015) and validation (2016–2021) sets. 
Model performance was then assessed by comparing predicted values 
with ground truth.

The model selection was based on the following rationale: 
ARIMA: A classical time series forecasting model in disease burden 
research, capable of capturing linear trends and serving as the baseline 
model in this study. Prophet: Analysis of long-term trends and 
periodicity through an additive regression model, with built-in 
support for seasonality and changepoint detection, to evaluate 
structured time series models (21). XGBoost: A powerful tree-based 
ensemble algorithm that has proven particularly effective for time 
series forecasting tasks (22). There have been few studies applying 
XGBoost with univariate input in disease burden research before. Our 
study tested its applicability to univariate time series. LSTM: A 
recurrent neural network architecture designed to capture nonlinear 
temporal dynamics to evaluate the generalization capability of deep 
learning models on univariate time series (23).

Our study employed a controlled-variable design to systematically 
compare the inherent performance differences among machine 
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learning, traditional statistical methods, and structured temporal 
models, for disease burden forecasting using identical univariate 
inputs. This approach addressed a critical methodological gap in the 
field by providing robust empirical evidence for model selection in 
temporal health data analytics. The prediction findings of HHD in the 
vulnerable population, WCBA, of this study inform targeted global 
health interventions and help policymakers optimize healthcare 
resource allocation strategies.

2 Methods

Statistical models (ARIMA), Machine learning models (XGBoost, 
LSTM), and the Prophet forecasting procedure were used for modeling 
and the prediction of the mortality rate of HHD among WCBA.

2.1 Data sources

Mortality data of females aged from 15 to 49 years of GBD 
database1 were used for the analysis of the global burden of HHD 
among WCBA. Univariate modeling typically refers to prediction 
models that rely solely on the time series itself without incorporating 
external covariates. The univariate modeling was used for the 
prediction of the global mortality rate of HHD among WCBA, where 
future values + +…1, , ,t t t dy y y  were forecasted based solely on 
historical temporal patterns −…1 2 1, , , ty y y , with d  denoting the 
prediction window length (in days).

2.2 Data splitting

The global mortality rate time series of HHD among WCBA from 
1990 to 2021 was partitioned into the training set and the validation 
set. The data from 1990 to 2015 was used for model training and 
parameter estimation. And the data from 2016 to 2021, constituting 
approximately 30% of the total series, were selected as a validation set. 
This temporally separated validation set was crucial for providing an 
unbiased evaluation of the models’ predictive performance on unseen, 
external data and for mitigating the risk of overfitting.

2.3 Forecasting models

Four different models were employed for modeling, followed by 
comparative effectiveness analysis. The four models with their 
respective modeling platforms were: ARIMA (R 4.4.3), Prophet 
(Python 3.1.1), XGBoost (Python 3.1.1), and LSTM (Python 3.1.1).

The detailed descriptions of each model were as follows:

2.3.1 ARIMA
As a classical time-series forecasting approach, ARIMA is 

particularly suitable for stationary time-series data or data sequence 
that can be made stationary through differencing. Given its extensive 

1  https://vizhub.healthdata.org/gbd-results/

use as a traditional statistical model within the GBD database system, 
ARIMA was selected as the benchmark model here to represent how 
conventional statistical modeling methods perform in prediction.

The ARIMA model can be expressed as:

	

t t t p t p t

t t q t q

y c y y y a
a a a

1 1 2 2

1 1 2 2

ϕ ϕ ϕ
θ θ θ

− − −

− − −
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where c  is a constant, ty  is the observed value of the time series 
and p represents the order of the auto-regressive (AR). ϕ ϕ ϕ1 2, , , p  
are the coefficients of the AR. q is the order of the moving average 
(MA). θ θ θ1 2, , , q  are the coefficients of the MA. A fundamental 
assumption of the model is that the random error term ta  follows a 
white noise process, being independently and identically distributed 
with a mean of zero and a constant variance σ 2.

R 4.4.3 was used for the analysis with visual inspection of the time 
series to identify trends, followed by formal stationarity testing using 
Augmented Dickey-Fuller (ADF) tests. Autocorrelation (ACF) and 
partial autocorrelation (PACF) plots were then checked for guiding 
initial parameter selection and detecting the underlying structure of 
the time series.

Given that the auto.arima function represents a commonly 
employed and objective approach for ARIMA modeling in studies 
utilizing the GBD database, it was applied in the study to ensure the 
ARIMA model was directly comparable to common practice and to 
minimize subjective bias in model specification.

Model quality was assessed using the Akaike Information 
Criterion (AIC) before using the auto.arima function from the forecast 
package to automatically determine the optimal ARIMA specification, 
which produced the ARIMA (0,1,1) model. And the final validation 
was confirmed through residual diagnostics including autocorrelation 
analysis and Ljung-Box testing. All of these supported the adequacy 
of the model, as the residuals exhibited characteristics of white noise 
without significant autocorrelation patterns.

2.3.2 Prophet
Prophet is a structured additive time series model that explicitly 

decomposes data into interpretable components (trend, seasonality, 
and anomalies), integrating strengths of classical statistical methods 
and machine learning algorithms. As global HHD mortality data for 
WCBA exhibits non-stationary characteristics due to the influence of 
policy changes and advancements in healthcare, this study adopts 
Prophet to alleviate the effects of anomalous data points. Furthermore, 
this model was employed to investigate the efficacy of structured time 
series modeling for univariate historical data.

The mathematical formulation of the Prophet model follows an 
additive decomposition framework, expressed as:

	 ( ) ( ) ( ) ( ) ty t g t s t h t ε= + + +

where ( )y t  represents the observed value at timet. ( )g t  denotes 
the trend component modeling long-term growth. ( )s t  captures 
seasonal variations (daily, weekly, yearly). ( )h t  accounts for holiday 
and special event effects. tε is the error term assumed to 
be normally distributed.
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The trend component is mathematically formulated as:

	
( ) ( )( ) ( )( )δ γµ= + + +T Tg t k u t t u t

where k is the growth rate, µ  is the offset parameter and ( )u t  is a 
vector of adjustment factors at time t to account for changepoints. δ  
and γ  are vectors of parameters that model the rate and offset 
adjustments, respectively.

The seasonal component is mathematically formulated as:

	
( ) π π

=

    = +    
    

∑
1

2 2cos sin
N

n n
n

nt nts t c d
P P

where N  is the number of Fourier terms used to approximate the 
seasonality (higher N  allows for more complex seasonal patterns). nc  
and nd  are the Fourier coefficients for the n-th term, which are learned 
from the data. P  is the period of the seasonal component.

Using Prophet in Python 3.1.1, we formatted the data with years 
as “ds” (datetime) and mortality rates as “y” per package requirements. 
The model was initialized with yearly_seasonality = True to account 
for annual patterns, while disabling weekly and daily seasonality given 
the yearly timestamp resolution.

2.3.3 XGBoost
Both L1 (lasso) and L2 (ridge) regularization terms are integrated 

into XGBoost, enabling it to effectively alleviate overfitting risks when 
modeling HHD mortality data for WCBA. This regularization 
framework enhances the model’s generalizability for future mortality 
predictions while improving forecasting accuracy and stability. As a 
state-of-the-art traditional machine learning algorithm, XGBoost was 
employed in this study to evaluate the performance of conventional 
machine learning approaches in modeling univariate historical time 
series data.

The mathematical formulation of XGBoost is as follows:

	

 ( ) ( )
1

K

i j i
j

y f
=

=∑ X

where iy  is the predicted value for the i-th sample. iy  is the 
corresponding true observed value. K  is the number of decision trees, 
and ( )j if X  represents the predicted value from the j-th decision tree 
for the i-th sample.

The model was implemented using the XGBoost library in Python 
3.11, configured for regression tasks (objective = “reg:squarederror”) 
with mean squared error as the loss function. To enable multi-step 
forecasting (9-year horizon), we  employed scikit-learn’s 
MultiOutputRegressor wrapper, which trained separate XGBoost 
models for each output step while maintaining temporal dependencies. 
The XGBoost model was initialized with 100 decision trees (n_
estimators = 100) to control ensemble size. Default hyperparameters 
included: a learning rate of 0.01 to moderate the contribution of each 
tree, maximum tree depth (max_depth) of 3 to limit model complexity, 
and L1/L2 regularization terms (α=0, λ=1) to balance between model 
flexibility and generalization capability. These parameter settings were 
selected through empirical, iterative manual tuning to optimize 

predictive performance while preventing overfitting. The model was 
trained using varying time windows (i.e., different historical data 
lengths) to predict future outcomes, while maintaining a fixed forecast 
horizon consistent with the validation set. This approach ensured 
direct comparability between training and validation results.

2.3.4 LSTM
The LSTM network’s gated architecture—featuring forget gates, 

input gates, and output gates-provides unique capabilities for 
capturing long-range temporal dependencies. This structure makes 
LSTMs particularly robust when handling noisy real-world datasets 
and modeling complex nonlinear relationships in time series data. 
Given the high noise levels and complex nonlinear relationships 
inherent in our dataset, this study employs the LSTM network for 
predictive modeling. As a canonical deep learning framework, LSTM 
is especially suitable for assessing the effectiveness of deep neural 
networks in the modeling process of univariate historical time-series 
data. The LSTM mechanism comprises three fundamental 
components: the forget gate, the input gate, and the cell state, with its 
mathematical formulation expressed as:

forget gate:

	
[ ]( )1,t f t t ff W h x bσ −= ⋅ +

where tf  represents the forget gate’s output at time step t, ó  
denotes the activation function, fW  is the weight matrix of the forget 
gate, −1th  indicates the model’s output at time step t-1, tx  corresponds 
to the input at time step t, and fb  signifies the bias term of the 
forget gate.

input gate:

	 [ ]( )1,t i t t ii W h x bσ −= ⋅ +

where ti  represents the input gate’s output at time step t, iW  
denotes the input gate’s weight matrix, and ib  corresponds to the input 
gate’s bias term.

candidate cell state:

	 [ ]( )1tanh ,t C t t CC W h x b−= ⋅ +

where tC  represents the candidate cell state at time step t, tanh  
denotes the hyperbolic tangent activation function, CW  corresponds 
to the weight matrix for the candidate state computation, and Cb  
signifies the bias term of the candidate cell state.

updated cell state:

	 1t t t t tC f C i C−= ⋅ + ⋅ 

where tC  denotes the cell state at time step t, and −1tC  represents 
the cell state at time step −1t .

output gate:

	 [ ]( )1,t o t t oo W h x bσ −= ⋅ +
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where to  denotes the output at time step t, oW  represents the 
weight matrix of the output gate, and ob  corresponds to the bias term 
of the output gate.

Hidden state (i.e., output):

	 ( )tanht t th o C= ⋅

The LSTM model was implemented in PyTorch to process 
univariate mortality rate time series (input_size = 1) through a 
two-layer architecture (num_layers = 2) with 64 hidden units per layer 
(hidden_size = 64), configured in batch-first format (batch_
first = True). The network’s final output was projected to 6 dimensions 
via a fully-connected layer (output_size = 6) to generate annual 
mortality predictions for 2016–2021. The same empirical tuning 
approach as for XGBoost was applied. Model training employed mean 
squared error (MSE) loss minimization using the Adam optimizer 
(learning_rate = 0.001), with temporal validation performed through 
sliding-window training on 1990–2015 data and fixed-horizon 
evaluation on 2016–2021 observations.

2.4 Model evaluation

2.4.1 Evaluation metrics
To systematically evaluate the predictive performance of the 

models, this study employed three metrics for comprehensive 
comparison: MSE, Mean Absolute Error (MAE), and Mean Absolute 
Percentage Error (MAPE). All the three metrics are inversely 
correlated with prediction accuracy, meaning lower values indicate 
better model performance. The evaluation indicators are presented in 
Table 1.

The MAPE was expressed as a percentage and served as the 
primary standard for accuracy classification. MAPE<10% indicated 
high prediction accuracy, 10% < MAPE<20% indicated good 
accuracy, 20% < MAPE<50% indicated reasonable accuracy, MAPE≥ 
50% indicated poor accuracy (24). MAPE<20% was set as the 
threshold for determining satisfactory prediction accuracy, based on 
these established criteria and the specific accuracy requirements of 
the study.

2.4.2 Statistical significance test
To determine whether the differences in forecast accuracy 

between the models are statistically significant, the Diebold-Mariano 

(DM) test was employed under MSE, MAE and MAPE loss functions 
(16). The DM statistic is calculated as follows:

	 ( )
=

2 /

DDM
S n

where 
=

= ∑ 1
1 n

ttD D
n

 is the sample mean of the loss differential 

series. ( )( ) ( )( )ς ς= −1 2
t t tD L L  denotes the loss differential at time t . 

Here, ( ).L  is the loss function, and ( )ς 1
t and ( )ς 2

t  are the forecast errors 
of the two models compared. 2S  is the estimated long-run variance of 
the differential series { }tD . This estimation is robust to autocorrelation 
and heteroscedasticity, often computed using the Newey-West 
heteroscedasticity- and autocorrelation-consistent (HAC) estimator. 
n is the number of forecast observations.

The hypothesis for the DM test is:

H₀: The two models being compared are equally accurate.

H₁: The model in the column is more accurate than the model in 
the row.

The test was conducted pairwise for all model combinations at a 
significance level of α = 0.05. A p-value less than 0.05 leads to the 
rejection of the null hypothesis, indicating a statistically significant 
difference in forecasting performance.

2.5 Further forecasting and visualization

Four types of models (ARIMA, Prophet, XGBoost and LSTM) 
were used for the projection of disease burden of HHD among WCBA 
from 2022 to 2030. Regarding visualization, all figures were generated 
using R 4.4.3, except for the Prophet prediction plot which was created 
with Python 3.3.1.

3 Results

3.1 Validation results of the ARIMA, 
prophet, XGBoost, and LSTM models on 
global HHD mortality data among WCBA 
during 2016–2021

3.1.1 Validation results of the ARIMA and prophet 
models

The validation results are presented in Figure 1.
The ARIMA model exhibited larger deviations between 

predicted and actual values that progressively widened over time, 
whereas the Prophet model demonstrated superior predictive 
accuracy. According to the Prophet model, the actual mortality rate 
in 2016 was slightly higher than the predicted value. The actual 
mortality rate then showed a minor increase, reaching the peak 
value in 2017, while the predicted values remained stable, indicating 
the model’s partial failure to capture this temporal variation. The 
actual mortality rate then decreased and gradually became relatively 

TABLE 1  Univariate forecasting error metrics for global HHD mortality 
among WCBA.

No Error Equations

i MAE
= −=∑1MAE 1e e

n
n

l ll

ii MSE
( )= −=∑1MSE

2
1 e e

n
n

l ll

iii MAPE
−

= =∑100%
MAPE 1

e e
n e

n l l
l l

Where n is the total number of observations, el is the actual observed value for the l-th 
observation, and el is the predicted value for the l-th observation.

https://doi.org/10.3389/fpubh.2025.1681569
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Deng et al.� 10.3389/fpubh.2025.1681569

Frontiers in Public Health 06 frontiersin.org

stabilized since 2018, while the predicted values showed a slow 
upward trend, yet consistently underestimated the true values. The 
difference between the actual and predicted mortality rates 
decreased by 2021, though the predictions remained below actual 
measurements (Figure 1).

3.1.2 XGBoost model validation results
Multiple time windows (4, 6, 8, 10, and 12 days) were adopted for 

XGBoost model validation, with the visual results presented in 
Figure 2.

Different time windows had minimal impact on the XGBost 
model. Figure 2 showed that XGBoost demonstrated low sensitivity 
to time window size variations. The discrepancy between actual and 
predicted mortality rates progressively widened from 2016 to 2017, 
while it gradually narrowed since 2018. The predicted mortality trend 
largely aligned with actual observations from 2019 to 2021, though 
the predicted values consistently remained below the true 
measurements (Figure 2).

3.1.3 LSTM model validation results
Multiple time windows (4, 6, 8, 10, and 12 days) were adopted for 

LSTM model validation, with the comparative results visualized in 
Figure 3.

For the 4-day time window, there was a significant difference 
between the actual and predicted from 2016 to 2017. The difference 
gradually decreased since 2018, reaching its minimum in 2021. The 
predicted values remained higher than the actual values (Figure 3A).

For the 6-day time window, predicted mortality rates consistently 
overestimated actual values from 2016 to 2020, though the discrepancy 
gradually diminished, reaching optimal alignment in 2020. A reversal 
occurred with predicted rates underestimating actual mortality, 
demonstrating divergent trends in 2021 (Figure 3B).

For the 8-day time window, predicted mortality rates systematically 
overestimated actual values from 2016 to 2019, with the magnitude of 
overestimation decreasing annually. A crossover occurred in 2020, where 
predictions shifted to underestimation, exhibiting an inverse trend 
relative to actual values (Figure 3C).

FIGURE 1

The validation results of the ARIMA and Prophet models on 2016–2021 data.

FIGURE 2

Validation results of XGBoost under different time windows. (A) 4-day window, (B) 6-day window, (C) 8-day window, (D) 10-day window, (E) 12-day 
window.
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For the 10-day time window, predicted mortality rates exhibited 
slightly consistent overestimation relative to actual values from 2016 to 
2018. A reversal occurred since 2019, with predictions underestimating 
actual mortality rates and the divergence progressively widening by 2021 
(Figure 3D).

For the 12-day time window, the predicted mortality rate was higher 
than the actual mortality rate from 2016 to 2018, while the difference 
between the predicted and actual values gradually decreased. The 
predicted value was almost the same with the actual value in 2018. Then 
the difference between the predicted and actual values slightly increased, 
with the predicted values lower than the actual values (Figure 3E).

The results demonstrate that the LSTM model’s predictive accuracy 
improves with increasing time window sizes, achieving near-perfect 
alignment with ground truth values under the 12-day window 
configuration. Only marginal deviations were observed in 2016 and 2021 
(Figure 3).

Validation results based on MSE, MAE, and MAPE metrics under 
optimal time window conditions are presented in Table 2 and Figure 4.

The DM test provided the statistical evidence for the difference in 
the performance of the four types of models in the error metrics 
(Tables 3–5).

Validation results of the four models for global HHD mortality rates 
among WCBA during 2016–2021 are shown in Figure 5.

The MAPE values of four models were all below 20%, demonstrating 
prediction efficiency exceeding 80%. The LSTM model demonstrated 
superior predictive accuracy, with the lowest error rates across all metrics 
(MSE: 0.00021; MAE: 0.00872; MAPE: 0.662%), confirmed by the 

comparative visualization of MAE and MSE metric (Table 2 and Figures 4, 
5). According to the DM test, both Prophet and LSTM demonstrated 
higher predictive accuracy than the other models (Tables 3–5). And there 
was no significant difference between Prophet and LSTM (p = 0.8762 for 
DM test based on MSE; p = 0.4292 for DM test based on MAE; and 
p = 0.4303 for MAPE). The prediction performance of XGBoost was 
significantly better than ARIMA (p = 0.0003 for DM test based on MAE), 
while weaker than Prophet (p = 0.0341 for DM test based on MAE and 
p = 0.0339 for DM test based on MAPE). And there was no significant 
difference between XGBoost and LSTM (p = 0.1946 for DM test based on 
MAE and p = 0.1951 for DM test based on MAPE). For ARIMA, the 
prediction performance was significantly weaker than the other models 
(MSE: 0.03645; DM test p < 0.05). In conclusions, Prophet and LSTM 
were the top-performing models. XGBoost was also a powerful prediction 
model better than the traditional methods. The model selection of 
Prophet and LSTM in application was suggested to be determined by the 
non-performance factors, such as interpretability and 
computational efficiency.

3.2 Predictive analysis of global HHD 
mortality among WCBA from 2022 to 2030 
using ARIMA, prophet, XGBoost, and LSTM 
models

The XGBoost and LSTM models employed their respective 
optimal time windows identified during validation as the 

FIGURE 3

Validation results of LSTM under different time windows. (A) 4-day window, (B) 6-day window, (C) 8-day window, (D) 10-day window, (E) 12-day 
window.

TABLE 2  Comparison of model forecasting accuracy for HHD mortality in WCBA on the validation set (2016–2021).

Model/evaluation metrics MSE MAE MAPE (%)

ARIMA 0.03645 0.18667 14.162

Prophet 0.00018 0.01322 1.003

XGBoost 0.00038 0.01843 1.398

LSTM 0.00021 0.00872 0.662
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superior hyperparameters for predicting global HHD mortality 
among WCBA from 2022 to 2030. The comparative forecasting 
results of ARIMA, Prophet, XGBoost, and LSTM are shown in 
Figure 6–9.

Figure  6 indicated that the ARIMA model predicts a gradual 
decline in HHD mortality among WCBA from 2022 to 2030.

Figure  7 indicated that the Prophet model predicts a gradual 
increase in HHD mortality among WCBA from 2022 to 2030.

The XGBoost prediction results revealed a notable discrepancy 
between actual 2021 mortality rates and 2022 forecasts. This predicated 
mortality exhibited a progressive decline from 2022 to 2027, followed by 
a transient increase in 2028 before decrease (Figure 8).

FIGURE 4

Comparisons of models using key performance indicators.

TABLE 3  P-values of the DM test for pairwise model comparisons (using MSE as the loss function).

Models ARIMA Prophet XGBoost LSTM

ARIMA 0 0.0030 0.0032 0.0032

Prophet 0.0030 0 0.0762 0.8762

XGBoost 0.0032 0.0762 0 0.5441

LSTM 0.0032 0.8762 0.5441 0

TABLE 4  P-values of the DM test for pairwise model comparisons (using MAE as the loss function).

Models ARIMA Prophet XGBoost LSTM

ARIMA 0 0.0002 0.0003 0.0005

Prophet 0.0002 0 0.0341 0.4292

XGBoost 0.0003 0.0341 0 0.1946

LSTM 0.0005 0.4292 0.1946 0
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The LSTM model predictions demonstrated that the predicted 
mortality rate in 2022 was closely aligned with the actual 
mortality rate in 2021. Subsequently, the predicted mortality 
exhibited a downward trend from 2022 to 2023, and remained 
essentially stable from 2024 to 2030, at levels consistent with the 
2023 forecast (Figure 9).

Table 6 showed the predicted values for global HHD mortality 
among WCBA from 2022 to 2030. The ARIMA model projected 

a declining trend. The Prophet model forecasted an increasing 
trend. XGBoost predictions showed mortality decreasing from 
2022 to 2027 followed by an increase before declining again in 
2030. The LSTM model predicted a decrease from 2022 to 2023 
with subsequent stabilization since 2023. The prediction of the 
LSTM model was considered to be  most reliable, due to the 
superior performance of it demonstrated by the former 
validation results.

FIGURE 5

Comparative validation results of the four models for global HHD mortality among WCBA.

FIGURE 6

Visualization of ARIMA model prediction results.

TABLE 5  P-values of the DM test for pairwise model comparisons (using MAPE as the loss function).

Models ARIMA Prophet XGBoost LSTM

ARIMA 0 0.0002 0.0003 0.0005

Prophet 0.0002 0 0.0339 0.4303

XGBoost 0.0003 0.0339 0 0.1951

LSTM 0.0005 0.4303 0.1951 0
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4 Discussion

4.1 Feasibility of construction of the 
univariate models for global HHD mortality 
data among WCBA based on GBD

Univariate time series modeling takes the historical sequence itself 
as input to predict future values, with the general 
mathematical formulation:

	
 { }( )1 2 1, , , ;t ty v y y y ϑ−= …

where ϑ represents the model parameters and v represents the 
prediction model or function.

Time series data consists of sequentially recorded measurements 
collected at regular time intervals. The temporally ordered observations 
can be either a single measurement variable (univariate) or multiple 
interrelated variables (multivariate) (25). Panel data typically refer to 
observations collected for the same set of individuals or units across 
multiple time points, combining characteristics of both cross-sectional 
data and time-series data. Grouped data (also known as clustered or 
stratified data) involve partitioning the dataset into distinct groups (e.g., 
countries, regions, age cohorts), where observations within each group 
share similar features or structures. A Lancet study in 2015 by the GBD 
Collaboratives demonstrated that disease-specific mortality rates in the 
GBD database are stratified by time (year) and geographic region 
(country), conforming to a panel data structure while exhibiting 
characteristics of grouped data. These data represent small-sample, 
univariate time series (26). This study validates the feasibility of univariate 
modeling for small-sample time series data using global HHD mortality 

FIGURE 7

Visualization of Prophet model prediction results.

FIGURE 8

Visualization of XGBoost model prediction results.
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rates among WCBA (1990–2021). The DM test stratifies model 
performance into three distinct tiers: (1) Top Tier (Statistically 
Equivalent): LSTM and Prophet. (2) Middle Tier: XGBoost, which was 
significantly better than ARIMA but showed mixed results against the top 
tier. (3) Bottom Tier: ARIMA. The difference in performance 
demonstrates that modern flexible models, including structured time 
series and deep learning, are more suitable for the forecasting task than 
traditional statistical or tree-based models.

Notably, the statistical equivalence between LSTM and Prophet, as 
revealed by the DM test, can be further nuanced by the choice of loss 
function, with each metric highlighting different model strengths. The 
MSE heavily penalizes large deviations, making it sensitive to outliers. The 
MAE is more robust to extreme values. In contrast, the MAPE provides a 
scale-invariant comparison, which is particularly useful for understanding 
relative forecasting accuracy. The fact that LSTM and Prophet remain 
statistically equivalent across these diverse metrics—MSE, MAE, and 
MAPE—suggests that their performance parity is not an artifact of a 
single evaluation perspective but is robust to different measurements of 
error. This underscores that both models capture the underlying data 
generating process effectively, albeit through different architectural 
mechanisms, without consistently producing large errors or systematic 
biases that would be penalized differently by each loss function.

The following analysis focus on two key points, data characteristics 
and model suitability.

From the perspective of dynamic characteristics of time series, the 
research data exhibits typical non-stationary time series features. The time 
series exhibits significant trend and autocorrelation characteristics (ADF 

test, p < 0.05), indicating a gradual declining trend in mortality rates over 
time. This observed pattern reflects the characteristic progression of HHD, 
influenced by both the expanded use of antihypertensive medications 
(contributing to a general decline) and concurrent lifestyle changes 
(introducing both long-term trends and short-term fluctuations).

The performance hierarchy of the models can be directly attributed 
to their inherent capabilities in capturing these specific data characteristics. 
The inferior performance of the ARIMA model stems from its linearity 
and reliance on stationary assumptions. While it can capture the 
deterministic trend, it fails to model the complex nonlinear interactions 
and adapt to the non-stationary fluctuations present in the data, such as 
those caused by shifting lifestyle factors. In contrast, the superior and 
statistically equivalent performance of both LSTM and Prophet models 
arises from their respective abilities to handle the dataset’s nonlinearity 
and non-stationarity, albeit through fundamentally different mechanisms. 
The LSTM network excels through its dynamic gated mechanisms (e.g., 
forget and input gates), which allow it to autonomously learn and adapt 
to both the long-term declining trend and the short-term fluctuations by 
maintaining a cell state that propagates critical information over long time 
intervals. The Prophet model demonstrates its strength via its 
decomposable additive framework, which is inherently designed for 
non-stationary time series. It explicitly separates and models the long-
term trend and potential seasonality components through highly 
interpretable parameters, making it robust against the trends and 
fluctuations observed in this 32-year mortality series.

Thus, the superior performance of LSTM and Prophet is not 
coincidental but is a direct result of their architectural compatibility 

FIGURE 9

Visualization of LSTM model prediction results.

TABLE 6  Prediction of global HHD mortality in WCBA by different models (2022–2030).

Model 
type/year

2022 2023 2024 2025 2026 2027 2028 2029 2030

ARIMA 1.21667 1.19842 1.18017 1.16193 1.14368 1.12543 1.10719 1.08894 1.07069

Prophet 1.32339 1.32571 1.32929 1.33125 1.33233 1.33466 1.33823 1.34019 1.34127

XGBoost 1.32799 1.32388 1.32094 1.31853 1.31619 1.31508 1.32250 1.32069 1.31844

LSTM 1.31799 1.30677 1.30426 1.30406 1.30309 1.29882 1.30350 1.30370 1.30303
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with the core characteristics of the mortality data. This successful 
modeling of complex temporal patterns further demonstrates the 
validity of univariate approaches for this type of analysis.

From the model suitability perspective, each model demonstrates 
distinct strengths aligned with specific analytical priorities. While all four 
models support univariate forecasting, their architectural differences lead 
to varied trade-offs between predictive power, interpretability, and 
computational efficiency. The LSTM network provides theoretically 
superior capability for capturing complex nonlinear dynamics and long-
term dependencies through its gated memory mechanisms, which is 
particularly valuable for modeling intricate temporal patterns. In contrast, 
Prophet offers exceptional interpretability through its decomposable 
additive framework that explicitly models trend, seasonality, and 
changepoints via intuitive parameters—this makes it especially suitable 
for applications requiring transparent insights into driving factors. 
Although statistically equivalent in overall performance for this specific 
dataset, the choice among these models ultimately depends on whether 
the analytical priority favors predictive sophistication (favoring LSTM) or 
interpretability and explanatory power (favoring Prophet).

4.2 Comparative analysis of modeling 
performance and disease burden 
prediction value among traditional 
statistical models, structured time series 
models, traditional machine learning, and 
deep learning models for univariate 
historical data

ARIMA is a classical linear regression model that characterizes time 
series through linear combinations of AR and MA components. Its core 
assumptions are stationarity and linear additivity of the series. However, 
it exhibited significant non-stationary characteristics (ADF test: p < 0.05) 
in the study. Despite differencing preprocessing and adequate model 
fitting, these inherent data properties resulted in elevated prediction 
errors for the ARIMA model on the validation set (MSE = 0.03645; 
MAE = 0.18667; MAPE = 14.162%). The DM test confirmed that these 
errors were statistically significantly higher than those of all other models 
(p  < 0.05 for all comparisons under MSE, MAE, and MAPE loss), 
solidifying ARIMA as the least suitable approach for this data. Specifically, 
ARIMA’s linear trend assumption fails to capture the gradual deceleration 
in mortality decline rates. Setting the maximum autoregressive lag order 
at q = 1 causes the model to only capture short-term historical 
information, failing to account for long-term cyclical patterns. In contrast, 
both LSTM and Prophet overcome these limitations through their 
inherent architectural advantages. The LSTM model effectively captures 
nonlinear trends in time series by introducing gating mechanisms (e.g., 
input gate, forget gate, and output gate) to regulate information flow (21). 
The LSTM model addresses the long-term dependency problem in 
traditional RNNs by utilizing its internal “memory cells” and “gating 
mechanisms” to retain information across extended time sequences (27). 
Similarly, Prophet’s additive decomposition framework explicitly models 
non-stationary trends and seasonality through interpretable parameters. 
Both approaches demonstrated statistically equivalent superiority over 
ARIMA across all error metrics, solidifying them as superior choices for 
this forecasting task.

Prophet decomposes time series into trend, seasonality, and 
holiday effects using an additive framework. Its design emphasizes 

extrapolating dominant historical trends—here, the clear upward 
trajectory from 2011 to 2021—leading to a projected mortality 
increase from 2022 to 2030 (Figure 7). In contrast, LSTM, as a data-
driven model, learns complex patterns across the entire series 
without predefined structural assumptions. This difference in 
approach explains the divergence: Prophet extends the recent trend, 
while LSTM may emphasize non-trend patterns or cyclical 
dynamics, resulting in a decreasing forecast. Despite these divergent 
projections, the DM test indicated that LSTM’s performance 
advantage over Prophet was not statistically significant (p > 0.05 for 
MSE, MAE, and MAPE) for this dataset. Thus, while Prophet’s 
forecast is a direct consequence of its design—extending dominant 
historical trends—LSTM’s prediction reflects its capacity to 
autonomously learn temporal dependencies without being bound to 
preset structural forms.

XGBoost is a classical machine learning model based on 
gradient-boosted trees. It employs lagged features for time series 
modeling, with its performance heavily dependent on the 
appropriateness of feature engineering. This study employs a time 
window of 4 as input. While this configuration demonstrates a 
statistically significant improvement over ARIMA (DM test, p < 0.05 
for all metrics), its performance relative to Prophet depends on the 
error metric. Based on MAE loss, Prophet was statistically superior 
to XGBoost (p = 0.0341); similarly, under MAPE loss, Prophet also 
showed a significant advantage (p = 0.0339); however, under MSE 
loss, their difference was not statistically significant (p = 0.0762). The 
predictive accuracy of our model is significantly influenced by feature 
selection. The binary splitting mechanism of decision trees struggles 
to capture gradual transitions in time series, resulting in poorer 
stability for long-term forecasts. Compared to deep learning models, 
XGBoost demonstrates a 78.72% higher MSE than LSTM on the 
validation set; however, the DM test indicated that this difference was 
not statistically significant (p = 0.5441 for MSE; p = 0.1946 for MAE; 
p = 0.1951 for MAPE). This finding aligns with the conclusion of 
Nguyen et  al. (28) for time series forecasting tasks, XGBoost’s 
performance lies between traditional statistical models (ARIMA) and 
deep learning approaches (LSTM).

LSTM is a pivotal deep learning architecture that effectively 
captures long-term dependencies and nonlinear patterns through its 
gating mechanism, demonstrating superior performance in our 
study. Validation results demonstrate that the LSTM model 
(MSE = 0.00021, MAE = 0.00872, MAPE = 0.662%) achieves a 
34.05% reduction in prediction error compared to the Prophet 
model. However, the DM test revealed that this performance 
advantage was not statistically significant (p  = 0.8762 for MSE; 
p = 0.4292 for MAE; p = 0.4303 for MAPE). Its capability to learn 
temporal dynamics significantly outperforms other models, making 
it a top-performing model suitable for capturing the complex trends 
in our dataset, alongside Prophet. There is a significant difference 
between the prediction results of Prophet and LSTM, while the 
prediction results of LSTM and XGBoost align more closely with each 
other (Figures  7–9). This visually demonstrates how different 
prediction mechanisms can produce varying outcomes and provides 
a methodological cross-validation between the approaches.

Our findings contribute to the existing research particularly in 
the statistical equivalence between the complex LSTM and the 
structured Prophet model. This equivalence was consistently 
observed across three distinct loss functions (MSE, MAE, and 

https://doi.org/10.3389/fpubh.2025.1681569
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Deng et al.� 10.3389/fpubh.2025.1681569

Frontiers in Public Health 13 frontiersin.org

MAPE), each penalizing different types of forecast errors, which 
underscores the robustness of their performance. Previous studies in 
infectious disease forecasting (13, 14) have conclusively demonstrated 
the superiority of nonlinear models over traditional ARIMA, a 
conclusion our research strongly supports for chronic disease burden 
data. However, many existing studies in economics (7, 8) and 
environmental science (9, 11) tend to focus on declaring a single 
“best” model or on building complex ensembles. This study advances 
this discourse by demonstrating that for foundational forecasting 
tasks, statistical equivalence between top-performing models is a 
likely outcome. This shifts the practical question from “which model 
is the best?” to “which model is the most appropriate for a specific 
decision-making context?”

Through a rigorous comparative evaluation, this study establishes 
a practical framework for univariate disease burden forecasting using 
GBD data—an area lacking systematic methodological research. Our 
findings demonstrate that both LSTM and Prophet significantly 
outperform traditional statistical methods and are statistically 
equivalent for this task, a conclusion that holds true regardless of 
whether absolute errors (MSE, MAE) or relative percentage errors 
(MAPE) are considered. This provides crucial evidence-based 
guidance for real-world applications: in resource-limited settings 
requiring interpretability, Prophet is an excellent choice; for capturing 
highly complex temporal patterns without preset assumptions, LSTM 
is preferable. By employing a controlled univariate design, we ensure 
that the observed performance differences are attributable to the 
models’ inherent capabilities rather than exogenous variables, thereby 
offering a reliable benchmark for future research.

Limitations. While four representative models were chosen for 
univariate comparisons, the relatively narrow range of modeling 
approaches included, which is common in this research field, may 
constrain the generalizability of the findings. The comprehensive 
assessment of how univariate models perform in predicting the 
burden of disease still needs to be improved, due to the exclusion of 
other relevant models. To address this issue and enhance the 
generalizability of the conclusions, follow-up studies should 
incorporate longer time-series data, thereby further improving the 
reliability and application of the research findings.

5 Conclusion

This study conclusively demonstrated that modern forecasting 
models (Prophet, XGBoost, LSTM) significantly outperform traditional 
statistical methods (ARIMA) for predicting HHD mortality in 
WCBA. The LSTM and Prophet models form a top tier of statistically 
equivalent performance, confirmed by the Diebold-Mariano test. 
Prophet is ideal for interpretability and communication to stakeholders, 
while LSTM shows better performance in capturing the most complex, 
non-linear patterns. These findings offer an evidence-based framework 
to improve the forecasting tools of disease burden in public health, 
which enable the decision-makers to select the most suitable model 
based on the practical needs, thereby supporting better global 
cardiovascular disease resource allocation. Future studies ought to 
include longer time-series data to enhance the generalizability 
of conclusions.
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