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Airborne polycyclic aromatic hydrocarbons (PAHs) are urban combustion by-
products linked to endocrine disruption, but their direct molecular interactions
with testosterone remain under-characterized. Using DFT [B3LYP/6-311 + G(d,p)]
and 10-ns all-atom MD, we quantified non-covalent binding between benzene,
naphthalene, and anthracene and testosterone, observing size-dependent
stabilization (anthracene most favorable). Complementary MEP, Mulliken charge,
and FMO analyses indicated progressive electronic coupling consistent with z—=
and hydrophobic packing. In a semester-long controlled program with male
university students (n = 60), we compared identical training conducted in a polluted
urban area (PM,s > 50 pg-m~3) vs. a suburban green zone (PM,5 < 10 pg-m~3) and
observed larger gains in 100-m sprint, pull-ups, and standing long jump under
cleaner air. We now report 95% confidence intervals alongside effect sizes for
all field outcomes and provide a correlation between pollution intensity and
performance change. PM, s was used as an operational exposure index because
combustion-related PAHs predominantly partition to fine particles and co-vary
with PM;.5 mass in ambient air (WHO guideline context and PAH-PM,.5 literature).
Collectively, the molecular and field evidence suggests larger PAHs may perturb
testosterone function and that cleaner air is associated with better short-term
training gains, informing air-quality-aware scheduling and campus policy.

KEYWORDS

polycyclic aromatic hydrocarbons, testosterone, density functional theory, molecular
dynamics, air pollution, endocrine disruption, athletic performance, student athletes

1 Introduction

Exposure to air pollution has emerged as a significant environmental and public health
challenge, extending its impact beyond respiratory and cardiovascular systems to disrupt
endocrine functions (1-3). Among atmospheric pollutants, polycyclic aromatic hydrocarbons
(PAHs) are particularly concerning due to their persistent, lipophilic nature and known toxic
effects. Generated predominantly through incomplete combustion of organic matter like fossil
fuels and biomass, PAHs are notably prevalent in densely populated urban settings
characterized by intensive traffic and industrial activities (4-7). Athletes, who frequently
engage in outdoor training sessions during times of peak pollution, face heightened risks of
inhaling these contaminants, potentially impairing respiratory efficiency, hormonal balance,
and overall physiological well-being. Lower-limb explosive capacity is pivotal for sport
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performance—Countermovement Jump height tracks knee-extensor
strength in elite boxers (8), and phase-specific diagnostics in elite
mens table tennis show that short, high-intensity “attacking/
connecting” segments most strongly determine outcomes (9)—
supporting our use of brief explosive tests (100-m sprint, standing
long jump) as environmentally sensitive endpoints.

Operational exposure index (PM,;). We used PM,; to
operationalize “polluted” versus “clean-air” training days because
many combustion-derived PAHs—particularly higher-ring species—
partition to fine particles and consistently occur within the PM, 5
fraction; numerous urban field studies report particle-bound PAHs
and co-variation with PM,; mass. While PM,; is non-specific to
PAHs, it provides a practical exposure contrast for field protocols
when speciated PAH monitoring is not available; thresholds in this
study (>50 vs. < 10 pg-m~?) were selected to create a clear contrast
relative to WHO guideline levels (10, 11).

Testosterone plays a critical role in regulating muscle growth,
energy metabolism, mood stability, and reproductive health—factors
directly influencing athletic performance and recovery (4, 12-17).
Disruptions in testosterone dynamics, whether through altered
biosynthesis pathways, receptor interactions, or degradation kinetics,
can significantly compromise physical capabilities and lead to chronic
health issues. Previous studies indicate that environmental exposure
to PAHs correlates with changes in testosterone levels, though the
molecular mechanisms underpinning these effects are still
inadequately characterized. Specifically, there remains a significant
gap in understanding at the atomic level how PAHs interact physically
or electronically with testosterone molecules in biological contexts
(12, 14, 17-21).

Prior research demonstrates a robust link between PAHs exposure
and endocrine disruption relevant to athletic health. Studies confirm
that PAHs can significantly alter testosterone concentrations in males,
highlighting potential health risks associated with hormone imbalance
(22). Mechanistic insights have further illustrated that PAHs influence
hormonal regulation via disruptions in the hypothalamic-pituitary-
gonadal (HPG) axis, affecting testosterone and estradiol levels
variably, contingent upon specific PAH metabolites and individual
demographic characteristics like age (23). Clinical evidence associates
elevated estradiol and reduced testosterone levels with increased risks
and severity of pulmonary arterial hypertension (PAH), underscoring
broader systemic health implications stemming from hormonal
imbalances (24).

Moreover, environmental endocrine disruptions have been linked
to increased mortality in men, highlighting the urgency of addressing
air pollutant exposures from both athletic and public health
perspectives [19]. Investigations into broader air pollution
constituents, including particulate matter (PM), ozone, and nitrogen
dioxide, reveal detrimental impacts on athletes’ respiratory and
cardiovascular functions, particularly during intense physical exertion
(25). Endurance athletes frequently report reduced performance
capacities and heightened susceptibility to health issues associated
with air pollution exposure, emphasizing the necessity for ongoing
research in this area (26). Practical assessments of athletes” pollutant
exposure during sports events indicate significant variability, further
supporting the importance of monitoring and strategic timing to
mitigate these risks (27).

Building upon these insights, the current study provides a detailed
atomistic investigation into interactions between common PAHs and
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testosterone derivatives. To elucidate these interactions, we employed a
multiscale computational methodology combining Density Functional
Theory (DFT) and classical all-atom Molecular Dynamics (MD)
simulations. DFT analysis enabled examination of electronic structural
changes, dipole moments, and molecular orbitals of testosterone
derivatives upon complexation with representative PAH molecules
(naphthalene, phenanthrene, and benzo[a]pyrene). Complementary
MD simulations assessed the dynamic behavior, solvation, and stability
of these complexes within physiologically relevant aqueous environments.

Objectives and Hypotheses.

Our objective is to link atomistic interaction trends between PAHs
and testosterone with observed training outcomes under contrasting
ambient air-quality conditions. Accordingly, we prespecified three
directional hypotheses that map directly to our analyses:

o H1 (molecular): Non-covalent association strength with
testosterone will increase with PAH ring number—predicted
order naphthalene < phenanthrene < benzo[a]pyrene—reflected
by more favorable (more negative) binding energies and longer
residence times in MD.

H2 (field, between-group): University students training under
lower PM,.s conditions will exhibit larger short-term
improvements in the 100-m sprint, pull-ups, and standing long
jump than students training under higher PM,;, after
baseline adjustment.

« H3 (linking, within-group): Session-level PM..s will be negatively
correlated with individual performance change scores across the
same outcomes.

Primary outcomes are the three field tests listed above; exposure
contrast is defined operationally by PM, s thresholds detailed in
Methods. Analytical specifics (baseline-adjusted models, confidence
intervals, and multiplicity control) are described in the Statistical
Analysis subsection.

2 Materials and methods
2.1 Theoretical models

This study employed benzene, naphthalene, and anthracene as
representative polycyclic aromatic hydrocarbons (PAHs) commonly
encountered in polluted air, with testosterone serving as the target
biomolecule due to its critical role in regulating physiological
functions in athletes. The molecular structures of benzene,
naphthalene, anthracene, and testosterone are illustrated in Figure 1.
Density Functional Theory (DFT) calculations and classical all-atom
Molecular Dynamics (MD) simulations were conducted to investigate
molecular-level interactions between these PAHs and testosterone.
Analysis of their binding behaviors and interaction energies aimed to
elucidate  potential  hormonal

disruptions  caused by

environmental pollutants.

2.2 DFT calculations

DFT calculations were performed using fully optimized structures
of benzene, naphthalene, anthracene, and testosterone (Figure 1).

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1679354
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Kondratenko et al.

10.3389/fpubh.2025.1679354

(a) (b)

O

FIGURE 1
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Molecular structures used in calculations: (a) benzene, (b) naphthalene, (c) anthracene, and (d) testosterone.

Optimizations utilized the B3LYP functional with the 6-311 + G(d,p)
basis set in the gas phase. Quantum chemical properties, including
optimized geometries, molecular electrostatic potentials (MEPs), and
frontier molecular orbitals, were evaluated to identify binding modes
and interaction sites. Vibrational frequency analysis confirmed all
stationary points as true minima. Gaussian16 software was used for
geometry optimization and energy profiling, with molecular orbitals
visualized via GaussView (v6.0).

2.3 Classical all-atom MD simulations

MD simulations employed the GROMOS force field parameters,
assigning Lennard-Jones (L]) parameters and bonded interactions
sourced from the Automated Topology Builder (ATB) database.
Separate simulation systems were constructed for testosterone alone
and in complexes with each PAH from Figure 1. Energy minimization
occurred via steepest descent for 0.1 ns at 298 K and 1 bar, followed
by 1 ns equilibration runs under NVT and NPT ensembles to stabilize
dimensions (10 x 10 x 10 nm?). Production simulations lasted 10 ns
under NVT conditions at 298 K. The LINCS algorithm constrained
bonds, and short-range Coulomb and L] interactions used a 1.0 nm
cutoff. Long-range electrostatics applied Particle Mesh Ewald (PME)
methods, with temperature regulated by a V-rescale thermostat and
pressure controlled by a Berendsen barostat. Periodic boundary
conditions were implemented in all directions. Simulations were
executed using GROMACS, visualized with VMD, and analyzed with
SigmaPlot for free energy surfaces.

2.4 Pedagogical assessment methodology

To investigate the pedagogical implications of air quality on
student-athlete performance, a controlled training experiment was
established. Two student groups from KazNARU (n = 30 per group,
males aged 18-21) participated in a semester-long physical training
program. Group A trained in an urban area with high air pollution
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(average PM2.5 > 50 pg/m?), while Group B conducted identical
sessions in a suburban green zone with low pollution (average
PM2.5 < 10 pg/m’).

Both groups engaged in a standardized physical education
curriculum comprising aerobic, strength, and flexibility exercises
three times weekly for 90 min per session. Assessments conducted at
the beginning and end of the study included pull-ups, standing long
jump, and a 100 m sprint. Air-quality exposure definition &
monitoring. Training sessions were classified as “polluted” when the
daily mean PM,; at fixed-site monitors near the venue exceeded
50 pg'm™ and “clean-air” when PM,s was <10 pg-m~>. PM,; was
chosen as an operational index because combustion sources that emit
PAHs also elevate fine-particle mass, and higher-ring PAHs commonly
occur bound to PM, ; therefore, contrasting PM, s regimes provide
meaningful differences in particle-bound PAH exposure in the
absence of speciated PAH instrumentation. We recorded temperature
and relative humidity on each training day and included these (with
participant covariates) in adjusted analyses; we acknowledge that
PM, 5 is non-specific and that future work will incorporate ambient/
biomarker PAH speciation.

The study adhered to ethical standards with informed consent
obtained from all participants. Performance outcomes were
statistically analyzed using paired t-tests for within-group changes and
ANOVA for inter-group differences, considering p-values <0.05
statistically significant. This pedagogical assessment complemented
the computational studies, providing empirical support for educational
policies aimed at enhancing student health and athletic performance
through improved environmental conditions.

2.5 Statistical analysis

Analyses were two-sided (@ =0.05) in R 4.x. For the three
primary outcomes (100-m sprint, pull-ups, long jump), we used
baseline-adjusted ANCOVA (post value as outcome; group as factor;
baseline as covariate) and report mean change, adjusted group
difference, Hedges' g, and 95% Cls. Multiplicity across the three
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endpoints was controlled with Holm-Bonferroni (both unadjusted
and adjusted p shown). Prespecified covariates were age, BMI,
average nightly sleep (h), nutrition adequacy (3-level), session
adherence (%), and ambient temperature/humidity; models included
covariates when available. Exposure-response was examined by
correlating session-averaged PM, s with individual change scores
(Pearson or Spearman) with Benjamini-Hochberg FDR control.
Assumptions were checked; when violated we applied log-transforms
and HC3 robust standard errors. The primary ANCOVA adjusted for
baseline performance; a prespecified fully adjusted model additionally
included environmental covariates (daily mean temperature, relative
humidity; venue-day matched) and participant covariates (age, BMI,
average nightly sleep, nutrition adequacy, and session adherence)
when available. Collinearity was low (all VIF < 2), model diagnostics
were acceptable, and conclusions were based on the fully
adjusted model.

3 Results
3.1 DFT results

3.1.1 Optimized structures

Figure 2 presents the optimized geometries of testosterone
complexes with benzene, naphthalene, and anthracene obtained
through Density Functional Theory (DFT) calculations. In Figure 2a,
benzene forms a weak z-n stacking interaction near testosterone’s
D-ring, indicating mild van der Waals interactions. Figure 2b shows
naphthalene establishing a parallel displaced stacking configuration,
indicating stronger m- interactions compared to benzene. Anthracene
(Figure 2¢) exhibits the strongest T—x interaction due to its extended
aromatic surface, suggesting the highest binding affinity among the
three PAHs.

3.1.2 Molecular electrostatic potential maps
The (MEPs) of the
PAH-testosterone complexes are illustrated in Figure 3. The benzene-

molecular electrostatic potentials
testosterone complex (Figure 3a) shows minimal polarization,
indicating weak dispersion interactions. Naphthalene (Figure 3b)
demonstrates increased electrostatic interactions, especially near
testosterone’s hydroxyl group, suggesting stronger polarizability.
3¢) the
complementarity, supporting a stable and significant interaction

Anthracene (Figure shows strongest electrostatic

with testosterone.

10.3389/fpubh.2025.1679354

3.1.3 Mulliken charge distribution

Figure 4 displays Mulliken charge distributions for each
PAH-testosterone complex. Benzene (Figure 4a) exhibits minimal
charge redistribution, suggesting predominantly weak van der Waals
interactions. In contrast, naphthalene (Figure 4b) demonstrates more
significant charge polarization, especially near testosterone’s hydroxyl
region, indicating moderate electronic interactions. Anthracene
(Figure 4c) shows extensive negative charge redistribution across its
aromatic surface, indicating substantial electronic stabilization
through 7-= stacking and induced dipole interactions.

3.1.4 Molecular orbitals

Frontier molecular orbitals (FMOs), including HOMO and
LUMO, are depicted in Figure 5. Benzene-testosterone (Figure 5a)
exhibits moderate electron delocalization, with benzene acting as an
electron acceptor. Naphthalene-testosterone (Figure 5b) displays
increased orbital delocalization, suggesting stronger electron-donating
interactions. Anthracene-testosterone (Figure 5¢) shows the greatest
delocalization, indicative of strong electronic interactions and
potential impacts on testosterone functionality.

3.2 Classical all-atom MD results

3.2.1 Molecular structures

Molecular dynamics (MD) simulation snapshots are shown in
Figure 6. Benzene (Figure 6a) demonstrates a transient, non-specific
hydrophobic association with testosterone. Naphthalene (Figure 6b)
exhibits more defined hydrophobic interactions, maximizing van der
Waals contacts. Anthracene (Figure 6¢) forms the most stable
complex, strongly associating hydrophobically and suggesting optimal
packing due to extended van der Waals and potential z—= interactions.

3.2.2 Interaction energies

Calculated interaction energies (Table 1) quantify complex
stability. Benzene-testosterone (+5.67 kJ/mol) indicates a slightly
unfavorable interaction, suggesting minimal direct complexation.
Naphthalene-testosterone (+0.16 kJ/mol) is nearly neutral, hinting at
moderate interactions. Anthracene-testosterone (—4.20 kJ/mol)
demonstrates a favorable interaction, indicating stable complex
formation. PAHs exhibit varying solvation strengths (benzene
—20.99 kJ/mol, naphthalene —15.76 kJ/mol, anthracene —16.78 kJ/
mol), with reduced water affinity correlating with increased PAH size
and enhanced testosterone affinity. These ring-number-dependent

FIGURE 2

Optimized structures of testosterone interacting with (a) benzene, (b) naphthalene, and (c) anthracene.
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FIGURE 3

MEP surfaces for testosterone complexes with (a) benzene, (b) naphthalene, and (c) anthracene.
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FIGURE 4

Mulliken charge distributions in complexes of testosterone with (a) benzene, (b) naphthalene, and (c) anthracene.

HOMO

LUMO

FIGURE 5

Molecular orbitals (HOMO and LUMO) for complexes of testosterone with (a) benzene, (b) naphthalene, and (c) anthracene.

trends are consistent with prior DFT/MD reports in steroid—arene
systems, where larger aromatic surfaces strengthen m-m/hydrophobic
association in aqueous media; our magnitudes fall within the expected
weak-association regime for non-covalent contacts and support the
mechanistic plausibility inferred from MD and FMO analyses.

Frontiers in Public Health

3.3 Pedagogical performance results
Descriptive summaries (Table 2) show that, at follow-up, the

fresh-air group outperformed the polluted-air group on all tests—
100-m sprint 13.4 s vs. 14.5 s, pull-ups 13 vs. 9 reps, and standing long
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FIGURE 6

MD simulation snapshots of testosterone with (a) benzene, (b) naphthalene, and (c) anthracene in aqueous environments.

TABLE 1 Interaction energies (kJ/mol) between testosterone and PAHs.

Interaction Benzene-testosterone Naphthalene-testosterone Anthracene-testosterone
PAH-testosterone +5.67 +0.16 —4.20

PAH-water —20.99 ~15.76 -16.78
Testosterone-water —135.52 —126.15 —126.10

TABLE 2 Comparative performance metrics.

2016-2017 2023-2024 Fresh air group Polluted air PM,.5 vs. Change [r
Avg. Avg. group (95% Cl), ql*
100 m sprint (s) 14.2 143 134 145 +0.41 [0.17, 0.60], 0.0034
Pull-ups (reps) 11 9 13 9 —0.38 [-0.58, —0.14], 0.0041
Standing long jump (cm) 217 208 225 210 —0.35 [-0.55, —0.11], 0.0061

jump 225 cm vs. 210 cm—with historical cohort means provided for
context. Relative to baseline, fresh-air trainees improved by —0.9 s in
the sprint, +4 pull-ups, and +17 cm in the long jump, whereas changes
in the polluted-air group were minimal.

Between-group ANCOVA (post ~ group + baseline; covariates
as available) favored the fresh-air condition for all three primary
outcomes; Holm-Bonferroni-adjusted p-values remained
significant. Covariate adjustment for temperature, humidity, and
participant factors did not materially change the results (all
adjusted differences remained significant with changes in point
<10%). Partial
controlling for temperature and humidity were similar to the
unadjusted analyses: sprint r,=+0.35 (95% CI 0.10-0.55,
q=0.007), pull-ups r, = —0.33 (95% CI — 0.54 to —0.09, q = 0.009),
and long jump r, = —0.30 (95% CI — 0.51 to —0.06, q = 0.015).
Consistent with these performance patterns, participants training

estimates exposure-response correlations

in polluted air more frequently reported fatigue and respiratory
discomfort on post-session surveys.

To assess exposure-response, session-averaged PM,; was
correlated with individual change scores (see the rightmost column in
Table 2). Higher PM, ; was associated with smaller gains: 100-m sprint
r=+0.41 (95% CI 0.17-0.60, q = 0.0034), pull-ups r = —0.38 (95%
CI—0.58 to —0.14, q=0.0041), and long jump r=—0.35 (95%
CI—0.55 to —0.11, q = 0.0061). These findings were directionally
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consistent in sensitivity analyses (Spearman p; models including sleep,
BMI, and adherence when available).

4 Discussion

The results obtained from both the computational and
experimental approaches in this study provide comprehensive
evidence supporting the hypothesis that polycyclic aromatic
hydrocarbons (PAHs), particularly larger molecules such as
anthracene, significantly interact with testosterone, potentially
disrupting its physiological functions. The DFT calculations revealed
a clear trend of increased interaction strength correlating with the
size of the PAHs, which was evident through optimized geometries,
molecular electrostatic potentials (MEPs), Mulliken charge
distributions, and frontier molecular orbitals (FMOs). The
progressively stronger interactions from benzene to anthracene
suggest that larger PAHs pose a greater risk of hormonal disruptions
due to enhanced electronic interactions and structural stability of the
complexes formed with testosterone.

Molecular dynamics simulations further reinforced the
computational predictions by highlighting the dynamic interactions
and relative stability of the PAH-testosterone complexes within an
aqueous physiological environment. Notably, anthracene displayed
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the strongest and most stable association with testosterone, indicating
a higher propensity for biological interference. These computational
insights underscore the molecular mechanisms by which
environmental pollutants might adversely affect hormonal regulation
in exposed individuals, particularly athletes frequently training in
polluted environments.

Comparative context using existing literature only. Our semester-
scale field pattern—smaller gains in sprint, pull-ups, and standing
long jump under higher PM,.s—aligns with prior work indicating that
urban air pollutants can degrade exercise responses and athlete well-
being. Reviews focused on sport and active populations describe
respiratory and cardiovascular strain from common pollutants and
emphasize practical exposure concerns during training and events
(25, 27). Within sport ecology, environmental conditions are
increasingly framed as performance-relevant constraints that
programs should manage alongside traditional load variables (1-3, 5,
7). Positioning PM..s as an operational exposure index is supported
by reviews showing that combustion-derived higher-ring PAHs
frequently occur in the fine-particle fraction and co-vary with PM,.s
in urban settings (10, 11). While PM,.s is non-specific to PAHs, these
sources justify its use for field contrasts when speciated PAH
monitoring is unavailable—consistent with our design choice and
limitations statement.

The endocrine rationale in our study is coherent with
epidemiologic and toxicologic evidence already cited in the
manuscript. Occupational and population studies report associations
between PAH exposure and altered sex-steroid profiles (e.g.,
testosterone and estradiol), with effect directions varying by
metabolite and demographic context (14, 19, 22, 23). Broader clinical
and review work on androgens underscores that perturbations in
androgen signaling can influence performance, recovery, and health
risk in athletic settings (4, 6, 13, 15, 17, 18). Our DFT/MD finding of
size-dependent noncovalent association between testosterone and
larger aromatics offers a microphysical hypothesis that is compatible
with  these
mechanistic causality.

human-level observations without over-stating

Our emphasis on brief, explosive tests is consistent with sport
diagnostics linking lower-limb explosive capacity to performance (8)
and with evidence that short, high-intensity phases decisively
contribute to outcomes in skill-power sports (9). Together, these
references support using sprint and jump outcomes as environmentally
sensitive markers in student-athlete cohorts.

The pedagogical component of this study complemented the
computational findings by demonstrating tangible impacts of air
quality on student-athlete performance. Training conducted in
polluted conditions resulted in significantly reduced improvements in
physical fitness metrics compared to training in fresh air. This
empirical evidence confirms the detrimental effects of air pollution
exposure, which could reflect impaired respiratory function, systemic
inflammation, or endocrine disruptions suggested by molecular-level
interactions. Furthermore, survey responses from participants
training in polluted environments indicated increased fatigue and
respiratory discomfort, aligning with the physiological disruptions
anticipated from the literature above (25, 27).

Strengths include the integration of atomistic modeling (DFT/
MD) with a controlled, short-term training comparison;
prespecified analyses with confidence intervals and multiplicity
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control; and an exposure-response assessment linking session-level
PM..; to individual change scores. Several limitations warrant
caution. First, the field comparison was not randomized by venue
and the sample size was moderate (male university students aged
18-21), which constrains causal inference and generalizability to
other ages, sexes, or training contexts. Second, PM,.s was used as
an operational exposure index; while practical for field work, it is
non-specific and subject to exposure misclassification relative to
personal and speciated PAH measurements. Co-pollutants (e.g.,
NO,, Os) and microenvironmental factors may confound or modify
associations despite covariate adjustment (10, 11). Third, some
participant covariates (sleep, nutrition, adherence) were self-
reported and available with missingness, introducing potential
measurement error. Fourth, follow-up was limited to one academic
term, capturing short-term adaptations rather than long-term
training trajectories.

Computational inferences also have scope limits. DFT results
depend on the chosen functional/basis [B3LYP/6-311 + G(d,p)] and
gas-phase optimization, and MD simulations were short (10 ns) with
force-field and solvent-model assumptions; neither framework
includes macromolecular binding partners (e.g., SHBG, receptor
contexts) or metabolic activation products. The PAH panel was
intentionally restricted (benzene, naphthalene, anthracene) to test a
size-progression hypothesis and does not cover higher-ring species.
Accordingly, the modeling is hypothesis-generating and should not
be over-interpreted as demonstrating endocrine disruption in vivo.

Because PM..5 is a mixture metric and not specific to PAHs, our
field contrasts cannot isolate PAH effects from co-varying pollutants;
this motivates adding speciated ambient PAH measurements and/or
urinary PAH metabolites in future cohorts (10, 11, 23). To address the
broader limitations, future studies should employ randomized cross-
over or filtration-intervention designs, incorporate personal and
biomarker exposure assessment, extend computations to enhanced-
sampling/free-energy methods and 4-6-ring PAHs, and include
broader, mixed-sex samples with longer follow-up. In the interim, our
associative findings support exposure-aware training: schedule high-
intensity work on low-PM,.s days and relocate key sessions indoors
with MERV-13/HEPA filtration when levels are elevated; at the
institutional level, integrate simple monitoring and thresholds for
modifying activity—recommendations that are consistent with sport-
ecology perspectives on environmental
athlete health.

sustainability and

5 Conclusion

We integrated DFT/MD modeling with a controlled training
comparison to examine how PAH exposure may relate to short-term
performance. While the molecular results suggest size-dependent,
non-covalent association between testosterone and larger PAHs and the
field data show smaller gains under higher PM, s, these findings are
associative and should not be over-interpreted as causal. Accordingly,
the emphasis of this conclusion is on practical steps that coaches and
programs can implement immediately. For coaches and athletic staff: (i)
schedule high-intensity outdoor sessions when local PM,.s is low (e.g.,
mornings/clean-air days) and substitute technique/indoor work during
higher PM,.5 periods; (ii) relocate to indoor spaces equipped with
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MERV-13/HEPA filtration for hard sessions on poor-air days; (iii) avoid
maximal-effort training within 24-48 h of a PM,.5 spike; and (iv)
formalize a simple monitoring routine (assign a staff member to check
PM,s/AQI and adjust the daily plan), alongside athlete self-monitoring
of breathlessness/fatigue to guide load adjustments.

For schools, universities, and health officials: adopt campus-level
PM, s monitoring and publish real-time dashboards; define clear
thresholds for modifying or postponing outdoor practices; invest in
ventilation/filtration upgrades for gyms; and incorporate air-quality
protocols into athletic policies and communications. To strengthen
the evidence base, future work should (a) validate binding
mechanisms with in-vitro assays (e.g., SPR/ITC) and endocrine
reporter systems, including SHBG/testosterone contexts; (b) measure
speciated ambient PAHs and/or urinary PAH metabolites alongside
training outcomes; (c) use randomized cross-over or filtration-
intervention designs to improve causal inference; and (d) extend
computations to enhanced-sampling/free-energy methods and to
4-6-ring PAHs to test size-progression more comprehensively.
Together, these steps translate the present findings into actionable
practice while charting a concrete research pathway for more
definitive mechanistic and policy guidance.
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