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of Nursing, Yichang Central People's Hospital, Yichang, China

Objective: To develop and internally validate interpretable machine learning (ML)
models for predicting individual central line-associated bloodstream infection
(CLABSI) risk in adult ICU patients with central venous catheters (CVCs) using
the MIMIC-1V database.

Methods: We conducted a retrospective observational cohort study using
the MIMIC-IV database. Adult ICU patients with both central venous catheter
placement and blood culture evaluation were included. Patients were classified
into CLABSI and non-CLABSI cohorts based on central venous catheter tip
culture results. A comprehensive set of demographic, physiological, laboratory,
therapeutic, and nursing variables was extracted. Feature selection employed
Least Absolute Shrinkage and Selection Operator (LASSO) regression. Seven
machine learning (ML) models—logistic regression, decision tree, random
forest, XGBoost, support vector machine, neural network, and gradient
boosting—were developed and compared. Discrimination and calibration were
assessed using the area under the receiver operating characteristic curve (AUC),
accuracy, sensitivity, specificity, F1 score, and Brier score. The optimal model
was interpreted with SHAP (SHapley Additive exPlanations) values to elucidate
feature contributions.

Results: Among 11,999 ICU patients, 519 (4.3%) developed CLABSI. CLABSI
patients were younger (61.0 vs. 66.0 years), had higher rates of multi-lumen
catheters (91.3 vs. 63.6%), mechanical ventilation (90.9 vs. 74.0%), and dialysis
(349 vs. 7.2%; all p<0.001). The random forest model achieved optimal
performance (AUC 0.950, 95% Cl 0.931-0.966; sensitivity 0.904, specificity
0.865), outperforming traditional models. SHAP analysis identified ICU length
of stay, unique caregivers, and arterial catheterization as top predictors. CLABSI
cases exhibited prolonged ICU stays, increased caregiver exposure, and elevated
inflammatory markers. Decision curve analysis confirmed clinical utility, with
robust performance maintained in sensitivity analyses.

Conclusion: Machine learning models, particularly the random forest model|,
accurately predict CLABSI risk in ICU patients. The use of interpretable Al
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techniques such as SHAP enhances transparency and provides actionable
insights for clinical practice. These findings support the development of early
warning systems to reduce CLABSI incidence and improve patient outcomes.
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central line-associated bloodstream infection, ICU, machine learning, risk prediction

mode, SHAP

1 Introduction

Central line-associated bloodstream infection (CLABSI) is
defined as a laboratory-confirmed bloodstream infection in a patient
with a central venous catheter (CVC) in place for more than 48 h prior
to the index positive blood culture, with no alternative source
identified (1). Despite sustained prevention initiatives, CLABSI
remains an enduring challenge in critical care, with reported incidence
ranging from 0.8 to 5.7 episodes per 1,000 catheter-days across
healthcare systems (2-4). Such variability reflects not only differences
in infrastructure and adherence to infection control practices but also
limitations in traditional surveillance sensitivity that may
underestimate the true burden (2-4). Clinically, CLABSI is associated
with a 2.1-3.4-fold increase in mortality and an excess economic
burden of approximately US$46,000 per episode, underscoring the
need for proactive, individualized risk stratification strategies to guide
timely preventive interventions (5).

Conventional risk assessment frameworks—often rule-based or
derived from limited multivariable regression models—have limited
capacity to represent the dynamic, nonlinear, temporally dependent
interactions among multiple factors and are ill-suited for real-time
clinical decision support in the intensive care unit (ICU) (6). Machine
learning (ML) methods have achieved superior performance over
traditional models in predicting complex ICU outcomes—such as
sepsis, mortality, and hemodynamic deterioration—by leveraging
high-dimensional electronic health record (EHR) data and capturing
latent, nonlinear interactions (7-9). Early investigations have applied
ML to catheter-related complications (10, 11). However, current
CLABSI- or catheter-focused predictive efforts exhibit several
methodological and translational gaps: (i) dependence on single-
center or narrowly defined cohorts with limited adult ICU specificity
(10, 11); (ii) restricted feature spaces with insufficient incorporation
of granular nursing-charted, time-varying exposure, and device
management variables and (iii) limited explainability, with “black box”
outputs impeding clinical trust and actionability (12, 13). These
deficiencies hinder integration of predictive tools into daily CLABSI
prevention bundles and early warning workflows.

Interpretable AI frameworks—particularly SHapley Additive
exPlanations (SHAP)—provide a principled means to decompose
model predictions into additive feature contributions, enabling
transparent linkage between elevated predicted risk and modifiable
care processes (13). Integrating explainability into model development
is essential to move from retrospective accuracy benchmarks toward
prospectively actionable, clinician-facing decision support.

Therefore, in this study we developed and internally validated a
suite of ML models for individualized CLABSI risk prediction in adult
ICU patients with CVCs using the MIMIC-IV database. We assembled
a comprehensive multidomain feature set encompassing demographic,
physiological, device-related, and

laboratory, therapeutic,
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nursing-charted variables, and applied Least Absolute Shrinkage and
Selection Operator (LASSO) for feature selection before training
seven commonly used algorithms under a standardized evaluation
framework. We then applied SHAP analysis to elucidate individual
feature contributions, with emphasis on potentially modifiable clinical
management factors.

Methodological Aims: We sought to develop and internally
validate a suite of interpretable machine learning models for
individualized CLABSI risk prediction in adult ICU patients with
CVCs using MIMIC-IV, identify the model with optimal
discrimination and calibration, and generate transparent feature
attributions to inform targeted prevention strategies. We prespecified
four hypotheses: (1) ML models would achieve high discrimination
(AUC > 0.90) using routinely collected EHR data; (2) a tree-based
ensemble (e.g., random forest or gradient boosting) would outperform
baseline logistic regression in both discrimination and calibration; (3)
SHAP analysis would highlight modifiable or process-related factors
(e.g., catheter dwell time, duration of mechanical ventilation prior to
CVC placement, arterial catheterization, exposure to specific antibiotic
classes, cumulative fluid balance parameters) as major contributors to
elevated predicted risk; and (4) the final interpretable model would
maintain acceptable calibration (low Brier score) while retaining
clinical relevance for integration into early warning workflows.

2 Materials and methods

This retrospective observational cohort study used data from the
Medical Information Mart for Intensive Care IV (MIMIC-1V)
database. MIMIC-1V, developed jointly by the Laboratory for
Computational Physiology at the Massachusetts Institute of
Technology, Beth Israel Deaconess Medical Center, and Philips
Healthcare, is a large, freely accessible, de-identified critical care
resource containing comprehensive demographic, laboratory,
diagnostic, outcome, and related data on hundreds of thousands of
ICU patients admitted between 2008 and 2019 (14). Access to the
database was granted after completion of the required online training
(author certification ID: 13278787). Because MIMIC-1V is publicly
available and fully de-identified, the requirement for institutional
review board (IRB) approval was waived.

We included adult ICU patients who had a central venous catheter
(CVC) placed and underwent blood culture testing. For patients with
multiple ICU stays, only the first admission was analyzed. Exclusion
criteria were: (1) age <18 years; (2) missing key demographic
information; (3) ICU length of stay <6 h; (4) positive blood cultures
collected within 48 h after CVC insertion (to exclude pre-existing
bacteremia); and (5) no blood culture data during the observation
period; (6) discharge, transfer, or death within 48h after
CVC insertion.
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2.1 Grouping

Owing to structural limitations of the MIMIC-IV database (e.g.,
incomplete documentation of catheter removal times and limited
clinical context), we operationalized CLABSI classification using
simplified blood culture-based criteria aligned with CDC surveillance
(15). CLABSI or
non-CLABSI. The CLABSI group comprised patients with at least one

principles Patients were categorized as
pathogenic positive blood culture obtained more than 48 h after
central venous catheter (CVC) insertion and before documented
CVC removal; when removal time was unavailable, cultures within
30 days of insertion were considered within the at-risk window.
Common skin commensals—coagulase-negative staphylococci,
Bacillus species (excluding B. anthracis), Corynebacterium species,
and Cutibacterium (formerly Propionibacterium) species—were
classified as true positives only if the same organism was isolated from
two or more blood culture sets drawn from separate venipunctures.
The non-CLABSI group consisted of patients without qualifying
positive blood cultures during the corresponding risk window; single
positive isolates of the above commensals (not meeting the
duplication criterion) were treated as contaminants and classified as
non-CLABSIL.

2.2 Data extraction and variable collection

We extracted data using Navicat Premium (v16.1.12) and R
(v4.3.3), linking tables through the unique stay_id identifier. To ensure
temporal integrity and prevent data leakage, all predictor variables
were extracted using only data available prior to the outcome
determination point. For model development, we established a
prediction time point at 48 h after catheter insertion, ensuring all
predictor variables were collected using data available up to this
time point.

We collected a comprehensive set of patient-level variables.
Demographic variables included sex, race, marital status, insurance
type, and age. Clinical variables included central venous catheter
(CVC) type and insertion site, use of mechanical ventilation,
vasopressor administration, arterial catheter placement, renal
replacement therapy, antibiotic exposure (antibiotic class and
administration within the 48 h preceding catheterization), presence of
other concomitant intravascular catheters, and CVC dwell time (for
prediction modeling, this was calculated as hours from insertion to
the 48-h prediction time point). Additional variables comprised
admission weight, body mass index (BMI), hospital length of stay
(calculated from admission to the prediction time point), ICU length
of stay (calculated from ICU admission to the prediction time point),
and duration of mechanical ventilation prior to catheterization
(hours).

Vital signs were summarized over a 48 h window (from catheter
insertion to 48 h post-insertion) and included temperature (mean,
maximum, minimum), heart rate (mean, maximum), systolic and
diastolic blood pressure (mean values), mean arterial pressure,
respiratory rate (mean), and oxygen saturation (mean, minimum).
Laboratory measurements (hematocrit, hemoglobin, platelet count,
lactate, creatinine, blood urea nitrogen, sodium, potassium, calcium,
prothrombin time [PT], partial thromboplastin time [PTT],
international normalized ratio [INR], glucose, and white blood cell
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count) were abstracted within a —24 to +48 h window relative to
catheter insertion.

Fluid intake and output (and net balance, if available), vasopressor
dose, nursing charting frequency, number of distinct nursing staff, and
nursing-related process indicators (including day vs. night shift
insertion) were recorded for the 24 h before catheterization and the
first 48 h after catheterization. CLABSI events were ascertained from
blood culture results, with the at-risk window defined as >48 h after
catheter insertion until catheter removal or day 30, whichever
occurred first. All catheter removal times were documented in
our dataset.

2.3 Statistical analysis

Categorical variables were expressed as n (%), and continuous
variables as median (IQR). Group differences were assessed using the
Chi-square test (or Fisher’s exact test when expected counts were
small) for categorical variables and the Mann-Whitney U test for
continuous variables. All statistical tests were two-sided with p < 0.05
considered significant. Variables with >20% missing values were
excluded. For baseline comparisons, missing values in categorical
variables were grouped as “Missing,” while missing values in
continuous variables were not imputed.

All remaining candidate variables (without prior univariate p-value
filtering) entered LASSO logistic regression. Before LASSO, categorical
missing values were imputed using the mode and continuous missing
values using the median (training set only). Categorical variables were
one-hot encoded; continuous variables were standardized. A stratified
5-fold cross-validation procedure selected the optimal lambda for
LASSO (alpha = 1). The 15 variables with the largest absolute coefficients
(non-zero after regularization) were retained for subsequent modeling.

To address class imbalance, SMOTE (applied only to the training
set) was combined with random under-sampling. We compared
SMOTE with no balancing (Supplementary Table 1); SMOTE
achieved comparable or superior AUC, F1 score, sensitivity, specificity,
and Brier score.

Data were split into training and test sets in an 8:2 ratio using
stratified random sampling to preserve class distribution. We evaluated
seven machine learning algorithms: logistic regression, decision tree,
random forest, XGBoost, support vector machine (SVM), artificial
neural network (ANN), and gradient boosting machine (GBM). To
ensure robust model selection and unbiased performance estimation,
we implemented nested cross-validation, where the outer loop (5-fold)
assessed generalization performance and the inner loop (3-fold)
optimized hyperparameters. For models with extensive parameter
spaces (>50 combinations), we employed randomized search with 50
iterations; otherwise, we conducted exhaustive grid search.
Hyperparameter grids were tailored to each algorithm and included
regularization parameters (C for logistic regression and SVM; alpha for
neural networks), tree-based parameters (max_depth, n_estimators,
min_samples_split, min_samples_leaf, and learning_rate for gradient
boosting methods), SVM-specific parameters (kernel type, gamma for
RBF kernel), neural network architecture (hidden_layer_sizes,
activation functions, learning_rate_init), and class imbalance handling
strategies (class_weight for applicable models, scale_pos_weight for
XGBoost). Each algorithm’s final model was retrained on the entire
training set using the hyperparameter configuration most frequently
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selected across outer folds. Model performance was comprehensively
evaluated using area under the receiver operating characteristic curve
(AUCQC), accuracy, sensitivity, specificity, F1 score (with decision
threshold optimized on the training set), and Brier score for calibration
assessment. We calculated 95% confidence intervals through 1,000
bootstrap resamples of the test set. Model calibration and clinical utility
were further assessed via calibration plots and decision curve analysis.
The best-performing model was interpreted using SHapley Additive
exPlanations (SHAP), applying TreeExplainer for tree-based models
and KernelExplainer for others. All analyses were implemented in

10.3389/fpubh.2025.1675077

Python (v3.10.0) using scikit-learn, XGBoost, and SHAP libraries. The
complete analytical workflow is illustrated in Figure 1.

3 Results
3.1 Baseline characteristics

Among 11,999 ICU patients undergoing central venous
catheterization, 519 (4.3%) developed CLABSI. Compared with those

15557 ICU admissions with central venous
catheterization were identified from the MIMIC-IV

database 1.Age <18 years.
2.Missing key demographic information.
3.ICU stays < 6 hours.
4.Positive blood cultures collected within 48
| hours after CVC insertion.
5.No blood culture data during the
observation period.
v 6.Discharge, transfer, or death within 48
hours after CVC insertion.
11999 ICU admissions were enrolled
Training set (80%)
Feature selection and
processing:
LASSO, SMOTE
v v

Model construction using 7

Testing set (20%)

machine learning algorithms

v

Hyperparameter optimization
using 5 - fold cross validation

.

[ Optimized models ]

Y

R

Final validation

l

Model interpretation (SHAP)

FIGURE 1
Study flowchart.
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without CLABSI, affected patients were younger (median age 61.0 vs.
66.0 years, p < 0.001); more frequently identified as non-White (42.2
vs. 32.3%, p < 0.001); more often married (60.3 vs. 51.2%, p < 0.001);
and more frequently covered by Medicaid or other insurance types
(23.5 vs. 16.9%, p < 0.001). They also had greater use of multi-lumen
catheters (91.3 vs. 63.6%) and higher frequencies of left internal
jugular (22.5 vs. 7.9%), left subclavian (13.9 vs. 5.8%), and right
subclavian (12.1 vs. 4.5%) venous access (all p < 0.001). Rates of
mechanical ventilation (90.9 vs. 74.0%), vasopressor use (67.4 vs.
49.8%), arterial catheterization (80.3 vs. 63.7%), and dialysis (34.9 vs.
7.2%) were likewise higher (all p < 0.001). Pre-catheter antibiotic
exposure within 48 h was more common (83.2 vs. 58.2%, p < 0.001),
with use of a broader range of antibiotic classes. Catheter dwell time
(median 48.00 vs. 46.65 h), hospital length of stay (29.73 vs. 9.95 days),
and ICU length of stay (20.81 vs. 3.32 days) were markedly longer (all
p<0.001). The CLABSI group further demonstrated higher
temperature, heart rate, platelet count, lactate, renal function
parameters, coagulation parameters, glucose, and white blood cell
count (all p < 0.001). Peri-catheter 24-h fluid input and output (pre-
and post-catheterization windows) were greater, and the number of
distinct caregivers was higher (median 36 vs. 10, p < 0.001). Detailed
baseline characteristics are provided in Supplementary Table 2.

3.2 Selected predictive features

We applied LASSO logistic regression for feature selection.
Figure 2 presents the top 15 selected features ranked by the absolute
magnitude of their LASSO coeflicients. ICU length of stay
contributed the
followed by pre-catheter

(icu_los_days) largest absolute coefficient,

mechanical ventilation duration

10.3389/fpubh.2025.1675077

(ventilation_hours_before_line) and dialysis status (on_dialysis).
Other influential features included 24-h pre-catheter fluid output,
number of antibiotic classes used, blood urea nitrogen (BUN), mean
heart rate, lactate, white blood cell count within the preceding 48 h,
age, maximum body temperature, mean respiratory rate, arterial
catheterization, unique caregivers, and 24-h post-catheter fluid output.
This feature set was subsequently used for model construction.

3.3 Model performance

We evaluated multiple machine learning algorithms for CLABSI
prediction (Table 1). Tree-based ensemble models consistently
outperformed single learners, with the random forest achieving the
strongest overall performance. The random forest attained an AUC of
0.950 (95% CI 0.931-0.966), sensitivity 0.904 (95% CI 0.863-0.943),
specificity 0.865 (95% CI 0.823-0.900), F1 score 0.858, and Brier score
0.088. Its PLR was 6.693 (95% CI 5.069-9.359) and NLR 0.111 (95%
CI0.065-0.158); PPV and NPV were 0.817 and 0.931, respectively—
collectively indicating excellent discrimination and good calibration.
Calibration analysis showed lower Brier scores for the random forest,
XGBoost, and gradient boosting (0.088, 0.093, and 0.098) than for
traditional models, confirming closer alignment between predicted
risks and observed outcomes. Decision curve analysis further
demonstrated that these ensemble models yielded the highest net
benefit across most clinically relevant thresholds, substantially
exceeding logistic regression and the single decision tree and
supporting superior potential clinical utility.

Because arterial catheters can themselves serve as a source of
bloodstream infection, raising the possibility that some arterial
events misattributed to CLABSI,

catheter-related were

Selected Features by LASSO (Top 15 Features)

icu_los_days
ventilation_hours_before line
on_dialysis 0.0107
fluid_output_24h_before 0.0092

antibiotic_types_count 0.0079

bun 0.0078

heart rate avg 0.0055
lactate

wbc_48h

age

temp_max
resp_rate_avg
arterial_line
unique_caregivers

fluid output 24h_after

0.0498

0.0223

0.00 0.01

FIGURE 2
Feature selection using LASSO.

0.02 0.03 0.04 0.05
Absolute LASSO Coefficient
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TABLE 1 Performance comparison of different machine learning models in predicting.

Models AUC Cutoff SEN SPE PLR NLR PPV NPV F1 Brier
(95%Cl) value (95%Cl)  (95%Cl)  (95%ClI)  (95%Cl) = (95%Cl)  (95%Cl) score  score

Logistic 0.910 (0.888- 0.258 0.760 (0.704- = 0.868 (0.833- | 5.762(4.395- | 0.277 (0.218- = 0.794 (0.741- = 0.844 (0.811- 0.776 0.124
Regression 0.932) 0.812) 0.900) 7.485) 0.342) 0.845) 0.885)
Decision 0.831 (0.796- 0.429 0.822 (0.774- | 0.833(0.789- | 4.917 (3.890- | 0.214 (0.154- | 0.767 (0.713— | 0.875 (0.840- 0.794 0.160
Tree 0.868) 0.872) 0.870) 6.466) 0.277) 0.821) 0.912)
Random 0.950 (0.931- 0.480 0.904 (0.863— | 0.865 (0.823— | 6.693 (5.069— | 0.111 (0.065- | 0.817 (0.768— | 0.931 (0.902— 0.858 0.088
Forest 0.966) 0.943) 0.900) 9.359) 0.158) 0.874) 0.959)

0.949 (0.933- 0.455 0.885 (0.847- = 0.875(0.837- | 7.054 (5.484- | 0.132(0.086- @ 0.825 (0.764- = 0.919 (0.890- 0.854 0.093
XGBoost 0.963) 0.924) 0.909) 9.879) 0.178) 0.874) 0.950)

0.919 (0.897- 0.446 0.856 (0.797- | 0.830 (0.795- | 5.022 (4.017- | 0.174 (0.116- | 0.771(0.717— | 0.896 (0.857— 0.811 0.113
SVM 0.940) 0.904) 0.872) 6.601) 0.242) 0.823) 0.928)
Artificial 0.922 (0.897- 0.070 0.889 (0.846- = 0.849 (0.810- | 5.885(4.680- = 0.130 (0.084- @ 0.797 (0.750- = 0.920 (0.889- 0.841 0.106
Neural 0.943) 0.929) 0.887) 7.936) 0.185) 0.850) 0.952)
Network
Gradient 0.937 (0.916- 0.349 0.856 (0.799- = 0.852(0.809- | 5.786 (4.481- @ 0.169 (0.124- = 0.795 (0.737- = 0.898 (0.858- 0.824 0.098
Boosting 0.955) 0.895) 0.888) 7.556) 0.235) 0.847) 0.928)

we conducted a prespecified sensitivity analysis excluding patients
with arterial catheterization. Performance metrics for all models,
including the random forest, remained materially unchanged
(Supplementary Table 3), underscoring the robustness of the
primary findings. To emphasize the principal results, only the
ROC, calibration, and decision curves of the best-performing
random forest model are presented in the main text (Figure 3);
curves for the remaining models are provided in Supplementary
Figures 1-6.

3.4 SHAP analysis for feature importance

To elucidate how individual predictors drive CLABSI risk
estimates, we applied SHAP to the final random forest model
(Figures 4, 5). ICU length of stay (icu_los_days) exerted the greatest
influence on predicted risk, followed by the number of unique
caregivers (unique_caregivers), arterial catheterization (arterial_line),
heart rate average (heart_rate_avg), maximum temperature (temp_
max), and white blood cell count within the specified 48-h window
(wbc_48h). Other impactful features included blood urea nitrogen
(BUN), lactate, age, fluid output (both before and after 24 h of catheter
insertion), whether the patient was on dialysis (on_dialysis), average
respiratory rate (resp_rate_avg), duration of mechanical ventilation
before catheter insertion (ventilation_hours_before_line), and the
number of  distinct antibiotic  classes  administered
(antibiotic_types_count).

Figure 5 provides the ranked importance profile and
corresponding feature effect (dependence) plots. Prolonged ICU stay,
a higher number of caregivers, and the presence of an arterial line
exhibited monotonic positive associations with predicted CLABSI risk
(clustered red points at higher SHAP values). In contrast, fluid output
demonstrated non-linear, bidirectional influences, suggesting
threshold or interaction effects. Higher heart rate, temperature, and
white blood cell counts similarly shifted predictions toward higher

risk, while other features showed varying degrees of impact.
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3.5 Individual-level SHAP force plot
interpretation

To further illustrate the model’s individual-level decision process,
we randomly selected several CLABSI-positive and CLABSI-negative
cases and visualized them using SHAP force plots (Figures 6, 7, with
additional examples in Supplementary Figures 7-14). In negative
cases, shorter ICU length of stay, fewer unique caregivers, shorter
duration of mechanical ventilation before catheter insertion, lower
bun, lower average heart rate, lower fluid output within 24 h before
and after catheterization, and lower wbc within 48 h (blue, pushing
the prediction toward lower risk) were the main factors contributing
to a negative classification. Physiological and laboratory parameters,
including these variables, further decreased the predicted risk.
Overall, the net contribution of SHAP values was predominantly
negative. Conversely, in positive cases, prolonged ICU length of stay,
a greater number of unique caregivers, presence of dialysis, increased
average respiratory rate, longer mechanical ventilation prior to
catheterization, higher average heart rate, bun, higher maximum
temperature, and a greater number of antibiotic types (red, pushing
the prediction toward higher risk) were the primary drivers of higher
predicted CLABSI probability. In some cases, these variables provided
additional SHAP values, further
risk assessment.

positive increasing the

4 Discussion
4.1 Main findings and model performance

In this study, we developed and validated a machine-learning—
based model to predict CLABSI risk using data from 11,999 ICU
patients, among whom 519 (4.3%) developed CLABSI. The
random forest model demonstrated excellent discrimination
(AUC 0.950; 95% CI 0.931-0.966), outperforming logistic

regression (AUC 0.910). These findings highlight the
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potential—rather than guaranteed—advantages of ensemble
methods for high-dimensional clinical prediction. Consistent with
Fu et al. (11), our results reinforce the capacity of ensemble
approaches to capture nonlinear relationships and higher-
order interactions.

Frontiers in Public Health

Recent evaluations of electronic health record modeling
frameworks have compared binary, survival, multinomial, and
competing-risk random forests for predicting hospital-acquired
infections, including CLABSI (16). While survival and competing-risk
models can more fully represent event timing and competing
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outcomes, binary classifiers remain predominant in practice due to The CLABSI incidence was 4.3%, consistent with published
parsimony and computational efficiency, with little loss in  rates (0.8-5.7 per 1,000 catheter-days) (2, 3). Patients with CLABSI
discrimination. Our results concur, showing that a binary random  exhibited markedly longer catheter dwell time (median 48.00 vs.
forest yields strong CLABSI risk discrimination while preserving  46.65 h), and prolonged hospital (29.73 vs. 9.95 days) and ICU stays
implementation efficiency. (20.81 vs. 3.32 days). These associations likely reflect both
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underlying severity and the impact of CLABSI itself. Given the
observational design, temporal directionality and causality cannot
be inferred.

4.2 Model interpretability and risk factor
insights

SHAP analysis delineated a hierarchy of risk determinants,
with ICU length of stay (LOS) the dominant predictor. ICU LOS
likely embodies both severity-of-illness burden and cumulative
exposure to nosocomial hazards—invasive procedures, pathogen
load, and evolving immune dysfunction (17-19). Prior work
similarly demonstrates nonlinear escalation of adverse outcome
risk beyond approximately seven ICU days, though residual
confounding and time-dependent bias may partially shape this
trajectory (20, 21).

Pre-catheterization mechanical ventilation duration showed a
strong, non-causal association with CLABSI risk. Rather than
implying that ventilation causes CLABSI, it operates as a proxy for
severity and invasive care intensity. Sedation-related immobility,
repeated airway manipulation, and ventilator-associated
pneumonia may jointly amplify systemic inflammation and
compromise catheter site defenses (18, 22). Unmeasured
confounders likely contribute and justify prospective mechanistic
evaluation (23, 24).

Fluid balance added incremental stratification value. Fluid
overload (>10% positive balance) has been linked to glycocalyx
disruption and endothelial injury, plausibly facilitating catheter
colonization (25, 26). Capillary leak-related third spacing may further
hinder immune cell trafficking and antibiotic penetration at insertion
sites (27). These data generate a testable hypothesis that conservative
or optimized fluid strategies could mitigate risk, pending
interventional confirmation.

Greater pre-catheterization antibiotic exposure was positively
associated with CLABSI but should not be interpreted as causal.
Broad-spectrum or prolonged regimens may select for resistant
flora and induce dysbiosis (22, 28). The median of three antibiotic
classes in CLABSI cases versus one in controls likely marks clinical
complexity or underlying susceptibility rather than a direct
pathogenic effect.

Model-derived interaction patterns underscore compounded risk
in multi-system dysfunction: concurrent dialysis (34.9%) and
ventilation suggested an approximately multiplicative contribution
within the model’s predictive structure, without implying biological
synergy. Elevated use of multi-lumen catheters (91.3 vs. 63.6%) and
subclavian access similarly aligned with higher predicted risk,
potentially reflecting device complexity, indication bias, operator
factors, or residual confounding.

4.3 Innovation

A principal innovation of this work is embedding SHAP-based
interpretability directly within the model development pipeline.
SHAP force plots generate patient-level decomposition of predicted
risk, furnishing clinicians with a transparent account of how
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specific features elevate or suppress estimated CLABSI probability
and thereby alleviating black-box concerns. The high negative
predictive value (93.1% at the observed prevalence) supports a
rule-out application that could curtail unwarranted catheter
removals, while EHR integration offers a pathway to real-time,
continuously refreshed risk stratification. Decision curve analysis
demonstrated net clinical benefit across threshold probabilities of
10-60%; definitive impact on practice, however, awaits prospective
implementation studies. SHAP-informed rankings are explicitly
hypothesis-generating and may guide tailored prevention
measures—for example, intensified surveillance or bundle
reinforcement in patients with mechanical ventilation >72 h and
positive fluid balance >2 L/24 h. Exploratory inclusion of nursing
process-of-care indicators (e.g., catheter check frequency, number
of providers) operationalizes care quality and suggests
opportunities to optimize catheter maintenance protocols and
early antifungal prophylaxis. These indicators contributed
incremental predictive signal while yielding implementation-
oriented, hypothesis-generating insights for nursing practice

improvement.

4.4 Limitations

SHAP does not confer causal identification. Its values
approximate marginal feature contributions under model- and
data-dependent distributional assumptions and can become
variance-prone with strong collinearity, out-of-distribution feature
combinations, or compression of dynamic trajectories into static
aggregates (29). Interaction structure may be understated unless
explicit interaction attributions are calculated, and pronounced
non-linear patterns risk overinterpretation as mechanistic
pathways. Independence assumptions in certain computational
backends can distort attribution when features are correlated.
Consequently, SHAP outputs should be triangulated with clinical
reasoning, perturbation/sensitivity analyses, and formal causal
inference methods rather than treated as definitive etiologic
evidence. A critical limitation concerns the temporal definition of
CLABSI and its implications for model applicability and
interpretability. By adhering to the CDC definition requiring >48 h
of catheterization for CLABSI diagnosis, our cohort construction
inherently introduces classification bias: patients with catheter
dwell times less than 48 h are systematically classified as
non-CLABSI cases, regardless of their true infection risk trajectory.
This design constraint means our model lacks positive CLABSI
examples for early catheter removal scenarios, potentially biasing
risk estimates downward for patients whose catheters are removed
before the 48-h threshold. Consequently, the model cannot reliably
assess infection risk for patients with anticipated short-duration
catheterizations, limiting its utility in clinical scenarios where early
catheter removal is planned or indicated. In real-world clinical
practice, this temporal constraint has important implications for
model deployment and interpretation. The risk predictions are
most valid for patients expected to have prolonged catheterization
(>48 h), while assessments for patients with anticipated shorter
catheter durations should be interpreted with caution. Furthermore,
computing CLABSI risk after catheter removal may have limited
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clinical utility, as preventive interventions are no longer actionable
post-removal. Important contextual determinants—catheter
maintenance quality, hand hygiene adherence, and environmental
or workflow factors—were unavailable in the MIMIC database.
Class imbalance (4.3% CLABSI) persists as a potential source of
performance drift despite SMOTE rebalancing. Omission of
microbiological determinants (e.g., biofilm phenotypes) and
granular procedural/nursing metrics (e.g., insertion attempt count)
Residual

indication bias, and potential immortal time bias tied to time-

constrains mechanistic resolution. confounding,
dependent exposures (e.g., pre-catheter ventilation duration) may

influence observed associations.

4.5 Future directions

(1) rigorous external validation across heterogeneous ICUs
and healthcare systems; (2) prospective evaluation of decision
support integration and its effect on CLABSI incidence,
antimicrobial use, and patient-centered outcomes; (3) adoption
of temporal deep learning architectures (e.g., transformer or
sequence models) and potential fusion with imaging or waveform
data; (4) application of causal inference (target trial emulation,
marginal structural models) to disentangle exposure-outcome
relationships; (5) incorporation of smart catheter sensor streams
plus high-resolution nursing documentation, tested via stepped-
wedge or hybrid effectiveness—-implementation designs; (6)
health economic modeling to define cost-effectiveness and
budget impact; and (7) prospective analyses with time-updated
covariates and competing risk frameworks to minimize immortal
time and informative while

censoring biases refining

temporal attribution.

5 Conclusion

We built a random forest-based model for CLABSI risk that
demonstrated strong predictive performance and, through SHAP,
delivered individualized risk attribution. Its integration into clinical
workflows may support earlier targeted prevention and more
efficient resource use. Prospective external studies are required to
establish real-world generalizability, calibration, and clinical
impact.
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