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Objective: To develop and internally validate interpretable machine learning (ML) 
models for predicting individual central line-associated bloodstream infection 
(CLABSI) risk in adult ICU patients with central venous catheters (CVCs) using 
the MIMIC-IV database.
Methods: We conducted a retrospective observational cohort study using 
the MIMIC-IV database. Adult ICU patients with both central venous catheter 
placement and blood culture evaluation were included. Patients were classified 
into CLABSI and non-CLABSI cohorts based on central venous catheter tip 
culture results. A comprehensive set of demographic, physiological, laboratory, 
therapeutic, and nursing variables was extracted. Feature selection employed 
Least Absolute Shrinkage and Selection Operator (LASSO) regression. Seven 
machine learning (ML) models—logistic regression, decision tree, random 
forest, XGBoost, support vector machine, neural network, and gradient 
boosting—were developed and compared. Discrimination and calibration were 
assessed using the area under the receiver operating characteristic curve (AUC), 
accuracy, sensitivity, specificity, F1 score, and Brier score. The optimal model 
was interpreted with SHAP (SHapley Additive exPlanations) values to elucidate 
feature contributions.
Results: Among 11,999 ICU patients, 519 (4.3%) developed CLABSI. CLABSI 
patients were younger (61.0 vs. 66.0 years), had higher rates of multi-lumen 
catheters (91.3 vs. 63.6%), mechanical ventilation (90.9 vs. 74.0%), and dialysis 
(34.9 vs. 7.2%; all p < 0.001). The random forest model achieved optimal 
performance (AUC 0.950, 95% CI 0.931–0.966; sensitivity 0.904, specificity 
0.865), outperforming traditional models. SHAP analysis identified ICU length 
of stay, unique caregivers, and arterial catheterization as top predictors. CLABSI 
cases exhibited prolonged ICU stays, increased caregiver exposure, and elevated 
inflammatory markers. Decision curve analysis confirmed clinical utility, with 
robust performance maintained in sensitivity analyses.
Conclusion: Machine learning models, particularly the random forest model, 
accurately predict CLABSI risk in ICU patients. The use of interpretable AI 
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techniques such as SHAP enhances transparency and provides actionable 
insights for clinical practice. These findings support the development of early 
warning systems to reduce CLABSI incidence and improve patient outcomes.
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central line-associated bloodstream infection, ICU, machine learning, risk prediction 
mode, SHAP

1 Introduction

Central line-associated bloodstream infection (CLABSI) is 
defined as a laboratory-confirmed bloodstream infection in a patient 
with a central venous catheter (CVC) in place for more than 48 h prior 
to the index positive blood culture, with no alternative source 
identified (1). Despite sustained prevention initiatives, CLABSI 
remains an enduring challenge in critical care, with reported incidence 
ranging from 0.8 to 5.7 episodes per 1,000 catheter-days across 
healthcare systems (2–4). Such variability reflects not only differences 
in infrastructure and adherence to infection control practices but also 
limitations in traditional surveillance sensitivity that may 
underestimate the true burden (2–4). Clinically, CLABSI is associated 
with a 2.1–3.4-fold increase in mortality and an excess economic 
burden of approximately US$46,000 per episode, underscoring the 
need for proactive, individualized risk stratification strategies to guide 
timely preventive interventions (5).

Conventional risk assessment frameworks—often rule-based or 
derived from limited multivariable regression models—have limited 
capacity to represent the dynamic, nonlinear, temporally dependent 
interactions among multiple factors and are ill-suited for real-time 
clinical decision support in the intensive care unit (ICU) (6). Machine 
learning (ML) methods have achieved superior performance over 
traditional models in predicting complex ICU outcomes—such as 
sepsis, mortality, and hemodynamic deterioration—by leveraging 
high-dimensional electronic health record (EHR) data and capturing 
latent, nonlinear interactions (7–9). Early investigations have applied 
ML to catheter-related complications (10, 11). However, current 
CLABSI- or catheter-focused predictive efforts exhibit several 
methodological and translational gaps: (i) dependence on single-
center or narrowly defined cohorts with limited adult ICU specificity 
(10, 11); (ii) restricted feature spaces with insufficient incorporation 
of granular nursing-charted, time-varying exposure, and device 
management variables and (iii) limited explainability, with “black box” 
outputs impeding clinical trust and actionability (12, 13). These 
deficiencies hinder integration of predictive tools into daily CLABSI 
prevention bundles and early warning workflows.

Interpretable AI frameworks—particularly SHapley Additive 
exPlanations (SHAP)—provide a principled means to decompose 
model predictions into additive feature contributions, enabling 
transparent linkage between elevated predicted risk and modifiable 
care processes (13). Integrating explainability into model development 
is essential to move from retrospective accuracy benchmarks toward 
prospectively actionable, clinician-facing decision support.

Therefore, in this study we developed and internally validated a 
suite of ML models for individualized CLABSI risk prediction in adult 
ICU patients with CVCs using the MIMIC-IV database. We assembled 
a comprehensive multidomain feature set encompassing demographic, 
physiological, laboratory, therapeutic, device-related, and 

nursing-charted variables, and applied Least Absolute Shrinkage and 
Selection Operator (LASSO) for feature selection before training 
seven commonly used algorithms under a standardized evaluation 
framework. We then applied SHAP analysis to elucidate individual 
feature contributions, with emphasis on potentially modifiable clinical 
management factors.

Methodological Aims: We  sought to develop and internally 
validate a suite of interpretable machine learning models for 
individualized CLABSI risk prediction in adult ICU patients with 
CVCs using MIMIC-IV, identify the model with optimal 
discrimination and calibration, and generate transparent feature 
attributions to inform targeted prevention strategies. We prespecified 
four hypotheses: (1) ML models would achieve high discrimination 
(AUC > 0.90) using routinely collected EHR data; (2) a tree-based 
ensemble (e.g., random forest or gradient boosting) would outperform 
baseline logistic regression in both discrimination and calibration; (3) 
SHAP analysis would highlight modifiable or process-related factors 
(e.g., catheter dwell time, duration of mechanical ventilation prior to 
CVC placement, arterial catheterization, exposure to specific antibiotic 
classes, cumulative fluid balance parameters) as major contributors to 
elevated predicted risk; and (4) the final interpretable model would 
maintain acceptable calibration (low Brier score) while retaining 
clinical relevance for integration into early warning workflows.

2 Materials and methods

This retrospective observational cohort study used data from the 
Medical Information Mart for Intensive Care IV (MIMIC-IV) 
database. MIMIC-IV, developed jointly by the Laboratory for 
Computational Physiology at the Massachusetts Institute of 
Technology, Beth Israel Deaconess Medical Center, and Philips 
Healthcare, is a large, freely accessible, de-identified critical care 
resource containing comprehensive demographic, laboratory, 
diagnostic, outcome, and related data on hundreds of thousands of 
ICU patients admitted between 2008 and 2019 (14). Access to the 
database was granted after completion of the required online training 
(author certification ID: 13278787). Because MIMIC-IV is publicly 
available and fully de-identified, the requirement for institutional 
review board (IRB) approval was waived.

We included adult ICU patients who had a central venous catheter 
(CVC) placed and underwent blood culture testing. For patients with 
multiple ICU stays, only the first admission was analyzed. Exclusion 
criteria were: (1) age <18 years; (2) missing key demographic 
information; (3) ICU length of stay <6 h; (4) positive blood cultures 
collected within 48 h after CVC insertion (to exclude pre-existing 
bacteremia); and (5) no blood culture data during the observation 
period; (6) discharge, transfer, or death within 48 h after 
CVC insertion.
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2.1 Grouping

Owing to structural limitations of the MIMIC-IV database (e.g., 
incomplete documentation of catheter removal times and limited 
clinical context), we  operationalized CLABSI classification using 
simplified blood culture–based criteria aligned with CDC surveillance 
principles (15). Patients were categorized as CLABSI or 
non-CLABSI. The CLABSI group comprised patients with at least one 
pathogenic positive blood culture obtained more than 48 h after 
central venous catheter (CVC) insertion and before documented 
CVC removal; when removal time was unavailable, cultures within 
30 days of insertion were considered within the at-risk window. 
Common skin commensals—coagulase-negative staphylococci, 
Bacillus species (excluding B. anthracis), Corynebacterium species, 
and Cutibacterium (formerly Propionibacterium) species—were 
classified as true positives only if the same organism was isolated from 
two or more blood culture sets drawn from separate venipunctures. 
The non-CLABSI group consisted of patients without qualifying 
positive blood cultures during the corresponding risk window; single 
positive isolates of the above commensals (not meeting the 
duplication criterion) were treated as contaminants and classified as 
non-CLABSI.

2.2 Data extraction and variable collection

We extracted data using Navicat Premium (v16.1.12) and R 
(v4.3.3), linking tables through the unique stay_id identifier. To ensure 
temporal integrity and prevent data leakage, all predictor variables 
were extracted using only data available prior to the outcome 
determination point. For model development, we  established a 
prediction time point at 48 h after catheter insertion, ensuring all 
predictor variables were collected using data available up to this 
time point.

We collected a comprehensive set of patient-level variables. 
Demographic variables included sex, race, marital status, insurance 
type, and age. Clinical variables included central venous catheter 
(CVC) type and insertion site, use of mechanical ventilation, 
vasopressor administration, arterial catheter placement, renal 
replacement therapy, antibiotic exposure (antibiotic class and 
administration within the 48 h preceding catheterization), presence of 
other concomitant intravascular catheters, and CVC dwell time (for 
prediction modeling, this was calculated as hours from insertion to 
the 48-h prediction time point). Additional variables comprised 
admission weight, body mass index (BMI), hospital length of stay 
(calculated from admission to the prediction time point), ICU length 
of stay (calculated from ICU admission to the prediction time point), 
and duration of mechanical ventilation prior to catheterization 
(hours).

Vital signs were summarized over a 48 h window (from catheter 
insertion to 48 h post-insertion) and included temperature (mean, 
maximum, minimum), heart rate (mean, maximum), systolic and 
diastolic blood pressure (mean values), mean arterial pressure, 
respiratory rate (mean), and oxygen saturation (mean, minimum). 
Laboratory measurements (hematocrit, hemoglobin, platelet count, 
lactate, creatinine, blood urea nitrogen, sodium, potassium, calcium, 
prothrombin time [PT], partial thromboplastin time [PTT], 
international normalized ratio [INR], glucose, and white blood cell 

count) were abstracted within a −24 to +48 h window relative to 
catheter insertion.

Fluid intake and output (and net balance, if available), vasopressor 
dose, nursing charting frequency, number of distinct nursing staff, and 
nursing-related process indicators (including day vs. night shift 
insertion) were recorded for the 24 h before catheterization and the 
first 48 h after catheterization. CLABSI events were ascertained from 
blood culture results, with the at-risk window defined as >48 h after 
catheter insertion until catheter removal or day 30, whichever 
occurred first. All catheter removal times were documented in 
our dataset.

2.3 Statistical analysis

Categorical variables were expressed as n (%), and continuous 
variables as median (IQR). Group differences were assessed using the 
Chi-square test (or Fisher’s exact test when expected counts were 
small) for categorical variables and the Mann–Whitney U test for 
continuous variables. All statistical tests were two-sided with p < 0.05 
considered significant. Variables with >20% missing values were 
excluded. For baseline comparisons, missing values in categorical 
variables were grouped as “Missing,” while missing values in 
continuous variables were not imputed.

All remaining candidate variables (without prior univariate p-value 
filtering) entered LASSO logistic regression. Before LASSO, categorical 
missing values were imputed using the mode and continuous missing 
values using the median (training set only). Categorical variables were 
one-hot encoded; continuous variables were standardized. A stratified 
5-fold cross-validation procedure selected the optimal lambda for 
LASSO (alpha = 1). The 15 variables with the largest absolute coefficients 
(non-zero after regularization) were retained for subsequent modeling.

To address class imbalance, SMOTE (applied only to the training 
set) was combined with random under-sampling. We  compared 
SMOTE with no balancing (Supplementary Table  1); SMOTE 
achieved comparable or superior AUC, F1 score, sensitivity, specificity, 
and Brier score.

Data were split into training and test sets in an 8:2 ratio using 
stratified random sampling to preserve class distribution. We evaluated 
seven machine learning algorithms: logistic regression, decision tree, 
random forest, XGBoost, support vector machine (SVM), artificial 
neural network (ANN), and gradient boosting machine (GBM). To 
ensure robust model selection and unbiased performance estimation, 
we implemented nested cross-validation, where the outer loop (5-fold) 
assessed generalization performance and the inner loop (3-fold) 
optimized hyperparameters. For models with extensive parameter 
spaces (>50 combinations), we employed randomized search with 50 
iterations; otherwise, we  conducted exhaustive grid search. 
Hyperparameter grids were tailored to each algorithm and included 
regularization parameters (C for logistic regression and SVM; alpha for 
neural networks), tree-based parameters (max_depth, n_estimators, 
min_samples_split, min_samples_leaf, and learning_rate for gradient 
boosting methods), SVM-specific parameters (kernel type, gamma for 
RBF kernel), neural network architecture (hidden_layer_sizes, 
activation functions, learning_rate_init), and class imbalance handling 
strategies (class_weight for applicable models, scale_pos_weight for 
XGBoost). Each algorithm’s final model was retrained on the entire 
training set using the hyperparameter configuration most frequently 
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selected across outer folds. Model performance was comprehensively 
evaluated using area under the receiver operating characteristic curve 
(AUC), accuracy, sensitivity, specificity, F1 score (with decision 
threshold optimized on the training set), and Brier score for calibration 
assessment. We calculated 95% confidence intervals through 1,000 
bootstrap resamples of the test set. Model calibration and clinical utility 
were further assessed via calibration plots and decision curve analysis. 
The best-performing model was interpreted using SHapley Additive 
exPlanations (SHAP), applying TreeExplainer for tree-based models 
and KernelExplainer for others. All analyses were implemented in 

Python (v3.10.0) using scikit-learn, XGBoost, and SHAP libraries. The 
complete analytical workflow is illustrated in Figure 1.

3 Results

3.1 Baseline characteristics

Among 11,999 ICU patients undergoing central venous 
catheterization, 519 (4.3%) developed CLABSI. Compared with those 

FIGURE 1

Study flowchart.
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without CLABSI, affected patients were younger (median age 61.0 vs. 
66.0 years, p < 0.001); more frequently identified as non-White (42.2 
vs. 32.3%, p < 0.001); more often married (60.3 vs. 51.2%, p < 0.001); 
and more frequently covered by Medicaid or other insurance types 
(23.5 vs. 16.9%, p < 0.001). They also had greater use of multi-lumen 
catheters (91.3 vs. 63.6%) and higher frequencies of left internal 
jugular (22.5 vs. 7.9%), left subclavian (13.9 vs. 5.8%), and right 
subclavian (12.1 vs. 4.5%) venous access (all p < 0.001). Rates of 
mechanical ventilation (90.9 vs. 74.0%), vasopressor use (67.4 vs. 
49.8%), arterial catheterization (80.3 vs. 63.7%), and dialysis (34.9 vs. 
7.2%) were likewise higher (all p < 0.001). Pre-catheter antibiotic 
exposure within 48 h was more common (83.2 vs. 58.2%, p < 0.001), 
with use of a broader range of antibiotic classes. Catheter dwell time 
(median 48.00 vs. 46.65 h), hospital length of stay (29.73 vs. 9.95 days), 
and ICU length of stay (20.81 vs. 3.32 days) were markedly longer (all 
p < 0.001). The CLABSI group further demonstrated higher 
temperature, heart rate, platelet count, lactate, renal function 
parameters, coagulation parameters, glucose, and white blood cell 
count (all p < 0.001). Peri-catheter 24-h fluid input and output (pre- 
and post-catheterization windows) were greater, and the number of 
distinct caregivers was higher (median 36 vs. 10, p < 0.001). Detailed 
baseline characteristics are provided in Supplementary Table 2.

3.2 Selected predictive features

We applied LASSO logistic regression for feature selection. 
Figure 2 presents the top 15 selected features ranked by the absolute 
magnitude of their LASSO coefficients. ICU length of stay 
(icu_los_days) contributed the largest absolute coefficient, 
followed by pre-catheter mechanical ventilation duration 

(ventilation_hours_before_line) and dialysis status (on_dialysis). 
Other influential features included 24-h pre-catheter fluid output, 
number of antibiotic classes used, blood urea nitrogen (BUN), mean 
heart rate, lactate, white blood cell count within the preceding 48 h, 
age, maximum body temperature, mean respiratory rate, arterial 
catheterization, unique caregivers, and 24-h post-catheter fluid output. 
This feature set was subsequently used for model construction.

3.3 Model performance

We evaluated multiple machine learning algorithms for CLABSI 
prediction (Table  1). Tree-based ensemble models consistently 
outperformed single learners, with the random forest achieving the 
strongest overall performance. The random forest attained an AUC of 
0.950 (95% CI 0.931–0.966), sensitivity 0.904 (95% CI 0.863–0.943), 
specificity 0.865 (95% CI 0.823–0.900), F1 score 0.858, and Brier score 
0.088. Its PLR was 6.693 (95% CI 5.069–9.359) and NLR 0.111 (95% 
CI 0.065–0.158); PPV and NPV were 0.817 and 0.931, respectively—
collectively indicating excellent discrimination and good calibration. 
Calibration analysis showed lower Brier scores for the random forest, 
XGBoost, and gradient boosting (0.088, 0.093, and 0.098) than for 
traditional models, confirming closer alignment between predicted 
risks and observed outcomes. Decision curve analysis further 
demonstrated that these ensemble models yielded the highest net 
benefit across most clinically relevant thresholds, substantially 
exceeding logistic regression and the single decision tree and 
supporting superior potential clinical utility.

Because arterial catheters can themselves serve as a source of 
bloodstream infection, raising the possibility that some arterial 
catheter–related events were misattributed to CLABSI, 

FIGURE 2

Feature selection using LASSO.
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we conducted a prespecified sensitivity analysis excluding patients 
with arterial catheterization. Performance metrics for all models, 
including the random forest, remained materially unchanged 
(Supplementary Table  3), underscoring the robustness of the 
primary findings. To emphasize the principal results, only the 
ROC, calibration, and decision curves of the best-performing 
random forest model are presented in the main text (Figure 3); 
curves for the remaining models are provided in Supplementary  
Figures 1–6.

3.4 SHAP analysis for feature importance

To elucidate how individual predictors drive CLABSI risk 
estimates, we  applied SHAP to the final random forest model 
(Figures 4, 5). ICU length of stay (icu_los_days) exerted the greatest 
influence on predicted risk, followed by the number of unique 
caregivers (unique_caregivers), arterial catheterization (arterial_line), 
heart rate average (heart_rate_avg), maximum temperature (temp_
max), and white blood cell count within the specified 48-h window 
(wbc_48h). Other impactful features included blood urea nitrogen 
(BUN), lactate, age, fluid output (both before and after 24 h of catheter 
insertion), whether the patient was on dialysis (on_dialysis), average 
respiratory rate (resp_rate_avg), duration of mechanical ventilation 
before catheter insertion (ventilation_hours_before_line), and the 
number of distinct antibiotic classes administered 
(antibiotic_types_count).

Figure  5 provides the ranked importance profile and 
corresponding feature effect (dependence) plots. Prolonged ICU stay, 
a higher number of caregivers, and the presence of an arterial line 
exhibited monotonic positive associations with predicted CLABSI risk 
(clustered red points at higher SHAP values). In contrast, fluid output 
demonstrated non-linear, bidirectional influences, suggesting 
threshold or interaction effects. Higher heart rate, temperature, and 
white blood cell counts similarly shifted predictions toward higher 
risk, while other features showed varying degrees of impact.

3.5 Individual-level SHAP force plot 
interpretation

To further illustrate the model’s individual-level decision process, 
we randomly selected several CLABSI-positive and CLABSI-negative 
cases and visualized them using SHAP force plots (Figures 6, 7, with 
additional examples in Supplementary Figures  7–14). In negative 
cases, shorter ICU length of stay, fewer unique caregivers, shorter 
duration of mechanical ventilation before catheter insertion, lower 
bun, lower average heart rate, lower fluid output within 24 h before 
and after catheterization, and lower wbc within 48 h (blue, pushing 
the prediction toward lower risk) were the main factors contributing 
to a negative classification. Physiological and laboratory parameters, 
including these variables, further decreased the predicted risk. 
Overall, the net contribution of SHAP values was predominantly 
negative. Conversely, in positive cases, prolonged ICU length of stay, 
a greater number of unique caregivers, presence of dialysis, increased 
average respiratory rate, longer mechanical ventilation prior to 
catheterization, higher average heart rate, bun, higher maximum 
temperature, and a greater number of antibiotic types (red, pushing 
the prediction toward higher risk) were the primary drivers of higher 
predicted CLABSI probability. In some cases, these variables provided 
additional positive SHAP values, further increasing the 
risk assessment.

4 Discussion

4.1 Main findings and model performance

In this study, we developed and validated a machine-learning–
based model to predict CLABSI risk using data from 11,999 ICU 
patients, among whom 519 (4.3%) developed CLABSI. The 
random forest model demonstrated excellent discrimination 
(AUC 0.950; 95% CI 0.931–0.966), outperforming logistic 
regression (AUC 0.910). These findings highlight the 

TABLE 1  Performance comparison of different machine learning models in predicting.

Models AUC 
(95%CI)

Cutoff 
value

SEN 
(95%CI)

SPE 
(95%CI)

PLR 
(95%CI)

NLR 
(95%CI)

PPV 
(95%CI)

NPV 
(95%CI)

F1 
score

Brier 
score

Logistic 

Regression

0.910 (0.888–

0.932)

0.258 0.760 (0.704–

0.812)

0.868 (0.833–

0.900)

5.762 (4.395–

7.485)

0.277 (0.218–

0.342)

0.794 (0.741–

0.845)

0.844 (0.811–

0.885)

0.776 0.124

Decision 

Tree

0.831 (0.796–

0.868)

0.429 0.822 (0.774–

0.872)

0.833 (0.789–

0.870)

4.917 (3.890–

6.466)

0.214 (0.154–

0.277)

0.767 (0.713–

0.821)

0.875 (0.840–

0.912)

0.794 0.160

Random 

Forest

0.950 (0.931–

0.966)

0.480 0.904 (0.863–

0.943)

0.865 (0.823–

0.900)

6.693 (5.069–

9.359)

0.111 (0.065–

0.158)

0.817 (0.768–

0.874)

0.931 (0.902–

0.959)

0.858 0.088

XGBoost

0.949 (0.933–

0.963)

0.455 0.885 (0.847–

0.924)

0.875 (0.837–

0.909)

7.054 (5.484–

9.879)

0.132 (0.086–

0.178)

0.825 (0.764–

0.874)

0.919 (0.890–

0.950)

0.854 0.093

SVM

0.919 (0.897–

0.940)

0.446 0.856 (0.797–

0.904)

0.830 (0.795–

0.872)

5.022 (4.017–

6.601)

0.174 (0.116–

0.242)

0.771 (0.717–

0.823)

0.896 (0.857–

0.928)

0.811 0.113

Artificial 

Neural 

Network

0.922 (0.897–

0.943)

0.070 0.889 (0.846–

0.929)

0.849 (0.810–

0.887)

5.885 (4.680–

7.936)

0.130 (0.084–

0.185)

0.797 (0.750–

0.850)

0.920 (0.889–

0.952)

0.841 0.106

Gradient 

Boosting

0.937 (0.916–

0.955)

0.349 0.856 (0.799–

0.895)

0.852 (0.809–

0.888)

5.786 (4.481–

7.556)

0.169 (0.124–

0.235)

0.795 (0.737–

0.847)

0.898 (0.858–

0.928)

0.824 0.098

https://doi.org/10.3389/fpubh.2025.1675077
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


He et al.� 10.3389/fpubh.2025.1675077

Frontiers in Public Health 07 frontiersin.org

potential—rather than guaranteed—advantages of ensemble 
methods for high-dimensional clinical prediction. Consistent with 
Fu et  al. (11), our results reinforce the capacity of ensemble 
approaches to capture nonlinear relationships and higher-
order interactions.

Recent evaluations of electronic health record modeling 
frameworks have compared binary, survival, multinomial, and 
competing-risk random forests for predicting hospital-acquired 
infections, including CLABSI (16). While survival and competing-risk 
models can more fully represent event timing and competing 

FIGURE 3

Random forest evaluation.

FIGURE 4

SHAP feature importance bar plot.
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outcomes, binary classifiers remain predominant in practice due to 
parsimony and computational efficiency, with little loss in 
discrimination. Our results concur, showing that a binary random 
forest yields strong CLABSI risk discrimination while preserving 
implementation efficiency.

The CLABSI incidence was 4.3%, consistent with published 
rates (0.8–5.7 per 1,000 catheter-days) (2, 3). Patients with CLABSI 
exhibited markedly longer catheter dwell time (median 48.00 vs. 
46.65 h), and prolonged hospital (29.73 vs. 9.95 days) and ICU stays 
(20.81 vs. 3.32 days). These associations likely reflect both 

FIGURE 5

SHAP Beeswarm plot.

FIGURE 6

SHAP force plot negative sample 1.

FIGURE 7

SHAP force plot positive sample 1.
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underlying severity and the impact of CLABSI itself. Given the 
observational design, temporal directionality and causality cannot 
be inferred.

4.2 Model interpretability and risk factor 
insights

SHAP analysis delineated a hierarchy of risk determinants, 
with ICU length of stay (LOS) the dominant predictor. ICU LOS 
likely embodies both severity-of-illness burden and cumulative 
exposure to nosocomial hazards—invasive procedures, pathogen 
load, and evolving immune dysfunction (17–19). Prior work 
similarly demonstrates nonlinear escalation of adverse outcome 
risk beyond approximately seven ICU days, though residual 
confounding and time-dependent bias may partially shape this 
trajectory (20, 21).

Pre-catheterization mechanical ventilation duration showed a 
strong, non-causal association with CLABSI risk. Rather than 
implying that ventilation causes CLABSI, it operates as a proxy for 
severity and invasive care intensity. Sedation-related immobility, 
repeated airway manipulation, and ventilator-associated 
pneumonia may jointly amplify systemic inflammation and 
compromise catheter site defenses (18, 22). Unmeasured 
confounders likely contribute and justify prospective mechanistic 
evaluation (23, 24).

Fluid balance added incremental stratification value. Fluid 
overload (>10% positive balance) has been linked to glycocalyx 
disruption and endothelial injury, plausibly facilitating catheter 
colonization (25, 26). Capillary leak–related third spacing may further 
hinder immune cell trafficking and antibiotic penetration at insertion 
sites (27). These data generate a testable hypothesis that conservative 
or optimized fluid strategies could mitigate risk, pending 
interventional confirmation.

Greater pre-catheterization antibiotic exposure was positively 
associated with CLABSI but should not be interpreted as causal. 
Broad-spectrum or prolonged regimens may select for resistant 
flora and induce dysbiosis (22, 28). The median of three antibiotic 
classes in CLABSI cases versus one in controls likely marks clinical 
complexity or underlying susceptibility rather than a direct 
pathogenic effect.

Model-derived interaction patterns underscore compounded risk 
in multi-system dysfunction: concurrent dialysis (34.9%) and 
ventilation suggested an approximately multiplicative contribution 
within the model’s predictive structure, without implying biological 
synergy. Elevated use of multi-lumen catheters (91.3 vs. 63.6%) and 
subclavian access similarly aligned with higher predicted risk, 
potentially reflecting device complexity, indication bias, operator 
factors, or residual confounding.

4.3 Innovation

A principal innovation of this work is embedding SHAP-based 
interpretability directly within the model development pipeline. 
SHAP force plots generate patient-level decomposition of predicted 
risk, furnishing clinicians with a transparent account of how 

specific features elevate or suppress estimated CLABSI probability 
and thereby alleviating black-box concerns. The high negative 
predictive value (93.1% at the observed prevalence) supports a 
rule-out application that could curtail unwarranted catheter 
removals, while EHR integration offers a pathway to real-time, 
continuously refreshed risk stratification. Decision curve analysis 
demonstrated net clinical benefit across threshold probabilities of 
10–60%; definitive impact on practice, however, awaits prospective 
implementation studies. SHAP-informed rankings are explicitly 
hypothesis-generating and may guide tailored prevention 
measures—for example, intensified surveillance or bundle 
reinforcement in patients with mechanical ventilation >72 h and 
positive fluid balance >2 L/24 h. Exploratory inclusion of nursing 
process-of-care indicators (e.g., catheter check frequency, number 
of providers) operationalizes care quality and suggests 
opportunities to optimize catheter maintenance protocols and 
early antifungal prophylaxis. These indicators contributed 
incremental predictive signal while yielding implementation-
oriented, hypothesis-generating insights for nursing practice  
improvement.

4.4 Limitations

SHAP does not confer causal identification. Its values 
approximate marginal feature contributions under model- and 
data-dependent distributional assumptions and can become 
variance-prone with strong collinearity, out-of-distribution feature 
combinations, or compression of dynamic trajectories into static 
aggregates (29). Interaction structure may be understated unless 
explicit interaction attributions are calculated, and pronounced 
non-linear patterns risk overinterpretation as mechanistic 
pathways. Independence assumptions in certain computational 
backends can distort attribution when features are correlated. 
Consequently, SHAP outputs should be triangulated with clinical 
reasoning, perturbation/sensitivity analyses, and formal causal 
inference methods rather than treated as definitive etiologic 
evidence. A critical limitation concerns the temporal definition of 
CLABSI and its implications for model applicability and 
interpretability. By adhering to the CDC definition requiring ≥48 h 
of catheterization for CLABSI diagnosis, our cohort construction 
inherently introduces classification bias: patients with catheter 
dwell times less than 48 h are systematically classified as 
non-CLABSI cases, regardless of their true infection risk trajectory. 
This design constraint means our model lacks positive CLABSI 
examples for early catheter removal scenarios, potentially biasing 
risk estimates downward for patients whose catheters are removed 
before the 48-h threshold. Consequently, the model cannot reliably 
assess infection risk for patients with anticipated short-duration 
catheterizations, limiting its utility in clinical scenarios where early 
catheter removal is planned or indicated. In real-world clinical 
practice, this temporal constraint has important implications for 
model deployment and interpretation. The risk predictions are 
most valid for patients expected to have prolonged catheterization 
(>48 h), while assessments for patients with anticipated shorter 
catheter durations should be interpreted with caution. Furthermore, 
computing CLABSI risk after catheter removal may have limited 
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clinical utility, as preventive interventions are no longer actionable 
post-removal. Important contextual determinants—catheter 
maintenance quality, hand hygiene adherence, and environmental 
or workflow factors—were unavailable in the MIMIC database. 
Class imbalance (4.3% CLABSI) persists as a potential source of 
performance drift despite SMOTE rebalancing. Omission of 
microbiological determinants (e.g., biofilm phenotypes) and 
granular procedural/nursing metrics (e.g., insertion attempt count) 
constrains mechanistic resolution. Residual confounding, 
indication bias, and potential immortal time bias tied to time-
dependent exposures (e.g., pre-catheter ventilation duration) may 
influence observed associations.

4.5 Future directions

(1) rigorous external validation across heterogeneous ICUs 
and healthcare systems; (2) prospective evaluation of decision 
support integration and its effect on CLABSI incidence, 
antimicrobial use, and patient-centered outcomes; (3) adoption 
of temporal deep learning architectures (e.g., transformer or 
sequence models) and potential fusion with imaging or waveform 
data; (4) application of causal inference (target trial emulation, 
marginal structural models) to disentangle exposure–outcome 
relationships; (5) incorporation of smart catheter sensor streams 
plus high-resolution nursing documentation, tested via stepped-
wedge or hybrid effectiveness–implementation designs; (6) 
health economic modeling to define cost-effectiveness and 
budget impact; and (7) prospective analyses with time-updated 
covariates and competing risk frameworks to minimize immortal 
time and informative censoring biases while refining 
temporal attribution.

5 Conclusion

We built a random forest–based model for CLABSI risk that 
demonstrated strong predictive performance and, through SHAP, 
delivered individualized risk attribution. Its integration into clinical 
workflows may support earlier targeted prevention and more 
efficient resource use. Prospective external studies are required to 
establish real-world generalizability, calibration, and clinical  
impact.
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