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Operationalizing language-based 
population stratification for 
widening access to precision 
genomics in Africa
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Background: Despite remarkable advancements in genomic technologies, 
individuals of predominant African-related genetic similarity remain significantly 
under-represented, accounting for only 2.4% of published genome-wide 
association studies. This disparity limits our understanding of human biology 
and hinders equitable translation of genomic advances into healthcare.
Methods: We exploited a quantitative framework using normalized Levenshtein 
distance (LDN) to analyse lexical similarity patterns across Kenya’s ethnolinguistic 
landscape, comprising Bantu, Nilotic, and Cushitic language groups. 
We  compared lexical distance matrices with available genetic population 
differentiation data and geographic proximity to evaluate their relative efficacy 
in predicting genetic relationships.
Results: Lexical similarity analysis revealed distinct clustering patterns that 
closely mirror Kenya’s ethnolinguistic diversity. Multidimensional scaling and 
hierarchical clustering clearly separated the three major language families and 
identified fine-scale relationships within each group. Importantly, lexical distance 
demonstrated stronger correlation with genetic differentiation [r = 0.91, CI 
(0.55–0.99)] than geographic proximity [r = 0.29, CI (0.29–0.53)], confirming 
language as a superior proxy for population genetic structure. Our analysis, 
demonstrate an objective basis for prioritizing populations in genomic studies.
Conclusion: This study establishes lexical similarity analysis as a powerful 
alternative approach for predicting genetic relationships among diverse African 
populations. By enabling strategic prioritization of representative populations 
for genomic sequencing initiatives, this approach offers a practical solution to 
address the critical under-representation of African genetic diversity in global 
databases, with potential applications across Africa’s over 3,000 ethnic groups. 
This methodology provides a systematic, data-driven alternative to convenience 
sampling in regions where genetic data remains limited.
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Introduction

The landscape of modern genomics has been transformed by remarkable advancements 
in sequence data generation and analysis techniques. However, a fundamental challenge 
persists: the significant underrepresentation of diverse ancestral backgrounds in genetic 
studies. This disparity is particularly pronounced among individuals of predominant 
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African-related genetic similarity who account for only 2.4% of 
published genome-wide association study (GWAS) data catalogued to 
date (1). The inclusion of these populations would undoubtedly 
enhance our understanding of human biology, potentially leading to 
novel drug discovery opportunities and clinical care benefits that 
extend far beyond these specific genetically similar groups identified 
from the 1,000 Genomes project (2, 3).

Africa’s population is characterized by extraordinary ethnic 
diversity, comprising over 3,000 genetically distinctive ethnic groups 
with significantly less linkage disequilibrium (LD) among loci 
compared to non-African populations (4). This genetic landscape 
presents a substantial challenge regarding how to prioritize 
representative populations for genomic sequencing initiatives. The 
genetic adaptations observed across these populations have evolved in 
response to diverse environmental pressures, including varied 
climates, diets, exposure to infectious diseases, and other factors that 
shape phenotypic adaptation.

These ethnic groups also exhibit significant variation in 
language and culture, characteristics that have been successfully 
leveraged alongside available genetic data to develop 
methodological frameworks for distinguishing populations and 
revealing historical migration patterns (5–9). Incongruence 
between genetic distance and lexical similarity could arise due to 
language shifts, gene flow, and recent admixture (10, 11). Linguistic 
patterns are thought to correlate more strongly with genetic 
structure than geographic proximity (9), particularly in African 
and Asian populations where coevolutionary patterns have been 
documented (8, 12). These findings suggest that lexical similarity 
analysis offers a powerful framework for identifying and 
prioritizing populations to generate more representative human 
genetic data.

Kenya, an East African nation with a population of 52 million, 
comprises 42 distinct ethnic groups that constitute a genetic tapestry 
shaped by separate migrations and adaptations. A small number 
Kenyan populations (n ~ 6) have already been represented in major 
human genetics initiatives, including the Luhya (LWK) in the HapMap 
and 1,000 Genomes projects, the Human Heredity and Health in 
Africa (H3Africa) project, the African Genome Variation Project 
(AGVP), and various published studies (2, 5, 13–15). However, these 
handful of people under-represents the diversity present in Kenya 
(n = 42 ethnic groups), and the wider African continent (> 3,000 
distinct ethnic groups). Kenya’s population is distributed across three 
major language groups (Supplementary Table 1): Bantu, Nilotic, and 
Cushitic speakers, each with distinct historic migration routes into 
Kenya and sociocultural practices (Table 1). Here we test whether 
lexical similarity can serve as a predictive framework for genetic 

relatedness among diverse African populations. We demonstrate that 
linguistic patterns outperform geographic proximity in predicting 
genetic similarity, enabling strategic prioritization of population 
sampling to maximize the genetic diversity captured with minimal 
redundancy. Our quantitative lexical-based framework systematically 
identifies representative populations for genomic studies, accelerating 
the prioritization of underrepresented self-identified Africans with 
genetic similarity to those in 1000 Genomes panel samples for 
inclusion in global genetic databases. This provides an 
operationalizable precision health strategy for population-level 
genomic inclusion. This data-driven approach for stratifying diverse 
populations for inclusion in genomic studies is useful and scalable in 
resource-limited settings, with diverse ethnic populations, and fosters 
global health equity.

Methods

Lexical distance estimation and 
visualization

Lexical similarity among the languages was assessed using 
normalized Levenshtein distance (LDN), applied to a standardized 
wordlist (Supplementary material) (16). LDN provides a transparent, 
interpretable measure for decision-makers, and is adaptable to 
multilingual, multi-ethnic contexts across Africa where genetic 
sequencing capabilities are constrained. LDN when averaged across 
aligned wordlists, reliably estimates lexical distance between languages 
and enables the construction of language phylogenies (17). 
We calculated pairwise LDN across all word pairs sharing the same 
translation in the wordlists. These were then averaged per language 
pair to generate a distance matrix. Using this matrix, we performed 
multidimensional scaling (MDS) to project the distances into 
two-dimensional space and constructed a hierarchical clustering 
dendrogram using Ward’s method (16, 17). A heatmap of lexical 
distances was also generated for comparative visualization. All 
analyses and visualization were conducted in R (18). Our analyses 
scripts are open-source and can be  adapted to other national or 
regional language datasets for similar analyses 
(Supplementary material).

Briefly, we compiled a matrix of manually curated lexical items, 
with each row representing a language and each column 
corresponding to the same gloss. Missing entries were excluded 
pairwise during distance calculations to preserve alignment integrity. 
For each language pair, we  computed LDN using the stringdist 
package in R. Specifically, for each pair of corresponding words, 

TABLE 1  The major Kenyan language groups and their demographic history.

Language group Key ethnic groups Migration route Demographic history

Bantu (Niger-Congo) Kikuyu, Kamba, Luhya, Kisii, Swahili From West-Central Africa → across 

Central Africa → into Kenya, Tanzania, 

Uganda

Bantu Expansion (~2,000–3,000 years ago); farming 

communities moving eastward

Nilotic (Nilo-Saharan) Luo, Kalenjin (Kipsigis, Nandi), Maasai, 

Turkana, Teso

From Nile Valley/South Sudan → into 

western Kenya, northern Uganda

Pastoralist migrations southward; settled near water 

bodies and highlands

Cushitic (Afro-Asiatic) Somali, Rendille, Gabra, Oromo From Horn of Africa → into northern 

and eastern Kenya

Older Afro-Asiatic presence; long-term contact with 

Nilotic and Bantu groups; trade and cultural exchange
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we calculated the Levenshtein (edit) distance and normalized it by 
the maximum string length to account for differences in word 
length. These normalized distances were then averaged across all 
word pairs, yielding a symmetric matrix of pairwise lexical distances. 
We visualized the resulting distance matrix using MDS coordinates 
in 2D and 3D scatterplots, with languages color-coded by clusters 
obtained from hierarchical agglomerative clustering (hclust, average 
linkage). These coordinates were used to generate scatterplots, with 
languages represented as points and labelled using ggrepel to reduce 
overlap, and visualized using ggplot2. Clustering results were further 
visualized using a radial dendrogram (via ape::plot.phylo). A 
heatmap was generated using pheatmap, and interactive 2D and 3D 
plots exported to HTML using plotly. These visualizations provide 
complementary perspectives on the internal structure of lexical 
similarity across language varieties. To assess the correlation 
between genetic distance (FST) and lexical distance (LDN), 
we  conducted pairwise Mantel correlation tests using the vegan 
package in R. The strength of correlation was evaluated using a 
correlation coefficient (r), where values approaching 1 indicate 
strong positive correlation.

This approach builds on evidence that there is a correlation 
between lexical and genetic differentiation, as demonstrated in 
comparative studies of phonemic, lexical, and genetic coevolution 
across global populations (8, 10).

Results

Lexical similarity analysis across language of different Kenyan 
ethnic groups revealed distinct clustering patterns. 
Multidimensional scaling (MDS) of normalized Levenshtein 
distances (LDN) produced a two-dimensional visualization that 
clearly separates ethnic groups from the three major language 
families: Bantu, Nilotic, and Cushitic (Figure 1A). This separation 

portrays differences associated with Kenya’s ethnolinguistic 
landscape that closely mirrors human migratory history 
into Kenya.

Hierarchical clustering analysis generated a dendrogram 
(Figure 1B) that further resolves the relationships within each of the 
three (Bantu, Nilotic, and Cushitic) major language groups. The 
Bantu cluster shows tight internal grouping with short branch lengths 
between languages such as Kikuyu, Kamba, and Luhya, indicating 
high lexical similarity consistent with their relatively recent 
divergence during the Bantu expansion approximately 2,000–
3,000 years ago. The Nilotic languages form a distinct cluster with 
moderate internal distances, reflecting their shared ancestry but more 
ancient divergence patterns. Within this group, Kalenjin 
subcommunities (Kipsigis, Nandi) exhibit particularly close 
relationships, forming a distinct sub-cluster. The Cushitic languages 
appear as the most distant outgroup, consistent with their Afro-
Asiatic origins and longer separation from the Niger-Congo and 
Nilo-Saharan language families.

Heatmap visualization of pairwise lexical distances (Figure 1C) 
reveals a clear block-like structure corresponding to the three major 
language families. Intra-family distances (diagonal blocks) show 
consistently lower values compared to inter-family distances 
(off-diagonal blocks), with the darkest blue regions indicating the 
closest lexical relationships. This pattern quantitatively confirms the 
strong association between lexical similarity and language 
family classification.

When comparing linguistic distance to geographic proximity, 
we  found that comparisons between communities from different 
language families exhibit greater linguistic distance even when they 
live geographically adjacent to each other compared to more 
geographically distant communities from within the same language 
family (Figures  2A,B). For example, Kikuyu (Bantu) and Maasai 
(Nilotic) communities who were historically geographical neighbors 
maintain substantial lexical distance (LDN = 0.9), whereas the 

FIGURE 1

Lexical differentiation of Kenyan languages. (A) Multidimensional scaling (MDS) of normalized Levenshtein distances reveals distinct clustering of 
Kenyan ethnic groups according to their linguistic classifications within the Bantu, Nilotic, and Cushitic languages. (B) Dendrogram of hierarchical 
clustering analysis revealing distinct language family groupings. Bantu languages showing close relationships, Nilotic languages forming a moderately 
distant cluster with Kalenjin varieties as a notable sub-group, and Cushitic languages positioned as the most distant outgroup consistent with their 
Afro-Asiatic origins. (C) Heatmap visualization of pairwise lexical distances. There is strong association between lexical similarity and language family 
classification.
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geographically separated Kikuyu and Luhya (both Bantu) show lower 
lexical distance (LDN = 0.67). This pattern is consistent across 
multiple language pairs (Figure 2A), with intra-family comparisons 
consistently showing lower LDN values than inter-family comparisons 
regardless of geographic proximity.

There is a paucity of human genetic data from Africa, making 
comparative analyses challenging. In Kenya, publicly accessible 
genetic population differentiation data is only available from the 
HapMap, 1,000 Genomes and African Genome Variation projects (2, 
5, 13–15). We retrieved these available data and compared our lexical 
distance matrix with previously published genetic population 
differentiation fixation index (FST) value data with overlapping 
populations (Luhya-vs-Kikuyu; Luhya-vs-Masaai; and Masaai-vs-
Kikuyu) (Table 2) (19, 20). Mantel correlation test demonstrated a 
strong correlation between lexical and genetic differentiation [r = 0.91, 
CI (0.55–0.99), p  = 0.09], which was notably stronger than the 

correlation between geographic and genetic differentiation [r = 0.29, 
CI (0.29–0.53), p = 0.001]. While the relationship between lexical 
distance and population differentiation showed a strong positive trend 
(r = 0.91), statistical significance was not reached due to paucity of 
data (Table 2).

We further examined how borrowing between neighbouring 
languages affects lexical similarity patterns. The three-dimensional 
MDS plot (Figure 3) reveals subtle deviations from strict phylogenetic 
clustering, with languages at geographic interfaces showing 
intermediate positioning. For instance, Swahili (Bantu) appears 
slightly displaced toward Cushitic languages, consistent with its 
documented lexical borrowing from Arabic and Somali through 
centuries of coastal trade interactions (21).

Our analysis identified several key “bridge populations” that 
exhibit mixed lexical influences from multiple language families, 
particularly Teso and Turkana (Figure  3), which show Nilotic 
classification but position between Nilotic and Cushitic clusters in 
multidimensional space. This suggests historical interactions between 
these pastoralist communities and neighbouring Cushitic groups in 
northern Kenya.

This supports reports on divergence of genes and languages due 
to language replacement, interactions across significant geographical 
distances, often involving trade and migration, and horizontal cultural 
transmission (10, 11).

Our sampling strategy provides an objective and replicable 
quantitative basis for prioritizing populations for genomic studies that 
maximizes genetic diversity represented, while minimizing 
redundancy and saving costs (22–24).

FIGURE 2

Comparison of lexical similarity to ethnic group geographic proximity. (A) Neighbour joining linguistic tree showing lexical (LDN) distance. 
(B) Geographic locations predominantly occupied represented ethnic groups. There are great lexical differences between Kikuyu (Bantu) and Maasai 
(Nilotic) ethnic groups despite close geographical proximity, compared to geographically separated Kikuyu and Luhya (both Bantu). The colors in the 
map show each language family used in the analysis, and the relative habitation location of community after migration into Kenya. The grey areas 
represent communities not represented in this study.

TABLE 2  Population pairwise comparisons between population 
differentiation, and lexical distance.

Population pair Population 
differentiation (FST 

values)

Lexical 
distance (LDN 

values)

Luhya vs. Kikuyu 0.01 0.67

Kikuyu vs. Maasai 0.1 0.85

Luhya vs. Maasai 0.17 0.82

Maasai vs. Kalenjin 0.06 0.8
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Discussion

We suggest that lexical analysis can be used as a proxy to prioritise 
multi-ethnic ancestries for populations where human genetic data is 
limited. Language evolution closely mirrors demographic history for 
example migration, admixture, and isolation (5, 15). Lexical similarity 
suggests shared ancestry, sustained interaction between populations, 
historical contact, or recent divergence. This quantitative analytical 
framework offers finer resolution through continuous measures of 
lexical similarity rather than categorical language classifications.

Clear separation of Kenya’s three major language families (Bantu, 
Nilotic, and Cushitic) in lexical space mirrors their distinct 
migration histories and origins, consistent with previous reports of 
human movement in Eastern Africa (16, 17). Our analysis 
demonstrates that lexical similarity patterns effectively predict 
genetic relatedness among Kenyan populations, providing a powerful 
framework for prioritizing population sampling in genomic studies. 
The strong correlation between lexical and genetic population 
differentiation (r = 0.91) confirms that shared linguistic heritage 
closely mirrors genetic ancestry in the multi-ethnic context of 
Africa. A recent genome-wide study of populations in the Horn of 
Africa (HOA), to understand human migration patterns, found no 
significant correlation between genetic and geographic distance 
when compared to neighbouring populations Middle-East and 
North Africa (MENA) (25). By contrast, analysis of molecular 
variance (AMOVA) revealed significant genetic differentiation 
among linguistic groups within the HOA populations highlighting 
the utility of integrating of lexical classifications alongside genetic 
data to better capture population structure and diversity (25). This 
supports observation that the Y chromosome shows a strong 
relationship with language groups regardless of geography, 
suggesting patrilocal practices where males tend to remain in their 
linguistic communities (7). This implies that cultural and linguistic 
boundaries have maintained strong barriers to gene flow than 
geographic distance alone, even between adjacent ethnic populations. 

We  show that language serves as a better proxy for population 
history than geography across Africa, and provide quantitative 
lexical distance methodology that enables systematic prioritization 
of populations for genomic sampling.

The identification of “bridge populations” with lexical features 
intermediate between major language groups highlights the 
complexity of vertical inheritance and horizontal transfer in both 
linguistic and genetic evolution (26). These populations, particularly 
those at the interface of different language families, may represent 
important targets for genomic studies seeking to understand 
admixture processes and recent population history in Africa (27). 
We  distinguish differentiated populations despite geographic 
proximity and previous cultural contact, reflecting deep population 
history despite recent interactions. The optimized sampling strategy 
derived from our lexical framework provides an avenue for genomic 
researchers seeking to capture human genetic diversity in understudied 
populations. Prioritizing representatives from distinct lexical clusters 
can help address the significant underrepresentation of African 
genetic diversity in global databases while making efficient use of 
limited sequencing resources. This approach provides an objective 
method for sampling strategy development that moves beyond 
convenience sampling often used in human genetic studies (28). 
Reducing redundancy in sequencing efforts among underrepresented 
populations with predominant African-related genetic similarity will 
enable more strategic and efficient sampling designs. Bridge 
populations prioritized for sequencing highlight admixture history 
and recent population dynamics, providing unique insights into 
human adaptation and demographic history that would be missed by 
previous sampling strategies. This method provides an avenue to 
increase access to genomic data from underrepresented populations 
and is generalizable across diverse ancestral backgrounds. A recent 
article underscores the importance of adopting a pangenomic 
approach to enhance population genetics characterization analyses 
and reduce reference bias associated with the hg38 genome, 
particularly in underrepresented populations (29). Although this 

FIGURE 3

The three-dimensional MDS plot reveals subtle deviations from strict phylogenetic clustering. Languages at geographic interfaces, for example Swahili 
and Teso, show intermediate positioning.
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state-of-the-art, graph-based approach offers improved robustness, it 
is computationally intensive and requires substantial resources. 
However, it is hoped that future support for this work will enable this 
issue to be addressed in later studies.

A limitation in our study was the paucity of human genetic data 
(Luhya, Maasai and Kikuyu pair-wise genetic population distance 
data) to conduct comparative analyses between lexical and genetic 
differentiation, highlighting the need for novel population 
prioritization and sampling strategies.

In conclusion, this lexical similarity analysis framework could 
provide a roadmap for more inclusive and strategic genetic research 
in populations with predominant African-related genetic similarity, 
potentially accelerating efforts to address the significant 
underrepresentation in global genetic data catalogues.
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