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Operationalizing language-based
population stratification for
widening access to precision
genomics in Africa

Benard W. Kulohoma* and Colette S. A. Wesonga

Ortholog, Nairobi, Kenya

Background: Despite remarkable advancements in genomic technologies,
individuals of predominant African-related genetic similarity remain significantly
under-represented, accounting for only 2.4% of published genome-wide
association studies. This disparity limits our understanding of human biology
and hinders equitable translation of genomic advances into healthcare.
Methods: We exploited a quantitative framework using normalized Levenshtein
distance (LDN) to analyse lexical similarity patterns across Kenya's ethnolinguistic
landscape, comprising Bantu, Nilotic, and Cushitic language groups.
We compared lexical distance matrices with available genetic population
differentiation data and geographic proximity to evaluate their relative efficacy
in predicting genetic relationships.

Results: Lexical similarity analysis revealed distinct clustering patterns that
closely mirror Kenya's ethnolinguistic diversity. Multidimensional scaling and
hierarchical clustering clearly separated the three major language families and
identified fine-scale relationships within each group. Importantly, lexical distance
demonstrated stronger correlation with genetic differentiation [r = 0.91, CI
(0.55-0.99)] than geographic proximity [r = 0.29, ClI (0.29-0.53)], confirming
language as a superior proxy for population genetic structure. Our analysis,
demonstrate an objective basis for prioritizing populations in genomic studies.
Conclusion: This study establishes lexical similarity analysis as a powerful
alternative approach for predicting genetic relationships among diverse African
populations. By enabling strategic prioritization of representative populations
for genomic sequencing initiatives, this approach offers a practical solution to
address the critical under-representation of African genetic diversity in global
databases, with potential applications across Africa’s over 3,000 ethnic groups.
This methodology provides a systematic, data-driven alternative to convenience
sampling in regions where genetic data remains limited.

KEYWORDS

precision genomics, Africa, lexical similarity, multi-ethnic, population stratification,
genomic

Introduction

The landscape of modern genomics has been transformed by remarkable advancements
in sequence data generation and analysis techniques. However, a fundamental challenge
persists: the significant underrepresentation of diverse ancestral backgrounds in genetic
studies. This disparity is particularly pronounced among individuals of predominant
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African-related genetic similarity who account for only 2.4% of
published genome-wide association study (GWAS) data catalogued to
date (1). The inclusion of these populations would undoubtedly
enhance our understanding of human biology, potentially leading to
novel drug discovery opportunities and clinical care benefits that
extend far beyond these specific genetically similar groups identified
from the 1,000 Genomes project (2, 3).

Africa’s population is characterized by extraordinary ethnic
diversity, comprising over 3,000 genetically distinctive ethnic groups
with significantly less linkage disequilibrium (LD) among loci
compared to non-African populations (4). This genetic landscape
presents a substantial challenge regarding how to prioritize
representative populations for genomic sequencing initiatives. The
genetic adaptations observed across these populations have evolved in
response to diverse environmental pressures, including varied
climates, diets, exposure to infectious diseases, and other factors that
shape phenotypic adaptation.

These ethnic groups also exhibit significant variation in
language and culture, characteristics that have been successfully
data to
methodological frameworks for distinguishing populations and

leveraged alongside available genetic develop
revealing historical migration patterns (5-9). Incongruence
between genetic distance and lexical similarity could arise due to
language shifts, gene flow, and recent admixture (10, 11). Linguistic
patterns are thought to correlate more strongly with genetic
structure than geographic proximity (9), particularly in African
and Asian populations where coevolutionary patterns have been
documented (8, 12). These findings suggest that lexical similarity
analysis offers a powerful framework for identifying and
prioritizing populations to generate more representative human
genetic data.

Kenya, an East African nation with a population of 52 million,
comprises 42 distinct ethnic groups that constitute a genetic tapestry
shaped by separate migrations and adaptations. A small number
Kenyan populations (n ~ 6) have already been represented in major
human genetics initiatives, including the Luhya (LWK) in the HapMap
and 1,000 Genomes projects, the Human Heredity and Health in
Africa (H3Africa) project, the African Genome Variation Project
(AGVP), and various published studies (2, 5, 13-15). However, these
handful of people under-represents the diversity present in Kenya
(n =42 ethnic groups), and the wider African continent (> 3,000
distinct ethnic groups). Kenya’s population is distributed across three
major language groups (Supplementary Table 1): Bantu, Nilotic, and
Cushitic speakers, each with distinct historic migration routes into
Kenya and sociocultural practices (Table 1). Here we test whether
lexical similarity can serve as a predictive framework for genetic

TABLE 1 The major Kenyan language groups and their demographic history.

Language group Key ethnic groups

Bantu (Niger-Congo) Kikuyu, Kamba, Luhya, Kisii, Swahili

Uganda

Migration route

From West-Central Africa — across

Central Africa — into Kenya, Tanzania,

10.3389/fpubh.2025.1672038

relatedness among diverse African populations. We demonstrate that
linguistic patterns outperform geographic proximity in predicting
genetic similarity, enabling strategic prioritization of population
sampling to maximize the genetic diversity captured with minimal
redundancy. Our quantitative lexical-based framework systematically
identifies representative populations for genomic studies, accelerating
the prioritization of underrepresented self-identified Africans with
genetic similarity to those in 1000 Genomes panel samples for
This
operationalizable precision health strategy for population-level

inclusion in global genetic databases. provides an
genomic inclusion. This data-driven approach for stratifying diverse
populations for inclusion in genomic studies is useful and scalable in
resource-limited settings, with diverse ethnic populations, and fosters

global health equity.

Methods

Lexical distance estimation and
visualization

Lexical similarity among the languages was assessed using
normalized Levenshtein distance (LDN), applied to a standardized
wordlist (Supplementary material) (16). LDN provides a transparent,
interpretable measure for decision-makers, and is adaptable to
multilingual, multi-ethnic contexts across Africa where genetic
sequencing capabilities are constrained. LDN when averaged across
aligned wordlists, reliably estimates lexical distance between languages
and enables the construction of language phylogenies (17).
We calculated pairwise LDN across all word pairs sharing the same
translation in the wordlists. These were then averaged per language
pair to generate a distance matrix. Using this matrix, we performed
multidimensional scaling (MDS) to project the distances into
two-dimensional space and constructed a hierarchical clustering
dendrogram using Ward’s method (16, 17). A heatmap of lexical
distances was also generated for comparative visualization. All
analyses and visualization were conducted in R (18). Our analyses
scripts are open-source and can be adapted to other national or
regional language datasets for similar analyses
(Supplementary material).

Briefly, we compiled a matrix of manually curated lexical items,
with each row representing a language and each column
corresponding to the same gloss. Missing entries were excluded
pairwise during distance calculations to preserve alignment integrity.
For each language pair, we computed LDN using the stringdist

package in R. Specifically, for each pair of corresponding words,

Demographic history

Bantu Expansion (~2,000-3,000 years ago); farming

communities moving eastward

Nilotic (Nilo-Saharan) Luo, Kalenjin (Kipsigis, Nandi), Maasai,

Turkana, Teso

From Nile Valley/South Sudan — into

western Kenya, northern Uganda

Pastoralist migrations southward; settled near water
bodies and highlands

Cushitic (Afro-Asiatic) Somali, Rendille, Gabra, Oromo

From Horn of Africa — into northern

and eastern Kenya

Older Afro-Asiatic presence; long-term contact with

Nilotic and Bantu groups; trade and cultural exchange
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we calculated the Levenshtein (edit) distance and normalized it by
the maximum string length to account for differences in word
length. These normalized distances were then averaged across all
word pairs, yielding a symmetric matrix of pairwise lexical distances.
We visualized the resulting distance matrix using MDS coordinates
in 2D and 3D scatterplots, with languages color-coded by clusters
obtained from hierarchical agglomerative clustering (hclust, average
linkage). These coordinates were used to generate scatterplots, with
languages represented as points and labelled using ggrepel to reduce
overlap, and visualized using ggplot2. Clustering results were further
visualized using a radial dendrogram (via ape:plot.phylo). A
heatmap was generated using pheatmap, and interactive 2D and 3D
plots exported to HTML using plotly. These visualizations provide
complementary perspectives on the internal structure of lexical
similarity across language varieties. To assess the correlation
between genetic distance (Fst) and lexical distance (LDN),
we conducted pairwise Mantel correlation tests using the vegan
package in R. The strength of correlation was evaluated using a
correlation coefficient (r), where values approaching 1 indicate
strong positive correlation.

This approach builds on evidence that there is a correlation
between lexical and genetic differentiation, as demonstrated in
comparative studies of phonemic, lexical, and genetic coevolution
across global populations (8, 10).

Results

Lexical similarity analysis across language of different Kenyan

ethnic groups revealed distinct clustering patterns.
Multidimensional scaling (MDS) of normalized Levenshtein
distances (LDN) produced a two-dimensional visualization that
clearly separates ethnic groups from the three major language

families: Bantu, Nilotic, and Cushitic (Figure 1A). This separation

10.3389/fpubh.2025.1672038

portrays differences associated with Kenyas ethnolinguistic
landscape that closely mirrors human migratory history
into Kenya.

Hierarchical clustering analysis generated a dendrogram
(Figure 1B) that further resolves the relationships within each of the
three (Bantu, Nilotic, and Cushitic) major language groups. The
Bantu cluster shows tight internal grouping with short branch lengths
between languages such as Kikuyu, Kamba, and Luhya, indicating
high lexical similarity consistent with their relatively recent
divergence during the Bantu expansion approximately 2,000-
3,000 years ago. The Nilotic languages form a distinct cluster with
moderate internal distances, reflecting their shared ancestry but more
Within this group, Kalenjin
subcommunities (Kipsigis, Nandi) exhibit particularly close

ancient divergence patterns.

relationships, forming a distinct sub-cluster. The Cushitic languages
appear as the most distant outgroup, consistent with their Afro-
Asiatic origins and longer separation from the Niger-Congo and
Nilo-Saharan language families.

Heatmap visualization of pairwise lexical distances (Figure 1C)
reveals a clear block-like structure corresponding to the three major
language families. Intra-family distances (diagonal blocks) show
consistently lower values compared to inter-family distances
(off-diagonal blocks), with the darkest blue regions indicating the
closest lexical relationships. This pattern quantitatively confirms the
strong association between lexical similarity and language
family classification.

When comparing linguistic distance to geographic proximity,
we found that comparisons between communities from different
language families exhibit greater linguistic distance even when they
live geographically adjacent to each other compared to more
geographically distant communities from within the same language
family (Figures 2A,B). For example, Kikuyu (Bantu) and Maasai
(Nilotic) communities who were historically geographical neighbors
maintain substantial lexical distance (LDN =0.9), whereas the
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FIGURE 1

Lexical differentiation of Kenyan languages. (A) Multidimensional scaling (MDS) of normalized Levenshtein distances reveals distinct clustering of
Kenyan ethnic groups according to their linguistic classifications within the Bantu, Nilotic, and Cushitic languages. (B) Dendrogram of hierarchical
clustering analysis revealing distinct language family groupings. Bantu languages showing close relationships, Nilotic languages forming a moderately
distant cluster with Kalenjin varieties as a notable sub-group, and Cushitic languages positioned as the most distant outgroup consistent with their
Afro-Asiatic origins. (C) Heatmap visualization of pairwise lexical distances. There is strong association between lexical similarity and language family

classification.
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FIGURE 2

Comparison of lexical similarity to ethnic group geographic proximity. (A) Neighbour joining linguistic tree showing lexical (LDN) distance.

(B) Geographic locations predominantly occupied represented ethnic groups. There are great lexical differences between Kikuyu (Bantu) and Maasai
(Nilotic) ethnic groups despite close geographical proximity, compared to geographically separated Kikuyu and Luhya (both Bantu). The colors in the
map show each language family used in the analysis, and the relative habitation location of community after migration into Kenya. The grey areas
represent communities not represented in this study.

correlation between geographic and genetic differentiation [r = 0.29,
CI (0.29-0.53), p = 0.001]. While the relationship between lexical
distance and population differentiation showed a strong positive trend

TABLE 2 Population pairwise comparisons between population
differentiation, and lexical distance.

Lexical
distance (LDN
values)

Population pair

Population
differentiation (Fsr
values)

(r =0.91), statistical significance was not reached due to paucity of
data (Table 2).

Luhya vs. Kikuyu 0.01 0.67 We further examined how borrowing between neighbouring
languages affects lexical similarity patterns. The three-dimensional
Kikuyu vs. Maasai 0.1 0.85 . L. . .
MDS plot (Figure 3) reveals subtle deviations from strict phylogenetic
Lubya vs. Maasai 017 082 clustering, with languages at geographic interfaces showing
Maasai vs. Kalenjin 0.06 0.8 intermediate positioning. For instance, Swahili (Bantu) appears

slightly displaced toward Cushitic languages, consistent with its
documented lexical borrowing from Arabic and Somali through

geographically separated Kikuyu and Luhya (both Bantu) show lower
lexical distance (LDN =0.67). This pattern is consistent across
multiple language pairs (Figure 2A), with intra-family comparisons
consistently showing lower LDN values than inter-family comparisons
regardless of geographic proximity.

There is a paucity of human genetic data from Africa, making
comparative analyses challenging. In Kenya, publicly accessible
genetic population differentiation data is only available from the
HapMap, 1,000 Genomes and African Genome Variation projects (2,
5, 13-15). We retrieved these available data and compared our lexical
distance matrix with previously published genetic population
differentiation fixation index (Fs;) value data with overlapping
populations (Luhya-vs-Kikuyu; Luhya-vs-Masaai; and Masaai-vs-
Kikuyu) (Table 2) (19, 20). Mantel correlation test demonstrated a
strong correlation between lexical and genetic differentiation [r=0.91,
CI (0.55-0.99), p =0.09], which was notably stronger than the

Frontiers in Public Health

centuries of coastal trade interactions (21).

Our analysis identified several key “bridge populations” that
exhibit mixed lexical influences from multiple language families,
particularly Teso and Turkana (Figure 3), which show Nilotic
classification but position between Nilotic and Cushitic clusters in
multidimensional space. This suggests historical interactions between
these pastoralist communities and neighbouring Cushitic groups in
northern Kenya.

This supports reports on divergence of genes and languages due
to language replacement, interactions across significant geographical
distances, often involving trade and migration, and horizontal cultural
transmission (10, 11).

Our sampling strategy provides an objective and replicable
quantitative basis for prioritizing populations for genomic studies that
maximizes genetic diversity represented, while minimizing
redundancy and saving costs (22-24).
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The three-dimensional MDS plot reveals subtle deviations from strict phylogenetic clustering. Languages at geographic interfaces, for example Swahili
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Discussion

We suggest that lexical analysis can be used as a proxy to prioritise
multi-ethnic ancestries for populations where human genetic data is
limited. Language evolution closely mirrors demographic history for
example migration, admixture, and isolation (5, 15). Lexical similarity
suggests shared ancestry, sustained interaction between populations,
historical contact, or recent divergence. This quantitative analytical
framework offers finer resolution through continuous measures of
lexical similarity rather than categorical language classifications.

Clear separation of Kenya’s three major language families (Bantu,
Nilotic, and Cushitic) in lexical space mirrors their distinct
migration histories and origins, consistent with previous reports of
human movement in Eastern Africa (16, 17). Our analysis
demonstrates that lexical similarity patterns effectively predict
genetic relatedness among Kenyan populations, providing a powerful
framework for prioritizing population sampling in genomic studies.
The strong correlation between lexical and genetic population
differentiation (r = 0.91) confirms that shared linguistic heritage
closely mirrors genetic ancestry in the multi-ethnic context of
Africa. A recent genome-wide study of populations in the Horn of
Africa (HOA), to understand human migration patterns, found no
significant correlation between genetic and geographic distance
when compared to neighbouring populations Middle-East and
North Africa (MENA) (25). By contrast, analysis of molecular
variance (AMOVA) revealed significant genetic differentiation
among linguistic groups within the HOA populations highlighting
the utility of integrating of lexical classifications alongside genetic
data to better capture population structure and diversity (25). This
supports observation that the Y chromosome shows a strong
relationship with language groups regardless of geography,
suggesting patrilocal practices where males tend to remain in their
linguistic communities (7). This implies that cultural and linguistic
boundaries have maintained strong barriers to gene flow than
geographic distance alone, even between adjacent ethnic populations.

Frontiers in Public Health

We show that language serves as a better proxy for population
history than geography across Africa, and provide quantitative
lexical distance methodology that enables systematic prioritization
of populations for genomic sampling.

The identification of “bridge populations” with lexical features
intermediate between major language groups highlights the
complexity of vertical inheritance and horizontal transfer in both
linguistic and genetic evolution (26). These populations, particularly
those at the interface of different language families, may represent
important targets for genomic studies seeking to understand
admixture processes and recent population history in Africa (27).
We distinguish differentiated populations despite geographic
proximity and previous cultural contact, reflecting deep population
history despite recent interactions. The optimized sampling strategy
derived from our lexical framework provides an avenue for genomic
researchers seeking to capture human genetic diversity in understudied
populations. Prioritizing representatives from distinct lexical clusters
can help address the significant underrepresentation of African
genetic diversity in global databases while making efficient use of
limited sequencing resources. This approach provides an objective
method for sampling strategy development that moves beyond
convenience sampling often used in human genetic studies (28).
Reducing redundancy in sequencing efforts among underrepresented
populations with predominant African-related genetic similarity will
enable more strategic and efficient sampling designs. Bridge
populations prioritized for sequencing highlight admixture history
and recent population dynamics, providing unique insights into
human adaptation and demographic history that would be missed by
previous sampling strategies. This method provides an avenue to
increase access to genomic data from underrepresented populations
and is generalizable across diverse ancestral backgrounds. A recent
article underscores the importance of adopting a pangenomic
approach to enhance population genetics characterization analyses
and reduce reference bias associated with the hg38 genome,
particularly in underrepresented populations (29). Although this

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1672038
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Kulohoma and Wesonga

state-of-the-art, graph-based approach offers improved robustness, it
is computationally intensive and requires substantial resources.
However, it is hoped that future support for this work will enable this
issue to be addressed in later studies.

A limitation in our study was the paucity of human genetic data
(Luhya, Maasai and Kikuyu pair-wise genetic population distance
data) to conduct comparative analyses between lexical and genetic
differentiation, highlighting the need for novel population
prioritization and sampling strategies.

In conclusion, this lexical similarity analysis framework could
provide a roadmap for more inclusive and strategic genetic research
in populations with predominant African-related genetic similarity,
address the
underrepresentation in global genetic data catalogues.

potentially accelerating efforts to significant
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