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Assessment and prediction of
copper release amount from
copper oxide facepieces

Zengqing Bai, Chenchen Sun?*, Jinyan Liu and Zenghui Liu

School of Engineering and Technology, China University of Geosciences, Beijing, China

Background: Disposable facepieces, as important personal protective
equipment, provide respiratory protection for workers. However, Cu containing
facepieces may cause Cu release, posing a potential danger to human health.
Methods: In this study, aging experiments were conducted on 36 groups of
facepieces, simulating the use of facepieces under high temperature, radiation
environment and work rate to assess the exposure levels of workers to Cu
amount. Meanwhile, a machine learning model was developed based on the Cu
release amount to predict the exposure level.

Results: The research found that after simulating the aging of facepieces, the
Cu release ranged from 7.25ug to 23.65ug, and the release trend showed an
increasing trend under the simulated harsh conditions. The exposure levels
in different scenarios were evaluated based on the release amount. Among
them, 27 groups were evaluated as level lll and 9 groups were evaluated as
level Il. Furthermore, the prediction results of Support Vector Machine (SVM),
Backpropagation Neural Network (BPNN), and Random Forest (RF), test and
training sets were evaluated using coefficient of determination (R?), root mean
square error (RMSE) and mean absolute error (MAE). Among them, the SVM
algorithm performed the best, further improving its predictive ability by using
data augmentation methods and Particle Swarm Optimization (R? of 0.9045,
RMSE of 0.0762, and MAE of 0.0525). The relative errors between the predicted
values and the true values of all samples were mostly less than 5%.
Conclusion: The research method in this study can effectively assess the Cu
exposure level of workers and provide a scientific basis for occupational health
monitoring.

KEYWORDS

disposable facepiece, machine learning, release amount, exposure level, support
vector machine

1 Introduction

In recent years, with the widespread application of microbial technology, a large amount of
highly polluting aerosols have been released (1, 2). Environmental disruptions, such as floods,
have also been shown to significantly increase health risks, including diarrheal morbidity (3),
highlighting the complex interplay between environmental and occupational hazards. The KN95
disposable facepieces have become important personal protective equipment in medical, sewage
treatment and other workplaces (4). Therefore, workers need to wear facepieces for a long time to
ensure respiratory health (5). Among them, copper oxide (CuO) facepieces widely sold on the
market have attracted widespread attention due to strong antibacterial ability, prevention of
secondary infections, and effective avoidance of respiratory and lung infections caused by inhaling
bacteria and other microorganisms (6, 7). However, in workplaces such as medical and industrial
fields, workers often face high temperature environments, the possibility of exposure to ionizing
radiation (8, 9), and different work rates (10). The interaction of these factors may affect the
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structural stability of facepieces, leading to material aging (11, 12), which
leads to a decrease in the bonding strength between the Cu and the
textiles in the facepiece. CuO attached to the fiber is easy to separate and
enter the surrounding and internal environment of the disposable
facepiece (13), which may increase the exposure level of the wearer. The
previous study has shown that the Cu released by facepieces can induce
the production of reactive oxygen species, leading to cellular oxidative
damage and posing a threat to the human respiratory system (5). When
CuO is used as the component material of the whole disposable facepiece,
attention needs to be paid to the cytotoxicity of the facepiece to human
cells (14). It is necessary to carry out the prediction research on the Cu
release amount of disposable facepiece in order to scientifically assess its
health risk.

With the continuous deepening of the application of machine
learning (ML) in the textile field (15, 16), MLs ability to identify, classify
and predict unknown situations through existing data (17) is forging a
new technical pathway for the evaluation and forecasting of fabric
material performance (18). However, the current research on the Cu
exposure level in the facepiece is still insufficient, and the prediction of
Cu exposure in the disposable facepiece faces the problems of insufficient
automation and intelligence level and low efficiency (19, 20). Therefore,
applying ML to predict the exposure level of Cu in facepieces faces two
major challenges: obtaining reliable and comprehensive datasets and
selecting appropriate ML models. Specifically, the determination of Cu
shedding from the facepiece is influenced by multiple factors, including
temperature, irradiance, and work rate, which increases the complexity
of index determination. To enhance the validity and universality of the
model, the testing process should be as comprehensive as possible,
covering a wide range of data. To ensure the accuracy and repeatability
of data, the data collection process must be highly standardized and
precise, which places higher demands on the experimental procedures.
Furthermore, among the numerous existing ML models, choosing a
predictive model that conforms to the characteristics of the data in this
study is itself a major challenge. ML methods such as Support Vector
Machine (SVM) Backpropagation Neural Network (BPNN), and
Random Forest (RF) can predict unknown data with limited data (15,
21,22), effectively compensating for the limitations of traditional research.

Therefore, this study simulated harsh work environments and
collected Cu using ultrasonic bath treatment (23), and characterized and
analyzed release levels using inductively coupled plasma (ICP) technology.
According to the exposure threshold value, the release amount is classified
into levels to evaluate the exposure level of the workers. At the same time,
this study screened three classic prediction algorithms: SVM, RE and
BPNN. The regression model with the best performance was selected
through evaluation metrics, and the model is optimized by using data
augmentation methods and particle swarm optimization (PSO) algorithm
to obtain more accurate predicted values. These results not only quantify
the health risks posed by Cu release from facepieces, but also leverage the
ML models introduced here for the first time to build a higher-precision
release amount predictive model, significantly advancing its intelligence.

2 Materials and methods
2.1 Facepiece samples

This study selected KN95 CuO facepieces that comply with the

Chinese national standard GB 2626-2019 “Respiratory
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Protection-Non-powered air-purifying particle respirator” (24). The
facepiece is designed without an exhalation valve and has a five-layer
structure, with the outermost and innermost layers being non-woven
fabrics containing CuO.

2.2 Facepiece aging experiment

In this study, the temperature, irradiance and work rate, which were
the key factors affecting the release of Cu from CuO disposable facepiece,
were selected, and the processing time dimension was increased. In
order to explore the release of Cu containing disposable facepiece under
long-time operation, and reduce the possible loss of Cu in the process of
storage and transportation due to the use of filter collection, the method
of collecting Cu in pure water was adopted, and the breathing energy
borne by the disposable facepiece was converted into ultrasonic energy
by ultrasonic treatment. The experimental levels were as follows:
temperature (30 °C, 50 °C), irradiance (0.75pw/cm?, 1.30pw/cm?,
1.85pw/cm?) and superimposed with respiration. The level of each factor
was determined according to the literature review and the actual
situation. 30 °C represented the indoor working temperature, and 50 °C
represented the temporary high temperature that might be encountered
outdoors; According to the exposure level, 0.75uw/cm* represented
indoor scattered ultraviolet light, 1.30pw/cm? represented low-intensity
areas farther away from the light source, and 1.85pw/cm? represented
high-intensity areas closer to the light source. For the work rate factor,
the maximum breathing energy borne by CuO disposable facepiece was
included in the 8-hour working time, which was converted to ultrasonic
treatment. According to the content of released Cu, the exposure level
of each worker during the 8-h operation process was evaluated with the
Cu released by the disposable facepiece as the dependent variable.

A total of 36 combinations were designed in the experiment to
simulate the aging of facepieces in different work scenarios (Figure 1).
The processing time for each experiment refers to the recommended
replacement time (2 h) and maximum usage time (8 h) of the facepiece,
and an intermediate node (5 h) is added to comprehensively evaluate
the impact of different usage times on the performance of the facepiece.

A constant temperature chamber (KBF series, BENDER GmbH,
Germany) was used to simulate the workplace temperature. In order
to simulate the radiation intensity in the workplace, a UV light source
(TS 6 W UVA-340 nm, China) was used to simulate the UV radiation
that the facepiece may come into contact with.

To simulate the effect of respiratory rate on facepieces, the
ultrasonic bath treatment was used (25). The ultrasonic bath treatment
used an ultrasonic cleaning machine (AK-040SD, power 480 W,
capacity 10 L) to investigate the maximum respiratory energy that the
facepiece can withstand. Pure water was used to collect the Cu released
from the facepiece, and the processing time was calculated using
Equation 1:

. ExNxT
(P/V )X Viypask x At )

Among them: t represents ultrasound time; E represents the
energy consumption per breath, taking the maximum facepiece
energy cost as 10 mJ (26); N represents the number of breaths, taking
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FIGURE 1
Diagram of all experimental combinations.

the maximum respiratory rate of 60 breaths per minute during human
movement (27); T represents the total time, with a maximum wearing
time of 8 h for the facepiece; P represents ultrasonic cleaner power of
480W; V represents the volume of the solution, the water solution
used for ultrasonic treatment is about 8 L; V.5 represents the volume
of a single facepiece (9cm®); At represents time interval (1 min). The
calculation result was 8.89 min. Due to the loss of ultrasonic energy
caused by glass bottles, the final ultrasonic time was determined to
be 9 min.

Therefore, in the process of using ultrasonic bath, the processed
facepiece containing Cu was cut into approximately 2cm x 2cm sheet-
like shapes and placed in a wide mouthed glass bottle containing
100mL pure water. It was then placed in an ultrasonic cleaning
machine and continuously vibrated for 9min. After the experiment,
an appropriate amount of sample solution was taken into a glass
sample bottle and detected using an inductively coupled plasma (ICP)
technology.

To verify the feasibility of the method, a comparison was made
between ultrasonic bath treatment and filter collection methods. The
amount of Cu collected by ultrasonic bath treatment was 12.50 pg. The
filter collection method used filter (AFT TEST MEDIA PN 813010,
USA). The identical CuO facepiece was subjected to a unidirectional
constant respiratory flow rate of 85 L/min for a duration of 8 h, and
the Cu were collected on a filter. The amount of Cu collected was
determined to be 2.13 pg upon analysis with ICP technology.

Comparing two methods, the amount of Cu collected by
ultrasonic bath treatment is about 5.87 times that collected by filter
collection method. Taking 95% of 5.87, the amount of Cu collected by
ultrasonic bath treatment is about 5.6 times that collected by filter
collection method. This estimation took into account the sinusoidal
shape of the human breathing curve, suggesting that the release of Cu
might increase during actual respiration. Additionally, there might
have been losses when using the filter method for storage and
detection processes. Overall, it was believed that within an equivalent
timeframe, the ultrasonic bath treatment released about 5.6 times the
amount of Cu from the facepiece compared to normal use, indicating
that the ultrasonic bath treatment not only collected more material
but also saved time.

The facepiece aging experiment was conducted according to the
values set for each group. Initially, the facepiece was placed in the
constant temperature chamber with a humidity of 85%, and then the
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surface of the facepiece was exposed to UV light. Subsequently, the
facepiece was treated using the ultrasonic bath treatment employed in
the pre-experiment. A total of 36 experiments were conducted
following the instructions. The collected solutions were then labeled
and stored for subsequent ICP analysis.

2.3 ICP analysis

The content of Cu was analyzed on ICP (ThermoICPOES7200,
ThermoFisher, USA). The instrument was operated at an RF
power of 1.15 kW with argon as carrier and plasma gas. The
plasma flow was set to 15 L/min, the auxiliary gas flow was set to
1.5 L/min, and the nebulizer gas flow was set to 0.75 L/min;
Detection was carried out in axial view mode, and linear
calibration was employed. Each sample was measured in
triplicate, and the average value was taken.

2.4 Exposure level assessment

To assess the potential exposure level of Cu that workers may face
while wearing KN95 CuO facepieces, this study used the Time
Weighted Average Allowable Concentration (PC-TWA) in the
Occupational Exposure Limit (OEL) as the evaluation indicator (28).
The Equation 2 is as follows:

CL+CThL+--+ CnTﬂ
T+ ++T,

TWA= (2)

Among them: C is the contact concentration; T is the duration of
contact, where T; + T, +---+T,, =8h. When the workers wear the
facepieces, the closed space (V) formed between the facepieces and
the human face is approximately 5 x 10~ m’. According to the
standard GB 2626-2019 (24) and the grade of facepiece filter material,
the overall total leakage rate is 11%. The amount of Cu collected by the
ultrasonic bath treatment is approximately 5.6 times that under
normal breathing conditions. Excluding other physical processes like
human inhalation, the actual TWA,, k., » namely the occupational
exposure limit for the worker (OEL, ey ), is calculated using
Equation 3 as follows.
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x/8V)x(1-11%)x8+5.6
(x/8V)x( )

TWAyorker = OELyorker = 3

3)

Reference was made to GBZ 2.1-2019 ‘Occupational exposure
limits for hazardous agents in the workplace-Part 1: Chemical
hazardous agents’ for occupational exposure levels and classification
control tables (28), to calculate exposure limits for different levels. Let
x mg be the amount of Cu detected by ICP over an 8-hour period.
Considering that in the worst-case scenario, assuming that all Cu
detected by ICP was Cu dust, the OEL value of cu dust was 1 mg/m’
(28), and the calculation results were summarized in Table 1 by
substituting it into Equation 3. Based on the release of Cu from CuO
facepieces in different work scenarios, the exposure level of workers
in different work scenarios could be evaluated using the work
exposure level table.

2.5 Construction of prediction model for
cu release in disposable facepiece

2.5.1 Data source and preprocessing

The Cu release prediction model constructed in this study was
based on the aforementioned 36 sets of experimental data. The input
features of the model were temperature, temperature exposure time,
irradiation intensity, and irradiation exposure time, and the output
was the corresponding release amount of Cu. The work scenario
considered the worst-case scenario, so the work rate was not used as
an input variable, but as a background condition. Before modeling, the
data was preprocessed first. In this study, categorical variables included
temperature, temperature exposure time, irradiation intensity, and
irradiation exposure time; the quantitative variable was the amount of
Cu released. For categorical variables, the Label Encoding method was
used to map each category to a unique integer value (29) (Table 2).

Subsequently, the Min-Max Normalization method was used to
scale the values of all variables to the [0, 1] interval, in order to
eliminate the dimensional influence between different variables. The
Equation 4 is as follows:

X' = X- Xmin (4)

Xmax - Xmin

Among them: X' represents the normalized data; X represents
sample data; Xnax and X, representthe maximum and minimum

TABLE 1 Occupational exposure level and limit.

Exposure level = Exposure Level description
limit (ug)
0 (<1% OEL) <0.25 Basically contactless
Very low contact, no relevant effect
1(>1%, < 10% OEL) >0.25, < 2.5
based on existing information
I (>10%, < 50% Contact but no significant health
>2.5,<13
OEL) effects
Significant contact requires action to
I (>50%, < OEL) >13,<25
restrict activities
IV (>OEL) >25 Exceeding OELs
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values in the sample. During the model training phase, 85% of the data
is used as the training set, and the remaining 15% is used as the
testing set.

2.5.2 ML algorithms

In recent years, ML algorithms have been increasingly applied in
fields such as textile materials and protective materials, especially in
prediction and classification tasks, providing several significant
advantages. This study selected three mainstream ML algorithms (i.e.,
BPNN, RE and SVM) to predict the release of Cu from facepieces in
work scenarios. Prediction models were established for each
algorithm, and evaluation metrics R%, RMSE, and MAE were used to
compare and analyze the predictive performance of different models
to determine the optimal modeling method.

2.5.2.1 BPNN

BPNN is a typical multi-layer feedforward neural network that
simulates the structure of the biological nervous system, typically
including an input layer, one or more hidden layers, and an output
layer (30-32). The basic pipeline includes two stages: forward
propagation and backward propagation:

Forward propagation is a neural network that processes input
information layer by layer. The output of neurons from i-th layer to j
-th layer could be expressed as Equation 5 (33, 34):

V()= £ éwmn)yf(n) ©

Among them, y;" (n) represents output value of the m-th neuron
in the j-th layer. f () is the activation function and introduce
nonlinear characteristics p: the total number of nodes in the i-th layer.
w}‘i (n) is the weight of the j-th neuron from the k-th layer to the m-th
layer. y,k (n) is the output value of the i-th neuron in the k-th layer at
the n-th time step.

Backpropagation is the process of updating weights through error
backpropagation algorithm to minimize the loss function. The weight
update formula is Equation 6 (33, 34):

w(n+1)=w(n)—najfn)+5Aw(n) (6)

Among them, w(n) represents the weight at the n-th iteration.
7 is the learning rate that controls the step size of weight updating.
E is the energy of prediction error. _OE_ isthe partial derivative

8w(n)

of error with respect to weight, representing the sensitivity of error
to weight. & is a momentum parameter for accelerating
convergence. Aw(n) is the momentum term of the weight, used
to avoid local minima.

2522 RF

RF is an ensemble learning method that improves the stability and
generalization ability by constructing multiple decision trees and
performing ensemble voting on outputs. This method combines
Bagging technique with feature random selection strategy, reducing
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TABLE 2 Factor and label encoding.

Label
encoding

Temperature Temperature Label

exposure time

encoding

10.3389/fpubh.2025.1664838

Label
encoding

Label
encoding

Irradiation
exposure
time

Radiation
intensity

50 1 5 0.5

1.30 0.5 5 0.5

1.85 1 8 1

the sensitivity of the model to outliers and noise (33, 35, 36). The
prediction function Equation 7 (33) is as follows:

H(x)=argmaxyil(hi(x)=Y) (7)

Among them, H (x) is the final prediction result of the random
forest model on the input x. argmax , represents the selection of the y

P . . n .
value that maximizes the internal expression. ZI ( Iy (x) ) is the

=Y
i=1

sum of the predicted results of all trees, where I (hi (x) =Y) is an
indicator function. When the h,»(x) predicted result of the i-th
decision tree model is equal to Y, the value of this function is 1,
otherwise it is 0; h; (x) represents the i-th decision tree model. Y
represents the final output of the decision tree.

2.5.2.3SVM

SVM was initially used for classification problems (33, 37). The core
idea is to map the input space to a high-dimensional feature space through
a nonlinear mapping function & (x) , and construct the optimal
hyperplane for regression fitting in this space using Equation 8 (33, 38):

y=a'0(x)+b ®)

Among them, y is the predicted value; @ is a weight vector; H(x)
is a nonlinear mapping function that maps input data x to a higher
dimensional feature space; b is a bias term. In order to obtain the
optimal weight vector @, it is necessary to minimize the regularization
function and constrain it using Equation 9, 10, and 11 (33, 38):

N
min {%a}z ; cg(; +&) )} ©)

}/i—(wTH(xi))+bS|//+§,» i=12,..,N (10)

gi,gi(*)zo i=1,2,..,N (11)

Among them, ®* is the sum of squares of the weight vectors,
representing the complexity of the model; C is a regularization parameter
that controls the trade-off between model complexity and error; & and
& * are slack variables that allow some data points to violate constraints;
N is the sample size. i is the approximation accuracy of the function
placed on the training data sample; y; is the true value of the i-th sample.
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Finally, by introducing Lagrange multipliers &; and &; and
utilizing kernel functions K (x,x,-), the prediction function
Equation 12 (33, 38) can be obtained:

f(x)=X (867 )K (i) +b (12)

=

1l
—

1

Among them, K (x,x,-) is the kernel function used to calculate the
inner product of two vectors in high-dimensional space, thereby
avoiding explicit calculation of the mapping function. The commonly
used Gaussian kernel in SVM, also known as radial basis function, is
chosen as the kernel function (39). The kernel function Equation 13
is as follows:

2
||x—x,~||

- (13)

k(xx;)= -
(xx,) exp -

2
Among them, ||x —x,»” is the square of the Euclidean distance
between x and x;; o is the bandwidth parameter of Gaussian kernel,
which controls the width of the function.

2.5.3 Evaluation

During the training and testing phases, The predictive
performance of the ML model was evaluated using the coeflicient of
determination (R*), root mean square error (RMSE), and mean
absolute error (MAE). These metrics can comprehensively measure
the goodness of fit of the model (40). The Equation 14, 15, and 16 are
as follows:

RP=1-=L (14)

N
RMSE = /iZ(y,-—&,-)z (15)
NS
1 Y .
MAE=NZ|)’i_)’i| (16)
i=1

Among them, y; represents actual value, y; represents predicted
value, y represents the average of actual values. In this study, the
model with the highest R* and the lowest RMSE and MAE was
selected as the optimal prediction model.
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2.5.4 Model optimization

After model evaluation, select the model with the best predictive
performance. At the same time, in order to prevent overfitting, 36 data
points were synthesized by adding Gaussian noise and 18 data points
were synthesized by linear interpolation, resulting in a total of 90 data
points. The dataset was still divided into 85% training set and 15%
testing set. And utilize PSO algorithm for model parameter
optimization (41).

By assuming that in a D-dimensional search space, the number of
particles is M, the position of the i-th particle is X;, and the velocity is
Vi, the particle updates its position and velocity according to
Equation 17 and 18.

Vij (t+ 1) =wvj (t)+clr1 (t)(P,j (t)—xij(t))

e (1) Py 1) (1)

xij (£+1)= x5 (£)+vii (£ +1)

17)
(18)

Among them, w is the inertia weight; ¢; and ¢, are acceleration
constants; ; and r, are random parameters. The acceleration constant
¢ and ¢, are both set to 2.05; Set the particle population size to 10;
Perform triple fold cross validation on the training set. When the
number of iterations reaches the set value or the optimal position
found, and the set minimum adaptive value is met, the optimization
process is done.

3 Results

3.1 Experimental results and exposure level
assessment

3.1.1 Cu release from CuO disposable facepiece
under different environmental conditions

The analysis of Cu released from CuO disposable facepiece
under different environmental conditions (including temperature
and irradiance) showed that there were significant differences in
the amount of Cu released from work scenarios. Work scenarios
1-8 typically exhibited a lower range of Cu release, typically
between 5 and 10 pg, indicating that these groups were subjected
to less harsh environmental conditions. In contrast, the os 9-36
showed a higher Cu release range, mainly between 10 and 20 pg,
indicating that the deterioration of the work environment had led
to an upward trend in the Cu release of the disposable facepiece.

A particularly noteworthy observation was that the release
amount of Group 12 reached 23.65pg, the highest among all
experimental groups. This may be due to a combination of higher
temperatures and prolonged irradiance. The release amount of
21.78 pg in Group 17 ranked second, further indicating the influence
of environmental pressure factors on the stability of CuO. The release
amount of group 2 was the lowest, 7.25 pg, which indicated that the
CuO disposable facepiece could be effectively stabilized at a short
temperature to minimize the release of Cu. Therefore, with the
deterioration of environmental conditions, the increasing trend of Cu
release highlighted the key role of environmental factors in the Cu
release of disposable facepiece (Figure 2) (See Table S1 in the
Supplementary material).
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3.1.2 The influence of temperature and irradiation
intensity on release trends

The release of Cu from CuO facepieces at 30 °C and 50 °C was
analyzed. According to the principle of controlling for a unified
variable, the treatment conditions for the two groups of variables
remained consistent except for temperature. The release of Cu at 50 °C
was significantly higher than that at 30 °C (Figure 3a), which may have
been attributed to the high temperature promoting the thermal
decomposition or surface reaction activity of CuO, leading to the
release of more Cu.

At 30 °C, the trend of Cu changing with the radiation intensity or
radiation time of each group was relatively gentle, indicating that the
influence of temperature on the release of Cu should have been dominant
at that time. At 50 °C, there were periodic fluctuations in the experimental
data of 9 groups (Figure 3a), which were due to different irradiation
conditions. At this time, the effect of irradiation on the release of Cu was
more significant, possibly due to the photocatalytic reaction induced by
light accelerating the decomposition process of CuO (42).

Nine experiments at 50 °C were selected and divided into 3 groups
according to different radiation intensities to analyze the release of Cu
under different radiation intensities. At different irradiation intensities,
there was a significant stratification in the release of Cu. At an
irradiation intensity of 0.75pw/cm?, the release of Cu was at the lowest
level, followed by a radiation intensity of 1.85pw/cm?, and the highest
release of Cu was at an irradiation intensity of 1.30pw/cm® The release
of Cu first increased and then decreased with the increase of
irradiation intensity (Figure 3b).

3.1.3 Occupational exposure level assessment

The occupational exposure levels of workers across different work
scenarios were analyzed based on experimental data. The analysis
revealed that among the 36 distinct working scenarios, a total of 27
groups of experimental workers were classified as having a level III
exposure level according to the occupational exposure level and limit
table (Table 1). This classification indicated a significant exposure of
workers to Cu. Consequently, it was determined necessary to restrict
the use of CuO facepieces in situations of long-term high-intensity
exposure. The exposure levels in the remaining 9 experiments were all
categorized at level I, suggesting that while there was exposure to Cu,
it did not result in significant health effects

3.2 Selection and Optimization of
Prediction Model for Cu Release in
Facepieces

3.2.1 Model performance comparison

On the training set, the SVM model performed well, with high
consistency between predicted values and true values, indicating that
SVM could effectively learn from training data and make accurate
predictions. The performance of BPNN model on the training set was
not as good as SVM, and the consistency between predicted values
and true values was poor, indicating that it had certain limitations in
processing the data in this study. The distribution of points in the RF
model on the training set was relatively scattered, which was still
relatively poor compared to SVM. Due to the small sample size of the
test, the distribution of points in the three models was relatively
scattered. Overall, SVM outperformed BPNN and RF (Figure 4).
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FIGURE 2
The bar charts labeled (a) through (d) illustrate the Cu release under different working conditions. Each chart indicates the temperature and time. Chart
(a) shows the copper release at 30 °C and 2 h. Chart (b) displays the copper release at 30 °C and 5 hours. Chart (c) represents the copper release at
30 °C and 8 h. Chart (d) depicts the copper release at 50 °C and 2 hours. These scenarios involve irradiance levels of 0.75 pw/cm?, 1.30 yw/cm?, and
1.85 pw/cm?, with irradiance times of 2 h, 5 h, and 8 h, respectively.

In addition, there were 26 groups of samples in the SVM model
where the relative error between the predicted value and the true value
was less than 10%. There were 15 groups of samples with relative
errors less than 10% in BPNN, and 11 groups of samples with relative
errors less than 10% in RF model, and BPNN and RF samples showed
significant errors (Figure 4).

To further evaluate the performance of each model, metrics such
as RMSE, MAE, and R? were used. The RMSE of SVM model on the
training set was 0.1159, MAE was 0.0696, and R* was 0.7842. On the
test set, these metrics were 0.1018, 0.0899, and 0.8422, respectively.
This indicated that the SVM model had good predictive performance
in the release of Cu. The RMSE of the BPNN model on the training
set was 0.1593, MAE was 0.1293, and R? was 0.5919. On the test set,
these metrics were 0.1126, 0.0879, and 0.8071, respectively. This
indicated that the BPNN model had lower predictive performance

Frontiers in Public Health

than the SVM model in predicting the release of Cu. The RMSE of the
RF model on the training set was 0.1728, MAE was 0.1468, and R* was
0.5202. On the test set, these metrics were 0.1808, 0.1642, and 0.5024,
respectively. This indicated that the RF model had the worst predictive
performance for the release of Cu in this study (Table 3).

3.2.2 Model optimization and improvement

Using PSO algorithm to optimize the hyperparameters of SVM
model. On the training set, the RMSE of the PSO-SVM model was 0.0232,
the MAE was 0.0220, and the R? was as high as 0.9906. Compared with
the evaluation index values of the SVM model, this indicated that PSO
significantly improved the fitting degree of the SVM model for the release
of Cu. On the test set, the RMSE of the PSO-SVM model was 0.0762,
MAE was 0.0525, and R* was 0.9045. Although the performance metrics
were slightly lower than those of the SVM model on the test set, the R*
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value was still high, and the RMSE and MAE values were low (Table 4),
indicating that the model had strong generalization ability and high
reliability on unseen data. By calculating the relative error between the
predicted values and the true values, it could be found that the prediction
errors of the 77 training samples were all below 10%, and the error
percentage between the predicted values and the true values output by the
10 validation samples was all below 10% (Figure 5), which belonged to a
relatively low error. This reflects that the prediction level and reliability of
the prediction model established based on particle swarm optimization
are relatively good, basically in line with the prediction of the release
amount of Cu.

4 Discussion

This study was conducted under environmental simulation in the
workplace, as the CuO in antibacterial fibers act by releasing metal ions
such as Cu®* (43), and the chemical properties of CuO determine its
release mechanism. Previous studies have shown that CuO can generate
Cu?** through dissolution or surface ion exchange in weakly acidic and
humid environments (44, 45). Additionally, the presence of oxygen
vacancies and surface Cu species in CuO-based materials has been shown
to influence their reactivity and dissolution behavior (46), further
supporting the observed release trends under varying environmental
conditions. At the same time, there may be other components (such as
additives or heteroatoms) in the fibers that affect the bonding strength
between CuO and the fibers. When the fibers swell or undergo chemical
interactions, it will accelerate the dissolution of CuO.

Meanwhile, higher temperatures can enhance the surface fluidity of
polymer fibers, and even cause polymer chain breakage and surface
cracks, thereby promoting the desorption and dissolution of doped CuO
particles (47). For CuO materials themselves, the study has shown that
UV irradiation can accelerate the release of Cu** from CuO particles into
aqueous solution (48), but experimental data shows that radiation has
limited effect on the amount of Cu released. The previous study has

Frontiers in Public Health

indicated that this phenomenon suggests that the effects of radiation aging
can damage the fiber structure (49) and lead to the release of Cu in the
facepiece. This study speculates that irradiance mainly indirectly affects
Cu release by accelerating fiber aging, but this effect is far less than the
driving effect of temperature changes on release. When the exposure time
of temperature increases, the experimental results show that the release of
Cu in disposable facepiece increases significantly, and when the
temperature increases, the release of Cu in disposable facepiece increases
significantly. One study showed that when the temperature rose from
15 °C to 40 °C, the number of micro plastics released from disposable
facepiece increased from 1,043 to 2,940 items/(piece-d), nearly tripling
(47). From the literature, it can be inferred that the release of Cu in
disposable facepiece is mainly affected by temperature. Under the
combined action of irradiance and temperature, especially when the
temperature exposure time increases, the release of Cu in the disposable
facepiece is more than 10 pg, and some even exceed 20 pg. In terms of
worker exposure levels, although the amount of Cu inhaled in the short
term is within an acceptable safe range, approximately 20 pg of Cu may
be inhaled under extremely harsh environmental conditions. When the
release of Cu in CuO disposable facepieces is 20 pg, it accounts for
approximately 3% of the total Cu content in disposable facepieces (5).
However, it should be noted that previous studies have reported that CuO
particles can cause lung inflammation and systemic toxicity through
oxidative stress pathways after inhalation (50, 51). Additionally, exposure
to elevated metal concentrations, including Cu, has been linked to adverse
reproductive health effects, such as sperm DNA damage (52), further
emphasizing the need for careful monitoring of occupational Cu exposure.

In this study, ML was utilized to predict the exposure level of workers.
It was found in the training set that SVM has significant advantages in
small sample learning due to its good generalization ability (53). However,
BPNN is slightly inferior to SVM. This may be because BPNN is prone to
falling into local optima when facing small samples and complex
nonlinear relationships (54). At the same time, previous studies have
shown that SVM performs better than BPNN and RF in predicting the

EE &

exposure level of substances (55, 56). And data augmentation is utilized

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1664838
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

10.3389/fpubh.2025.1664838

Bai et al.
(a) . SVM - Training Set (d) RF - Training Set (g) BP - Training Set
1 7
7/
/
08 7 7 ’ 7 7 ‘ 0.8 4 /0
2 0. 208 @ s
¢_=U : s % 7 ’ l_z e © 3
/ (0]
> 06 { 2 06 /00 © > 06 7 o
T ® T (&) ’/’. b T o8 L, @
9 o 9 ® L 7 ,
/7 8% © 0.4 ®
Q04 o o o, o /
5 S %5 04 U 5 0@
I} ’ o e , o s ©
- - ® 00 , - 0.2 v
oo02f @f L 7 o o
) 7 of” ©
OP 0 7 Q@
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
True Value True Value True Value
(b) SVM - Test Set () RF - Test Set (h) BP - Test Set
%
9 P °] ‘@
0.6 © 7 4 06 7 0.6 ’
. y; Ps
E o E] * . E /
=05 °d — / D = 0.5 Vi
© ’ © 0.5 ’ L e/
- d z °o,” z 0.4 ’
T . Ve
2 04 s D 0.4 / [} 7
/ - 7/ - 7
2 4 L %o / 203 ’
03 ’ T, ’ T ’
(] 7/ oY Vs D02 /
1 3] P g - Y - U. )
o 02 ’ a s o s
, 7/ 02 7 01t@
¥
0.1r/ /
o 0.1K Ot g
0.2 0.4 0.6 01 02 03 04 05 06 0.2 0.4 0.6
True Value True Value True Value
() ® (i)
0.8 © Training Set 08{ © Training Set — 08{ © Training Set
- O Test Set Py @ Test Set 2 O Test Set
§ 07 & 07 Z o7
o
g 06 = os. o os
S (o] -
O s = oos § 05 .
S
% 0.4 l:l:, 04 o! . uh_| 04 .
L ] L ]
é 0.3 . -‘3 0.3 ° P ? e g 0.3, ° ° ° !
O o2 wl ! T - D 02 offl o .. ® o0z | i % .o
&u 1 il mu e '.o..o. m Qo |0 2 Ml
’ ° ° ° ) " R ° A e ol looll]® oll o
o0l gleler?!|| colotortoreseetiitel!!!le ood elel [\ TellIIIeTITLIITIRIL T 0-0.., Il IPIITLIRTILIe 18] e
1 6 1 16 21 26 31 36 1 6 " 16 21 26 3 36 1 6 " 16 21 26 3 36
Experiment number Experiment number Experiment number
FIGURE 4
(a,d,g) Represent the comparison between the predicted values and the true values of SVM, RF, and BPNN on the training set. (b,e,h) Represent the
comparison between the predicted values and the true values of SVM, RF, and BPNN on the test set. (c,f,i) Represent the relative errors between the
predicted values and the true values of all samples for SVM, RF, and BPNN, respectively.

TABLE 3 Evaluation metrics of SVM, BPNN, and RF on training and test

TABLE 4 Evaluation metrics of PSO-SVM on training and test sets.

Evaluation

Training set

index

Test set

RMSE 0.0232 0.0762
MAE 0.0220 0.0525
R? 0.9906 0.9045

to expand the data, and PSO is used to optimize SVM, thereby improving
the regression accuracy of the model on the training set. Compared with
previous studies, SVM prediction performance is improved after adjusting
the parameters of the model (55). Moreover, better generalization
performance is also achieved on the test set through the optimized
parameters, thereby reducing the risk of SVM overfitting to a

sets.
Evaluation Training set = Test set
index
RMSE 0.1159 0.1018 ‘ PSO-SYM
SVM MAE 0.0696 0.0899 ‘
R 0.7842 0.8422
RMSE 0.1593 0.1126
BPNN MAE 0.1293 0.0879
R 0.5919 0.8071
RMSE 0.1728 0.1808
RF MAE 0.1468 0.1642
R 0.5202 0.5024 certain extent.
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(a) Represents the comparison between the predicted values and the true values of PSO-SVM on the training set. (b) Represents the comparison
between the predicted values and the true values of PSO-SVM on the test set. (c) Represents the relative error between the predicted values and the
true values of all samples representing PSO-SVM.

Finally, this study has systematically evaluated and predicted the
release of Cu in CuO disposable facepiece and its workers' exposure level
as far as possible under the existing technology and time. During the
experimental design phase, we conducted a comprehensive literature
search and screening, ultimately incorporating all recognized and
quantifiable major environmental factors into the model. Although
limited by cognition and objective conditions, it is still impossible to
exhaust all unknown factors, but the existing evidence is enough to
suggest that the Cu released by disposable facepiece has potential risks to
workers health that cannot be ignored. This study provides a scientific
basis for the evaluation and prediction of Cu in CuO disposable facepiece.

5 Conclusion

This study has found that there are significant differences in the
release of Cu from CuO facepieces across various work scenarios,
particularly in harsh working environments where the release of Cu
increases significantly, potentially posing risks to the occupational
health of workers. Therefore, measuring the release amount of Cu
from disposable facepieces containing Cu in different work scenarios
and determining the exposure level of workers have been essential to
ensure occupational health. To this end, this study has constructed
prediction models based on BPNN, RE and SVM, and has compared
the predictive performance of the three models. The results have
shown that the SVM model performs well on the training set, but
there was a certain degree of overfitting on the test set. To further
enhance the generalization ability of the model, this study has used
the PSO algorithm to optimize the hyperparameters of the SVM
model. The optimized PSO-SVM model has exhibited extremely high
fitting accuracy on the training set, with an RMSE of 0.0232, an MAE
of 0.0220, and an R? of 0.9906; on the test set, the PSO-SVM model
has shown good predictive performance with an RMSE of 0.0762, an
MAE of 0.0525, and an R* of 0.9045. In summary, the SVM model
based on PSO optimization has shown high accuracy and reliability
in predicting the release of Cu from facepieces, providing an effective
tool for the occupational health assessment of workers.
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