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Assessment and prediction of 
copper release amount from 
copper oxide facepieces
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School of Engineering and Technology, China University of Geosciences, Beijing, China

Background: Disposable facepieces, as important personal protective 
equipment, provide respiratory protection for workers. However, Cu containing 
facepieces may cause Cu release, posing a potential danger to human health.
Methods: In this study, aging experiments were conducted on 36 groups of 
facepieces, simulating the use of facepieces under high temperature, radiation 
environment and work rate to assess the exposure levels of workers to Cu 
amount. Meanwhile, a machine learning model was developed based on the Cu 
release amount to predict the exposure level.
Results: The research found that after simulating the aging of facepieces, the 
Cu release ranged from 7.25µg to 23.65µg, and the release trend showed an 
increasing trend under the simulated harsh conditions. The exposure levels 
in different scenarios were evaluated based on the release amount. Among 
them, 27 groups were evaluated as level III and 9 groups were evaluated as 
level II. Furthermore, the prediction results of Support Vector Machine (SVM), 
Backpropagation Neural Network (BPNN), and Random Forest (RF), test and 
training sets were evaluated using coefficient of determination (R2), root mean 
square error (RMSE) and mean absolute error (MAE). Among them, the SVM 
algorithm performed the best, further improving its predictive ability by using 
data augmentation methods and Particle Swarm Optimization (R2 of 0.9045, 
RMSE of 0.0762, and MAE of 0.0525). The relative errors between the predicted 
values and the true values of all samples were mostly less than 5%.
Conclusion: The research method in this study can effectively assess the Cu 
exposure level of workers and provide a scientific basis for occupational health 
monitoring.

KEYWORDS

disposable facepiece, machine learning, release amount, exposure level, support 
vector machine

1 Introduction

In recent years, with the widespread application of microbial technology, a large amount of 
highly polluting aerosols have been released (1, 2). Environmental disruptions, such as floods, 
have also been shown to significantly increase health risks, including diarrheal morbidity (3), 
highlighting the complex interplay between environmental and occupational hazards. The KN95 
disposable facepieces have become important personal protective equipment in medical, sewage 
treatment and other workplaces (4). Therefore, workers need to wear facepieces for a long time to 
ensure respiratory health (5). Among them, copper oxide (CuO) facepieces widely sold on the 
market have attracted widespread attention due to strong antibacterial ability, prevention of 
secondary infections, and effective avoidance of respiratory and lung infections caused by inhaling 
bacteria and other microorganisms (6, 7). However, in workplaces such as medical and industrial 
fields, workers often face high temperature environments, the possibility of exposure to ionizing 
radiation (8, 9), and different work rates (10). The interaction of these factors may affect the 

OPEN ACCESS

EDITED BY

Mahmood Ahmed,  
University of Education, Lahore, Pakistan

REVIEWED BY

Mudassar SanaUllah,  
Harbin Institute of Technology, China
Shahin Cheraghian,  
Kermanshah University of Medical Sciences, 
Iran

*CORRESPONDENCE

Chenchen Sun  
 chch.s@hotmail.com

RECEIVED 12 July 2025
ACCEPTED 08 September 2025
PUBLISHED 25 September 2025

CITATION

Bai Z, Sun C, Liu J and Liu Z (2025) 
Assessment and prediction of copper release 
amount from copper oxide facepieces.
Front. Public Health 13:1664838.
doi: 10.3389/fpubh.2025.1664838

COPYRIGHT

© 2025 Bai, Sun, Liu and Liu. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  25 September 2025
DOI  10.3389/fpubh.2025.1664838

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2025.1664838&domain=pdf&date_stamp=2025-09-25
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1664838/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1664838/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1664838/full
mailto:chch.s@hotmail.com
https://doi.org/10.3389/fpubh.2025.1664838
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2025.1664838


Bai et al.� 10.3389/fpubh.2025.1664838

Frontiers in Public Health 02 frontiersin.org

structural stability of facepieces, leading to material aging (11, 12), which 
leads to a decrease in the bonding strength between the Cu and the 
textiles in the facepiece. CuO attached to the fiber is easy to separate and 
enter the surrounding and internal environment of the disposable 
facepiece (13), which may increase the exposure level of the wearer. The 
previous study has shown that the Cu released by facepieces can induce 
the production of reactive oxygen species, leading to cellular oxidative 
damage and posing a threat to the human respiratory system (5). When 
CuO is used as the component material of the whole disposable facepiece, 
attention needs to be paid to the cytotoxicity of the facepiece to human 
cells (14). It is necessary to carry out the prediction research on the Cu 
release amount of disposable facepiece in order to scientifically assess its 
health risk.

With the continuous deepening of the application of machine 
learning (ML) in the textile field (15, 16), ML’s ability to identify, classify 
and predict unknown situations through existing data (17) is forging a 
new technical pathway for the evaluation and forecasting of fabric 
material performance (18). However, the current research on the Cu 
exposure level in the facepiece is still insufficient, and the prediction of 
Cu exposure in the disposable facepiece faces the problems of insufficient 
automation and intelligence level and low efficiency (19, 20). Therefore, 
applying ML to predict the exposure level of Cu in facepieces faces two 
major challenges: obtaining reliable and comprehensive datasets and 
selecting appropriate ML models. Specifically, the determination of Cu 
shedding from the facepiece is influenced by multiple factors, including 
temperature, irradiance, and work rate, which increases the complexity 
of index determination. To enhance the validity and universality of the 
model, the testing process should be  as comprehensive as possible, 
covering a wide range of data. To ensure the accuracy and repeatability 
of data, the data collection process must be highly standardized and 
precise, which places higher demands on the experimental procedures. 
Furthermore, among the numerous existing ML models, choosing a 
predictive model that conforms to the characteristics of the data in this 
study is itself a major challenge. ML methods such as Support Vector 
Machine (SVM) Backpropagation Neural Network (BPNN), and 
Random Forest (RF) can predict unknown data with limited data (15, 
21, 22), effectively compensating for the limitations of traditional research.

Therefore, this study simulated harsh work environments and 
collected Cu using ultrasonic bath treatment (23), and characterized and 
analyzed release levels using inductively coupled plasma (ICP) technology. 
According to the exposure threshold value, the release amount is classified 
into levels to evaluate the exposure level of the workers. At the same time, 
this study screened three classic prediction algorithms: SVM, RF, and 
BPNN. The regression model with the best performance was selected 
through evaluation metrics, and the model is optimized by using data 
augmentation methods and particle swarm optimization (PSO) algorithm 
to obtain more accurate predicted values. These results not only quantify 
the health risks posed by Cu release from facepieces, but also leverage the 
ML models introduced here for the first time to build a higher-precision 
release amount predictive model, significantly advancing its intelligence.

2 Materials and methods

2.1 Facepiece samples

This study selected KN95 CuO facepieces that comply with the 
Chinese national standard GB 2626–2019 “Respiratory 

Protection-Non-powered air-purifying particle respirator” (24). The 
facepiece is designed without an exhalation valve and has a five-layer 
structure, with the outermost and innermost layers being non-woven 
fabrics containing CuO.

2.2 Facepiece aging experiment

In this study, the temperature, irradiance and work rate, which were 
the key factors affecting the release of Cu from CuO disposable facepiece, 
were selected, and the processing time dimension was increased. In 
order to explore the release of Cu containing disposable facepiece under 
long-time operation, and reduce the possible loss of Cu in the process of 
storage and transportation due to the use of filter collection, the method 
of collecting Cu in pure water was adopted, and the breathing energy 
borne by the disposable facepiece was converted into ultrasonic energy 
by ultrasonic treatment. The experimental levels were as follows: 
temperature (30  °C, 50  °C), irradiance (0.75μw/cm2, 1.30μw/cm2, 
1.85μw/cm2) and superimposed with respiration. The level of each factor 
was determined according to the literature review and the actual 
situation. 30 °C represented the indoor working temperature, and 50 °C 
represented the temporary high temperature that might be encountered 
outdoors; According to the exposure level, 0.75µw/cm2 represented 
indoor scattered ultraviolet light, 1.30µw/cm2 represented low-intensity 
areas farther away from the light source, and 1.85µw/cm2 represented 
high-intensity areas closer to the light source. For the work rate factor, 
the maximum breathing energy borne by CuO disposable facepiece was 
included in the 8-hour working time, which was converted to ultrasonic 
treatment. According to the content of released Cu, the exposure level 
of each worker during the 8-h operation process was evaluated with the 
Cu released by the disposable facepiece as the dependent variable.

A total of 36 combinations were designed in the experiment to 
simulate the aging of facepieces in different work scenarios (Figure 1). 
The processing time for each experiment refers to the recommended 
replacement time (2 h) and maximum usage time (8 h) of the facepiece, 
and an intermediate node (5 h) is added to comprehensively evaluate 
the impact of different usage times on the performance of the facepiece.

A constant temperature chamber (KBF series, BINDER GmbH, 
Germany) was used to simulate the workplace temperature. In order 
to simulate the radiation intensity in the workplace, a UV light source 
(TS 6 W UVA-340 nm, China) was used to simulate the UV radiation 
that the facepiece may come into contact with.

To simulate the effect of respiratory rate on facepieces, the 
ultrasonic bath treatment was used (25). The ultrasonic bath treatment 
used an ultrasonic cleaning machine (AK-040SD, power 480 W, 
capacity 10 L) to investigate the maximum respiratory energy that the 
facepiece can withstand. Pure water was used to collect the Cu released 
from the facepiece, and the processing time was calculated using 
Equation 1:

	 ( ) ∆
× ×

=
× ×/ mask

E N Tt
P V V t

	
(1)

Among them: t  represents ultrasound time; E  represents the 
energy consumption per breath, taking the maximum facepiece 
energy cost as 10 mJ (26); N  represents the number of breaths, taking 

https://doi.org/10.3389/fpubh.2025.1664838
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Bai et al.� 10.3389/fpubh.2025.1664838

Frontiers in Public Health 03 frontiersin.org

the maximum respiratory rate of 60 breaths per minute during human 
movement (27); T  represents the total time, with a maximum wearing 
time of 8 h for the facepiece; P  represents ultrasonic cleaner power of 
480W; V  represents the volume of the solution, the water solution 
used for ultrasonic treatment is about 8 L; maskV  represents the volume 
of a single facepiece (9cm3); Ät  represents time interval (1 min). The 
calculation result was 8.89 min. Due to the loss of ultrasonic energy 
caused by glass bottles, the final ultrasonic time was determined to 
be 9 min.

Therefore, in the process of using ultrasonic bath, the processed 
facepiece containing Cu was cut into approximately ×2cm 2cm sheet-
like shapes and placed in a wide mouthed glass bottle containing 
100mL pure water. It was then placed in an ultrasonic cleaning 
machine and continuously vibrated for 9min . After the experiment, 
an appropriate amount of sample solution was taken into a glass 
sample bottle and detected using an inductively coupled plasma (ICP) 
technology.

To verify the feasibility of the method, a comparison was made 
between ultrasonic bath treatment and filter collection methods. The 
amount of Cu collected by ultrasonic bath treatment was 12.50 μg. The 
filter collection method used filter (AFT TEST MEDIA PN 813010, 
USA). The identical CuO facepiece was subjected to a unidirectional 
constant respiratory flow rate of 85 L/min for a duration of 8 h, and 
the Cu were collected on a filter. The amount of Cu collected was 
determined to be 2.13 μg upon analysis with ICP technology.

Comparing two methods, the amount of Cu collected by 
ultrasonic bath treatment is about 5.87 times that collected by filter 
collection method. Taking 95% of 5.87, the amount of Cu collected by 
ultrasonic bath treatment is about 5.6 times that collected by filter 
collection method. This estimation took into account the sinusoidal 
shape of the human breathing curve, suggesting that the release of Cu 
might increase during actual respiration. Additionally, there might 
have been losses when using the filter method for storage and 
detection processes. Overall, it was believed that within an equivalent 
timeframe, the ultrasonic bath treatment released about 5.6 times the 
amount of Cu from the facepiece compared to normal use, indicating 
that the ultrasonic bath treatment not only collected more material 
but also saved time.

The facepiece aging experiment was conducted according to the 
values set for each group. Initially, the facepiece was placed in the 
constant temperature chamber with a humidity of 85%, and then the 

surface of the facepiece was exposed to UV light. Subsequently, the 
facepiece was treated using the ultrasonic bath treatment employed in 
the pre-experiment. A total of 36 experiments were conducted 
following the instructions. The collected solutions were then labeled 
and stored for subsequent ICP analysis.

2.3 ICP analysis

The content of Cu was analyzed on ICP (ThermoICPOES7200, 
ThermoFisher, USA). The instrument was operated at an RF 
power of 1.15 kW with argon as carrier and plasma gas. The 
plasma flow was set to 15 L/min, the auxiliary gas flow was set to 
1.5 L/min, and the nebulizer gas flow was set to 0.75 L/min; 
Detection was carried out in axial view mode, and linear 
calibration was employed. Each sample was measured in 
triplicate, and the average value was taken.

2.4 Exposure level assessment

To assess the potential exposure level of Cu that workers may face 
while wearing KN95 CuO facepieces, this study used the Time 
Weighted Average Allowable Concentration (PC-TWA) in the 
Occupational Exposure Limit (OEL) as the evaluation indicator (28). 
The Equation 2 is as follows:

	

+ + +
=

+ + +




1 1 2 2

1 2

n n

n

C T C T C TTWA
T T T 	

(2)

Among them: C  is the contact concentration; T  is the duration of 
contact, where + + + =1 2 8nT T T h . When the workers wear the 
facepieces, the closed space (V) formed between the facepieces and 
the human face is approximately 5 × 10−4 m3. According to the 
standard GB 2626–2019 (24) and the grade of facepiece filter material, 
the overall total leakage rate is 11%. The amount of Cu collected by the 
ultrasonic bath treatment is approximately 5.6 times that under 
normal breathing conditions. Excluding other physical processes like 
human inhalation, the actual workerTWA , namely the occupational 
exposure limit for the worker ( workerOEL ), is calculated using 
Equation 3 as follows.

FIGURE 1

Diagram of all experimental combinations.
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( ) ( )× − × ÷

= =
/ 8 1 11% 8 5.6

8worker worker
x V

TWA OEL
	

(3)

Reference was made to GBZ 2.1–2019 ‘Occupational exposure 
limits for hazardous agents in the workplace-Part 1: Chemical 
hazardous agents’ for occupational exposure levels and classification 
control tables (28), to calculate exposure limits for different levels. Let 
x mg be the amount of Cu detected by ICP over an 8-hour period. 
Considering that in the worst-case scenario, assuming that all Cu 
detected by ICP was Cu dust, the OEL value of cu dust was 1 mg/m3 
(28), and the calculation results were summarized in Table  1 by 
substituting it into Equation 3. Based on the release of Cu from CuO 
facepieces in different work scenarios, the exposure level of workers 
in different work scenarios could be  evaluated using the work 
exposure level table.

2.5 Construction of prediction model for 
cu release in disposable facepiece

2.5.1 Data source and preprocessing
The Cu release prediction model constructed in this study was 

based on the aforementioned 36 sets of experimental data. The input 
features of the model were temperature, temperature exposure time, 
irradiation intensity, and irradiation exposure time, and the output 
was the corresponding release amount of Cu. The work scenario 
considered the worst-case scenario, so the work rate was not used as 
an input variable, but as a background condition. Before modeling, the 
data was preprocessed first. In this study, categorical variables included 
temperature, temperature exposure time, irradiation intensity, and 
irradiation exposure time; the quantitative variable was the amount of 
Cu released. For categorical variables, the Label Encoding method was 
used to map each category to a unique integer value (29) (Table 2).

Subsequently, the Min-Max Normalization method was used to 
scale the values of all variables to the [0, 1] interval, in order to 
eliminate the dimensional influence between different variables. The 
Equation 4 is as follows:

	

−
=

−
′ min

max min

X XX
X X 	

(4)

Among them: ′X  represents the normalized data; X  represents 
sample data; maxX  and minX  representthe maximum and minimum 

values in the sample. During the model training phase, 85% of the data 
is used as the training set, and the remaining 15% is used as the 
testing set.

2.5.2 ML algorithms
In recent years, ML algorithms have been increasingly applied in 

fields such as textile materials and protective materials, especially in 
prediction and classification tasks, providing several significant 
advantages. This study selected three mainstream ML algorithms (i.e., 
BPNN, RF, and SVM) to predict the release of Cu from facepieces in 
work scenarios. Prediction models were established for each 
algorithm, and evaluation metrics R2, RMSE, and MAE were used to 
compare and analyze the predictive performance of different models 
to determine the optimal modeling method.

2.5.2.1 BPNN
BPNN is a typical multi-layer feedforward neural network that 

simulates the structure of the biological nervous system, typically 
including an input layer, one or more hidden layers, and an output 
layer (30–32). The basic pipeline includes two stages: forward 
propagation and backward propagation:

Forward propagation is a neural network that processes input 
information layer by layer. The output of neurons from i-th layer to j
-th layer could be expressed as Equation 5 (33, 34):

	
( ) ( ) ( )

=

 
 =
 
 
∑
1

p
m k k
j ji i

k
y n f w n y n

	
(5)

Among them, ( )m
jy n  represents output value of the m-th neuron 

in the j-th layer. ( )⋅f  is the activation function and introduce 
nonlinear characteristics p: the total number of nodes in the i-th layer. 

( )k
jiw n  is the weight of the j-th neuron from the k-th layer to the m-th 

layer. ( )k
iy n  is the output value of the i-th neuron in the k-th layer at 

the n-th time step.
Backpropagation is the process of updating weights through error 

backpropagation algorithm to minimize the loss function. The weight 
update formula is Equation 6 (33, 34):

	
( ) ( ) ( ) ( )η ε∆∂
+ = − +

∂
1 Ew n w n w n

w n
	

(6)

Among them, ( )w n  represents the weight at the n-th iteration. 
η  is the learning rate that controls the step size of weight updating. 
E  is the energy of prediction error. 

( )
∂

∂
E

w n
 is the partial derivative 

of error with respect to weight, representing the sensitivity of error 
to weight. ε  is a momentum parameter for accelerating 
convergence. ( )∆w n  is the momentum term of the weight, used 
to avoid local minima.

2.5.2.2 RF
RF is an ensemble learning method that improves the stability and 

generalization ability by constructing multiple decision trees and 
performing ensemble voting on outputs. This method combines 
Bagging technique with feature random selection strategy, reducing 

TABLE 1  Occupational exposure level and limit.

Exposure level Exposure 
limit (μg)

Level description

0 (≤1% OEL) ≤0.25 Basically contactless

I (>1%, ≤ 10% OEL) >0.25, ≤ 2.5
Very low contact, no relevant effect 

based on existing information

II (>10%, ≤ 50% 

OEL)
>2.5, ≤ 13

Contact but no significant health 

effects

III (>50%, ≤ OEL) >13, ≤ 25
Significant contact requires action to 

restrict activities

IV (>OEL) >25 Exceeding OELs
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the sensitivity of the model to outliers and noise (33, 35, 36). The 
prediction function Equation 7 (33) is as follows:

	
( ) ( )( )

=
= =∑

1

n

Y i
i

H x argmax I h x Y
	

(7)

Among them, ( )H x  is the final prediction result of the random 
forest model on the input x . yargmax  represents the selection of the y 
value that maximizes the internal expression. ( )( )

=
=∑

1

n

i
i

I h x Y  is the 

sum of the predicted results of all trees, where ( )( )=iI h x Y  is an 
indicator function. When the ( )ih x  predicted result of the i-th 
decision tree model is equal to Y , the value of this function is 1, 
otherwise it is 0; ( )ih x  represents the i-th decision tree model. Y  
represents the final output of the decision tree.

2.5.2.3 SVM
SVM was initially used for classification problems (33, 37). The core 

idea is to map the input space to a high-dimensional feature space through 
a nonlinear mapping function ( )θ x , and construct the optimal 
hyperplane for regression fitting in this space using Equation 8 (33, 38):

	 ( )γ ω θ= +T x b	 (8)

Among them, γ  is the predicted value; ω is a weight vector; ( )θ x  
is a nonlinear mapping function that maps input data x  to a higher 
dimensional feature space; b is a bias term. In order to obtain the 
optimal weight vector ω, it is necessary to minimize the regularization 
function and constrain it using Equation 9, 10, and 11 (33, 38):

	

( )ω ξ ξ ∗

=

   + +  
   

∑2

1

1min
2

N

i i
i

C
	

(9)

	 ( )( )γ ω θ ψ ξ− + ≤ + = …1,2, ,T
i i ix b i N

	
(10)

	
( )ξ ξ ∗ ≥ = …, 0 1,2, ,i i i N 	 (11)

Among them, ω2 is the sum of squares of the weight vectors, 
representing the complexity of the model; C is a regularization parameter 
that controls the trade-off between model complexity and error; ξi and 
( )ξ ∗
i  are slack variables that allow some data points to violate constraints; 

N  is the sample size. ψ  is the approximation accuracy of the function 
placed on the training data sample; γ i is the true value of the i-th sample.

Finally, by introducing Lagrange multipliers δi and δ ∗i  and 
utilizing kernel functions ( ), iK x x , the prediction function 
Equation 12 (33, 38) can be obtained:

	
( ) ( ) ( )δ δ ∗

=
= − +∑

1
,

N

i i i
i

f x K x x b
	

(12)

Among them, ( ), iK x x  is the kernel function used to calculate the 
inner product of two vectors in high-dimensional space, thereby 
avoiding explicit calculation of the mapping function. The commonly 
used Gaussian kernel in SVM, also known as radial basis function, is 
chosen as the kernel function (39). The kernel function Equation 13 
is as follows:

	

( )
σ

 − = −  
 

2

2, exp
2

i
i

x x
k x x

	

(13)

Among them, −
2

ix x  is the square of the Euclidean distance 
between x  and ix ; σ  is the bandwidth parameter of Gaussian kernel, 
which controls the width of the function.

2.5.3 Evaluation
During the training and testing phases, The predictive 

performance of the ML model was evaluated using the coefficient of 
determination (R2), root mean square error (RMSE), and mean 
absolute error (MAE). These metrics can comprehensively measure 
the goodness of fit of the model (40). The Equation 14, 15, and 16 are 
as follows:

	

( )

( )
=

=

−

= −

−

∑

∑

2

2 1

2

1

ˆ

1

n

i i
i

n

i
i

y y
R

y y
	

(14)

	
( )

=
= −∑ 2

1

1 ˆ
N

i i
i

RMSE y y
N 	

(15)

	 =
= −∑

1

1 ˆ
N

i i
i

MAE y y
N 	

(16)

Among them, iy  represents actual value, ˆiy  represents predicted 
value, y represents the average of actual values. In this study, the 
model with the highest R2 and the lowest RMSE and MAE was 
selected as the optimal prediction model.

TABLE 2  Factor and label encoding.

Temperature Label 
encoding

Temperature 
exposure time

Label 
encoding

Radiation 
intensity

Label 
encoding

Irradiation 
exposure 

time

Label 
encoding

30 0 2 0 0.75 0 2 0

50 1 5 0.5 1.30 0.5 5 0.5

- - 8 1 1.85 1 8 1
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2.5.4 Model optimization
After model evaluation, select the model with the best predictive 

performance. At the same time, in order to prevent overfitting, 36 data 
points were synthesized by adding Gaussian noise and 18 data points 
were synthesized by linear interpolation, resulting in a total of 90 data 
points. The dataset was still divided into 85% training set and 15% 
testing set. And utilize PSO algorithm for model parameter 
optimization (41).

By assuming that in a D-dimensional search space, the number of 
particles is M, the position of the i-th particle is iX , and the velocity is 

iV , the particle updates its position and velocity according to 
Equation 17 and 18.

	

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

+ = + −

+ −
1 1

2 2

1ij ij ij ij

gj ij

v t wv t c r t P t x t
c r t P t x t

	 (17)

	 ( ) ( ) ( )+ = + +1 1ij ij ijx t x t v t 	 (18)

Among them, w is the inertia weight; 1c  and 2c  are acceleration 
constants; 1r  and 2r  are random parameters. The acceleration constant 
1c  and 2c  are both set to 2.05; Set the particle population size to 10; 

Perform triple fold cross validation on the training set. When the 
number of iterations reaches the set value or the optimal position 
found, and the set minimum adaptive value is met, the optimization 
process is done.

3 Results

3.1 Experimental results and exposure level 
assessment

3.1.1 Cu release from CuO disposable facepiece 
under different environmental conditions

The analysis of Cu released from CuO disposable facepiece 
under different environmental conditions (including temperature 
and irradiance) showed that there were significant differences in 
the amount of Cu released from work scenarios. Work scenarios 
1–8 typically exhibited a lower range of Cu release, typically 
between 5 and 10 μg, indicating that these groups were subjected 
to less harsh environmental conditions. In contrast, the os 9–36 
showed a higher Cu release range, mainly between 10 and 20 μg, 
indicating that the deterioration of the work environment had led 
to an upward trend in the Cu release of the disposable facepiece.

A particularly noteworthy observation was that the release 
amount of Group  12 reached 23.65 μg, the highest among all 
experimental groups. This may be due to a combination of higher 
temperatures and prolonged irradiance. The release amount of 
21.78 μg in Group 17 ranked second, further indicating the influence 
of environmental pressure factors on the stability of CuO. The release 
amount of group 2 was the lowest, 7.25 μg, which indicated that the 
CuO disposable facepiece could be effectively stabilized at a short 
temperature to minimize the release of Cu. Therefore, with the 
deterioration of environmental conditions, the increasing trend of Cu 
release highlighted the key role of environmental factors in the Cu 
release of disposable facepiece (Figure  2) (See Table S1 in the 
Supplementary material).

3.1.2 The influence of temperature and irradiation 
intensity on release trends

The release of Cu from CuO facepieces at 30 °C and 50 °C was 
analyzed. According to the principle of controlling for a unified 
variable, the treatment conditions for the two groups of variables 
remained consistent except for temperature. The release of Cu at 50 °C 
was significantly higher than that at 30 °C (Figure 3a), which may have 
been attributed to the high temperature promoting the thermal 
decomposition or surface reaction activity of CuO, leading to the 
release of more Cu.

At 30 °C, the trend of Cu changing with the radiation intensity or 
radiation time of each group was relatively gentle, indicating that the 
influence of temperature on the release of Cu should have been dominant 
at that time. At 50 °C, there were periodic fluctuations in the experimental 
data of 9 groups (Figure 3a), which were due to different irradiation 
conditions. At this time, the effect of irradiation on the release of Cu was 
more significant, possibly due to the photocatalytic reaction induced by 
light accelerating the decomposition process of CuO (42).

Nine experiments at 50 °C were selected and divided into 3 groups 
according to different radiation intensities to analyze the release of Cu 
under different radiation intensities. At different irradiation intensities, 
there was a significant stratification in the release of Cu. At an 
irradiation intensity of 0.75μw/cm2, the release of Cu was at the lowest 
level, followed by a radiation intensity of 1.85μw/cm2, and the highest 
release of Cu was at an irradiation intensity of 1.30μw/cm2. The release 
of Cu first increased and then decreased with the increase of 
irradiation intensity (Figure 3b).

3.1.3 Occupational exposure level assessment
The occupational exposure levels of workers across different work 

scenarios were analyzed based on experimental data. The analysis 
revealed that among the 36 distinct working scenarios, a total of 27 
groups of experimental workers were classified as having a level III 
exposure level according to the occupational exposure level and limit 
table (Table 1). This classification indicated a significant exposure of 
workers to Cu. Consequently, it was determined necessary to restrict 
the use of CuO facepieces in situations of long-term high-intensity 
exposure. The exposure levels in the remaining 9 experiments were all 
categorized at level II, suggesting that while there was exposure to Cu, 
it did not result in significant health effects

3.2 Selection and Optimization of 
Prediction Model for Cu Release in 
Facepieces

3.2.1 Model performance comparison
On the training set, the SVM model performed well, with high 

consistency between predicted values and true values, indicating that 
SVM could effectively learn from training data and make accurate 
predictions. The performance of BPNN model on the training set was 
not as good as SVM, and the consistency between predicted values 
and true values was poor, indicating that it had certain limitations in 
processing the data in this study. The distribution of points in the RF 
model on the training set was relatively scattered, which was still 
relatively poor compared to SVM. Due to the small sample size of the 
test, the distribution of points in the three models was relatively 
scattered. Overall, SVM outperformed BPNN and RF (Figure 4).
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In addition, there were 26 groups of samples in the SVM model 
where the relative error between the predicted value and the true value 
was less than 10%. There were 15 groups of samples with relative 
errors less than 10% in BPNN, and 11 groups of samples with relative 
errors less than 10% in RF model, and BPNN and RF samples showed 
significant errors (Figure 4).

To further evaluate the performance of each model, metrics such 
as RMSE, MAE, and R2 were used. The RMSE of SVM model on the 
training set was 0.1159, MAE was 0.0696, and R2 was 0.7842. On the 
test set, these metrics were 0.1018, 0.0899, and 0.8422, respectively. 
This indicated that the SVM model had good predictive performance 
in the release of Cu. The RMSE of the BPNN model on the training 
set was 0.1593, MAE was 0.1293, and R2 was 0.5919. On the test set, 
these metrics were 0.1126, 0.0879, and 0.8071, respectively. This 
indicated that the BPNN model had lower predictive performance 

than the SVM model in predicting the release of Cu. The RMSE of the 
RF model on the training set was 0.1728, MAE was 0.1468, and R2 was 
0.5202. On the test set, these metrics were 0.1808, 0.1642, and 0.5024, 
respectively. This indicated that the RF model had the worst predictive 
performance for the release of Cu in this study (Table 3).

3.2.2 Model optimization and improvement
Using PSO algorithm to optimize the hyperparameters of SVM 

model. On the training set, the RMSE of the PSO-SVM model was 0.0232, 
the MAE was 0.0220, and the R2 was as high as 0.9906. Compared with 
the evaluation index values of the SVM model, this indicated that PSO 
significantly improved the fitting degree of the SVM model for the release 
of Cu. On the test set, the RMSE of the PSO-SVM model was 0.0762, 
MAE was 0.0525, and R2 was 0.9045. Although the performance metrics 
were slightly lower than those of the SVM model on the test set, the R2 

FIGURE 2

The bar charts labeled (a) through (d) illustrate the Cu release under different working conditions. Each chart indicates the temperature and time. Chart 
(a) shows the copper release at 30 °C and 2 h. Chart (b) displays the copper release at 30 °C and 5 hours. Chart (c) represents the copper release at 
30 °C and 8 h. Chart (d) depicts the copper release at 50 °C and 2 hours. These scenarios involve irradiance levels of 0.75 μw/cm2, 1.30 μw/cm2, and 
1.85 μw/cm2, with irradiance times of 2 h, 5 h, and 8 h, respectively.
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value was still high, and the RMSE and MAE values were low (Table 4), 
indicating that the model had strong generalization ability and high 
reliability on unseen data. By calculating the relative error between the 
predicted values and the true values, it could be found that the prediction 
errors of the 77 training samples were all below 10%, and the error 
percentage between the predicted values and the true values output by the 
10 validation samples was all below 10% (Figure 5), which belonged to a 
relatively low error. This reflects that the prediction level and reliability of 
the prediction model established based on particle swarm optimization 
are relatively good, basically in line with the prediction of the release 
amount of Cu.

4 Discussion

This study was conducted under environmental simulation in the 
workplace, as the CuO in antibacterial fibers act by releasing metal ions 
such as Cu2+ (43), and the chemical properties of CuO determine its 
release mechanism. Previous studies have shown that CuO can generate 
Cu2+ through dissolution or surface ion exchange in weakly acidic and 
humid environments (44, 45). Additionally, the presence of oxygen 
vacancies and surface Cu species in CuO-based materials has been shown 
to influence their reactivity and dissolution behavior (46), further 
supporting the observed release trends under varying environmental 
conditions. At the same time, there may be other components (such as 
additives or heteroatoms) in the fibers that affect the bonding strength 
between CuO and the fibers. When the fibers swell or undergo chemical 
interactions, it will accelerate the dissolution of CuO.

Meanwhile, higher temperatures can enhance the surface fluidity of 
polymer fibers, and even cause polymer chain breakage and surface 
cracks, thereby promoting the desorption and dissolution of doped CuO 
particles (47). For CuO materials themselves, the study has shown that 
UV irradiation can accelerate the release of Cu2+ from CuO particles into 
aqueous solution (48), but experimental data shows that radiation has 
limited effect on the amount of Cu released. The previous study has 

indicated that this phenomenon suggests that the effects of radiation aging 
can damage the fiber structure (49) and lead to the release of Cu in the 
facepiece. This study speculates that irradiance mainly indirectly affects 
Cu release by accelerating fiber aging, but this effect is far less than the 
driving effect of temperature changes on release. When the exposure time 
of temperature increases, the experimental results show that the release of 
Cu in disposable facepiece increases significantly, and when the 
temperature increases, the release of Cu in disposable facepiece increases 
significantly. One study showed that when the temperature rose from 
15 °C to 40 °C, the number of micro plastics released from disposable 
facepiece increased from 1,043 to 2,940 items/(piece·d), nearly tripling 
(47). From the literature, it can be inferred that the release of Cu in 
disposable facepiece is mainly affected by temperature. Under the 
combined action of irradiance and temperature, especially when the 
temperature exposure time increases, the release of Cu in the disposable 
facepiece is more than 10 μg, and some even exceed 20 μg. In terms of 
worker exposure levels, although the amount of Cu inhaled in the short 
term is within an acceptable safe range, approximately 20 μg of Cu may 
be inhaled under extremely harsh environmental conditions. When the 
release of Cu in CuO disposable facepieces is 20  μg, it accounts for 
approximately 3% of the total Cu content in disposable facepieces (5). 
However, it should be noted that previous studies have reported that CuO 
particles can cause lung inflammation and systemic toxicity through 
oxidative stress pathways after inhalation (50, 51). Additionally, exposure 
to elevated metal concentrations, including Cu, has been linked to adverse 
reproductive health effects, such as sperm DNA damage (52), further 
emphasizing the need for careful monitoring of occupational Cu exposure.

In this study, ML was utilized to predict the exposure level of workers. 
It was found in the training set that SVM has significant advantages in 
small sample learning due to its good generalization ability (53). However, 
BPNN is slightly inferior to SVM. This may be because BPNN is prone to 
falling into local optima when facing small samples and complex 
nonlinear relationships (54). At the same time, previous studies have 
shown that SVM performs better than BPNN and RF in predicting the 
exposure level of substances (55, 56). And data augmentation is utilized 

FIGURE 3

(a) Release of Cu at different temperatures; (b) Release of Cu under different irradiance.
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to expand the data, and PSO is used to optimize SVM, thereby improving 
the regression accuracy of the model on the training set. Compared with 
previous studies, SVM prediction performance is improved after adjusting 
the parameters of the model (55). Moreover, better generalization 
performance is also achieved on the test set through the optimized 
parameters, thereby reducing the risk of SVM overfitting to a 
certain extent.

FIGURE 4

(a,d,g) Represent the comparison between the predicted values and the true values of SVM, RF, and BPNN on the training set. (b,e,h) Represent the 
comparison between the predicted values and the true values of SVM, RF, and BPNN on the test set. (c,f,i) Represent the relative errors between the 
predicted values and the true values of all samples for SVM, RF, and BPNN, respectively.

TABLE 3  Evaluation metrics of SVM, BPNN, and RF on training and test 
sets.

Model Evaluation 
index

Training set Test set

SVM

RMSE 0.1159 0.1018

MAE 0.0696 0.0899

R2 0.7842 0.8422

BPNN

RMSE 0.1593 0.1126

MAE 0.1293 0.0879

R2 0.5919 0.8071

RF

RMSE 0.1728 0.1808

MAE 0.1468 0.1642

R2 0.5202 0.5024

TABLE 4  Evaluation metrics of PSO-SVM on training and test sets.

Model Evaluation 
index

Training set Test set

PSO-SVM

RMSE 0.0232 0.0762

MAE 0.0220 0.0525

R2 0.9906 0.9045
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Finally, this study has systematically evaluated and predicted the 
release of Cu in CuO disposable facepiece and its workers’ exposure level 
as far as possible under the existing technology and time. During the 
experimental design phase, we conducted a comprehensive literature 
search and screening, ultimately incorporating all recognized and 
quantifiable major environmental factors into the model. Although 
limited by cognition and objective conditions, it is still impossible to 
exhaust all unknown factors, but the existing evidence is enough to 
suggest that the Cu released by disposable facepiece has potential risks to 
workers’ health that cannot be ignored. This study provides a scientific 
basis for the evaluation and prediction of Cu in CuO disposable facepiece.

5 Conclusion

This study has found that there are significant differences in the 
release of Cu from CuO facepieces across various work scenarios, 
particularly in harsh working environments where the release of Cu 
increases significantly, potentially posing risks to the occupational 
health of workers. Therefore, measuring the release amount of Cu 
from disposable facepieces containing Cu in different work scenarios 
and determining the exposure level of workers have been essential to 
ensure occupational health. To this end, this study has constructed 
prediction models based on BPNN, RF, and SVM, and has compared 
the predictive performance of the three models. The results have 
shown that the SVM model performs well on the training set, but 
there was a certain degree of overfitting on the test set. To further 
enhance the generalization ability of the model, this study has used 
the PSO algorithm to optimize the hyperparameters of the SVM 
model. The optimized PSO-SVM model has exhibited extremely high 
fitting accuracy on the training set, with an RMSE of 0.0232, an MAE 
of 0.0220, and an R² of 0.9906; on the test set, the PSO-SVM model 
has shown good predictive performance with an RMSE of 0.0762, an 
MAE of 0.0525, and an R² of 0.9045. In summary, the SVM model 
based on PSO optimization has shown high accuracy and reliability 
in predicting the release of Cu from facepieces, providing an effective 
tool for the occupational health assessment of workers.
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