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Background: Hymenopteran stings (from bees, wasps, and hornets) can trigger 
severe systemic reactions, especially in tropical regions, risking patient safety 
and emergency care efficiency. Accurate early risk stratification is essential to 
guide timely intervention.
Objective: To develop and validate an interpretable machine learning model for 
early prediction of severe outcomes following hymenopteran stings.
Methods: We retrospectively analyzed 942 cases from a multicenter cohort in 
Hainan Province, China. Questionnaires with >20% missing data were excluded. 
Mean substitution was applied for primary missing data imputation, with 
multiple imputation by chained equations (MICE) used for sensitivity analysis. 
Seven supervised classifiers were trained using five-fold cross-validation; class 
imbalance was addressed using the adaptive synthetic sampling (ADASYN) 
algorithm. Model performance was evaluated via area under the receiver 
operating characteristic curve (AUC), recall, and precision, and feature 
importance was interpreted using Shapley additive explanations (SHAP) values.
Results: Among 942 patients, 8.7% developed severe systemic complications. 
The distribution by species was: wasps (25.5%), honey bees (8.9%), and unknown 
species (65.6%). The optimal Extra Trees model achieved an AUC of 0.982, recall 
of 0.956, and precision of 0.926 in the held-out validation set. Key predictors 
included hypotension, dyspnea, altered mental status, elevated leukocyte 
counts, and abnormal creatinine levels. A web-based risk calculator was 
deployed for bedside application. Given the small number of high-risk cases, 
these high AUC values may overestimate real-world performance and require 
external validation.
Conclusion: We developed an interpretable, deployable tool for early triage of 
hymenopteran sting patients in tropical settings. Emergency integration may 
improve clinical decisions and outcomes.
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1 Introduction

Hymenopteran stings (from bees, wasps, and hornets) are a 
common cause of outdoor injuries worldwide, particularly prevalent 
in tropical and subtropical regions (1), Hymenopteran venoms 
contain a variety of active components, including phospholipase A, 
hyaluronidase, histamine, and hemolytic toxins, which can trigger 
local inflammatory reactions, In severe cases, it may lead to 
anaphylactic shock, hemolysis, renal dysfunction, rhabdomyolysis, 
and even multiple organ dysfunction syndrome (MODS) (2). 
Although most patients recover well, a subset may deteriorate rapidly 
within a short period, resulting in serious adverse outcomes or death.

In the United  States, an estimated 30 to 50 deaths due to 
hymenopteran stings occur annually. In developing countries, limited 
access to healthcare and inadequate public knowledge of emergency 
response contribute to a higher fatality rate. In China, seasonal 
outbreaks of hymenopteran sting incidents have been reported in 
provinces such as Shaanxi, Yunnan, and Hainan, occasionally causing 
multiple deaths (3). In recent years, climate change and the expansion 
of human activity have led to a broader distribution of hymenopteran 
populations and a rising trend in sting cases, posing increasing public 
health concerns.

Clinical outcomes following hymenopteran stings vary greatly and 
are influenced by multiple factors such as sting site, number of stings, 
history of allergy, underlying diseases, and delays in seeking medical 
attention. However, systematic studies evaluating and quantifying the 
combined effect of these variables are lacking. Current risk 
stratification relies on empirical judgment, which is often insufficient 
in emergencies. An interpretable risk assessment tool is urgently 
needed to assist frontline emergency physicians in identifying high-
risk patients at the time of initial consultation and guiding treatment 
strategies and resource allocation.

Recent studies have emphasized the growing burden of 
Hymenoptera stings globally, with a marked seasonal surge in tropical 
and subtropical regions, especially during warmer months when bee 
and wasp activity peaks (1). In countries like Thailand and Brazil, 
regional apicultural density and environmental exposure patterns 
have been linked to increased sting incidence and poor clinical 
outcomes (4). Climate change and urbanization have further altered 
hymenopteran distribution patterns, with implications for public 
health emergency preparedness (5).

The pathophysiology of hymenopteran venom involves both 
direct cytotoxicity and immunologic hypersensitivity. Toxins such as 
phospholipase A2, melittin, and hyaluronidase disrupt endothelial 
integrity, provoke mast cell degranulation, and can lead to multi-organ 
failure in severe cases (6). These mechanisms explain the clinical 
correlation observed between venom load and elevations in leukocyte 
count and serum creatinine—key features explored in our model. 
Recent advances in understanding hymenopteran venom composition 
and its clinical implications have highlighted the need for species-
specific risk assessment tools (7).

The integration of artificial intelligence in emergency medicine 
risk stratification represents a paradigm shift from empirical clinical 

judgment to evidence-based, data-driven decision making (8). Our 
SHAP-enhanced approach addresses the critical “black box” limitation 
of machine learning models in healthcare, providing clinicians with 
interpretable explanations for each prediction. This transparency is 
essential for clinical adoption and regulatory compliance, as it allows 
physicians to understand and validate the model’s reasoning process 
(9). Recent studies have demonstrated that interpretable AI models 
significantly improve clinician trust and decision-making accuracy in 
emergency settings (8).

Despite mounting data, most existing triage protocols for 
hymenopteran stings remain empirically driven. Scoring systems such 
as Sequential Organ Failure Assessment (SOFA), quick Sequential 
Organ Failure Assessment (qSOFA), and National Early Warning 
Score (NEWS) have demonstrated moderate performance in sepsis-
related syndromes but are ill-adapted to envenomation scenarios, 
which often present with rapid systemic deterioration but distinct 
biomarkers (10). Recent advances in machine learning and artificial 
intelligence have shown promise in emergency medicine risk 
stratification, with applications ranging from sepsis prediction to 
allergic reaction severity assessment (11).

To our knowledge, no previous studies have systematically applied 
interpretable machine learning models to stratify hymenopteran sting 
severity at initial presentation. Our study addresses this critical gap 
using multicenter real-world data and proposes an accessible, 
validated digital tool for clinical deployment.

Building upon recent progress in interpretable machine learning 
models for medical risk prediction, our study represents the first to 
systematically apply such methods to hymenopteran sting patients. 
Leveraging multicenter data from Hainan Province, we developed a 
robust, explainable prediction model and an accessible web-based tool 
to support early triage and resource allocation.

2 Methods

2.1 Study population

This retrospective study included patients who suffered 
hymenopteran stings and received treatment at five randomly selected 
secondary or higher-level medical institutions in Hainan Province 
between January 1, 2019 and December 31, 2021. Inclusion criteria 
were confirmed history of hymenopteran sting exposure and complete 
clinical data, exclusion criteria were absence of a confirmed clinical 
diagnosis or incomplete clinical records. A total of 1,102 questionnaires 
were collected; those with more than 20% missing data were excluded, 
leaving 942 valid cases for analysis. For the primary analysis, missing 
values were initially handled using mean substitution. We validated 
robustness via sensitivity analysis with MICE. The MICE-imputed 
dataset showed superior stability and predictive performance 
compared to mean substitution (Table 1), and was therefore adopted 
as the main analysis pipeline. Patients were classified as high risk 
(death, requirement for continuous renal replacement therapy, 
multiple organ dysfunction syndrome, or other severe complications) 
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or low risk (favorable outcomes without significant complications, 
organ failure, or critical interventions).

2.2 Data collection

A standardized case report form was used to collect demographics 
(name, gender, age), medical history (15 chronic disease categories, 
presence of ≥1 recorded as positive), hymenopteran sting details 
(location, species, date), symptoms and signs (syncope, dyspnea, 
urticaria, dry mouth, cold sweat), vital signs, laboratory tests 
(leukocyte count, creatinine, other biochemical parameters), 
treatments, continuous renal replacement therapy use, hospital stay, 
and clinical outcomes. Definitions followed standardized criteria: 
syncope refers to transient loss of consciousness due to temporary 
cerebral hypoperfusion; dyspnea is a subjective sensation of breathing 
difficulty; urticaria is a localized edematous reaction from vascular 
hyperpermeability; dry mouth refers to reduced oral moisture; cold 
sweat denotes perspiration associated with fear or shock, often with 
cold extremities; underlying disease includes chronic conditions such 
as hypertension, coronary artery disease, chronic kidney disease, 
malignancies, immunodeficiencies, and others listed in 
Supplementary material S4.

2.3 Statistical analysis

Analyses were performed using R 4.4.1. Normally distributed 
continuous variables were expressed as mean ± standard deviation 
and compared with independent samples t-test or one-way analysis of 
variance (ANOVA); skewed data were expressed as median 
(interquartile range) and compared with Mann–Whitney U test. 
Categorical variables were expressed as percentages and compared 
with chi-square test. Multivariate logistic regression was applied to 
identify independent risk factors for adverse outcomes. Thresholds for 
leukocyte count and creatinine were determined using receiver 

operating characteristic (ROC)–Youden index analysis via sklearn.
metrics.roc_curve (Supplementary Figures S1, S2). A two-sided 
p-value <0.05 was considered statistically significant.

2.4 Machine learning model development 
(including imputation and class balancing)

The dataset was stratified into training (70%) and testing (30%) 
sets, with tenfold cross-validation in training for hyperparameter 
tuning and overfitting control. Preprocessing within each training fold 
included multiple imputation by chained equations using 
IterativeImputer in scikit-learn (random seed 123, default max_
iter = 10) to handle missing values, z-score normalization of 
continuous variables, and ADASYN oversampling to address the 
imbalance of only 23 high-risk cases. ADASYN was chosen over 
random oversampling for its ability to adaptively focus on difficult-to-
learn minority samples, improving sensitivity to rare outcomes. 
Thirteen classifiers (including XGBoost, Extra Trees, and CatBoost) 
were compared, and the best performers integrated into a stacking 
ensemble. Performance metrics included ROC AUC, accuracy, recall, 
and precision, evaluated on the held-out testing set. Models trained 
on MICE-imputed data consistently outperformed those using mean 
imputation, with notable gains in recall and precision (Table 1).

2.5 Simplified model development

For rapid application in emergency settings, a simplified model 
was built from core variables obtainable at initial assessment. Feature 
selection was based on clinical accessibility and ROC–Youden index 
thresholds. The same preprocessing and training pipeline was applied, 
differing only in the feature set, and predictive performance was 
compared with the full model. Although slightly lower in AUC, the 
simplified XGBoost model retained strong discrimination while 
reducing required features from seven to five.

2.6 SHAP interpretation and model 
deployment

SHAP analysis quantified global feature importance. In the full 
model, leukocyte count, low blood pressure, and creatinine were the top 
contributors; in the simplified model, low blood pressure, Glasgow 
Coma Scale <15, and underlying disease ranked highest. The final 
model was deployed as an online risk calculator, accepting the simplified 
feature set and outputting predicted probabilities with categorical risk 
classification, enabling real-time clinical support in emergency settings.

3 Results

3.1 Distribution of hymenopteran sting 
patients by gender, age, sting site, and time 
from sting to hospital visit

Among the 942 patients included in the study, 572 (60.7%) were 
male and 370 (39.3%) were female, with a male-to-female ratio of 

TABLE 1  Performance comparison between mean and MICE imputation 
methods across models.

Model type Imputation 
method

AUC Recall Precision

Extra Trees (Full 

predictors)
Mean 0.959 0.919 0.866

Extra Trees (Full 

predictors)
MICE 0.9971 0.9783 0.9712

XGBoost 

(Simplified 

predictors)

Mean 0.9872 0.9231 0.9132

XGBoost 

(Simplified 

predictors)

MICE 0.9971 0.9783 0.9712

Performance comparison between mean and MICE imputation strategies across two 
classifiers. The full Extra Trees model used all available predictors, while the simplified 
XGBoost model was restricted to five emergency-accessible features (GCS, under_disease, 
low_bp, dyspnea, rash). Performance was evaluated using area under the ROC curve (AUC), 
recall (sensitivity), and precision (positive predictive value). MICE-imputed models 
consistently outperformed their mean-imputed counterparts, particularly in recall and 
precision, highlighting the advantages of multiple imputation in clinical risk prediction.
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1.55:1. The patients ranged in age from 1 to 103 years, with a mean 
age of 49.31 ± 20.97 years. The largest proportion of cases (34.4%) 
occurred in patients aged over 60 years. A total of 59 patients 
(6.26%) were children under 10 years of age. Additionally, 153 
patients (16.2%) had underlying diseases, and 11 patients (1.2%) 
presented with a Glasgow Coma Scale (GCS) score of less than 15 at 
admission. Wasps were the most commonly identified insect 
(25.5%).

Regarding sting location, the head and neck were the most 
frequently affected areas (67.9%). In total, 527 patients (55.9%) 
experienced more than 10 stings. Most cases (47.9%) occurred during 
the third quarter. The median time from sting to hospital visit was 2 h 
(interquartile range: 1–4 h), with 671 patients (71.2%) presenting 
within 3 h of the sting incident.

The overall incidence of adverse clinical outcomes among all 
patients was 2.4%. Among those with adverse outcomes, 18 patients 
(78.3%) were stung on the head and neck, and 8 patients (34.8%) 
presented to the hospital within 1 h.

As shown in Table  2, in univariate analysis, there were no 
statistically significant differences in the incidence of adverse 
outcomes based on gender, age, sting site, number of stings, 
hymenopteran species, or time interval between sting and hospital 
visit (all p > 0.05). However, patients with underlying diseases, 
hypotension, or a GCS score <15 had a significantly higher incidence 
of adverse outcomes (p < 0.05). Detailed results are shown in Table 2.

3.2 Local and systemic manifestations in 
hymenopteran sting patients

Among the 942 patients, all (100%) presented to the emergency 
department (ED) with local skin reactions characterized by redness, 
swelling, or pain. A total of 47.5% of patients exhibited systemic 
manifestations to varying degrees, including dizziness, headache, 
nausea/vomiting, urticaria, syncope/coma, chills/fever, and dyspnea. 
In the 0–9-year age group, 44 patients (75.6%) experienced systemic 
symptoms. Systemic manifestations were most common in patients 
stung on the trunk and head, accounting for 47.4 and 45.5%, 
respectively. Patients who presented 3–6 h after being stung had the 
highest proportion of systemic symptoms (56.7%).

As shown in Table 3, there was no statistically significant association 
between the time from sting to hospital visit and the occurrence of 
systemic symptoms (p > 0.05). However, age was significantly associated 
with systemic symptoms, with higher incidence rates observed in the 0–9 
and 40–49 age groups (p < 0.05). The presence of local symptoms was 
not significantly related to adverse clinical outcomes. In contrast, patients 
with systemic manifestations had a significantly higher incidence of 
adverse outcomes (p < 0.05). Specifically, dyspnea, cold sweat/dry 
mouth, syncope/coma, and generalized urticaria were significantly 
associated with adverse clinical outcomes (p < 0.05). Details are 
presented in Table 3.

3.3 Laboratory analysis between different 
clinical outcome groups

As shown in Table 4, Compared with patients who had favorable 
clinical outcomes, those with adverse outcomes showed significantly 

higher levels of white blood cell count, creatinine, total bilirubin, 
alanine aminotransferase (ALT), aspartate aminotransferase (AST), 
lactate dehydrogenase (LDH), creatine kinase (CK), and activated 
partial thromboplastin time (APTT), along with significantly lower 
serum calcium levels (all p < 0.05). Details are provided in Table 4.

Due to missing data rates exceeding 30% of total cases, the 
following seven laboratory indicators were excluded from subsequent 
modeling: total bilirubin, AST, ALT, LDH, CK, APTT, and 
serum calcium.

Seven potential prognostic variables were retained for machine 
learning model development: presence of underlying disease, Glasgow 
Coma Scale score <15, hypotension (defined as systolic BP < 90 mmHg 
or diastolic BP < 60 mmHg), dyspnea, generalized urticaria, elevated 
white blood cell count, and creatinine level.

To address the severe imbalance between high-risk and low-risk 
cases, we applied the Adaptive Synthetic Sampling (ADASYN) algorithm 
to the training data. ADASYN generates synthetic minority class 
samples in feature space, focusing more on difficult-to-learn instances, 
thereby improving classifier sensitivity to rare outcomes. This approach 
was selected over random oversampling due to its ability to adaptively 
shift the decision boundary and reduce bias toward the majority class.

To prevent overfitting, oversampling was confined to training folds 
during cross-validation. Additionally, performance was evaluated using 
repeated stratified k-fold cross-validation to assess robustness. While 
ADASYN enhances minority class representation, we acknowledge 
that synthetic data may not fully capture the complexity of real-world 
clinical cases, necessitating external validation in independent cohorts.

3.4 Feature selection

	(1)	 Recursive feature elimination (RFE) and feature 
importance analysis

Using recursive feature elimination (RFE) and feature importance 
analysis based on the XGBoost model, we  identified low blood 
pressure (low_bp), dyspnea (dysp), and Glasgow Coma Scale score 
(GCS) as the most critical predictors in the model. Low blood pressure 
consistently ranked highest across both methods, underscoring its 
pivotal role in predicting disease severity.

As shown in Figure 1, Additional variables, such as underlying 
disease (UD), rash, serum creatinine (Cr), and leukocyte count 
(leuko), also contributed to model performance, although their 
relative importance varied. By contrast, syncope demonstrated 
negligible predictive relevance and was not included in the final or 
simplified models (Figure 1).

	(2)	 Collinearity analysis and final selection of evaluation indicators

Collinearity analysis among the selected features revealed 
significant multicollinearity between low blood pressure (low_bp) and 
intravenous drip requirement (drip_sw). Based on the correlation 
strength observed in the previous step, the weaker categorical variable, 
drip_sw, was excluded. Consequently, the following seven features 
were retained for further model development: low_bp, GCS, 
underlying disease (under_disease), dyspnea (dysp), rash, leukocyte 
count (leuko), and serum creatinine (Cr).

https://doi.org/10.3389/fpubh.2025.1664606
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Han et al.� 10.3389/fpubh.2025.1664606

Frontiers in Public Health 05 frontiersin.org

TABLE 2  Demographic and clinical distribution of 942 hymenopteran sting patients in Hainan Province by gender, age, sting site, and time from sting to 
hospital visit.

Variable Low-risk group 
(n = 919)

High-risk group 
(n = 23)

Total (n = 942) χ2/Z value p-value

Gender

Male 560 (60.9) 12 (52.2) 572 (60.7)
0.722 0.395

Female 359 (39.1) 11 (47.8) 370 (39.3)

Age (years)

0–9 58 (6.3) 1 (4.3) 59 (6.3)

1.545 0.956

10–19 36 (3.9) 1 (4.3) 37 (3.9)

20–29 78 (8.5) 1 (4.3) 79 (8.4)

30–39 100 (10.9) 2 (8.7) 102 (10.8)

40–49 136 (14.8) 4 (17.4) 140 (14.9)

50–59 197 (21.4) 4 (17.4) 201 (21.3)

≥60 314 (34.2) 10 (43.5) 324 (34.4)

Underlying disease

Yes 145 (15.8) 8 (34.8) 153 (16.2) 5.957 0.015

No 774 (84.2) 15 (65.2) 789 (83.8)

Hymenopteran species

Wasp 234 (25.5) 6 (26.1) 240 (25.5) 2.354 0.308

Honey bee 84 (9.1) 0 (0) 84 (8.9)

Unknown 601 (65.4) 17 (73.9) 618 (65.6)

Sting location

Head and neck 622 (67.7) 18 (78.3) 640 (67.9) 1.256 0.974

Upper limb 413 (44.9) 9 (39.1) 422 (44.8)

Hand 104 (11.3) 2 (8.7) 106 (11.3)

Trunk 311 (33.8) 11 (47.8) 322 (34.2)

Lower limb 318 (34.6) 10 (43.5) 328 (34.8)

Foot 31 (3.4) 0 (0) 31 (3.3)

Unknown 124 (13.5) 2 (8.7) 126 (13.4)

Number of stings

>10次 513 (55.8) 14 (60.9) 527 (55.9) 0.232 0.630

≦10次 406 (44.2) 9 (39.1) 415 (44.1)

Time from sting to visit

0–1 h 326 (35.5) 8 (34.8) 334 (35.5) 2.754 0.839

1–3 h 329 (35.8) 8 (34.8) 337 (35.8)

3–6 h 118 (12.8) 2 (8.7) 120 (12.7)

6–12 h 39 (4.2) 1 (4.3) 40 (4.3)

12–24 h 54 (5.9) 3 (13.0) 57 (6.1)

>24 h 33 (3.6) 1 (4.3) 34 (3.6)

Unknown 20 (2.2) 0 (0) 20 (2.1)

GCS

<15 7 (0.8) 4 (17.4) 11 (1.2) 53.767 <0.001

15 912 (99.2) 19 (82.6) 931 (98.8)

Systolic blood pressure* 130 (118, 150) 130 (115–152) 130 (115–152) 14.1643 0.6155

Diastolic blood pressure* 80 (70–88) 80 (70–88) 80 (61–87) 29.3251 0.2982

(Continued)
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In addition, the five clinical features that are not laboratory-
dependent—low_bp, GCS, under_disease, dysp, and rash—were 
identified as feasible indicators for emergency triage and will be analyzed 
separately in the simplified risk assessment model (Figure 2; Table 5).

3.5 Development and validation of an early 
diagnostic machine learning model

3.5.1 Machine model screening

3.5.1.1 Model selection using the full predictor set
We systematically evaluated multiple machine learning classifiers 

to identify the most suitable model for early risk prediction in severe 
hymenopteran sting cases. Among them, the Extra Trees classifier 
achieved high discrimination across evaluation metrics 
(AUC = 0.982, recall = 0.956, precision = 0.926), demonstrating 
strong capability in differentiating positive from negative cases and 
accurately identifying high-risk patients. Nevertheless, the limited 
number of high-risk cases may lead to overestimation of real-world 
performance, underscoring the need for validation in prospective 
external cohorts. XGBoost and Random Forest models performed 
comparably, particularly in AUC and recall, effectively capturing 

nonlinear feature interactions. However, their performance should 
likewise be  interpreted with caution and confirmed in 
independent datasets.

Further comparative analysis showed that tree-based models—
Extra Trees, Random Forest, XGBoost, CatBoost, and LightGBM—
generally outperformed non-tree models. All exhibited AUCs 
above 0.97, demonstrating strong generalization and robust 
classification at varying thresholds. In contrast, the K Nearest 
Neighbors (KNN) model, although having a relatively high recall 
(0.927), suffered from lower precision (0.838), indicating a 
tendency for over-predicting positives. The Decision Tree model 
showed a relatively high recall (0.938) and AUC (0.900) but posed 
risks of increased false positives.

Other models such as AdaBoost, Quadratic Discriminant Analysis 
(QDA), Naive Bayes, Linear Discriminant Analysis (LDA), and 
Logistic Regression lagged behind. These models displayed lower 
accuracy and precision, particularly struggling with capturing the 
dataset’s nonlinear characteristics. Specifically, AdaBoost’s stability 
was inferior to other ensemble methods, while QDA and Naive Bayes 
failed to balance recall and precision effectively.

Overall, Extra Trees and XGBoost demonstrated comparable 
top-tier performance, with LightGBM achieving a respectable AUC 
of 0.974 but relatively weaker precision. Gradient Boosting maintained 

TABLE 2  (Continued)

Variable Low-risk group 
(n = 919)

High-risk group 
(n = 23)

Total (n = 942) χ2/Z value p-value

Hypotension

Yes 25 (2.7) 12 (53.2) 37 (3.9) 145.425 0.000

No 894 (97.2) 11 (47.8) 905 (96.1)

GCS refers to the Glasgow Coma Scale. *indicates the Mann–Whitney U test; all other comparisons were performed using the chi-square test.

TABLE 3  Distribution of local and systemic manifestations among hymenopteran sting patients in the tropical region of Hainan Province.

Manifestation Low-risk group 
(n = 919)

High-risk group 
(n = 23)

Total (n = 942) χ2 value p-value

Local manifestations

Paresthesia 44 (4.8) 1 (4.3) 45 (4.8) 1.075 0.898

Ecchymosis 64 (7.0) 1 (4.3) 65 (6.9)

Itching 34 (3.7) 0 (0) 34 (3.6)

Swelling 708 (77.0) 18 (78.3) 726 (77.1)

Pain 806 (87.7) 20 (87.0) 826 (87.7)

Systemic manifestations

Dizziness 56 (6.1) 8 (34.8) 64 (6.8) 63.442 <0.001

Headache 43 (4.7) 2 (8.7) 45 (4.8)

Tea-colored urine 134 (14.6) 11 (47.8) 145 (15.4)

Nausea/Vomiting 57 (6.2) 0 (0) 57 (6.0)

Diarrhea 12 (1.3) 0 (0) 12 (1.3)

Syncope/Coma 7 (0.8) 4 (17.4) 11 (1.2)

Cold sweat/Dry mouth 28 (3.0) 12 (52.7) 40 (4.3)

Generalized urticaria 180 (19.6) 5 (21.7) 185 (19.6)

Neurological paralysis 21 (2.3) 0 (0) 21 (2.2)

Chills/Fever 19 (2.1) 1 (4.3) 20 (2.1)

Shortness of breath/Dyspnea 10 (1.1) 3 (13.0) 13 (1.4)
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balanced performance but slightly underperformed when compared 
to other tree-based algorithms.

To further optimize prediction, we constructed stacked ensemble 
models. Ensemble A, comprising Extra Trees, XGBoost, CatBoost, and 
Logistic Regression as base learners and LightGBM as a meta-learner, 
achieved an accuracy of 0.896, AUC of 0.960, recall of 0.927, and 
precision of 0.872. Ensemble B, combining Extra Trees, Random 
Forest, and XGBoost with Logistic Regression as meta-learner, 
reached similar performance. Ensemble C introduced model diversity, 
using Extra Trees, CatBoost, and Gradient Boosting as base learners 
with XGBoost as the meta-learner. Ensemble D was a simplified 
version with Extra Trees and XGBoost.

However, none of the ensemble models outperformed the standalone 
Extra Trees classifier. Therefore, we ultimately selected Extra Trees as the 
optimal model and fine-tuned its hyperparameters to enhance prediction.

3.5.1.2 Model selection based on simplified emergency 
department predictors

When evaluating simplified models suitable for emergency triage 
scenarios, single and ensemble models exhibited notable performance 
disparities. Among individual classifiers, XGBoost outperformed others 
with an AUC of 0.9397, precision of 0.8929, and recall of 0.9058, 
surpassing both Random Forest (AUC = 0.9387) and Extra Trees 
(AUC = 0.9376). Nevertheless, these simplified models performed worse 
than the full-feature Extra Trees model (AUC = 0.9821), suggesting that 
the removal of key features reduced model discrimination capacity.

Further evaluation of ensemble models revealed no improvement 
in performance. Ensemble A (XGBoost, Random Forest, Extra Trees, 
and Logistic Regression) yielded a reduced AUC (0.8709) and an 
alarmingly low precision (0.0968), suggesting that redundant base 
models introduced noise or overfitting. Ensemble B (CatBoost, 
LightGBM, KNN, XGBoost) showed even poorer performance 
(AUC = 0.8646, precision = 0.0667), highlighting the failure of 
non-linear stacking to capture core associations in simplified data. 
Ensemble C, which combined top full-feature models with a neural 
network, achieved the highest AUC among ensembles (0.8740) but 
had imbalanced recall (0.7143) and precision (0.1429), further 
confirming the limitations of complex integration under feature-
reduced conditions.

These results indicate that stacked models are constrained by data 
sparsity and feature loss in simplified triage scenarios. In contrast, 

XGBoost retained strong generalizability due to its efficient gradient 
boosting algorithm. Future work should prioritize optimizing feature 
engineering to minimize information loss and explore adaptive 
thresholding or hierarchical ensemble strategies while avoiding 
overcomplicated architectures that may degrade performance 
(Figures 3, 4).

3.5.2 Further performance evaluation

3.5.2.1 Prediction performance of the extra trees classifier 
using full feature set

To ensure optimal model performance and validate its robustness, 
we employed a two-step strategy. First, we optimized hyperparameters 
of the Extra Trees Classifier using grid search with cross-validation 
(GridSearchCV). This involved a comprehensive search over multiple 
hyperparameter combinations, including the number of trees, 
maximum depth, and minimum samples required for splitting, with 
the goal of maximizing the ROC AUC score. The optimal combination 
of hyperparameters was identified using 10-fold cross-validation on 
the training dataset, and the model was retrained accordingly.

As shown in Figure 5, subsequently, we conducted 100 rounds of 
bootstrap resampling. In each iteration, the model was retrained and 
evaluated on the test set. The performance metrics—including 
accuracy, ROC AUC, recall, and precision—consistently showed high 
values with stable distributions (Figure 5). After optimization, the 
Extra Trees model achieved perfect scores (accuracy, ROC AUC, 
recall, and precision all equal to 1.0) on the training set. On the test 
set, it maintained achieved high discrimination in this dataset with an 
accuracy of 0.889, a ROC AUC of 0.959, a recall of 0.919, and a 
precision of 0.866.

3.5.2.2 Prediction performance of XGBoost model using 
simplified ED indicators

Using a reduced set of easily accessible clinical indicators for 
emergency triage—namely GCS < 15, presence of underlying disease, 
hypotension, dyspnea, and generalized urticaria—we developed a 
streamlined XGBoost prediction model. The training dataset was 
balanced using the ADASYN algorithm and stratified into a 70:30 
training-test split (n = 659 for training, n = 283 for testing).

Hyperparameters were optimized via grid search with three-fold 
stratified cross-validation, focusing on key parameters such as 

TABLE 4  Laboratory data comparison between different clinical outcome groups.

Variable Low-risk group (n = 919) High-risk group (n = 23) Test statistic p-value

White blood cell count (×109/L)a 13.21 ± 5.34 17.96 ± 6.10 −3.06 0.002

Serum potassium (mmol/L)a 3.73 ± 0.43 4.34 ± 1.45 −1.68 0.11

Serum calcium (mmol/L)b 2.3 (2.22, 2.41) 2.21 (2.03, 2.28) −3.47 0.001

Creatinine (μmol/L)b 72.9 (58, 86) 98 (60.63, 205.23) 2.08 0.04

Total bilirubin (μmol/L)b 14.8 (10.07, 21.05) 24.3 (8.50, 39.18) 0.73 0.000

AST (U/L)b 33 (21.00, 55.08) 61 (41.00, 399.00) 0.152 0.000

ALT (U/L)b 29 (21.00, 44.00) 29 (17.50, 333.50) 0.133 0.000

LDH (U/L)b 239.5 (196.68, 300.9) 469 (207.3, 1839) 2.59 0.01

CK (U/L)b 230 (136.28, 397.25) 431 (125.7, 4.937) 2.25 0.03

APTT (s)b 31.25 (25.3, 44.88) 49.8 (26.9, 120.9) 2.13 0.03

APTT denotes activated partial thromboplastin time; data are presented as mean ± standard deviation (a) or median (interquartile range, IQR) (b).
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learning rate (0.01–0.3), maximum tree depth (3–7), and subsample 
ratio (0.6–1.0), with ROC AUC as the primary evaluation metric.

The tuned XGBoost model achieved high discriminatory 
performance in the training set (accuracy = 0.9213, ROC 
AUC = 0.9872, recall = 0.9231, precision = 0.9132). Given the small 
number of high-risk cases, these results may overestimate real-world 
applicability and require external validation. On the independent 

test set, the model demonstrated good generalization with an 
accuracy of 0.8894 (95% CI, 0.854–0.921), ROC AUC of 0.9397 
(95% CI, 0.912–0.962), recall of 0.9058, and precision of 0.8929.

As shown in Figure 6, to further assess robustness, we conducted 
100 rounds of bootstrap sampling. The test set metrics remained highly 
stable, with mean accuracy of 0.883 ± 0.021, ROC AUC of 0.933 ± 0.017, 
recall of 0.901 ± 0.034, and precision of 0.885 ± 0.039 (Figure 6A).

FIGURE 1

Feature importance ranking by recursive feature elimination (RFE) and XGBoost. This figure illustrates the ranking of predictor importance using 
(A) recursive feature elimination (RFE) and (B) the XGBoost model. leuko, Leukocytes; low_bp, Low Blood Pressure; Cr, Serum Creatinine; UD, 
Underlying Disease; dysp, Dyspnea; GCS, GCS<15. Axes: X-axis shows model-defined feature importance score; Y-axis shows feature names ranked by 
relevance.

FIGURE 2

Collinearity analysis of selected features. leuko, leukocyte count; low_bp, Low Blood Pressure; Cr, Serum Creatinine; UD, Underlying Disease; dysp, 
Dyspnea; GCS, GCS<15.
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Three-dimensional ROC curve visualizations confirmed desirable 
threshold responsiveness in both training and test sets (Figure 6B). At 
a probability threshold of 0.45, the model achieved optimal 
performance in the test set, with sensitivity of 0.914 and specificity 
of 0.867.

Notably, although the ROC AUC of the simplified model was 
approximately 2.2% lower than that of the full-feature Extra Trees 
model (0.959 vs. 0.9397), it offered significant clinical convenience by 
reducing the number of required features from seven to five, all of 
which are readily obtainable at the point of ED triage.

As shown in Table  1, Based on the improved performance 
following multiple imputation, all primary performance metrics 
reported hereafter were derived from the MICE-imputed dataset. The 
Extra Trees and simplified XGBoost classifiers retained strong 
discrimination (AUC up to 0.9971; Table  1); however, given the 
limited number of high-risk cases, these values may overestimate real-
world performance, underscoring the need for prospective validation 
in external cohorts. This approach provides greater reproducibility 
and more realistic variance estimates for clinical application.

For comparison, earlier results based on mean imputation yielded 
slightly lower performance (e.g., AUC 0.959 for Extra Trees), 
confirming the robustness and superiority of the MICE-
imputed approach.

To evaluate the impact of imputation strategies, model 
performance using mean-imputed and MICE-imputed datasets was 
compared (Table  1). Both Extra Trees and simplified XGBoost 
classifiers exhibited substantial improvements under MICE 
imputation, particularly in recall and precision, underscoring the 
robustness and clinical utility of the multiple imputation approach. 
For comparison, earlier results based on mean imputation yielded 
slightly lower performance (e.g., AUC 0.959 for Extra Trees), 
confirming the superiority of the MICE-imputed strategy.

3.5.3 Model interpretation
To enhance the interpretability of the predictive model, we applied 

SHapley Additive exPlanations (SHAP) to evaluate the feature 
importance and decision rationale of the Extra Trees model. The 
results are shown in Figure 5.

Figure 7A illustrates the mean absolute SHAP values for each 
feature, representing their average contribution to the model’s 
predictions. Leukocyte count (leuko), low blood pressure (low_bp), 
and serum creatinine (Cr) emerged as the most influential predictors. 

Their mean SHAP values were substantially higher than those of other 
features, indicating a dominant role in determining model output. In 
contrast, rash, underlying disease (UD), dyspnea (dysp), and GCS 
contributed less on average.

Figure 7B (beeswarm plot) displays the distribution of SHAP 
values for each feature, showing how variations in feature values 
influenced the model output. For example, higher leukocyte counts 
were associated with increased SHAP values (i.e., stronger prediction 
of adverse outcomes), while lower counts reduced the predicted risk. 
A similar pattern was observed for low_bp and Cr, supporting their 
positive contribution to high-risk prediction. Figure 7C presents a 
SHAP heatmap of selected features across individual samples. 
Notably, leuko and low_bp consistently showed higher SHAP values 
in most cases, reinforcing their key influence, whereas dysp and 
GCS<15 had lower contributions in the majority of samples.

Figure  7D provides SHAP force plots for three representative 
cases, illustrating individual-level explanations of the model’s 
predictions. In these cases, leuko, low_bp, and Cr exerted strong 
positive effects, driving the prediction toward a high-risk classification, 
while features such as rash and UD sometimes had negative 
contributions, mitigating the predicted risk.

SHAP interpretation of the simplified ED triage model (XGBoost) 
is shown in Figure 6, where low blood pressure (low_bp), GCS < 15, 
and underlying disease (UD) were the most impactful predictors. As 
illustrated in the SHAP beeswarm plot (Figure 7A), high values of 
low_bp (red dots) were strongly associated with positive SHAP 
values, suggesting a higher risk of adverse outcome. GCS < 15 also 
demonstrated a right-skewed SHAP distribution, emphasizing altered 
consciousness as a critical danger sign. Interestingly, UD displayed a 
bimodal SHAP distribution, implying its importance varies across 
patient subgroups.

As shown in Figure 8, Compared with the full model (Figure 1), 
the importance of dyspnea (dysp) and rash (generalized urticaria) was 
lower in the simplified model, potentially due to multicollinearity. The 
SHAP dependence plot (Figure 8B) revealed that co-occurrence of 
low_bp and GCS < 15 led to a nonlinear surge in predicted risk, 
indicating a synergistic interaction between these features in 
influencing model decisions.

Bootstrap validation (Figures 8C, D) demonstrated the model’s 
robustness, with coefficient of variation for SHAP values across 100 
resampling iterations remaining below 15%, confirming the model’s 
reliability in clinical application scenarios.

3.5.4 Model deployment
Based on the optimized ensemble model, we  developed a 

shareable web-based risk calculator to facilitate real-time clinical 
decision-making. The tool incorporates seven common clinical 
variables—underlying disease, Glasgow Coma Scale < 15 (GCS < 15), 
hypotension (systolic blood pressure <90 mmHg or diastolic 
<60 mmHg), dyspnea, generalized urticaria, syncope, leukocyte 
count, and serum creatinine—and enables physicians to dynamically 
assess the probability and risk level of high-risk hymenopteran sting 
injury upon patient admission via mobile or desktop web interfaces.

As shown in Figure 9, As illustrated in Figure 9B, for a 38-year-
old male patient with no prior medical history who presented to 
the hospital 10 h after being stung by a wasp., the calculator 
estimated a 94.3% probability of high-risk hymenopteran sting 
injury. This patient had hypotension (systolic BP = 81 mmHg), 

TABLE 5  Variance inflation factor (VIF) analysis for collinearity.

Variance inflation factor (VIF)

Feature VIF

GCS<15 1.066663

under_disease 1.026064

low_bp 12.883395

dysp 1.027310

drip_sw 12.847227

rash 1.021299

leuko 1.012311

Cr 1.018928

Variables with VIF > 5 were considered to exhibit multicollinearity.
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dyspnea, leukocyte count of 13.3 × 109/L, and serum creatinine of 
239 μmol/L, leading to classification into the high-risk group.

In contrast, Figure 9C shows a 58-year-old female patient with 
a history of hypertension but no impaired consciousness, 

hypotension, dyspnea, or rash. Her leukocyte count was 6.3 × 109/L 
and serum creatinine was 47 μmol/L. For this case, the web-based 
tool predicted a 31.7% probability of high-risk hymenopteran 
sting injury, categorizing her into the low-risk group.

FIGURE 3

Comparative performance of 13 classifiers using full predictor set. Subfigures (A–D) Compare the performance of 13 classification models using four 
evaluation metrics: (A) ROC AUC score, (B) Accuracy, (C) Recall, and (D) Precision. The Y-axis lists classifier names; the X-axis indicates each 
corresponding performance score. Models evaluated include Extra Trees, XGBoost, Random Forest, LightGBM, CatBoost, Gradient Boosting, K-Nearest 
Neighbors (KNN), Decision Tree, AdaBoost, Naive Bayes, Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), and Logistic 
Regression.

FIGURE 4

Comparative performance of 13 classifiers using simplified ED predictors. Subfigures (A–D) compare the performance of 13 classification models using 
four evaluation metrics: (A) ROC AUC score, (B) Accuracy, (C) Recall, and (D) Precision. The Y-axis lists classifier names; the X-axis indicates each 
corresponding performance score. Models evaluated include Extra Trees, XGBoost, Random Forest, LightGBM, CatBoost, Gradient Boosting, K-Nearest 
Neighbors (KNN), Decision Tree, AdaBoost, Naive Bayes, Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), and Logistic 
Regression.
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4 Discussion

This study, based on multicenter clinical data from 942 patients 
with hymenopteran stings, systematically analyzed epidemiological 
patterns, identified key variables associated with adverse outcomes, 
developed high-performance machine learning prediction models, 
and deployed a simplified online risk assessment tool. Together, these 
efforts offer both theoretical foundations and practical strategies for 
early recognition and precise intervention in patients with 
hymenopteran sting injuries. To our knowledge, this is among the 

first applications of SHAP-based interpretability to Hymenoptera 
envenomation risk prediction.

4.1 Epidemiological and clinical risk 
features

Our findings indicate that hymenopteran stings occur predominantly 
in summer and autumn, with over two-thirds of cases reported in the 
third quarter—consistent with the seasonal activity peak of social 

FIGURE 5

Performance stability and 3D ROC visualization of the extra trees model using full predictor set. (A) Distribution of performance metrics (Accuracy, 
ROC AUC, Recall, Precision) based on 100 bootstrap resamples. Histograms with fitted KDE curves demonstrate the model’s internal stability across 
evaluation metrics. (B) 3D visualization of the ROC curve on the training set (left) and test set (right), plotted with axes representing False Positive Rate 
(X-axis), True Positive Rate (Y-axis), and classification Threshold (Z-axis).
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Hymenoptera (wasps, hornets, bees and bumblebees), when colony sizes 
and foraging activity are greatest (12). The head and neck were the most 
commonly affected anatomical sites. A higher proportion of cases 
occurred in males and older adults, suggesting that outdoor exposure and 
physiological vulnerability play critical roles in injury progression. 
Notably, underlying comorbidities were more prevalent among patients 
with poor outcomes, reinforcing the notion of wasp envenomation as an 
“exogenous triggering factor” for systemic injury.

Analysis of high-risk clinical features revealed that hypotension, 
altered mental status, dyspnea, elevated leukocyte counts, and abnormal 
creatinine levels were significantly associated with adverse outcomes. 
These indicators align with known pathophysiological mechanisms of 
wasp venom. Specifically, phospholipase A2 and hyaluronidase in 
venom can damage endothelial cells and trigger inflammatory cascades, 
leading to increased vascular permeability, rhabdomyolysis, and acute 
kidney injury (13). As a result, leukocyte and creatinine levels often rise 

FIGURE 6

Performance stability and 3D ROC curve of the simplified XGBoost model. (A) Distributions of classification metrics (Accuracy, ROC AUC, Recall, 
Precision) from 100 bootstrap samples based on the simplified XGBoost model. The histograms show variability and reliability of performance 
estimates across random resampling. (B) Three-dimensional ROC curves plotted for the training (left) and test (right) datasets. Axes represent False 
Positive Rate (X-axis), True Positive Rate (Y-axis), and classification threshold (Z-axis), providing a more intuitive understanding of model behavior under 
varying threshold values.
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markedly. Furthermore, hypotension and impaired consciousness—
indicative of inadequate organ perfusion and systemic inflammation—
are of high clinical relevance in acute severity assessment. Although the 
predictive importance of “rash” was relatively limited, this variable was 
retained in the simplified model to enhance clinical interpretability and 
facilitate ease of application in bedside settings.

4.2 Machine learning model performance 
and clinical AI applications

In comparing 13 mainstream machine learning algorithms, the 
Extra Trees model exhibited the best performance on the test set 
(accuracy = 0.889, AUC = 0.959), outperforming logistic regression, 
naïve Bayes, and other models. Extra Trees excelled in capturing 

complex feature interactions and nonlinear decision boundaries. Its 
interpretability, enhanced through SHAP (SHapley Additive 
exPlanations), revealed that leukocyte count, hypotension, and 
creatinine were the top three contributors to risk predictions—offering 
clinicians transparent insight into model rationale.

To enhance clinical applicability, we also developed a simplified 
model based on five routinely available emergency indicators. 
Although the AUC slightly declined to 0.937, the model’s ease of use 
and rapid data acquisition make it suitable for prehospital triage and 
community-level emergency care. With individual SHAP value 
visualizations, this streamlined model enables personalized risk factor 
analysis, supporting frontline clinicians in formulating dynamic 
intervention strategies. The deployment of this model as a web-based 
tool represents a significant advancement in point-of-care clinical 
decision support systems for hymenopteran envenomation (2, 14).

FIGURE 7

SHAP-based interpretation of the extra trees model. (A) Bar plot showing the average absolute SHAP values for each predictor, indicating their relative 
contributions to model output across all samples. (B) Beeswarm plot visualizing SHAP value distributions for each feature. Color represents the feature 
value (red = high, blue = low). (C) SHAP heatmap illustrating the magnitude and direction of each feature’s contribution across all samples. (D) SHAP 
force plots for three individual patients, showing how each feature shifts the prediction toward higher or lower risk. X-axis in most subplots represents 
SHAP values; Y-axis denotes either features or samples, depending on the plot; color gradients reflect input feature values. leuko, Leukocyte count; 
low_bp, ow blood pressure; Cr, serum creatinin; UD, underlying disease; dysp, dyspnea; GCS, GCS < 15.

FIGURE 8

SHAP-based feature interpretation of the simplified XGBoost model. (A) Bar plot of mean absolute SHAP values, ranking the features by average impact 
on model output. (B) Beeswarm plot showing the distribution of SHAP values for each predictor, where color denotes feature value (red = high, 
blue = low). (C) Heatmap of SHAP values across samples, visualizing variability and feature dominance. (D) SHAP force plots for three patients, showing 
how individual features push the model prediction toward high- or low-risk outcomes. X-axis in most subplots represents SHAP values; Y-axis denotes 
either features or samples, depending on the plot; color gradients reflect input feature values. low_bp, Low Blood Pressure; UD, Underlying Disease; 
dysp, Dyspnea; GCS, GCS < 15. SHAP, SHapley Additive exPlanations.
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The application of machine learning to hymenopteran sting risk 
prediction fills a critical gap in emergency toxicology. Unlike traditional 
scoring systems that rely on fixed weights and linear relationships, our 
ensemble approach can capture complex interactions between clinical 
variables that may not be apparent to human observers (15). This is 
particularly relevant in envenomation scenarios where the interaction 
between patient comorbidities, venom load, and systemic response can 
lead to unpredictable clinical trajectories.

MICE outperformed mean imputation, supporting model 
robustness. As detailed in Table 1, both the Extra Trees and simplified 
XGBoost models trained on MICE-imputed datasets significantly 
outperformed those using mean substitution, particularly in recall and 
precision. These findings validate the importance of preserving feature 
variance and minimizing bias in emergency care data, and justify the 
adoption of MICE-based results as the primary analysis. Given the 
small number of high-risk cases (n = 23), these high AUC values may 
overestimate real-world performance. Future prospective validation 
in external cohorts is necessary to confirm the generalizability of the 
model. However, the high AUC values observed should be interpreted 
cautiously due to the small number of high-risk cases.

4.3 Comparison with traditional risk scores

Compared with traditional scoring systems such as SOFA, qSOFA, 
and NEWS—which are widely used in sepsis and acute care evaluation—
our SHAP-enhanced Extra Trees and simplified XGBoost models 
demonstrated substantially higher predictive performance in 

hymenopteran sting cases (AUC up to 0.959) (10, 16). These conventional 
tools rely on fixed thresholds and a limited number of clinical parameters, 
which may reduce sensitivity and specificity in this specific clinical 
context. In contrast, our models dynamically integrate a broader range of 
clinical and laboratory features, are capable of generating individualized 
explanations of risk contribution via SHAP, and allow rapid deployment 
in emergency settings through a streamlined feature set and an online 
calculator interface (17). This combination of precision, transparency, and 
operational feasibility offers distinct advantages over SOFA, qSOFA, and 
NEWS in guiding early, targeted intervention for high-risk hymenopteran 
sting patients (7, 10).

4.4 Limitations

This study has several limitations. First, the dataset was drawn 
from five hospitals in Hainan Province. While it offers regional 
representativeness, the geographical and demographic diversity 
remains limited. Second, the absence of information regarding bee 
species, venom dosage, and treatment delay restricted our ability to 
explore dose–response relationships. Third, although the model 
performed consistently on internal test data, external validation in 
other regions and prospective cohorts is necessary to ensure 
generalizability and robustness.

Furthermore, the model is a clinical decision support tool requiring 
physician oversight to mitigate ethical and safety risks from algorithmic 
misclassification. In cases of missing input features or low model 
confidence, clinicians should default to their professional expertise.

FIGURE 9

Web-based clinical calculator for risk stratification of hymenopteran sting cases. The calculator dynamically outputs predicted risk level and probability 
score based on the simplified XGBoost model. It is intended for real-time clinical support and triage optimization in emergency departments. (A) Initial 
interface of the online risk calculator, allowing clinicians to input patient characteristics including symptoms (e.g., dyspnea, rash), vital signs (e.g., blood 
pressure), GCS score, and laboratory values (leukocyte count, creatinine). (B) Example of a high-risk prediction: multiple risk factors are selected, 
resulting in a predicted risk probability of 0.943. Red highlights indicate contributing risk features. (C) Example of a low-risk case: fewer abnormalities 
are present, leading to a lower probability (0.317).
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While ADASYN oversampling effectively mitigated class 
imbalance in the training data, synthetic samples cannot fully replace 
real-world cases. Therefore, external validation in independent 
cohorts is necessary to confirm model generalizability and avoid 
potential overfitting.

Public access to the web-based risk calculator is temporarily 
suspended due to infrastructure maintenance. Full source code and 
deployment instructions are provided in Supplementary material S1 
for reproducibility. Public URL access is expected to resume within 
3 months post-publication.

5 Conclusion

In conclusion, we  developed and validated an interpretable, 
streamlined, and readily deployable model for early identification of 
patients at high risk of severe outcomes following hymenopteran stings, 
leveraging real-world multicenter data. This model fills a critical gap in 
risk stratification for hymenopteran envenomation and demonstrates 
clear potential for improving emergency triage and public health response. 
Future prospective validation in diverse populations is warranted to 
establish its broader generalizability and clinical impact.
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