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Background: Hymenopteran stings (from bees, wasps, and hornets) can trigger
severe systemic reactions, especially in tropical regions, risking patient safety
and emergency care efficiency. Accurate early risk stratification is essential to
guide timely intervention.

Objective: To develop and validate an interpretable machine learning model for
early prediction of severe outcomes following hymenopteran stings.

Methods: We retrospectively analyzed 942 cases from a multicenter cohort in
Hainan Province, China. Questionnaires with >20% missing data were excluded.
Mean substitution was applied for primary missing data imputation, with
multiple imputation by chained equations (MICE) used for sensitivity analysis.
Seven supervised classifiers were trained using five-fold cross-validation; class
imbalance was addressed using the adaptive synthetic sampling (ADASYN)
algorithm. Model performance was evaluated via area under the receiver
operating characteristic curve (AUC), recall, and precision, and feature
importance was interpreted using Shapley additive explanations (SHAP) values.
Results: Among 942 patients, 8.7% developed severe systemic complications.
The distribution by species was: wasps (25.5%), honey bees (8.9%), and unknown
species (65.6%). The optimal Extra Trees model achieved an AUC of 0.982, recall
of 0.956, and precision of 0.926 in the held-out validation set. Key predictors
included hypotension, dyspnea, altered mental status, elevated leukocyte
counts, and abnormal creatinine levels. A web-based risk calculator was
deployed for bedside application. Given the small number of high-risk cases,
these high AUC values may overestimate real-world performance and require
external validation.

Conclusion: We developed an interpretable, deployable tool for early triage of
hymenopteran sting patients in tropical settings. Emergency integration may
improve clinical decisions and outcomes.
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1 Introduction

Hymenopteran stings (from bees, wasps, and hornets) are a
common cause of outdoor injuries worldwide, particularly prevalent
in tropical and subtropical regions (1), Hymenopteran venoms
contain a variety of active components, including phospholipase A,
hyaluronidase, histamine, and hemolytic toxins, which can trigger
local inflammatory reactions, In severe cases, it may lead to
anaphylactic shock, hemolysis, renal dysfunction, rhabdomyolysis,
and even multiple organ dysfunction syndrome (MODS) (2).
Although most patients recover well, a subset may deteriorate rapidly
within a short period, resulting in serious adverse outcomes or death.

In the United States, an estimated 30 to 50 deaths due to
hymenopteran stings occur annually. In developing countries, limited
access to healthcare and inadequate public knowledge of emergency
response contribute to a higher fatality rate. In China, seasonal
outbreaks of hymenopteran sting incidents have been reported in
provinces such as Shaanxi, Yunnan, and Hainan, occasionally causing
multiple deaths (3). In recent years, climate change and the expansion
of human activity have led to a broader distribution of hymenopteran
populations and a rising trend in sting cases, posing increasing public
health concerns.

Clinical outcomes following hymenopteran stings vary greatly and
are influenced by multiple factors such as sting site, number of stings,
history of allergy, underlying diseases, and delays in seeking medical
attention. However, systematic studies evaluating and quantifying the
combined effect of these variables are lacking. Current risk
stratification relies on empirical judgment, which is often insufficient
in emergencies. An interpretable risk assessment tool is urgently
needed to assist frontline emergency physicians in identifying high-
risk patients at the time of initial consultation and guiding treatment
strategies and resource allocation.

Recent studies have emphasized the growing burden of
Hymenoptera stings globally, with a marked seasonal surge in tropical
and subtropical regions, especially during warmer months when bee
and wasp activity peaks (1). In countries like Thailand and Brazil,
regional apicultural density and environmental exposure patterns
have been linked to increased sting incidence and poor clinical
outcomes (4). Climate change and urbanization have further altered
hymenopteran distribution patterns, with implications for public
health emergency preparedness (5).

The pathophysiology of hymenopteran venom involves both
direct cytotoxicity and immunologic hypersensitivity. Toxins such as
phospholipase A2, melittin, and hyaluronidase disrupt endothelial
integrity, provoke mast cell degranulation, and can lead to multi-organ
failure in severe cases (6). These mechanisms explain the clinical
correlation observed between venom load and elevations in leukocyte
count and serum creatinine—key features explored in our model.
Recent advances in understanding hymenopteran venom composition
and its clinical implications have highlighted the need for species-
specific risk assessment tools (7).

The integration of artificial intelligence in emergency medicine
risk stratification represents a paradigm shift from empirical clinical
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judgment to evidence-based, data-driven decision making (8). Our
SHAP-enhanced approach addresses the critical “black box” limitation
of machine learning models in healthcare, providing clinicians with
interpretable explanations for each prediction. This transparency is
essential for clinical adoption and regulatory compliance, as it allows
physicians to understand and validate the model’s reasoning process
(9). Recent studies have demonstrated that interpretable AI models
significantly improve clinician trust and decision-making accuracy in
emergency settings (8).

Despite mounting data, most existing triage protocols for
hymenopteran stings remain empirically driven. Scoring systems such
as Sequential Organ Failure Assessment (SOFA), quick Sequential
Organ Failure Assessment (QSOFA), and National Early Warning
Score (NEWS) have demonstrated moderate performance in sepsis-
related syndromes but are ill-adapted to envenomation scenarios,
which often present with rapid systemic deterioration but distinct
biomarkers (10). Recent advances in machine learning and artificial
intelligence have shown promise in emergency medicine risk
stratification, with applications ranging from sepsis prediction to
allergic reaction severity assessment (11).

To our knowledge, no previous studies have systematically applied
interpretable machine learning models to stratify hymenopteran sting
severity at initial presentation. Our study addresses this critical gap
using multicenter real-world data and proposes an accessible,
validated digital tool for clinical deployment.

Building upon recent progress in interpretable machine learning
models for medical risk prediction, our study represents the first to
systematically apply such methods to hymenopteran sting patients.
Leveraging multicenter data from Hainan Province, we developed a
robust, explainable prediction model and an accessible web-based tool
to support early triage and resource allocation.

2 Methods
2.1 Study population

This retrospective study included patients who suffered
hymenopteran stings and received treatment at five randomly selected
secondary or higher-level medical institutions in Hainan Province
between January 1, 2019 and December 31, 2021. Inclusion criteria
were confirmed history of hymenopteran sting exposure and complete
clinical data, exclusion criteria were absence of a confirmed clinical
diagnosis or incomplete clinical records. A total of 1,102 questionnaires
were collected; those with more than 20% missing data were excluded,
leaving 942 valid cases for analysis. For the primary analysis, missing
values were initially handled using mean substitution. We validated
robustness via sensitivity analysis with MICE. The MICE-imputed
dataset showed superior stability and predictive performance
compared to mean substitution (Table 1), and was therefore adopted
as the main analysis pipeline. Patients were classified as high risk
(death, requirement for continuous renal replacement therapy,
multiple organ dysfunction syndrome, or other severe complications)
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TABLE 1 Performance comparison between mean and MICE imputation
methods across models.

Model type  Imputation AUC @ Recall Precision
method

Extra Trees (Full

Mean 0.959 0.919 0.866
predictors)
Extra Trees (Full

MICE 0.9971 0.9783 0.9712
predictors)
XGBoost
(Simplified Mean 0.9872 0.9231 0.9132
predictors)
XGBoost
(Simplified MICE 0.9971 0.9783 0.9712
predictors)

Performance comparison between mean and MICE imputation strategies across two
classifiers. The full Extra Trees model used all available predictors, while the simplified
XGBoost model was restricted to five emergency-accessible features (GCS, under_disease,
low_bp, dyspnea, rash). Performance was evaluated using area under the ROC curve (AUC),
recall (sensitivity), and precision (positive predictive value). MICE-imputed models
consistently outperformed their mean-imputed counterparts, particularly in recall and
precision, highlighting the advantages of multiple imputation in clinical risk prediction.

or low risk (favorable outcomes without significant complications,
organ failure, or critical interventions).

2.2 Data collection

A standardized case report form was used to collect demographics
(name, gender, age), medical history (15 chronic disease categories,
presence of >1 recorded as positive), hymenopteran sting details
(location, species, date), symptoms and signs (syncope, dyspnea,
urticaria, dry mouth, cold sweat), vital signs, laboratory tests
(leukocyte count, creatinine, other biochemical parameters),
treatments, continuous renal replacement therapy use, hospital stay,
and clinical outcomes. Definitions followed standardized criteria:
syncope refers to transient loss of consciousness due to temporary
cerebral hypoperfusion; dyspnea is a subjective sensation of breathing
difficulty; urticaria is a localized edematous reaction from vascular
hyperpermeability; dry mouth refers to reduced oral moisture; cold
sweat denotes perspiration associated with fear or shock, often with
cold extremities; underlying disease includes chronic conditions such
as hypertension, coronary artery disease, chronic kidney disease,
and others listed in

malignancies, immunodeficiencies,

Supplementary material S4.

2.3 Statistical analysis

Analyses were performed using R 4.4.1. Normally distributed
continuous variables were expressed as mean + standard deviation
and compared with independent samples t-test or one-way analysis of
variance (ANOVA); skewed data were expressed as median
(interquartile range) and compared with Mann-Whitney U test.
Categorical variables were expressed as percentages and compared
with chi-square test. Multivariate logistic regression was applied to
identify independent risk factors for adverse outcomes. Thresholds for
leukocyte count and creatinine were determined using receiver
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operating characteristic (ROC)-Youden index analysis via sklearn.
metrics.roc_curve (Supplementary Figures SI, S2). A two-sided
p-value <0.05 was considered statistically significant.

2.4 Machine learning model development
(including imputation and class balancing)

The dataset was stratified into training (70%) and testing (30%)
sets, with tenfold cross-validation in training for hyperparameter
tuning and overfitting control. Preprocessing within each training fold
included multiple imputation by chained equations using
IterativeImputer in scikit-learn (random seed 123, default max_
iter = 10) to handle missing values, z-score normalization of
continuous variables, and ADASYN oversampling to address the
imbalance of only 23 high-risk cases. ADASYN was chosen over
random oversampling for its ability to adaptively focus on difficult-to-
learn minority samples, improving sensitivity to rare outcomes.
Thirteen classifiers (including XGBoost, Extra Trees, and CatBoost)
were compared, and the best performers integrated into a stacking
ensemble. Performance metrics included ROC AUC, accuracy, recall,
and precision, evaluated on the held-out testing set. Models trained
on MICE-imputed data consistently outperformed those using mean
imputation, with notable gains in recall and precision (Table 1).

2.5 Simplified model development

For rapid application in emergency settings, a simplified model
was built from core variables obtainable at initial assessment. Feature
selection was based on clinical accessibility and ROC-Youden index
thresholds. The same preprocessing and training pipeline was applied,
differing only in the feature set, and predictive performance was
compared with the full model. Although slightly lower in AUC, the
simplified XGBoost model retained strong discrimination while
reducing required features from seven to five.

2.6 SHAP interpretation and model
deployment

SHAP analysis quantified global feature importance. In the full
model, leukocyte count, low blood pressure, and creatinine were the top
contributors; in the simplified model, low blood pressure, Glasgow
Coma Scale <15, and underlying disease ranked highest. The final
model was deployed as an online risk calculator, accepting the simplified
feature set and outputting predicted probabilities with categorical risk
classification, enabling real-time clinical support in emergency settings.

3 Results

3.1 Distribution of hymenopteran sting
patients by gender, age, sting site, and time
from sting to hospital visit

Among the 942 patients included in the study, 572 (60.7%) were
male and 370 (39.3%) were female, with a male-to-female ratio of
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1.55:1. The patients ranged in age from 1 to 103 years, with a mean
age of 49.31 + 20.97 years. The largest proportion of cases (34.4%)
occurred in patients aged over 60 years. A total of 59 patients
(6.26%) were children under 10 years of age. Additionally, 153
patients (16.2%) had underlying diseases, and 11 patients (1.2%)
presented with a Glasgow Coma Scale (GCS) score of less than 15 at
admission. Wasps were the most commonly identified insect
(25.5%).

Regarding sting location, the head and neck were the most
frequently affected areas (67.9%). In total, 527 patients (55.9%)
experienced more than 10 stings. Most cases (47.9%) occurred during
the third quarter. The median time from sting to hospital visit was 2 h
(interquartile range: 1-4 h), with 671 patients (71.2%) presenting
within 3 h of the sting incident.

The overall incidence of adverse clinical outcomes among all
patients was 2.4%. Among those with adverse outcomes, 18 patients
(78.3%) were stung on the head and neck, and 8 patients (34.8%)
presented to the hospital within 1 h.

As shown in Table 2, in univariate analysis, there were no
statistically significant differences in the incidence of adverse
outcomes based on gender, age, sting site, number of stings,
hymenopteran species, or time interval between sting and hospital
visit (all p > 0.05). However, patients with underlying diseases,
hypotension, or a GCS score <15 had a significantly higher incidence
of adverse outcomes (p < 0.05). Detailed results are shown in Table 2.

3.2 Local and systemic manifestations in
hymenopteran sting patients

Among the 942 patients, all (100%) presented to the emergency
department (ED) with local skin reactions characterized by redness,
swelling, or pain. A total of 47.5% of patients exhibited systemic
manifestations to varying degrees, including dizziness, headache,
nausea/vomiting, urticaria, syncope/coma, chills/fever, and dyspnea.
In the 0-9-year age group, 44 patients (75.6%) experienced systemic
symptoms. Systemic manifestations were most common in patients
stung on the trunk and head, accounting for 47.4 and 45.5%,
respectively. Patients who presented 3-6 h after being stung had the
highest proportion of systemic symptoms (56.7%).

As shown in Table 3, there was no statistically significant association
between the time from sting to hospital visit and the occurrence of
systemic symptoms (p > 0.05). However, age was significantly associated
with systemic symptoms, with higher incidence rates observed in the 0-9
and 40-49 age groups (p < 0.05). The presence of local symptoms was
not significantly related to adverse clinical outcomes. In contrast, patients
with systemic manifestations had a significantly higher incidence of
adverse outcomes (p < 0.05). Specifically, dyspnea, cold sweat/dry
mouth, syncope/coma, and generalized urticaria were significantly
associated with adverse clinical outcomes (p <0.05). Details are
presented in Table 3.

3.3 Laboratory analysis between different
clinical outcome groups

As shown in Table 4, Compared with patients who had favorable
clinical outcomes, those with adverse outcomes showed significantly
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higher levels of white blood cell count, creatinine, total bilirubin,
alanine aminotransferase (ALT), aspartate aminotransferase (AST),
lactate dehydrogenase (LDH), creatine kinase (CK), and activated
partial thromboplastin time (APTT), along with significantly lower
serum calcium levels (all p < 0.05). Details are provided in Table 4.

Due to missing data rates exceeding 30% of total cases, the
following seven laboratory indicators were excluded from subsequent
modeling: total bilirubin, AST, ALT, LDH, CK, APTT, and
serum calcium.

Seven potential prognostic variables were retained for machine
learning model development: presence of underlying disease, Glasgow
Coma Scale score <15, hypotension (defined as systolic BP < 90 mmHg
or diastolic BP < 60 mmHg), dyspnea, generalized urticaria, elevated
white blood cell count, and creatinine level.

To address the severe imbalance between high-risk and low-risk
cases, we applied the Adaptive Synthetic Sampling (ADASYN) algorithm
to the training data. ADASYN generates synthetic minority class
samples in feature space, focusing more on difficult-to-learn instances,
thereby improving classifier sensitivity to rare outcomes. This approach
was selected over random oversampling due to its ability to adaptively
shift the decision boundary and reduce bias toward the majority class.

To prevent overfitting, oversampling was confined to training folds
during cross-validation. Additionally, performance was evaluated using
repeated stratified k-fold cross-validation to assess robustness. While
ADASYN enhances minority class representation, we acknowledge
that synthetic data may not fully capture the complexity of real-world
clinical cases, necessitating external validation in independent cohorts.

3.4 Feature selection

(1) Recursive feature elimination (RFE) and feature

importance analysis

Using recursive feature elimination (RFE) and feature importance
analysis based on the XGBoost model, we identified low blood
pressure (low_bp), dyspnea (dysp), and Glasgow Coma Scale score
(GCS) as the most critical predictors in the model. Low blood pressure
consistently ranked highest across both methods, underscoring its
pivotal role in predicting disease severity.

As shown in Figure 1, Additional variables, such as underlying
disease (UD), rash, serum creatinine (Cr), and leukocyte count
(leuko), also contributed to model performance, although their
relative importance varied. By contrast, syncope demonstrated
negligible predictive relevance and was not included in the final or
simplified models (Figure 1).

(2) Collinearity analysis and final selection of evaluation indicators

Collinearity analysis among the selected features revealed
significant multicollinearity between low blood pressure (low_bp) and
intravenous drip requirement (drip_sw). Based on the correlation
strength observed in the previous step, the weaker categorical variable,
drip_sw, was excluded. Consequently, the following seven features
were retained for further model development: low_bp, GCS,
underlying disease (under_disease), dyspnea (dysp), rash, leukocyte
count (leuko), and serum creatinine (Cr).
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TABLE 2 Demographic and clinical distribution of 942 hymenopteran sting patients in Hainan Province by gender, age, sting site, and time from sting to

hospital visit.
Variable Low-risk group High-risk group Total (n = 942) x*/Z value
(n =919) (n = 23)
Gender
Male 560 (60.9) 12 (52.2) 572 (60.7)
0.722 0.395
Female 359 (39.1) 11 (47.8) 370 (39.3)
Age (years)
0-9 58 (6.3) 1(4.3) 59 (6.3)
10-19 36 (3.9) 1(4.3) 37(3.9)
20-29 78 (8.5) 1(4.3) 79 (8.4)
30-39 100 (10.9) 2(8.7) 102 (10.8) 1.545 0.956
40-49 136 (14.8) 4(17.4) 140 (14.9)
50-59 197 (21.4) 4(17.4) 201 (21.3)
>60 314 (34.2) 10 (43.5) 324 (34.4)
Underlying disease
Yes 145 (15.8) 8 (34.8) 153 (16.2) 5.957 0.015
No 774 (84.2) 15 (65.2) 789 (83.8)
Hymenopteran species
Wasp 234 (25.5) 6(26.1) 240 (25.5) 2.354 0.308
Honey bee 84 (9.1) 0(0) 84 (8.9)
Unknown 601 (65.4) 17 (73.9) 618 (65.6)
Sting location
Head and neck 622 (67.7) 18 (78.3) 640 (67.9) 1.256 0.974
Upper limb 413 (44.9) 9(39.1) 422 (44.8)
Hand 104 (11.3) 2(8.7) 106 (11.3)
Trunk 311 (33.8) 11 (47.8) 322 (34.2)
Lower limb 318 (34.6) 10 (43.5) 328 (34.8)
Foot 31(3.4) 0(0) 31(3.3)
Unknown 124 (13.5) 2(8.7) 126 (13.4)
Number of stings
>10K 513 (55.8) 14 (60.9) 527 (55.9) 0.232 0.630
10K 406 (44.2) 9(39.1) 415 (44.1)
Time from sting to visit
0-1h 326 (35.5) 8 (34.8) 334 (35.5) 2.754 0.839
1-3h 329 (35.8) 8 (34.8) 337 (35.8)
3-6h 118 (12.8) 2(8.7) 120 (12.7)
6-12h 39 (4.2) 1(4.3) 40 (4.3)
12-24h 54 (5.9) 3(13.0) 57 (6.1)
>24h 33(3.6) 1(4.3) 34 (3.6)
Unknown 20 (2.2) 0(0) 20 (2.1)
GCS
<15 7(0.8) 4(17.4) 11(1.2) 53.767 <0.001
15 912 (99.2) 19 (82.6) 931 (98.8)
Systolic blood pressure* 130 (118, 150) 130 (115-152) 130 (115-152) 14.1643 0.6155
Diastolic blood pressure* 80 (70-88) 80 (70-88) 80 (61-87) 29.3251 0.2982
(Continued)
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TABLE 2 (Continued)

Variable Low-risk group

High-risk group

10.3389/fpubh.2025.1664606

Total (n = 942)

x*/Z value

(n =919) (n =23)

Hypotension

Yes 25(2.7) 12 (53.2)

37(3.9) 145.425 0.000 ‘

No 894 (97.2) 11 (47.8)

905 (96.1) ‘

GCS refers to the Glasgow Coma Scale. *indicates the Mann-Whitney U test; all other comparisons were performed using the chi-square test.

TABLE 3 Distribution of local and systemic manifestations among hymenopteran sting patients in the tropical region of Hainan Province.

Manifestation Low-risk group

(n = 919)

High-risk group
(n =23)

Total (n = 942)

x? value

Local manifestations

Paresthesia 44 (4.8) 1(4.3) 45 (4.8) 1.075 0.898
Ecchymosis 64 (7.0) 1(4.3) 65 (6.9)

Itching 34(3.7) 0(0) 34 (3.6)

Swelling 708 (77.0) 18 (78.3) 726 (77.1)

Pain 806 (87.7) 20 (87.0) 826 (87.7)

Systemic manifestations

Dizziness 56 (6.1) 8(34.8) 64 (6.8) 63.442 <0.001
Headache 43 (4.7) 2(8.7) 45 (4.8)

Tea-colored urine 134 (14.6) 11 (47.8) 145 (15.4)

Nausea/Vomiting 57 (6.2) 0(0) 57 (6.0)

Diarrhea 12 (1.3) 0(0) 12 (1.3)

Syncope/Coma 7(0.8) 4(17.4) 11(1.2)

Cold sweat/Dry mouth 28 (3.0) 12 (52.7) 40 (4.3)

Generalized urticaria 180 (19.6) 5(21.7) 185 (19.6)

Neurological paralysis 21(2.3) 0(0) 21(2.2)

Chills/Fever 19 (2.1) 1(4.3) 20 (2.1)

Shortness of breath/Dyspnea 10 (1.1) 3(13.0) 13 (1.4)

In addition, the five clinical features that are not laboratory-
dependent—low_bp, GCS, under_disease, dysp, and rash—were
identified as feasible indicators for emergency triage and will be analyzed
separately in the simplified risk assessment model (Figure 2; Table 5).

3.5 Development and validation of an early
diagnostic machine learning model

3.5.1 Machine model screening

3.5.1.1 Model selection using the full predictor set

We systematically evaluated multiple machine learning classifiers
to identify the most suitable model for early risk prediction in severe
hymenopteran sting cases. Among them, the Extra Trees classifier
achieved high discrimination across evaluation metrics
(AUC =0.982, recall =0.956, precision = 0.926), demonstrating
strong capability in differentiating positive from negative cases and
accurately identifying high-risk patients. Nevertheless, the limited
number of high-risk cases may lead to overestimation of real-world
performance, underscoring the need for validation in prospective
external cohorts. XGBoost and Random Forest models performed
comparably, particularly in AUC and recall, effectively capturing
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nonlinear feature interactions. However, their performance should
likewise be interpreted with caution and confirmed in
independent datasets.

Further comparative analysis showed that tree-based models—
Extra Trees, Random Forest, XGBoost, CatBoost, and Light GBM—
generally outperformed non-tree models. All exhibited AUCs
above 0.97, demonstrating strong generalization and robust
classification at varying thresholds. In contrast, the K Nearest
Neighbors (KNN) model, although having a relatively high recall
(0.927), suffered from lower precision (0.838), indicating a
tendency for over-predicting positives. The Decision Tree model
showed a relatively high recall (0.938) and AUC (0.900) but posed
risks of increased false positives.

Other models such as AdaBoost, Quadratic Discriminant Analysis
(QDA), Naive Bayes, Linear Discriminant Analysis (LDA), and
Logistic Regression lagged behind. These models displayed lower
accuracy and precision, particularly struggling with capturing the
dataset’s nonlinear characteristics. Specifically, AdaBoost’s stability
was inferior to other ensemble methods, while QDA and Naive Bayes
failed to balance recall and precision effectively.

Overall, Extra Trees and XGBoost demonstrated comparable
top-tier performance, with LightGBM achieving a respectable AUC
of 0.974 but relatively weaker precision. Gradient Boosting maintained
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TABLE 4 Laboratory data comparison between different clinical outcome groups.

Variable Low-risk group (n = 919) High-risk group (n = 23) Test statistic =~ p-value
White blood cell count (x109/L)a 13.21 £5.34 17.96 + 6.10 —3.06 0.002
Serum potassium (mmol/L)a 3.73+0.43 4.34 £ 1.45 —1.68 0.11
Serum calcium (mmol/L)b 2.3(2.22,2.41) 2.21(2.03,2.28) —3.47 0.001
Creatinine (pmol/L)b 72.9 (58, 86) 98 (60.63, 205.23) 2.08 0.04
Total bilirubin (pmol/L)b 14.8 (10.07, 21.05) 24.3 (8.50, 39.18) 0.73 0.000
AST (U/L)b 33 (21.00, 55.08) 61 (41.00, 399.00) 0.152 0.000
ALT (U/L)b 29 (21.00, 44.00) 29 (17.50, 333.50) 0.133 0.000
LDH (U/L)b 239.5 (196.68, 300.9) 469 (207.3, 1839) 2.59 0.01
CK (U/L)b 230 (136.28, 397.25) 431 (125.7, 4.937) 225 0.03
APTT (s)b 31.25(25.3, 44.88) 49.8 (26.9, 120.9) 213 0.03

APTT denotes activated partial thromboplastin time; data are presented as mean + standard deviation (a) or median (interquartile range, IQR) (b).

balanced performance but slightly underperformed when compared
to other tree-based algorithms.

To further optimize prediction, we constructed stacked ensemble
models. Ensemble A, comprising Extra Trees, XGBoost, CatBoost, and
Logistic Regression as base learners and Light GBM as a meta-learner,
achieved an accuracy of 0.896, AUC of 0.960, recall of 0.927, and
precision of 0.872. Ensemble B, combining Extra Trees, Random
Forest, and XGBoost with Logistic Regression as meta-learner,
reached similar performance. Ensemble C introduced model diversity,
using Extra Trees, CatBoost, and Gradient Boosting as base learners
with XGBoost as the meta-learner. Ensemble D was a simplified
version with Extra Trees and XGBoost.

However, none of the ensemble models outperformed the standalone
Extra Trees classifier. Therefore, we ultimately selected Extra Trees as the
optimal model and fine-tuned its hyperparameters to enhance prediction.

3.5.1.2 Model selection based on simplified emergency
department predictors

When evaluating simplified models suitable for emergency triage
scenarios, single and ensemble models exhibited notable performance
disparities. Among individual classifiers, XGBoost outperformed others
with an AUC of 0.9397, precision of 0.8929, and recall of 0.9058,
surpassing both Random Forest (AUC =0.9387) and Extra Trees
(AUC = 0.9376). Nevertheless, these simplified models performed worse
than the full-feature Extra Trees model (AUC = 0.9821), suggesting that
the removal of key features reduced model discrimination capacity.

Further evaluation of ensemble models revealed no improvement
in performance. Ensemble A (XGBoost, Random Forest, Extra Trees,
and Logistic Regression) yielded a reduced AUC (0.8709) and an
alarmingly low precision (0.0968), suggesting that redundant base
models introduced noise or overfitting. Ensemble B (CatBoost,
LightGBM, KNN, XGBoost) showed even poorer performance
(AUC = 0.8646, precision = 0.0667), highlighting the failure of
non-linear stacking to capture core associations in simplified data.
Ensemble C, which combined top full-feature models with a neural
network, achieved the highest AUC among ensembles (0.8740) but
had imbalanced recall (0.7143) and precision (0.1429), further
confirming the limitations of complex integration under feature-
reduced conditions.

These results indicate that stacked models are constrained by data
sparsity and feature loss in simplified triage scenarios. In contrast,
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XGBoost retained strong generalizability due to its efficient gradient
boosting algorithm. Future work should prioritize optimizing feature
engineering to minimize information loss and explore adaptive
thresholding or hierarchical ensemble strategies while avoiding
overcomplicated architectures that may degrade performance
(Figures 3, 4).

3.5.2 Further performance evaluation

3.5.2.1 Prediction performance of the extra trees classifier
using full feature set

To ensure optimal model performance and validate its robustness,
we employed a two-step strategy. First, we optimized hyperparameters
of the Extra Trees Classifier using grid search with cross-validation
(GridSearchCV). This involved a comprehensive search over multiple
hyperparameter combinations, including the number of trees,
maximum depth, and minimum samples required for splitting, with
the goal of maximizing the ROC AUC score. The optimal combination
of hyperparameters was identified using 10-fold cross-validation on
the training dataset, and the model was retrained accordingly.

As shown in Figure 5, subsequently, we conducted 100 rounds of
bootstrap resampling. In each iteration, the model was retrained and
evaluated on the test set. The performance metrics—including
accuracy, ROC AUG, recall, and precision—consistently showed high
values with stable distributions (Figure 5). After optimization, the
Extra Trees model achieved perfect scores (accuracy, ROC AUC,
recall, and precision all equal to 1.0) on the training set. On the test
set, it maintained achieved high discrimination in this dataset with an
accuracy of 0.889, a ROC AUC of 0.959, a recall of 0.919, and a
precision of 0.866.

3.5.2.2 Prediction performance of XGBoost model using
simplified ED indicators

Using a reduced set of easily accessible clinical indicators for
emergency triage—namely GCS < 15, presence of underlying disease,
hypotension, dyspnea, and generalized urticaria—we developed a
streamlined XGBoost prediction model. The training dataset was
balanced using the ADASYN algorithm and stratified into a 70:30
training-test split (n = 659 for training, n = 283 for testing).

Hyperparameters were optimized via grid search with three-fold
stratified cross-validation, focusing on key parameters such as
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FIGURE 1
Feature importance ranking by recursive feature elimination (RFE) and XGBoost. This figure illustrates the ranking of predictor importance using
(A) recursive feature elimination (RFE) and (B) the XGBoost model. leuko, Leukocytes; low_bp, Low Blood Pressure; Cr, Serum Creatinine; UD,
Underlying Disease; dysp, Dyspnea; GCS, GCS<15. Axes: X-axis shows model-defined feature importance score; Y-axis shows feature names ranked by
relevance.
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FIGURE 2
Collinearity analysis of selected features. leuko, leukocyte count; low_bp, Low Blood Pressure; Cr, Serum Creatinine; UD, Underlying Disease; dysp,
Dyspnea; GCS, GCS<15.

learning rate (0.01-0.3), maximum tree depth (3-7), and subsample
ratio (0.6-1.0), with ROC AUC as the primary evaluation metric.
The tuned XGBoost model achieved high discriminatory
performance in the training set (accuracy=0.9213, ROC
AUC = 0.9872, recall = 0.9231, precision = 0.9132). Given the small
number of high-risk cases, these results may overestimate real-world
applicability and require external validation. On the independent
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test set, the model demonstrated good generalization with an
accuracy of 0.8894 (95% CI, 0.854-0.921), ROC AUC of 0.9397
(95% CI, 0.912-0.962), recall of 0.9058, and precision of 0.8929.

As shown in Figure 6, to further assess robustness, we conducted
100 rounds of bootstrap sampling. The test set metrics remained highly
stable, with mean accuracy of 0.883 + 0.021, ROC AUC 0f0.933 + 0.017,
recall of 0.901 + 0.034, and precision of 0.885 + 0.039 (Figure 6A).
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TABLE 5 Variance inflation factor (VIF) analysis for collinearity.

Variance inflation factor (VIF)

Feature

GCS<15 1.066663

under_disease 1.026064

low_bp 12.883395
dysp 1.027310

drip_sw 12.847227
rash 1.021299

leuko 1.012311

Cr 1.018928

Variables with VIF > 5 were considered to exhibit multicollinearity.

Three-dimensional ROC curve visualizations confirmed desirable
threshold responsiveness in both training and test sets (Figure 6B). At
a probability threshold of 0.45, the model achieved optimal
performance in the test set, with sensitivity of 0.914 and specificity
of 0.867.

Notably, although the ROC AUC of the simplified model was
approximately 2.2% lower than that of the full-feature Extra Trees
model (0.959 vs. 0.9397), it offered significant clinical convenience by
reducing the number of required features from seven to five, all of
which are readily obtainable at the point of ED triage.

As shown in Table 1, Based on the improved performance
following multiple imputation, all primary performance metrics
reported hereafter were derived from the MICE-imputed dataset. The
Extra Trees and simplified XGBoost classifiers retained strong
discrimination (AUC up to 0.9971; Table 1); however, given the
limited number of high-risk cases, these values may overestimate real-
world performance, underscoring the need for prospective validation
in external cohorts. This approach provides greater reproducibility
and more realistic variance estimates for clinical application.

For comparison, earlier results based on mean imputation yielded
slightly lower performance (e.g., AUC 0.959 for Extra Trees),
confirming the robustness and superiority of the MICE-
imputed approach.

To evaluate the impact of imputation strategies, model
performance using mean-imputed and MICE-imputed datasets was
compared (Table 1). Both Extra Trees and simplified XGBoost
classifiers exhibited substantial improvements under MICE
imputation, particularly in recall and precision, underscoring the
robustness and clinical utility of the multiple imputation approach.
For comparison, earlier results based on mean imputation yielded
slightly lower performance (e.g., AUC 0.959 for Extra Trees),
confirming the superiority of the MICE-imputed strategy.

3.5.3 Model interpretation

To enhance the interpretability of the predictive model, we applied
SHapley Additive exPlanations (SHAP) to evaluate the feature
importance and decision rationale of the Extra Trees model. The
results are shown in Figure 5.

Figure 7A illustrates the mean absolute SHAP values for each
feature, representing their average contribution to the model’s
predictions. Leukocyte count (leuko), low blood pressure (low_bp),
and serum creatinine (Cr) emerged as the most influential predictors.
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Their mean SHAP values were substantially higher than those of other
features, indicating a dominant role in determining model output. In
contrast, rash, underlying disease (UD), dyspnea (dysp), and GCS
contributed less on average.

Figure 7B (beeswarm plot) displays the distribution of SHAP
values for each feature, showing how variations in feature values
influenced the model output. For example, higher leukocyte counts
were associated with increased SHAP values (i.e., stronger prediction
of adverse outcomes), while lower counts reduced the predicted risk.
A similar pattern was observed for low_bp and Cr, supporting their
positive contribution to high-risk prediction. Figure 7C presents a
SHAP heatmap of selected features across individual samples.
Notably, leuko and low_bp consistently showed higher SHAP values
in most cases, reinforcing their key influence, whereas dysp and
GCS<15 had lower contributions in the majority of samples.

Figure 7D provides SHAP force plots for three representative
cases, illustrating individual-level explanations of the models
predictions. In these cases, leuko, low_bp, and Cr exerted strong
positive effects, driving the prediction toward a high-risk classification,
while features such as rash and UD sometimes had negative
contributions, mitigating the predicted risk.

SHAP interpretation of the simplified ED triage model (XGBoost)
is shown in Figure 6, where low blood pressure (low_bp), GCS < 15,
and underlying disease (UD) were the most impactful predictors. As
illustrated in the SHAP beeswarm plot (Figure 7A), high values of
low_bp (red dots) were strongly associated with positive SHAP
values, suggesting a higher risk of adverse outcome. GCS < 15 also
demonstrated a right-skewed SHAP distribution, emphasizing altered
consciousness as a critical danger sign. Interestingly, UD displayed a
bimodal SHAP distribution, implying its importance varies across
patient subgroups.

As shown in Figure 8, Compared with the full model (Figure 1),
the importance of dyspnea (dysp) and rash (generalized urticaria) was
lower in the simplified model, potentially due to multicollinearity. The
SHAP dependence plot (Figure 8B) revealed that co-occurrence of
low_bp and GCS < 15 led to a nonlinear surge in predicted risk,
indicating a synergistic interaction between these features in
influencing model decisions.

Bootstrap validation (Figures 8C, D) demonstrated the model’s
robustness, with coefficient of variation for SHAP values across 100
resampling iterations remaining below 15%, confirming the model’s
reliability in clinical application scenarios.

3.5.4 Model deployment

Based on the optimized ensemble model, we developed a
shareable web-based risk calculator to facilitate real-time clinical
decision-making. The tool incorporates seven common clinical
variables—underlying disease, Glasgow Coma Scale < 15 (GCS < 15),
hypotension (systolic blood pressure <90 mmHg or diastolic
<60 mmHg), dyspnea, generalized urticaria, syncope, leukocyte
count, and serum creatinine—and enables physicians to dynamically
assess the probability and risk level of high-risk hymenopteran sting
injury upon patient admission via mobile or desktop web interfaces.

As shown in Figure 9, As illustrated in Figure 9B, for a 38-year-
old male patient with no prior medical history who presented to
the hospital 10 h after being stung by a wasp., the calculator
estimated a 94.3% probability of high-risk hymenopteran sting
injury. This patient had hypotension (systolic BP = 81 mmHg),
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dyspnea, leukocyte count of 13.3 x 10°/L, and serum creatinine of
239 pmol/L, leading to classification into the high-risk group.

In contrast, Figure 9C shows a 58-year-old female patient with
a history of hypertension but no impaired consciousness,
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hypotension, dyspnea, or rash. Her leukocyte count was 6.3 x 10°/L
and serum creatinine was 47 pmol/L. For this case, the web-based
tool predicted a 31.7% probability of high-risk hymenopteran
sting injury, categorizing her into the low-risk group.
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Performance stability and 3D ROC visualization of the extra trees model using full predictor set. (A) Distribution of performance metrics (Accuracy,
ROC AUC, Recall, Precision) based on 100 bootstrap resamples. Histograms with fitted KDE curves demonstrate the model's internal stability across
evaluation metrics. (B) 3D visualization of the ROC curve on the training set (left) and test set (right), plotted with axes representing False Positive Rate

(X-axis), True Positive Rate (Y-axis), and classification Threshold (Z-axis).

4 Discussion

This study, based on multicenter clinical data from 942 patients
with hymenopteran stings, systematically analyzed epidemiological
patterns, identified key variables associated with adverse outcomes,
developed high-performance machine learning prediction models,
and deployed a simplified online risk assessment tool. Together, these
efforts offer both theoretical foundations and practical strategies for
early recognition and precise intervention in patients with
hymenopteran sting injuries. To our knowledge, this is among the
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first applications of SHAP-based interpretability to Hymenoptera
envenomation risk prediction.

4.1 Epidemiological and clinical risk
features

Our findings indicate that hymenopteran stings occur predominantly
in summer and autumn, with over two-thirds of cases reported in the
third quarter—consistent with the seasonal activity peak of social
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Hymenoptera (wasps, hornets, bees and bumblebees), when colony sizes
and foraging activity are greatest (12). The head and neck were the most
commonly affected anatomical sites. A higher proportion of cases
occurred in males and older adults, suggesting that outdoor exposure and
physiological vulnerability play critical roles in injury progression.
Notably, underlying comorbidities were more prevalent among patients
with poor outcomes, reinforcing the notion of wasp envenomation as an
“exogenous triggering factor” for systemic injury.
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Analysis of high-risk clinical features revealed that hypotension,
altered mental status, dyspnea, elevated leukocyte counts, and abnormal
creatinine levels were significantly associated with adverse outcomes.
These indicators align with known pathophysiological mechanisms of
wasp venom. Specifically, phospholipase A2 and hyaluronidase in
venom can damage endothelial cells and trigger inflammatory cascades,
leading to increased vascular permeability, rhabdomyolysis, and acute
kidney injury (13). As a result, leukocyte and creatinine levels often rise
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SHAP-based interpretation of the extra trees model. (A) Bar plot showing the average absolute SHAP values for each predictor, indicating their relative
contributions to model output across all samples. (B) Beeswarm plot visualizing SHAP value distributions for each feature. Color represents the feature

and direction of each feature's contribution across all samples. (D) SHAP
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lot; color gradients reflect input feature values. leuko, Leukocyte count;
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SHAP-based feature interpretation of the simplified XGBoost model. (A) Bar

how individual features push the model prediction toward high- or low-risk

dysp, Dyspnea; GCS, GCS < 15. SHAP, SHapley Additive exPlanations.

plot of mean absolute SHAP values, ranking the features by average impact

on model output. (B) Beeswarm plot showing the distribution of SHAP values for each predictor, where color denotes feature value (red = high,
blue = low). (C) Heatmap of SHAP values across samples, visualizing variability and feature dominance. (D) SHAP force plots for three patients, showing

outcomes. X-axis in most subplots represents SHAP values; Y-axis denotes

either features or samples, depending on the plot; color gradients reflect input feature values. low_bp, Low Blood Pressure; UD, Underlying Disease;

markedly. Furthermore, hypotension and impaired consciousness—
indicative of inadequate organ perfusion and systemic inflammation—
are of high clinical relevance in acute severity assessment. Although the
predictive importance of “rash” was relatively limited, this variable was
retained in the simplified model to enhance clinical interpretability and
facilitate ease of application in bedside settings.

4.2 Machine learning model performance
and clinical Al applications

In comparing 13 mainstream machine learning algorithms, the
Extra Trees model exhibited the best performance on the test set
(accuracy = 0.889, AUC = 0.959), outperforming logistic regression,
naive Bayes, and other models. Extra Trees excelled in capturing
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complex feature interactions and nonlinear decision boundaries. Its
interpretability, enhanced through SHAP (SHapley Additive
exPlanations), revealed that leukocyte count, hypotension, and
creatinine were the top three contributors to risk predictions—offering
clinicians transparent insight into model rationale.

To enhance clinical applicability, we also developed a simplified
model based on five routinely available emergency indicators.
Although the AUC slightly declined to 0.937, the model’s ease of use
and rapid data acquisition make it suitable for prehospital triage and
community-level emergency care. With individual SHAP value
visualizations, this streamlined model enables personalized risk factor
analysis, supporting frontline clinicians in formulating dynamic
intervention strategies. The deployment of this model as a web-based
tool represents a significant advancement in point-of-care clinical
decision support systems for hymenopteran envenomation (2, 14).
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133 63
Creatinine umol/L: Creatinine umol/L: Creatinine umol/L:
239 a7
— =
Risk Level: High, Probability: 0.943 Risk Level: Low, Probability: 0.317

FIGURE 9
Web-based clinical calculator for risk stratification of hymenopteran sting cases. The calculator dynamically outputs predicted risk level and probability
score based on the simplified XGBoost model. It is intended for real-time clinical support and triage optimization in emergency departments. (A) Initial
interface of the online risk calculator, allowing clinicians to input patient characteristics including symptoms (e.g., dyspnea, rash), vital signs (e.g., blood
pressure), GCS score, and laboratory values (leukocyte count, creatinine). (B) Example of a high-risk prediction: multiple risk factors are selected,
resulting in a predicted risk probability of 0.943. Red highlights indicate contributing risk features. (C) Example of a low-risk case: fewer abnormalities
are present, leading to a lower probability (0.317).

The application of machine learning to hymenopteran sting risk
prediction fills a critical gap in emergency toxicology. Unlike traditional
scoring systems that rely on fixed weights and linear relationships, our
ensemble approach can capture complex interactions between clinical
variables that may not be apparent to human observers (15). This is
particularly relevant in envenomation scenarios where the interaction
between patient comorbidities, venom load, and systemic response can
lead to unpredictable clinical trajectories.

MICE outperformed mean imputation, supporting model
robustness. As detailed in Table 1, both the Extra Trees and simplified
XGBoost models trained on MICE-imputed datasets significantly
outperformed those using mean substitution, particularly in recall and
precision. These findings validate the importance of preserving feature
variance and minimizing bias in emergency care data, and justify the
adoption of MICE-based results as the primary analysis. Given the
small number of high-risk cases (1 = 23), these high AUC values may
overestimate real-world performance. Future prospective validation
in external cohorts is necessary to confirm the generalizability of the
model. However, the high AUC values observed should be interpreted
cautiously due to the small number of high-risk cases.

4.3 Comparison with traditional risk scores

Compared with traditional scoring systems such as SOFA, qSOFA,
and NEWS—which are widely used in sepsis and acute care evaluation—
our SHAP-enhanced Extra Trees and simplified XGBoost models
demonstrated

substantially higher predictive performance in
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hymenopteran sting cases (AUC up to 0.959) (10, 16). These conventional
tools rely on fixed thresholds and a limited number of clinical parameters,
which may reduce sensitivity and specificity in this specific clinical
context. In contrast, our models dynamically integrate a broader range of
clinical and laboratory features, are capable of generating individualized
explanations of risk contribution via SHAP, and allow rapid deployment
in emergency settings through a streamlined feature set and an online
calculator interface (17). This combination of precision, transparency, and
operational feasibility offers distinct advantages over SOFA, qSOFA, and
NEWS in guiding early, targeted intervention for high-risk hymenopteran
sting patients (7, 10).

4.4 Limitations

This study has several limitations. First, the dataset was drawn
from five hospitals in Hainan Province. While it offers regional
representativeness, the geographical and demographic diversity
remains limited. Second, the absence of information regarding bee
species, venom dosage, and treatment delay restricted our ability to
explore dose-response relationships. Third, although the model
performed consistently on internal test data, external validation in
other regions and prospective cohorts is necessary to ensure
generalizability and robustness.

Furthermore, the model is a clinical decision support tool requiring
physician oversight to mitigate ethical and safety risks from algorithmic
misclassification. In cases of missing input features or low model
confidence, clinicians should default to their professional expertise.
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While ADASYN oversampling effectively mitigated class
imbalance in the training data, synthetic samples cannot fully replace
real-world cases. Therefore, external validation in independent
cohorts is necessary to confirm model generalizability and avoid
potential overfitting.

Public access to the web-based risk calculator is temporarily
suspended due to infrastructure maintenance. Full source code and
deployment instructions are provided in Supplementary material S1
for reproducibility. Public URL access is expected to resume within
3 months post-publication.

5 Conclusion

In conclusion, we developed and validated an interpretable,
streamlined, and readily deployable model for early identification of
patients at high risk of severe outcomes following hymenopteran stings,
leveraging real-world multicenter data. This model fills a critical gap in
risk stratification for hymenopteran envenomation and demonstrates
clear potential for improving emergency triage and public health response.
Future prospective validation in diverse populations is warranted to
establish its broader generalizability and clinical impact.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by the Ethics
Committee of Hainan General Hospital (Approval No. [2022]491). The
studies were conducted in accordance with the local legislation and
institutional requirements. Written informed consent for participation
was not required from the participants or the participants’ legal guardians/
next of kin because this project is a retrospective analysis.

Author contributions

FH: Data curation, Formal analysis, Funding acquisition, Writing —
original draft, Writing — review & editing. YL: Funding acquisition,
Methodology, Project administration, Software, Visualization, Writing —
original draft, Writing - review & editing. HL: Conceptualization,
Formal analysis, Software, Visualization, Writing — review & editing. XC:
Data curation, Formal analysis, Validation, Writing - review & editing.
LL: Data curation, Formal analysis, Methodology, Writing — review &
editing. DX: Data curation, Formal analysis, Writing - review & editing.
LY: Data curation, Formal analysis, Writing — review & editing. YO: Data
curation, Methodology, Project administration, Supervision, Writing —
review & editing. PH: Methodology, Project administration, Supervision,
Validation, Writing - review & editing. WL: Formal analysis, Funding
acquisition, Investigation, Methodology, Project administration,
Supervision, Writing — review & editing.

Frontiers in Public Health

15

10.3389/fpubh.2025.1664606

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by two grants: the Hainan Provincial Natural Science Foundation of
China (825RC864); Academic Enhancement Support Program of
Hainan Medical University (XSTS2025168); Joint Program on Health
Science &  Technology
(WSJK2025QN051); the Hainan Provincial Natural Science
Foundation of China (825RC856).

Innovation of Hainan Province

Acknowledgments

We gratefully acknowledge the cooperation of emergency
department teams across the five participating hospitals in Hainan
Province for data collection.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen Al was used in the creation of
this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure accuracy,
including review by the authors wherever possible. If you identify any
issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpubh.2025.1664606/
full#supplementary-material

SUPPLEMENTARY FIGURE S1
Youden index-based threshold analysis for serum creatinine.

SUPPLEMENTARY FIGURE S2
Youden index-based threshold analysis for leukocyte count.

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1664606
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1664606/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1664606/full#supplementary-material

Han et al.

References

1. Guan J, Zhao Z, Wang Z, Huang M, Wang J, Liu Z, et al. Risk prediction of severe
complications caused by Hymenoptera insect stings: development and validation of a
nomogram mode. ] Inflamm Res. (2025) 18:11083-93. doi: 10.2147/Jir.S536623

2. Pan W, Zhang S, Wang Y, Quan Z, Zhu Y, Fang Z, et al. Clinical management of
wasp stings using large language models: cross-sectional evaluation study. ] Med Internet
Res. (2025) 27:E67489. doi: 10.2196/67489

3. Wang M, Qin M, Wang AY, Zhao JW, Deng F, Han Y, et al. Clinical manifestations
and risk factors associated with 14 deaths following swarm wasp stings in a Chinese
tertiary grade a general hospital: a retrospective database analysis study. J Clin Med.
(2023) 12:5789. doi: 10.3390/Jcm 12185789

4. Feds X, Vidal C., And Remesar S.. (2022). What we know about sting-related
deaths? Human fatalities caused by hornet, wasp and bee stings in Europe (1994-2016).
Biology (Basel) 11:282. doi: 10.3390/Biology11020282

5. Song W, Kim H., And Kim W.. (2025). Modeling urban wasp Nest occurrences
using 119 fire service reports, lidar, and hyperspectral imagery: the role of green spaces
and structural factors. ] Environ Manag 379::124776. doi: 10.1016/].Jenvman.2025.124776

6. Kordzadeh A., Ramazani Sa A., And Mashayekhan S.. (2025). Innovative separation
of melittin from bee venom using Micro-free-flow electrophoresis: an experimental and
theoretical study. Anal Chim Acta 1337::343572. doi: 10.1016/].Aca.2024.343572

7.Luo Y, Guan M, Yu Y. Trends and hotspots on Hymenoptera venom
immunotherapy: a bibliometric and visualized analysis of research from 2014 to 2024.
Front Immunol. (2025) 16:1546704. doi: 10.3389/Fimmu.2025.1546704

8. Jiang Y. And Van De Ven T.G.M.. (2024). Cations and anions affect the speed of sound
in water oppositely. ] Phys Chem Lett 15: 4125-4129. doi: 10.1021/Acs Jpclett.4c00318

9. Pham X.H., Pham QN., And Pham Minh D.. (2025). Tri-reforming of methane
over a hydroxyapatite-supported nickel catalyst prepared by cation exchange.
ChemPlusChem 90::E202500082. doi: 10.1002/Cplu.202500082

Frontiers in Public Health

16

10.3389/fpubh.2025.1664606

10. Qiu X., Lei Y.P,, And Zhou R.X.. (2023). SIRS, SOFA, Qsofa, and NEWS in the
diagnosis of Sepsis and prediction of adverse outcomes: a systematic review and Meta-
analysis. Expert Rev Anti-Infect Ther 21: 891-900. doi: 10.1080/14787210.2023.2237192

11. El Arab R.A. And Al Moosa O.A.. (2025). The role of Al in emergency department
triage: an integrative systematic review. Intensive Crit Care Nurs 89:104058. doi:
10.1016/].1ccn.2025.104058

12. Charoenwikkai S., Intapun P, And Lao-Araya M.. (2024). Bee sting injuries in
Thailand's high apicultural area: outcome, risk and treatment patterns. Risk Manag
Healthc Policy 17: 1837-1845. doi: 10.2147/Rmhp.S470007

13.Cavalcante JS, Riciopo PM, Pereira AFM. Clinical complications in
envenoming by Apis honeybee stings: insights into mechanisms, diagnosis. And
Pharmacological Interventions Front Immunol. (2024) 15:1437413. doi:
10.3389/Fimmu.2024.1437413

14. Park HJ, Brooks DI, Chavarria CS, Wu RL, Mikita CP, Beakes DE. Combining
discordant serum Ige and skin testing improves diagnostic and therapeutic accuracy for
Hymenoptera venom hypersensitivity immunotherapy. J Allergy Clin Immunol Pract.
(2022) 10:837-43. doi: 10.1016/].Jaip.2021.08.037

15. Teixeira E, Viana TA, Lima MAP. Detection and identification of Melissococcus
plutonius in stingless bees (Apidae: Meliponini) from Brazil. J Invertebr Pathol. (2025)
213:108418. doi: 10.1016/].Jip.2025.108418

16. Hincapié-Osorno C, Van Wijk RJ, Postma DFE Validation of MEWS, NEWS,
NEWS-2 and Qsofa for different infection foci at the emergency department, the
Acutelines cohort. Eur ] Clin Microbiol Infect Dis. (2024) 43:2441-52. doi:
10.1007/510096-024-04961-1

17. Ning C, Ouyang H, Xiao J. Development and validation of an explainable machine
learning model for mortality prediction among patients with infected pancreatic
necrosis. Eclinicalmedicine. (2025) 80:103074. doi: 10.1016/].Eclinm.2025.103074

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1664606
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.2147/Jir.S536623
https://doi.org/10.2196/67489
https://doi.org/10.3390/Jcm12185789
https://doi.org/10.3390/Biology11020282
https://doi.org/10.1016/J.Jenvman.2025.124776
https://doi.org/10.1016/J.Aca.2024.343572
https://doi.org/10.3389/Fimmu.2025.1546704
https://doi.org/10.1021/Acs.Jpclett.4c00318
https://doi.org/10.1002/Cplu.202500082
https://doi.org/10.1080/14787210.2023.2237192
https://doi.org/10.1016/J.Iccn.2025.104058
https://doi.org/10.2147/Rmhp.S470007
https://doi.org/10.3389/Fimmu.2024.1437413
https://doi.org/10.1016/J.Jaip.2021.08.037
https://doi.org/10.1016/J.Jip.2025.108418
https://doi.org/10.1007/S10096-024-04961-1
https://doi.org/10.1016/J.Eclinm.2025.103074

	Machine learning enables early risk stratification of hymenopteran stings: evidence from a tropical multicenter cohort
	1 Introduction
	2 Methods
	2.1 Study population
	2.2 Data collection
	2.3 Statistical analysis
	2.4 Machine learning model development (including imputation and class balancing)
	2.5 Simplified model development
	2.6 SHAP interpretation and model deployment

	3 Results
	3.1 Distribution of hymenopteran sting patients by gender, age, sting site, and time from sting to hospital visit
	3.2 Local and systemic manifestations in hymenopteran sting patients
	3.3 Laboratory analysis between different clinical outcome groups
	3.4 Feature selection
	3.5 Development and validation of an early diagnostic machine learning model
	3.5.1 Machine model screening
	3.5.1.1 Model selection using the full predictor set
	3.5.1.2 Model selection based on simplified emergency department predictors
	3.5.2 Further performance evaluation
	3.5.2.1 Prediction performance of the extra trees classifier using full feature set
	3.5.2.2 Prediction performance of XGBoost model using simplified ED indicators
	3.5.3 Model interpretation
	3.5.4 Model deployment

	4 Discussion
	4.1 Epidemiological and clinical risk features
	4.2 Machine learning model performance and clinical AI applications
	4.3 Comparison with traditional risk scores
	4.4 Limitations

	5 Conclusion

	References

