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Background: Influenza remains a significant public health challenge,
characterized by substantial seasonal variation and considerable socioeconomic
burden. Although meteorological factors are known to influence influenza
transmission, their specific effects within subtropical monsoon climates, such
as that of Quanzhou, remain inadequately characterized.

Methods: We analyzed weekly influenza-like illness (ILI%) data from sentinel
hospitals in Quanzhou between 2016 and 2024. Descriptive statistics, distributed
lag nonlinear models (DLNM), cross-correlation function (CCF) analysis,
and ARIMAX modeling were employed to examine the lagged and nonlinear
associations between meteorological variables and ILI%.

Results: The overall ILI% during the surveillance period was 2.32%, with
significant temporal trends: a pronounced decline from 2016 to 2020
(APC = —22.693, p = 0.001) was followed by a significant increase from 2020 to
2024 (APC = 21.555, p = 0.003). Children under 15 years of age were the most
affected demographic. A consistent bimodal seasonal pattern was observed, with
a primary peak in winter (weeks 50—-14) and a secondary peak in summer (weeks
20-29). DLNM analysis indicated that low atmospheric pressure (<997 hPa) at
lag 0-0.5 weeks was associated with increased ILI risk, while higher pressure
(>1,010 hPa) had a protective effect (relative risk [RR] = 0.85, 95% Cl: 0.73—
0.99). Precipitation of 4—16 mm elevated ILI risk (RR = 1.10, 95% Cl: 1.02-1.18),
whereas precipitation >21 mm was protective. Wind speed demonstrated an
N-shaped association with ILI%, though this was not statistically significant.
The optimal forecasting model incorporated precipitation at a 2-week lag as
an exogenous variable (ARIMA(1,1,1)(1,1,1)s, + WAP(lag2)) and yielded the highest
predictive accuracy for 2024 ILI%, improving RMSE by 2.9% and MAE by 1.3%
compared to the baseline model.

Conclusion: Incorporating meteorological factors significantly improves
the accuracy of influenza forecasting models. These findings support the
development of climate-informed early warning systems and targeted public
health interventions in subtropical regions.

KEYWORDS

influenza-like illness, DLNM modeling, ARIMAX modeling, meteorological
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1 Introduction

Influenza is an acute viral respiratory infection that affects
populations across all age groups worldwide and causes substantial
mortality during pandemics, seasonal epidemics, and sporadic
outbreaks. It is estimated that influenza viruses infect approximately
10% of the global population each year, resulting in around 500,000
annual deaths. These figures underscore the considerable public health
burden imposed by influenza on a global scale (1). In temperate
climates, seasonal epidemics occur mainly during winter, while in
tropical regions, influenza may occur throughout the year, causing
outbreaks more irregularly (2). Recent epidemiological anomalies—
including the intensification of summer influenza activity in
subtropical zones and the global disappearance of the B/Yamagata
lineage-present fresh challenges for health authorities and influenza
surveillance efforts (3). This emerging trend presents fresh challenges
for health authorities and influenza surveillance efforts. A growing
body of evidence suggests meteorological factors significantly
modulate influenza dynamics; however, their effects exhibit striking
regional heterogeneity (4-6). For instance, low temperatures and
humidity in temperate zones may enhance viral stability, whereas
monsoon-driven climate systems-characterized by abrupt humidity
shifts and temperature fluctuations in subtropical regions like
Quanzhou-could distinctly alter transmission pathways.

Quanzhou, a coastal prefecture-level city located in southeastern
Fujian Province, China, features a typical subtropical monsoon
climate characterized by mild winters, hot and humid summers, and
abundant annual precipitation. The region experiences distinct
seasonal variations in wind patterns, humidity, and temperature,
heavily influenced by the western Pacific Ocean and the East Asian
monsoon system. Despite these pronounced climatic characteristics,
systematic investigations into climate-influenza interactions within
subtropical monsoon climates remain scarce. This gap is particularly
critical in regions like Quanzhou, where humid summers and mild
winters may drive unique epidemic behaviors, yet predictive models
tailored to such environments are lacking.

This study employs a dual analytical framework to advance
influenza forecasting in subtropical monsoon climates. First,
we quantify the non-linear and lagged effects of meteorological factors
on Influenza-Like Illness Percentage (ILI%) using Distributed Lag
Non-linear Models (DLNM). Second, by integrating Cross-
Correlation Function (CCF) analysis to identify optimal lag orders,
we construct an Autoregressive Integrated Moving Average with
Exogenous Variables (ARIMAX) model that synergizes climatic
drivers with historical ILI% data. This approach not only captures
complex climate-epidemiology interactions but also generates
actionable predictions for public health planning.

2 Materials and methods
2.1 Study area and data sources

Quanzhou, situated in the southeast coastal area of China, covers
a total area of 11,295.57 square kilometers. By the end of 2024, the city
had a permanent resident population of 8.91 million. The region
experiences a subtropical monsoon climate, characterized by humid
summers, mild winters, and significant seasonal precipitation
variability. Weekly data on Influenza-Like Illness (ILI) counts and
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ILI% from January 2016 to December 2024 were obtained from the
China Disease Prevention and Control Information System.

The meteorological data utilized in this study encompassed eight
indicators sourced from the China Meteorological Data Network,
comprising weekly average temperature (WAT,°C), maximum
temperature (MaxT,°C), minimum temperature (MinT,°C), weekly
average barometric pressure (WABP, hPa), weekly average relative
humidity (WARH, %), minimum relative humidity (MinRH, %),
weekly average precipitation (WAP, mm), and weekly average wind
speed (WAWS, m/s). The raw values of these meteorological variables
were used directly in all subsequent analyses without normalization
or standardization, to preserve the interpretability of results in their
original physical units.

2.2 Statistical analysis

2.2.1 Seasonal variation characterization
A seasonal index was calculated using Microsoft Excel 2017 to
quantify influenza seasonality, defined as (Equation 1):

Average ILI%for a
Seasonal Index =| Specific Week /
(2016-2024)

(Overall Average Weekly ILI% (2016 - 2024)) (1)

Weeks with indices >1 were classified as high-incidence periods,
while values near or below 1 indicated non-significant seasonality (7).

2.2.2 Trend analysis

Temporal trends in ILI% were analyzed using Joinpoint 5.4.0. The
annual percentage change (APC) quantified segment-specific trends,
while the average annual percentage change (AAPC) assessed overall
trends. APC > 0, the incidence of the disease is increasing in that time
period; conversely, if APC < 0, the incidence is decreasing in that time
period. APC = AAPC indicates a monotonically increasing or
monotonically decreasing trend (8).

2.2.3 Data processing and correlation analysis

Descriptive statistics for ILI, ILI%, and meteorological variables
were computed using R software (version 4.4.3, R Foundation for
Statistical Computing) with the following packages: dplyr for data
manipulation and forecast for time-series decomposition. Normality
of ILI% and meteorological variables was assessed using the
Shapiro-Wilk test (shapiro.test function from the stats package).
Both ILI% and meteorological data showed non-normal
distributions (all p < 0.05), supporting the use of nonparametric
Spearman’s rank correlation analysis (implemented via cor.test with
method = “spearman”). All statistical tests were two-tailed, and a
significance threshold of p < 0.05 was applied. Correlations between
ILI% and eight meteorological factors were examined. To mitigate
multicollinearity, variables with Spearman’s correlation coeflicients
> 0.7 were excluded from concurrent inclusion in subsequent
multivariate models (9).

2.2.4 Distributed lag nonlinear modeling
The influence of meteorological factors on ILI% has a lagged effect

(10). The DLNM can take into account the nonlinear
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exposure-response relationship and the lag effect of exposure factors
on outcomes simultaneously (11, 12). It has been widely used to
evaluate the expose-lag-effectcorrelations between meteorological
factors and infectious diseases, such as dengue, mumps, and acute
respiratory infections (13-15).

We modeled the association between meteorological variables and
ILI% using a quasi-binomial regression within the DLNM framework,
implemented with the dlnm package in R. The model specification
was as follows (Equation 2):

logit(p)= o+ CB(X4)+CB(X7)+CB(Xg)+ns(Time,df =63) (2)

p represents the proportion of ILI cases among the total
outpatient consultations for a given week. CB(X4), CB(X7), and
CB(XS) denote the cross-basis functions for WABP, WAP, and
WAWS, respectively. These functions simultaneously capture the
potentially nonlinear exposure-response associations and the
delayed effects (lag-response) of each meteorological variable. Each
cross-basis was constructed using natural cubic splines with 3
degrees of freedom for both the exposure-response and lag-response
dimensions. A maximum lag of 3 weeks was specified a priori to
capture the short-term delayed effects of weather on ILI
transmission. The choice of this lag period is epidemiologically
justified, as it accommodates the sequential timeline from
environmental exposure (e.g., to weather conditions) to the
(1-4 days
subsequent care-seeking behavior, and final reporting as an ILI case.

development of symptoms incubation period),
Furthermore, a three-week window is sufficient to capture
secondary transmission cycles within households or communities
(16, 17). The term ns(Time,df = 63)represents a natural cubic spline
of time with 63 degrees of freedom. This term was included to
control for unmeasured temporal confounders, including long-term
trends, seasonality, and other time-varying factors not explicitly
measured in the model. The degrees of freedom were set at 7 per
year for the 9-year study period (2016-2024), providing a flexible
adjustment for the underlying temporal structure of the data. /3 is
the model intercept. The model was fitted using maximum
likelihood estimation. The results are presented as relative risks
(RRs), derived by comparing the predicted risk at specific exposure
levels against the reference value (the median value of each
meteorological variable).

Model parameters, including the degrees of freedom for splines
and the lag structures, were optimized based on the Akaike
Information Criterion (AIC). Meteorological factors that showed
significant correlations (p < 0.05) in the preliminary correlation
analyses were incorporated into the DLNM to quantify their
lag-specific effects on ILI%.

2.2.5 SARIMA and ARIMAX modeling

The Autoregressive Integrated Moving Average (ARIMA)
model, first proposed in 1976 (18), is now widely used in the
prediction and early warning analysis of infectious diseases. For
time series data exhibiting periodic patterns, the Seasonal
Autoregressive Integrated Moving Average Model (SARIMA)
combines seasonal differencing with the standard ARIMA model,
making it well-suited for modeling data with recurring
characteristics. The SARIMA model is abbreviated as ARIMA(p,d,q)
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(P,D,Q)s, where s denotes the seasonal period, and p(P), d(D), and
q(Q) stand for the unseasonal (seasonal) autoregressive, difference,
and moving average orders, respectively. The determination of these
parameters, (p,d,q) and (P,D,Q), is achieved through an analysis of
the Partial (PACF) and the
Autocorrelation Function (ACF). To enhance predictive accuracy,
the ARIMAX model extends the SARIMA framework by
incorporating exogenous variables—such as meteorological

Autocorrelation Function

factors—that influence the target series (19).

All analyses were performed using R 4.4.3 with packages forecast
(for auto.arima and model fitting), tseries (for stationarity tests), and
dlnm (where applicable). All statistical tests were two-tailed, with
significance set at p < 0.05.

The weekly ILI% data from January 2016 to December 2023 was
utilized as the training set for model development, while data from
January to December 2024 was reserved as a test set for external
validation of model generalizability. The modeling procedure
consisted of three main phases:

1 Stationarity Assessment and Differencing: The stationarity of
the ILI% time series was rigorously assessed using the
Augmented Dickey-Fuller (ADF) test and a Kwiatkowski-
Phillips-Schmidt-Shin  (KPSS) test. The
non-seasonal differencing order (d) was determined through

appropriate

the ndiffs() function in R, which identifies the minimum
number of differences required to achieve stationarity. Seasonal
differencing order (D) was determined by examining the ACF
plot for persistent seasonal patterns at lag 52, corresponding to
the yearly cycle.

2 The orders of the autoregressive (p), moving average (q), and
their seasonal counterparts (P, Q) were identified through a
complementary approach that combined graphical analysis and
automated algorithm selection. Initial guidance for appropriate
orders was obtained through visual inspection of the ACF and
PACEF plots of the differenced series. This graphical analysis
was then validated and refined using the auto.arima() function
in R, which was employed with comprehensive search settings
(stepwise = FALSE, approximation = FALSE) to systematically
compare a wide range of candidate models. The final model
selection between these candidates was based on the
minimization of the AIC and the Bayesian Information
Criterion (BIC).

3 Following parameter estimation, model adequacy was
thoroughly evaluated through residual diagnostics and error
metrics, wherein the Ljung-Box test was applied to assess
whether model residuals approximated white noise (i.e.,
exhibited no significant autocorrelation), while model fit was
quantified using the Root Mean Square Error (RMSE) on the
training data.

After establishing an optimal univariate SARIMA model,
meteorological factors significantly associated with ILI% were
identified and incorporated as external regressors into a multivariate
ARIMAX framework. The CCF analysis was applied to determine
optimal lag orders for these predictors. The final ARIMAX model’s
performance was evaluated against the baseline SARIMA model using
both goodness-of-fit criteria (AIC/BIC) and forecast accuracy metrics
on the test set to demonstrate any improvement in predictive capability.
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3 Results

3.1 A description of ILI and ILI%
characteristics

From 2016 to 2024, sentinel hospitals in Quanzhou City reported
a total of 12,991,585 outpatient and emergency visits, including
301,239 ILI cases, yielding an overall ILI% of 2.32%. Notably, ILI%
exhibited marked temporal variability: the highest rate (3.46%)
occurred in 2016, while the lowest (1.24%) was recorded in 2020.
Joinpoint regression analysis revealed distinct trend phases (Figure 1),
which showed a decreasing trend in ILI% from 2016 to 2020
(APC = —22.693, p = 0.001) and an increasing trend from 2020 to
2024 (APC = 21.555, p = 0.003).

3.1.1 Population distribution

Surveillance data from 2016 to 2024 revealed distinct age-specific
patterns in ILI incidence across Quanzhou City. Children under
5 years of age exhibited the highest ILI incidence rate, followed by
those aged 5 to <15 years (Figure 2).

3.1.2 Time distribution

Analysis of the seasonal index indicated a consistent annual
bimodal seasonality in ILI% (Figure 3), featuring two distinct peaks
each year. A primary winter peak occurred from week 50 to week 14
(December to February of the following year), which was characterized
by markedly higher intensity and prolonged duration. A secondary
summer peak was observed between weeks 20 and 29 (May to July),
with moderate magnitude in comparison.

3.2 Impact of meteorological factors on
ILI%

Spearman’s correlation analysis revealed significant associations
between ILI% and multiple meteorological variables. The correlation
of the variables in the data was visualized and the heat map obtained
is shown in Figure 4, which reveals that ILI% shows a statistically
significant correlation with WAT, MaxT, MinT, WABP, WAP,
and WAWS.

L e e
4.0
90000 -
I 3.0
=5 E =
I 60000 L20 &
30000 - 1.0
2016 2017 2018 2019 2020 2021 2022 2023 2024
Year
FIGURE 1
Sentinel site monitoring in Quanzhou, 2016-2024.
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The negative correlation coefficients between ILI% and
WAT(r=-0.11), MaxT(r=-0.12), MinT(r=—0.10),
WAWS(r = —0.23) suggest that cooler temperatures and lower wind

and

speeds may elevate influenza transmission risks in Quanzhou. The
correlation coeflicients between ILI% and WABP, WAP are 0.22 and
0.14 respectively, indicating that the higher the air pressure or
precipitation, the higher the likelihood of influenza. The average
precipitation (WAP) was 3.24 mm, and the average relative humidity
(WARH) was 75.11% (Table 1), providing a quantitative baseline for
the local humid subtropical climate that characterizes Quanzhou.

Significant multicollinearity (I r [>0.7) was observed among WAT,
MaxT, and MinT, as well as between WABP and temperature variables.
To address collinearity and prioritize predictive relevance, only
meteorological factors exhibiting the strongest associations with ILI%
were retained. Consequently, WABP, WAP, and WAWS were selected
as exogenous variables for the final model.

3.3 Associations between meteorological
factors and ILI% identified by DLNM

3.3.1 Effect of WABP on ILI%

Using the median WABP (999.91 hPa) as the reference value and
a maximum lag period of 3 weeks, we assessed the association between
atmospheric pressure and ILI% risk in Quanzhou by means of 3D
surface and contour plots (Figures 5a,b). The contour plot revealed a
nonlinear exposure-response relationship, characterized by an
elevated risk of ILI% at lower air pressure levels, whereas higher
pressure exhibited a protective effect. Specifically, as shown in
Figure 6, at shorter lag periods (0-0.5 weeks), air pressure below
approximately 997 hPa was associated with an increase in ILI% risk,
although this association was not statistically significant. For example,
at 983 hPa and lag 0 week, the relative risk was 1.08 (95% CI, 0.85-
1.36). In contrast, higher air pressure (>1,010 hPa) during lag periods
of 0-1.5 weeks showed statistically significant protective effects, with
the relative risk (RR) values consistently below 1 and 95% confidence
intervals excluding the null value (e.g., RR = 0.85, 95% CI: 0.73-0.99
at 1012 hPa and lag 0). These results indicate that the influence of air
pressure on ILI% risk is dependent on both the pressure magnitude
and the lag time, with moderate to high air pressure conferring a
protective benefit.

3.3.2 Effect of WAP on ILI%

Using the median WAP (0.74 mm) as the reference and a
maximum lag of 3 weeks, DLNM results revealed a significant
non-linear association between precipitation and ILI% risk
(Figures 7a,b, 8). When WAP ranged between 4 mm and 16 mm, RR
consistently exceeded 1, indicating an elevated risk of ILI%. This effect
was most pronounced at shorter lags (0 to 1.3 weeks). The highest risk
occurred at a precipitation level of 10 mm at lag 0 week, with an RR of
1.10 (95% CI: 1.02-1.18). In contrast, precipitation levels exceeding
21 mm were associated with RR values below 1, suggesting a protective
effect against ILI%.

3.3.3 Influence of WAWS on ILI%
Using the median WAWS of 4.34 m/s as the reference and a
maximum lag period of 3 weeks, Figure 9a (3D surface plot) and

Figure 9b (contour plot) suggest a nonlinear “N”-shaped
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FIGURE 2

Distribution of influenza-like case incidence by age group in Quanzhou City, 2016-2024.
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FIGURE 3
Seasonal index trends.
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Week number
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exposure-response association between WAWS and the RR of ILI%.
This “N-shaped” pattern indicates a non-monotonic relationship
wherein ILI% risk initially increases with rising wind speed,
subsequently decreases within a moderate range, and then increases
again at higher wind speeds—forming a trajectory reminiscent of the
letter “N” across exposure levels. Figure 10 further illustrates the lag
patterns of WAWS over 0-3 weeks. At low wind speeds (< 3 m/s) and
high wind speeds (> 4.5 m/s), the point estimates of RR were generally
above 1, though most 95% confidence intervals included the null value
(RR = 1). For instance, at a wind speed of 1.6 m/s and a lag of 3 weeks,
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the RR was 1.12 (95% CI, 0.87, 1.43). These results indicate suggestive
trends rather than statistically significant increases in risk. A delayed
pattern was observed at low wind speeds, with RR point estimates
remaining above 1 across lag 1 to 3 weeks. At high wind speeds, the
point estimates of RR rose more steeply with increasing wind speed,
but again, confidence intervals frequently included (Figure 10). Thus,
while the model indicates a potential nonlinear and delayed
association, the overall evidence of association should be interpreted
with caution due to the lack of statistical significance across most
exposure levels and lags.
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FIGURE 4
Heat map of correlation analysis. Statistically significant correlations are marked with asterisks (*o < 0.05, **p < 0.01, ***p < 0.001), as indicated in the
footnote. Non-significant correlations (p > 0.05) are left unmarked.

TABLE 1 Descriptive statistics of meteorological factors.

Meteorological Factors Range Minimum Maximum Average
WAT 23.99 7.07 31.06 21.68
MaxT 28.70 10.50 39.20 28.95
MinT 27.70 0.10 27.80 16.79
WABP 37.39 982.54 1019.93 999.28
WARH 45.83 50.00 95.83 75.11
MinRH 69.00 12.00 81.00 4439
WAP 38.27 0.00 38.27 3.24
WAWS 8.02 1.47 9.49 435

3.3.4 Sensitivity analysis

To assess the robustness of our results, we conducted sensitivity
analyses using different model specifications for the DLNM, including
variations in the maximum lag period (2-4 weeks), degrees of freedom
for exposure-response and lag-response functions (2-4 df), and the
temporal control spline (5-8 df per year). As shown in Appendix 1,
the estimated associations between meteorological factors and ILI%
remained consistent across all sensitivity models. The maximum RRs
for WAP ranged from 1.01 to 1.38, which overlapped with the main
model estimate (RR = 1.10, 95% CI: 1.02-1.18). Similarly, results for
WABP (RR range: 1.03-1.19) and WAWS (RR range: 1.10-1.46)

Frontiers in Public Health

showed comparable effect sizes and direction across specifications.
The full results of the sensitivity analysis are presented in Appendix 1.

3.4 Forecasting results: univariate SARIMA
vs. multivariate ARIMAX models

3.4.1 Univariate SARIMA models

The time-series data from 2016 to 2023 were used as the training
set to model influenza dynamics. Initial unit root testing (ADF)
indicated stationarity in the ILI% series (p = 0.047); however, given
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FIGURE 6
Non-linear and delayed associations of WABP with ILI% risk over a lag period of 0—3 weeks.
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FIGURE 7
(a) 3D graph of WAP-lag-ILI% association; (b) contour graph of WAP-lag-ILI% association.

the marginal significance near the critical threshold, a KPSS test was  decay pattern, characteristic of non-stationary data, necessitating first-
further conducted, confirming non-stationarity (p <0.05). Visual = order differencing. Post-differencing, the ILI% series achieved
inspection of autocorrelation function (ACF) plots revealed a slow  stationarity (p < 0.05), with the ARIMA model parameter d = 1.
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FIGURE 10
Non-linear and delayed associations of WAWS with ILI% risk over a lag period of 0—3 weeks.

Strong seasonality was identified, marked by a 52-week cycle
corresponding to annual influenza patterns. Autocorrelation (ACF)
and partial autocorrelation (PACF) plots (Figure 11) indicated
potential non-seasonal and seasonal autoregressive (p,P) and moving
average (¢,Q) orders of 1 or 2. Automated model selection via the auto.
arima function in R, optimized by AIC and BIC, identified the
seasonal ARIMA(1,1,1)(1,1,1)s, model as the optimal baseline
configuration, with AIC = 747.86 and BIC = 767.33. The adequacy of
this model was assessed by examining the residuals for autocorrelation
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using the Ljung-Box test. The results indicated no significant
autocorrelation (y* = 23.94, p = 0.245), supporting that the residuals
approximate white noise and that the model adequately captured the
temporal structure of the data. The model demonstrated a good
in-sample fit on the training data, with an RMSE of 0.599, a Mean
Absolute Error (MAE) of 0.345, and a Mean Absolute Percentage
Error (MAPE) of 18.67%. However, when evaluated on the out-of-
sample test set (2024 data), the model’s predictive performance was
lower, yielding an RMSE of 1.03, an MAE of 0.80, and a MAPE of
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ACF and PACF plots of the differenced ILI% series in the training set (Quanzhou City, January 2016 to December 2023). (a) ACF; (b) PACF.

32.33%. These results indicate that while the model provided a
reasonably accurate fit to the historical data, its generalizability to new
data is limited, highlighting the potential need for incorporating
exogenous variables to improve forecast accuracy.

3.4.2 Multivariate ARIMAX modeling

CCEF analysis was conducted on the training set (2016-2023) to
identify optimal lag orders for WABP, WAP, and WAWS in relation to
ILI%, with a maximum lag constraint of 3 weeks. Results indicated
distinct lag patterns: WABP exhibited immediate effects (lag 0), WAP
showed a delayed effect (lag 2 weeks), and WAWS demonstrated an
immediate effect (lag 0).

The baseline seasonal ARIMA(1,1,1)(1,1,1)s, model, constructed
without meteorological variables using the training set, achieved a
training AIC of 747.86 and BIC of 767.33. When evaluated on the
strictly held-out test set (2024 data), it yielded an RMSE of 1.03, an
MAE of 0.80, and a MAPE of 32.33% (Table 2).

These lag-optimized meteorological factors—identified exclusively
from the training set—were subsequently incorporated as exogenous
variables into the baseline model, either individually or in
combination, generating seven candidate ARIMAX models. The
forecasting performance of all candidate models is summarized in
Table 2. Notably, the inclusion of exogenous variables did not
uniformly enhance model performance. Four of the seven candidate
models exhibited increased RMSE and MAE values compared to the
baseline, highlighting that meteorological covariates may introduce
noise unless judiciously selected and lag-optimized. For instance, the
combined incorporation of WABP and WAWS at their respective
optimal lags resulted in a 3.9% increase in RMSE relative to
the baseline.

However, the model incorporating solely WAP at a 2-week lag
(WAP(lag2)) emerged as an exception. When evaluated on the
independent 2024 test set, this model achieved an RMSE of 1.00
and an MAE of 0.79, corresponding to a modest but consistent
reduction in error metrics (2.9% in RMSE and 1.3% in MAE)
compared to the baseline. It also attained the lowest MAPE
(31.94%) among all configurations evaluated. The divergent
performance across model configurations underscores the critical
importance of variable-specific and lag-specific selection when
integrating meteorological factors into forecasting models, and
confirms that no information from the test set was used in model
training or variable lag selection.
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The WAP(lag2) model demonstrated satisfactory forecast
accuracy on the 2024 test data, with predicted ILI% values largely
within the 95% confidence intervals and the forecast trend closely
capturing the overall temporal dynamics of the observed data
(Figure 12). The corresponding numerical values are tabulated in
Appendix 2.

4 Discussion

The influenza-like illness percentage (ILI%) in Quanzhou City
exhibited distinct temporal variations between 2016 and 2024,
characterized by an initial significant decline from 2016 to 2020
followed by a rebound through 2024. This pattern likely reflects the
substantial impact of non-pharmaceutical interventions (NPIs)
implemented during the COVID-19 pandemic. Measures such as
mask-wearing and social distancing not only suppressed SARS-CoV-2
transmission but also reduced influenza spread. Subsequent relaxation
of NPIs, along with resumed social activities and changes in public
health policies, probably facilitated the resurgence of influenza virus
transmission (20). Age-specific incidence was highest among children
under 5 years, followed by those aged 5-15 years, likely due to
immunological naiveté, high contact rates in daycare and school
settings, and group susceptibility. A clear seasonal pattern emerged,
with a primary peak in winter (December-February) and a secondary
peak in summer (May-July). Summer outbreaks may correlate with
holiday cycles (e.g., May Day Golden Week and summer vacations),
which intensify crowd gatherings and spatial proximity, enhancing
transmission risks. Winter peaks, conversely, align with increased viral
stability at low temperatures (21) and cold-induced suppression of
respiratory immunity, compromising nasal mucosal barrier function
(22). Additionally, indoor congregation during colder months further
amplifies transmission opportunities.

Spearman correlation and distributed lag non-linear modeling
(DLNM) identified significant associations between ILI% and several
meteorological factors. Atmospheric pressure showed a U-shaped
relationship with ILI risk: lower pressure (~997 hPa) at shorter lags
(0-0.5 weeks) increased risk, whereas higher pressure (> 1,010 hPa)
was protective at slightly longer lags (0-1.5 weeks). These findings
partially align with Zhu et al. (23), who reported increased risk under
very low pressure (<980 hPa), suggesting a possible threshold effect.
Conversely, the result that high pressure is protective contrasts with a
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TABLE 2 Comparison of ARIMA (1,1,1)(1,1,1)5, models with and without meteorological factors.

BIC

Test_
RMSE

Test_
MAE

Test_
MAPE

RMSE
improvement

MAE
improvement

Baseline ARIMA (no predictors) 747.86 767.33 1.03 0.8 32.33 0% 0%
ARIMA + WABP(lag0) 737.6 760.93 1.06 0.83 33.36 —2.9% -3.7%
ARIMA + WAP(lag2) 739.35 762.68 1.00 0.79 31.94 2.9% 1.3%
ARIMA + WAWS(lag0) 743.37 766.7 1.03 0.8 32.12 0.0% 0.0%
ARIMA + WABP(lag0) + WAP(lag2) 735.45 762.67 1.04 0.82 33.23 —1.0% -2.5%
ARIMA + WABP(lag0) + WAWS(lag0) 737.97 765.2 1.07 0.83 33.41 —-3.9% -3.7%
ARIMA + WAP(lag2) + WAWS(lag0) 739.61 766.83 1.01 0.79 32.17 1.9% 1.3%
ARIMA +

WABP(lag0) + WAP(lag2) + WAWS(lag0) 735.94 767.05 1.05 0.82 33.34 —-1.9% -2.5%

The best performing model is ARIMA + WAP(lag2), which improves RMSE by 2.9% and MAE by 1.3% compared to the baseline model.

— Actual - -

O.

Fitted = Forecast

Training Period

95% Confidence Interval

2016 2017 2018 2019

FIGURE 12
Forecast based on ARIMA(1,1,1)(1,1,1)s, + WAP(lag2) model fit.

2020

2021 2022 2023 2024

Year

previous domestic report (24) that indicated elevated risk. These
discrepancies may be attributable to regional climatic differences or
variations in modeling approaches. Moderate weekly precipitation
(4-16 mm) was associated with elevated influenza incidence, which
aligns with previous reports (25). This association can be explained by
a combination of behavioral and physiological pathways. First, rainfall
encourages indoor gathering, especially in crowded or inadequately
ventilated settings, thereby facilitating close-contact transmission of
respiratory viruses (26). The 2-week lag observed between
precipitation events and the ILI% peak further suggests the
contribution of physiological processes in addition to behavioral
factors. Specifically, rainy conditions are often accompanied by
diminished solar radiation, which can reduce cutaneous vitamin D
synthesis. Vitamin D deficiency—common during winter—plays an
important immunomodulatory role; its active form, 1,25(OH),D,
enhances expression of antimicrobial peptides in respiratory epithelial
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cells and helps regulate inflammatory responses, thus strengthening
lung defense against infection (27). The two-week interval corresponds
to the period required for reduced sunlight to lower vitamin D levels,
compromise immune function, and ultimately manifest as increased
influenza activity at the population level. Notably, precipitation
exceeding 21 mm was associated with a protective effect (RR < 1).
Although this threshold is slightly below the national standard
definition of heavy precipitation (>25mm), it likely reflects a
comparable cleansing effect on airborne viral particles through
rainfall-induced removal of suspended particulate matter (28, 29).
Similarly, weekly mean wind speed demonstrated a suggestive
N-shaped exposure-lag-response association with ILI% risk. Model
estimates indicated elevated RR values at both low (<3 m/s) and high
(>4.5 m/s) wind speeds across certain lag periods, although these
associations were not statistically significant, as most 95% confidence
intervals included the null value. This pattern suggests a complex,
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non-monotonic relationship that merits cautious interpretation. A
study by Qi L et al. (30) also reported that low wind speeds may
increase influenza risk, potentially due to reduced air circulation
leading to poor dispersion of viral particles and increased
opportunities for transmission in poorly ventilated indoor settings
where people tend to gather. On the other hand, high wind speeds
were also associated with elevated RR in our model, a finding
consistent with research by Zhou Yanli et al. (31), which proposed that
strong winds may hinder the settling of virus-containing particles and
facilitate their wider spatial dissemination, potentially expanding the
population at risk.

In this study, weekly ILI% data from January 2016 to December
2023 were used as the training set, while data from January to
December 2024 served as the test set. The optimal model was
identified as the seasonal ARIMA(1,1,1)(1,1,1)5,. While ARIMA
models demonstrate utility in influenza prediction by leveraging
historical incidence trends, their predictive efficacy exhibits significant
regional variability. This limitation stems from the model’s inherent
focus on time-series characteristics of incidence data, excluding
external moderating variables such as environmental or
socioeconomic factors. To address this, researchers have increasingly
integrated meteorological parameters into influenza forecasting
frameworks, with studies confirming the superior performance of
ARIMAX models over traditional ARIMA approaches (32, 33).

We incorporated weekly mean atmospheric pressure, precipitation,
and wind speed as exogenous variables into the baseline ARIMA
model. Crucially, meteorological integration did not uniformly
improve predictions; four of the seven ARIMAX models performed
worse than the baseline, indicating that inappropriate inclusion of such
variables can impair model accuracy. However, the model incorporating
precipitation at a 2-week lag (WAP(lag2)) achieved modest but
consistent improvements, suggesting that selectively and appropriately
lagged meteorological factors may still offer predictive value.

These results emphasize that incorporating meteorological data
requires rigorous lag structure selection and variable-specific
validation. The overall mixed performance underscores that
exogenous variables should be introduced cautiously to avoid
introducing noise rather than signal.

Several limitations should be acknowledged. The analysis did not
differentiate influenza subtypes, which may respond differently to
meteorological conditions (34). The study period also included the
COVID-19 pandemic, which may have distorted typical influenza-
environment relationships due to non-pharmaceutical interventions
(35). Additionally, socioeconomic confounders such as population
mobility and vaccination coverage were not included. Future studies
should thus pursue more comprehensive, multi-factor frameworks
while validating meteorological associations across broader spatial
and temporal contexts.

5 Conclusion

This study delineates the dynamic evolution of influenza-like illness
(ILI%) in Quanzhou City from 2016 to 2024, revealing several major
findings that enhance our understanding of influenza transmission
patterns in a subtropical coastal city. Significant temporal trends were
observed, characterized by a marked decrease in ILI% from 2016 to 2020
(APC = —22.693, p = 0.001), followed by a significant rebound after 2020
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(APC =21.555, p=0.003). This biphasic pattern likely reflects the
profound impact of COVID-19 containment measures and their
subsequent relaxation. Clear epidemiological patterns were identified,
with influenza transmission in Quanzhou exhibiting a consistent
bimodal seasonal distribution featuring a primary peak in winter
(December-February) and a secondary peak in summer (May-July).
Higher incidence rates were consistently observed among children aged
0-15 years, particularly in nursery and school settings, highlighting this
demographic as particularly vulnerable. From a modeling perspective,
key meteorological factors—including atmospheric pressure,
precipitation, and wind speed—showed significant nonlinear and lagged
associations with ILI risk. Most notably, the incorporation of precipitation
as an exogenous variable into an ARIMAX model significantly improved
forecasting performance over conventional time-series models,
underscoring the value of integrating environmental covariates into

public health forecasting systems for respiratory infectious diseases.
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