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Background: Influenza remains a significant public health challenge, 
characterized by substantial seasonal variation and considerable socioeconomic 
burden. Although meteorological factors are known to influence influenza 
transmission, their specific effects within subtropical monsoon climates, such 
as that of Quanzhou, remain inadequately characterized.
Methods: We analyzed weekly influenza-like illness (ILI%) data from sentinel 
hospitals in Quanzhou between 2016 and 2024. Descriptive statistics, distributed 
lag nonlinear models (DLNM), cross-correlation function (CCF) analysis, 
and ARIMAX modeling were employed to examine the lagged and nonlinear 
associations between meteorological variables and ILI%.
Results: The overall ILI% during the surveillance period was 2.32%, with 
significant temporal trends: a pronounced decline from 2016 to 2020 
(APC = −22.693, p = 0.001) was followed by a significant increase from 2020 to 
2024 (APC = 21.555, p = 0.003). Children under 15 years of age were the most 
affected demographic. A consistent bimodal seasonal pattern was observed, with 
a primary peak in winter (weeks 50–14) and a secondary peak in summer (weeks 
20–29). DLNM analysis indicated that low atmospheric pressure (<997 hPa) at 
lag 0–0.5 weeks was associated with increased ILI risk, while higher pressure 
(≥1,010 hPa) had a protective effect (relative risk [RR] = 0.85, 95% CI: 0.73–
0.99). Precipitation of 4–16 mm elevated ILI risk (RR = 1.10, 95% CI: 1.02–1.18), 
whereas precipitation >21 mm was protective. Wind speed demonstrated an 
N-shaped association with ILI%, though this was not statistically significant. 
The optimal forecasting model incorporated precipitation at a 2-week lag as 
an exogenous variable (ARIMA(1,1,1)(1,1,1)52 + WAP(lag2)) and yielded the highest 
predictive accuracy for 2024 ILI%, improving RMSE by 2.9% and MAE by 1.3% 
compared to the baseline model.
Conclusion: Incorporating meteorological factors significantly improves 
the accuracy of influenza forecasting models. These findings support the 
development of climate-informed early warning systems and targeted public 
health interventions in subtropical regions.
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1 Introduction

Influenza is an acute viral respiratory infection that affects 
populations across all age groups worldwide and causes substantial 
mortality during pandemics, seasonal epidemics, and sporadic 
outbreaks. It is estimated that influenza viruses infect approximately 
10% of the global population each year, resulting in around 500,000 
annual deaths. These figures underscore the considerable public health 
burden imposed by influenza on a global scale (1). In temperate 
climates, seasonal epidemics occur mainly during winter, while in 
tropical regions, influenza may occur throughout the year, causing 
outbreaks more irregularly (2). Recent epidemiological anomalies—
including the intensification of summer influenza activity in 
subtropical zones and the global disappearance of the B/Yamagata 
lineage-present fresh challenges for health authorities and influenza 
surveillance efforts (3). This emerging trend presents fresh challenges 
for health authorities and influenza surveillance efforts. A growing 
body of evidence suggests meteorological factors significantly 
modulate influenza dynamics; however, their effects exhibit striking 
regional heterogeneity (4–6). For instance, low temperatures and 
humidity in temperate zones may enhance viral stability, whereas 
monsoon-driven climate systems-characterized by abrupt humidity 
shifts and temperature fluctuations in subtropical regions like 
Quanzhou-could distinctly alter transmission pathways.

Quanzhou, a coastal prefecture-level city located in southeastern 
Fujian Province, China, features a typical subtropical monsoon 
climate characterized by mild winters, hot and humid summers, and 
abundant annual precipitation. The region experiences distinct 
seasonal variations in wind patterns, humidity, and temperature, 
heavily influenced by the western Pacific Ocean and the East Asian 
monsoon system. Despite these pronounced climatic characteristics, 
systematic investigations into climate-influenza interactions within 
subtropical monsoon climates remain scarce. This gap is particularly 
critical in regions like Quanzhou, where humid summers and mild 
winters may drive unique epidemic behaviors, yet predictive models 
tailored to such environments are lacking.

This study employs a dual analytical framework to advance 
influenza forecasting in subtropical monsoon climates. First, 
we quantify the non-linear and lagged effects of meteorological factors 
on Influenza-Like Illness Percentage (ILI%) using Distributed Lag 
Non-linear Models (DLNM). Second, by integrating Cross-
Correlation Function (CCF) analysis to identify optimal lag orders, 
we  construct an Autoregressive Integrated Moving Average with 
Exogenous Variables (ARIMAX) model that synergizes climatic 
drivers with historical ILI% data. This approach not only captures 
complex climate-epidemiology interactions but also generates 
actionable predictions for public health planning.

2 Materials and methods

2.1 Study area and data sources

Quanzhou, situated in the southeast coastal area of China, covers 
a total area of 11,295.57 square kilometers. By the end of 2024, the city 
had a permanent resident population of 8.91 million. The region 
experiences a subtropical monsoon climate, characterized by humid 
summers, mild winters, and significant seasonal precipitation 
variability. Weekly data on Influenza-Like Illness (ILI) counts and 

ILI% from January 2016 to December 2024 were obtained from the 
China Disease Prevention and Control Information System.

The meteorological data utilized in this study encompassed eight 
indicators sourced from the China Meteorological Data Network, 
comprising weekly average temperature (WAT,°C), maximum 
temperature (MaxT,°C), minimum temperature (MinT,°C), weekly 
average barometric pressure (WABP, hPa), weekly average relative 
humidity (WARH, %), minimum relative humidity (MinRH, %), 
weekly average precipitation (WAP, mm), and weekly average wind 
speed (WAWS, m/s). The raw values of these meteorological variables 
were used directly in all subsequent analyses without normalization 
or standardization, to preserve the interpretability of results in their 
original physical units.

2.2 Statistical analysis

2.2.1 Seasonal variation characterization
A seasonal index was calculated using Microsoft Excel 2017 to 

quantify influenza seasonality, defined as (Equation 1):

	

( )
( )( )

 
 =  
 
 

Average ILI%for a
Seasonal Index Specific Week /

2016 –2024
Overall Average Weekly ILI% 2016 –2024

	 (1)

Weeks with indices >1 were classified as high-incidence periods, 
while values near or below 1 indicated non-significant seasonality (7).

2.2.2 Trend analysis
Temporal trends in ILI% were analyzed using Joinpoint 5.4.0. The 

annual percentage change (APC) quantified segment-specific trends, 
while the average annual percentage change (AAPC) assessed overall 
trends. APC > 0, the incidence of the disease is increasing in that time 
period; conversely, if APC < 0, the incidence is decreasing in that time 
period. APC = AAPC indicates a monotonically increasing or 
monotonically decreasing trend (8).

2.2.3 Data processing and correlation analysis
Descriptive statistics for ILI, ILI%, and meteorological variables 

were computed using R software (version 4.4.3, R Foundation for 
Statistical Computing) with the following packages: dplyr for data 
manipulation and forecast for time-series decomposition. Normality 
of ILI% and meteorological variables was assessed using the 
Shapiro–Wilk test (shapiro.test function from the stats package). 
Both ILI% and meteorological data showed non-normal 
distributions (all p < 0.05), supporting the use of nonparametric 
Spearman’s rank correlation analysis (implemented via cor.test with 
method = “spearman”). All statistical tests were two-tailed, and a 
significance threshold of p < 0.05 was applied. Correlations between 
ILI% and eight meteorological factors were examined. To mitigate 
multicollinearity, variables with Spearman’s correlation coefficients 
> 0.7 were excluded from concurrent inclusion in subsequent 
multivariate models (9).

2.2.4 Distributed lag nonlinear modeling
The influence of meteorological factors on ILI% has a lagged effect 

(10). The DLNM can take into account the nonlinear 
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exposure-response relationship and the lag effect of exposure factors 
on outcomes simultaneously (11, 12). It has been widely used to 
evaluate the expose-lag-effectcorrelations between meteorological 
factors and infectious diseases, such as dengue, mumps, and acute 
respiratory infections (13–15).

We modeled the association between meteorological variables and 
ILI% using a quasi-binomial regression within the DLNM framework, 
implemented with the dlnm package in R. The model specification 
was as follows (Equation 2):

	 ( ) ( ) ( ) ( ) ( )β= + + + + =0 4 7 8 , 63logit p CB X CB X CB X ns Time df 	(2)

p represents the proportion of ILI cases among the total 
outpatient consultations for a given week. ( )4CB X , ( )7CB X , and 

( )8CB X  denote the cross-basis functions for WABP, WAP, and 
WAWS, respectively. These functions simultaneously capture the 
potentially nonlinear exposure-response associations and the 
delayed effects (lag-response) of each meteorological variable. Each 
cross-basis was constructed using natural cubic splines with 3 
degrees of freedom for both the exposure-response and lag-response 
dimensions. A maximum lag of 3 weeks was specified a priori to 
capture the short-term delayed effects of weather on ILI 
transmission. The choice of this lag period is epidemiologically 
justified, as it accommodates the sequential timeline from 
environmental exposure (e.g., to weather conditions) to the 
development of symptoms (1–4 days incubation period), 
subsequent care-seeking behavior, and final reporting as an ILI case. 
Furthermore, a three-week window is sufficient to capture 
secondary transmission cycles within households or communities 
(16, 17). The term ( )=, 63ns Time df  represents a natural cubic spline 
of time with 63 degrees of freedom. This term was included to 
control for unmeasured temporal confounders, including long-term 
trends, seasonality, and other time-varying factors not explicitly 
measured in the model. The degrees of freedom were set at 7 per 
year for the 9-year study period (2016–2024), providing a flexible 
adjustment for the underlying temporal structure of the data. β0 is 
the model intercept. The model was fitted using maximum 
likelihood estimation. The results are presented as relative risks 
(RRs), derived by comparing the predicted risk at specific exposure 
levels against the reference value (the median value of each 
meteorological variable).

Model parameters, including the degrees of freedom for splines 
and the lag structures, were optimized based on the Akaike 
Information Criterion (AIC). Meteorological factors that showed 
significant correlations (p < 0.05) in the preliminary correlation 
analyses were incorporated into the DLNM to quantify their 
lag-specific effects on ILI%.

2.2.5 SARIMA and ARIMAX modeling
The Autoregressive Integrated Moving Average (ARIMA) 

model, first proposed in 1976 (18), is now widely used in the 
prediction and early warning analysis of infectious diseases. For 
time series data exhibiting periodic patterns, the Seasonal 
Autoregressive Integrated Moving Average Model (SARIMA) 
combines seasonal differencing with the standard ARIMA model, 
making it well-suited for modeling data with recurring 
characteristics. The SARIMA model is abbreviated as ARIMA(p,d,q)

(P,D,Q)s, where s denotes the seasonal period, and p(P), d(D), and 
q(Q) stand for the unseasonal (seasonal) autoregressive, difference, 
and moving average orders, respectively. The determination of these 
parameters, (p,d,q) and (P,D,Q), is achieved through an analysis of 
the Partial Autocorrelation Function (PACF) and the 
Autocorrelation Function (ACF). To enhance predictive accuracy, 
the ARIMAX model extends the SARIMA framework by 
incorporating exogenous variables—such as meteorological 
factors—that influence the target series (19).

All analyses were performed using R 4.4.3 with packages forecast 
(for auto.arima and model fitting), tseries (for stationarity tests), and 
dlnm (where applicable). All statistical tests were two-tailed, with 
significance set at p < 0.05.

The weekly ILI% data from January 2016 to December 2023 was 
utilized as the training set for model development, while data from 
January to December 2024 was reserved as a test set for external 
validation of model generalizability. The modeling procedure 
consisted of three main phases:

	 1	 Stationarity Assessment and Differencing: The stationarity of 
the ILI% time series was rigorously assessed using the 
Augmented Dickey-Fuller (ADF) test and a Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test. The appropriate 
non-seasonal differencing order (d) was determined through 
the ndiffs() function in R, which identifies the minimum 
number of differences required to achieve stationarity. Seasonal 
differencing order (D) was determined by examining the ACF 
plot for persistent seasonal patterns at lag 52, corresponding to 
the yearly cycle.

	 2	 The orders of the autoregressive (p), moving average (q), and 
their seasonal counterparts (P, Q) were identified through a 
complementary approach that combined graphical analysis and 
automated algorithm selection. Initial guidance for appropriate 
orders was obtained through visual inspection of the ACF and 
PACF plots of the differenced series. This graphical analysis 
was then validated and refined using the auto.arima() function 
in R, which was employed with comprehensive search settings 
(stepwise = FALSE, approximation = FALSE) to systematically 
compare a wide range of candidate models. The final model 
selection between these candidates was based on the 
minimization of the AIC and the Bayesian Information 
Criterion (BIC).

	 3	 Following parameter estimation, model adequacy was 
thoroughly evaluated through residual diagnostics and error 
metrics, wherein the Ljung-Box test was applied to assess 
whether model residuals approximated white noise (i.e., 
exhibited no significant autocorrelation), while model fit was 
quantified using the Root Mean Square Error (RMSE) on the 
training data.

After establishing an optimal univariate SARIMA model, 
meteorological factors significantly associated with ILI% were 
identified and incorporated as external regressors into a multivariate 
ARIMAX framework. The CCF analysis was applied to determine 
optimal lag orders for these predictors. The final ARIMAX model’s 
performance was evaluated against the baseline SARIMA model using 
both goodness-of-fit criteria (AIC/BIC) and forecast accuracy metrics 
on the test set to demonstrate any improvement in predictive capability.
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3 Results

3.1 A description of ILI and ILI% 
characteristics

From 2016 to 2024, sentinel hospitals in Quanzhou City reported 
a total of 12,991,585 outpatient and emergency visits, including 
301,239 ILI cases, yielding an overall ILI% of 2.32%. Notably, ILI% 
exhibited marked temporal variability: the highest rate (3.46%) 
occurred in 2016, while the lowest (1.24%) was recorded in 2020. 
Joinpoint regression analysis revealed distinct trend phases (Figure 1), 
which showed a decreasing trend in ILI% from 2016 to 2020 
(APC = −22.693, p = 0.001) and an increasing trend from 2020 to 
2024 (APC = 21.555, p = 0.003).

3.1.1 Population distribution
Surveillance data from 2016 to 2024 revealed distinct age-specific 

patterns in ILI incidence across Quanzhou City. Children under 
5 years of age exhibited the highest ILI incidence rate, followed by 
those aged 5 to <15 years (Figure 2).

3.1.2 Time distribution
Analysis of the seasonal index indicated a consistent annual 

bimodal seasonality in ILI% (Figure 3), featuring two distinct peaks 
each year. A primary winter peak occurred from week 50 to week 14 
(December to February of the following year), which was characterized 
by markedly higher intensity and prolonged duration. A secondary 
summer peak was observed between weeks 20 and 29 (May to July), 
with moderate magnitude in comparison.

3.2 Impact of meteorological factors on 
ILI%

Spearman’s correlation analysis revealed significant associations 
between ILI% and multiple meteorological variables. The correlation 
of the variables in the data was visualized and the heat map obtained 
is shown in Figure 4, which reveals that ILI% shows a statistically 
significant correlation with WAT, MaxT, MinT, WABP, WAP, 
and WAWS.

The negative correlation coefficients between ILI% and 
WAT(r = −0.11), MaxT(r = −0.12), MinT(r = −0.10), and 
WAWS(r = −0.23) suggest that cooler temperatures and lower wind 
speeds may elevate influenza transmission risks in Quanzhou. The 
correlation coefficients between ILI% and WABP, WAP are 0.22 and 
0.14 respectively, indicating that the higher the air pressure or 
precipitation, the higher the likelihood of influenza. The average 
precipitation (WAP) was 3.24 mm, and the average relative humidity 
(WARH) was 75.11% (Table 1), providing a quantitative baseline for 
the local humid subtropical climate that characterizes Quanzhou.

Significant multicollinearity ( r∣∣>0.7) was observed among WAT, 
MaxT, and MinT, as well as between WABP and temperature variables. 
To address collinearity and prioritize predictive relevance, only 
meteorological factors exhibiting the strongest associations with ILI% 
were retained. Consequently, WABP, WAP, and WAWS were selected 
as exogenous variables for the final model.

3.3 Associations between meteorological 
factors and ILI% identified by DLNM

3.3.1 Effect of WABP on ILI%
Using the median WABP (999.91 hPa) as the reference value and 

a maximum lag period of 3 weeks, we assessed the association between 
atmospheric pressure and ILI% risk in Quanzhou by means of 3D 
surface and contour plots (Figures 5a,b). The contour plot revealed a 
nonlinear exposure-response relationship, characterized by an 
elevated risk of ILI% at lower air pressure levels, whereas higher 
pressure exhibited a protective effect. Specifically, as shown in 
Figure  6, at shorter lag periods (0–0.5 weeks), air pressure below 
approximately 997 hPa was associated with an increase in ILI% risk, 
although this association was not statistically significant. For example, 
at 983 hPa and lag 0 week, the relative risk was 1.08 (95% CI, 0.85–
1.36). In contrast, higher air pressure (≥1,010 hPa) during lag periods 
of 0–1.5 weeks showed statistically significant protective effects, with 
the relative risk (RR) values consistently below 1 and 95% confidence 
intervals excluding the null value (e.g., RR = 0.85, 95% CI: 0.73–0.99 
at 1012 hPa and lag 0). These results indicate that the influence of air 
pressure on ILI% risk is dependent on both the pressure magnitude 
and the lag time, with moderate to high air pressure conferring a 
protective benefit.

3.3.2 Effect of WAP on ILI%
Using the median WAP (0.74 mm) as the reference and a 

maximum lag of 3 weeks, DLNM results revealed a significant 
non-linear association between precipitation and ILI% risk 
(Figures 7a,b, 8). When WAP ranged between 4 mm and 16 mm, RR 
consistently exceeded 1, indicating an elevated risk of ILI%. This effect 
was most pronounced at shorter lags (0 to 1.3 weeks). The highest risk 
occurred at a precipitation level of 10 mm at lag 0 week, with an RR of 
1.10 (95% CI: 1.02–1.18). In contrast, precipitation levels exceeding 
21 mm were associated with RR values below 1, suggesting a protective 
effect against ILI%.

3.3.3 Influence of WAWS on ILI%
Using the median WAWS of 4.34 m/s as the reference and a 

maximum lag period of 3 weeks, Figure 9a (3D surface plot) and 
Figure  9b (contour plot) suggest a nonlinear “N”-shaped 

FIGURE 1

Sentinel site monitoring in Quanzhou, 2016–2024.
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exposure-response association between WAWS and the RR of ILI%. 
This “N-shaped” pattern indicates a non-monotonic relationship 
wherein ILI% risk initially increases with rising wind speed, 
subsequently decreases within a moderate range, and then increases 
again at higher wind speeds—forming a trajectory reminiscent of the 
letter “N” across exposure levels. Figure 10 further illustrates the lag 
patterns of WAWS over 0–3 weeks. At low wind speeds (< 3 m/s) and 
high wind speeds (> 4.5 m/s), the point estimates of RR were generally 
above 1, though most 95% confidence intervals included the null value 
(RR = 1). For instance, at a wind speed of 1.6 m/s and a lag of 3 weeks, 

the RR was 1.12 (95% CI, 0.87, 1.43). These results indicate suggestive 
trends rather than statistically significant increases in risk. A delayed 
pattern was observed at low wind speeds, with RR point estimates 
remaining above 1 across lag 1 to 3 weeks. At high wind speeds, the 
point estimates of RR rose more steeply with increasing wind speed, 
but again, confidence intervals frequently included (Figure 10). Thus, 
while the model indicates a potential nonlinear and delayed 
association, the overall evidence of association should be interpreted 
with caution due to the lack of statistical significance across most 
exposure levels and lags.

FIGURE 2

Distribution of influenza-like case incidence by age group in Quanzhou City, 2016–2024.

FIGURE 3

Seasonal index trends.
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3.3.4 Sensitivity analysis
To assess the robustness of our results, we conducted sensitivity 

analyses using different model specifications for the DLNM, including 
variations in the maximum lag period (2–4 weeks), degrees of freedom 
for exposure-response and lag-response functions (2–4 df), and the 
temporal control spline (5–8 df per year). As shown in Appendix 1, 
the estimated associations between meteorological factors and ILI% 
remained consistent across all sensitivity models. The maximum RRs 
for WAP ranged from 1.01 to 1.38, which overlapped with the main 
model estimate (RR = 1.10, 95% CI: 1.02–1.18). Similarly, results for 
WABP (RR range: 1.03–1.19) and WAWS (RR range: 1.10–1.46) 

showed comparable effect sizes and direction across specifications. 
The full results of the sensitivity analysis are presented in Appendix 1.

3.4 Forecasting results: univariate SARIMA 
vs. multivariate ARIMAX models

3.4.1 Univariate SARIMA models
The time-series data from 2016 to 2023 were used as the training 

set to model influenza dynamics. Initial unit root testing (ADF) 
indicated stationarity in the ILI% series (p = 0.047); however, given 

FIGURE 4

Heat map of correlation analysis. Statistically significant correlations are marked with asterisks (*p < 0.05, **p < 0.01, ***p < 0.001), as indicated in the 
footnote. Non-significant correlations (p ≥ 0.05) are left unmarked.

TABLE 1  Descriptive statistics of meteorological factors.

Meteorological Factors Range Minimum Maximum Average

WAT 23.99 7.07 31.06 21.68

MaxT 28.70 10.50 39.20 28.95

MinT 27.70 0.10 27.80 16.79

WABP 37.39 982.54 1019.93 999.28

WARH 45.83 50.00 95.83 75.11

MinRH 69.00 12.00 81.00 44.39

WAP 38.27 0.00 38.27 3.24

WAWS 8.02 1.47 9.49 4.35
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the marginal significance near the critical threshold, a KPSS test was 
further conducted, confirming non-stationarity (p < 0.05). Visual 
inspection of autocorrelation function (ACF) plots revealed a slow 

decay pattern, characteristic of non-stationary data, necessitating first-
order differencing. Post-differencing, the ILI% series achieved 
stationarity (p < 0.05), with the ARIMA model parameter d = 1. 

FIGURE 5

(a) 3D graph of WABP-lag-ILI% association; (b) contour graph of WABP-lag-ILI% association.

FIGURE 6

Non-linear and delayed associations of WABP with ILI% risk over a lag period of 0–3 weeks.

FIGURE 7

(a) 3D graph of WAP-lag-ILI% association; (b) contour graph of WAP-lag-ILI% association.
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Strong seasonality was identified, marked by a 52-week cycle 
corresponding to annual influenza patterns. Autocorrelation (ACF) 
and partial autocorrelation (PACF) plots (Figure  11) indicated 
potential non-seasonal and seasonal autoregressive (p,P) and moving 
average (q,Q) orders of 1 or 2. Automated model selection via the auto.
arima function in R, optimized by AIC and BIC, identified the 
seasonal ARIMA(1,1,1)(1,1,1)52 model as the optimal baseline 
configuration, with AIC = 747.86 and BIC = 767.33. The adequacy of 
this model was assessed by examining the residuals for autocorrelation 

using the Ljung-Box test. The results indicated no significant 
autocorrelation (χ2 = 23.94, p = 0.245), supporting that the residuals 
approximate white noise and that the model adequately captured the 
temporal structure of the data. The model demonstrated a good 
in-sample fit on the training data, with an RMSE of 0.599, a Mean 
Absolute Error (MAE) of 0.345, and a Mean Absolute Percentage 
Error (MAPE) of 18.67%. However, when evaluated on the out-of-
sample test set (2024 data), the model’s predictive performance was 
lower, yielding an RMSE of 1.03, an MAE of 0.80, and a MAPE of 

FIGURE 8

Non-linear and delayed associations of WAP with ILI% risk over a lag period of 0–3 weeks.

FIGURE 9

(a) 3D graph of WAWS-lag-ILI% association; (b) contour graph of WAWS-lag-ILI% association.

FIGURE 10

Non-linear and delayed associations of WAWS with ILI% risk over a lag period of 0–3 weeks.
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32.33%. These results indicate that while the model provided a 
reasonably accurate fit to the historical data, its generalizability to new 
data is limited, highlighting the potential need for incorporating 
exogenous variables to improve forecast accuracy.

3.4.2 Multivariate ARIMAX modeling
CCF analysis was conducted on the training set (2016–2023) to 

identify optimal lag orders for WABP, WAP, and WAWS in relation to 
ILI%, with a maximum lag constraint of 3 weeks. Results indicated 
distinct lag patterns: WABP exhibited immediate effects (lag 0), WAP 
showed a delayed effect (lag 2 weeks), and WAWS demonstrated an 
immediate effect (lag 0).

The baseline seasonal ARIMA(1,1,1)(1,1,1)52 model, constructed 
without meteorological variables using the training set, achieved a 
training AIC of 747.86 and BIC of 767.33. When evaluated on the 
strictly held-out test set (2024 data), it yielded an RMSE of 1.03, an 
MAE of 0.80, and a MAPE of 32.33% (Table 2).

These lag-optimized meteorological factors—identified exclusively 
from the training set—were subsequently incorporated as exogenous 
variables into the baseline model, either individually or in 
combination, generating seven candidate ARIMAX models. The 
forecasting performance of all candidate models is summarized in 
Table  2. Notably, the inclusion of exogenous variables did not 
uniformly enhance model performance. Four of the seven candidate 
models exhibited increased RMSE and MAE values compared to the 
baseline, highlighting that meteorological covariates may introduce 
noise unless judiciously selected and lag-optimized. For instance, the 
combined incorporation of WABP and WAWS at their respective 
optimal lags resulted in a 3.9% increase in RMSE relative to 
the baseline.

However, the model incorporating solely WAP at a 2-week lag 
(WAP(lag2)) emerged as an exception. When evaluated on the 
independent 2024 test set, this model achieved an RMSE of 1.00 
and an MAE of 0.79, corresponding to a modest but consistent 
reduction in error metrics (2.9% in RMSE and 1.3% in MAE) 
compared to the baseline. It also attained the lowest MAPE 
(31.94%) among all configurations evaluated. The divergent 
performance across model configurations underscores the critical 
importance of variable-specific and lag-specific selection when 
integrating meteorological factors into forecasting models, and 
confirms that no information from the test set was used in model 
training or variable lag selection.

The WAP(lag2) model demonstrated satisfactory forecast 
accuracy on the 2024 test data, with predicted ILI% values largely 
within the 95% confidence intervals and the forecast trend closely 
capturing the overall temporal dynamics of the observed data 
(Figure  12). The corresponding numerical values are tabulated in 
Appendix 2.

4 Discussion

The influenza-like illness percentage (ILI%) in Quanzhou City 
exhibited distinct temporal variations between 2016 and 2024, 
characterized by an initial significant decline from 2016 to 2020 
followed by a rebound through 2024. This pattern likely reflects the 
substantial impact of non-pharmaceutical interventions (NPIs) 
implemented during the COVID-19 pandemic. Measures such as 
mask-wearing and social distancing not only suppressed SARS-CoV-2 
transmission but also reduced influenza spread. Subsequent relaxation 
of NPIs, along with resumed social activities and changes in public 
health policies, probably facilitated the resurgence of influenza virus 
transmission (20). Age-specific incidence was highest among children 
under 5 years, followed by those aged 5–15 years, likely due to 
immunological naïveté, high contact rates in daycare and school 
settings, and group susceptibility. A clear seasonal pattern emerged, 
with a primary peak in winter (December–February) and a secondary 
peak in summer (May–July). Summer outbreaks may correlate with 
holiday cycles (e.g., May Day Golden Week and summer vacations), 
which intensify crowd gatherings and spatial proximity, enhancing 
transmission risks. Winter peaks, conversely, align with increased viral 
stability at low temperatures (21) and cold-induced suppression of 
respiratory immunity, compromising nasal mucosal barrier function 
(22). Additionally, indoor congregation during colder months further 
amplifies transmission opportunities.

Spearman correlation and distributed lag non-linear modeling 
(DLNM) identified significant associations between ILI% and several 
meteorological factors. Atmospheric pressure showed a U-shaped 
relationship with ILI risk: lower pressure (∼997 hPa) at shorter lags 
(0–0.5 weeks) increased risk, whereas higher pressure (≥ 1,010 hPa) 
was protective at slightly longer lags (0–1.5 weeks). These findings 
partially align with Zhu et al. (23), who reported increased risk under 
very low pressure (<980 hPa), suggesting a possible threshold effect. 
Conversely, the result that high pressure is protective contrasts with a 

FIGURE 11

ACF and PACF plots of the differenced ILI% series in the training set (Quanzhou City, January 2016 to December 2023). (a) ACF; (b) PACF.
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previous domestic report (24) that indicated elevated risk. These 
discrepancies may be attributable to regional climatic differences or 
variations in modeling approaches. Moderate weekly precipitation 
(4–16 mm) was associated with elevated influenza incidence, which 
aligns with previous reports (25). This association can be explained by 
a combination of behavioral and physiological pathways. First, rainfall 
encourages indoor gathering, especially in crowded or inadequately 
ventilated settings, thereby facilitating close-contact transmission of 
respiratory viruses (26). The 2-week lag observed between 
precipitation events and the ILI% peak further suggests the 
contribution of physiological processes in addition to behavioral 
factors. Specifically, rainy conditions are often accompanied by 
diminished solar radiation, which can reduce cutaneous vitamin D 
synthesis. Vitamin D deficiency—common during winter—plays an 
important immunomodulatory role; its active form, 1,25(OH)₂D, 
enhances expression of antimicrobial peptides in respiratory epithelial 

cells and helps regulate inflammatory responses, thus strengthening 
lung defense against infection (27). The two-week interval corresponds 
to the period required for reduced sunlight to lower vitamin D levels, 
compromise immune function, and ultimately manifest as increased 
influenza activity at the population level. Notably, precipitation 
exceeding 21 mm was associated with a protective effect (RR < 1). 
Although this threshold is slightly below the national standard 
definition of heavy precipitation (≥25 mm), it likely reflects a 
comparable cleansing effect on airborne viral particles through 
rainfall-induced removal of suspended particulate matter (28, 29).

Similarly, weekly mean wind speed demonstrated a suggestive 
N-shaped exposure-lag-response association with ILI% risk. Model 
estimates indicated elevated RR values at both low (<3 m/s) and high 
(>4.5 m/s) wind speeds across certain lag periods, although these 
associations were not statistically significant, as most 95% confidence 
intervals included the null value. This pattern suggests a complex, 

TABLE 2  Comparison of ARIMA (1,1,1)(1,1,1)52 models with and without meteorological factors.

Model AIC BIC Test_
RMSE

Test_
MAE

Test_
MAPE

RMSE 
improvement

MAE 
improvement

Baseline ARIMA (no predictors) 747.86 767.33 1.03 0.8 32.33 0% 0%

ARIMA + WABP(lag0) 737.6 760.93 1.06 0.83 33.36 −2.9% −3.7%

ARIMA + WAP(lag2) 739.35 762.68 1.00 0.79 31.94 2.9% 1.3%

ARIMA + WAWS(lag0) 743.37 766.7 1.03 0.8 32.12 0.0% 0.0%

ARIMA + WABP(lag0) + WAP(lag2) 735.45 762.67 1.04 0.82 33.23 −1.0% −2.5%

ARIMA + WABP(lag0) + WAWS(lag0) 737.97 765.2 1.07 0.83 33.41 −3.9% −3.7%

ARIMA + WAP(lag2) + WAWS(lag0) 739.61 766.83 1.01 0.79 32.17 1.9% 1.3%

ARIMA + 

WABP(lag0) + WAP(lag2) + WAWS(lag0)
735.94 767.05 1.05 0.82 33.34 −1.9% −2.5%

The best performing model is ARIMA + WAP(lag2), which improves RMSE by 2.9% and MAE by 1.3% compared to the baseline model.

FIGURE 12

Forecast based on ARIMA(1,1,1)(1,1,1)52 + WAP(lag2) model fit.
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non-monotonic relationship that merits cautious interpretation. A 
study by Qi L et  al. (30) also reported that low wind speeds may 
increase influenza risk, potentially due to reduced air circulation 
leading to poor dispersion of viral particles and increased 
opportunities for transmission in poorly ventilated indoor settings 
where people tend to gather. On the other hand, high wind speeds 
were also associated with elevated RR in our model, a finding 
consistent with research by Zhou Yanli et al. (31), which proposed that 
strong winds may hinder the settling of virus-containing particles and 
facilitate their wider spatial dissemination, potentially expanding the 
population at risk.

In this study, weekly ILI% data from January 2016 to December 
2023 were used as the training set, while data from January to 
December 2024 served as the test set. The optimal model was 
identified as the seasonal ARIMA(1,1,1)(1,1,1)52. While ARIMA 
models demonstrate utility in influenza prediction by leveraging 
historical incidence trends, their predictive efficacy exhibits significant 
regional variability. This limitation stems from the model’s inherent 
focus on time-series characteristics of incidence data, excluding 
external moderating variables such as environmental or 
socioeconomic factors. To address this, researchers have increasingly 
integrated meteorological parameters into influenza forecasting 
frameworks, with studies confirming the superior performance of 
ARIMAX models over traditional ARIMA approaches (32, 33).

We incorporated weekly mean atmospheric pressure, precipitation, 
and wind speed as exogenous variables into the baseline ARIMA 
model. Crucially, meteorological integration did not uniformly 
improve predictions; four of the seven ARIMAX models performed 
worse than the baseline, indicating that inappropriate inclusion of such 
variables can impair model accuracy. However, the model incorporating 
precipitation at a 2-week lag (WAP(lag2)) achieved modest but 
consistent improvements, suggesting that selectively and appropriately 
lagged meteorological factors may still offer predictive value.

These results emphasize that incorporating meteorological data 
requires rigorous lag structure selection and variable-specific 
validation. The overall mixed performance underscores that 
exogenous variables should be  introduced cautiously to avoid 
introducing noise rather than signal.

Several limitations should be acknowledged. The analysis did not 
differentiate influenza subtypes, which may respond differently to 
meteorological conditions (34). The study period also included the 
COVID-19 pandemic, which may have distorted typical influenza-
environment relationships due to non-pharmaceutical interventions 
(35). Additionally, socioeconomic confounders such as population 
mobility and vaccination coverage were not included. Future studies 
should thus pursue more comprehensive, multi-factor frameworks 
while validating meteorological associations across broader spatial 
and temporal contexts.

5 Conclusion

This study delineates the dynamic evolution of influenza-like illness 
(ILI%) in Quanzhou City from 2016 to 2024, revealing several major 
findings that enhance our understanding of influenza transmission 
patterns in a subtropical coastal city. Significant temporal trends were 
observed, characterized by a marked decrease in ILI% from 2016 to 2020 
(APC = −22.693, p = 0.001), followed by a significant rebound after 2020 

(APC = 21.555, p = 0.003). This biphasic pattern likely reflects the 
profound impact of COVID-19 containment measures and their 
subsequent relaxation. Clear epidemiological patterns were identified, 
with influenza transmission in Quanzhou exhibiting a consistent 
bimodal seasonal distribution featuring a primary peak in winter 
(December–February) and a secondary peak in summer (May–July). 
Higher incidence rates were consistently observed among children aged 
0–15 years, particularly in nursery and school settings, highlighting this 
demographic as particularly vulnerable. From a modeling perspective, 
key meteorological factors—including atmospheric pressure, 
precipitation, and wind speed—showed significant nonlinear and lagged 
associations with ILI risk. Most notably, the incorporation of precipitation 
as an exogenous variable into an ARIMAX model significantly improved 
forecasting performance over conventional time-series models, 
underscoring the value of integrating environmental covariates into 
public health forecasting systems for respiratory infectious diseases.
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