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cancer: a retrospective cohort 
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Background and objective: Given the rising incidence of lung cancer among 
never smokers and growing concerns about environmental risk factors, this 
study investigated the association between long-term exposure to air pollution 
and greenness and the risk of lung cancer.
Methods: We conducted a retrospective cohort analysis using data from the 
Korean National Sample Cohort (2002–2019), including 7,155 lung cancer 
patients and 28,620 propensity score-matched controls (matched by age, 
sex, and enrollment year). Long-term exposure to air pollution (quantified by 
PM2.5 and O₃ concentrations) and greenness (quantified by the normalized 
difference vegetation index, NDVI) was estimated based on residential area. 
Cox proportional hazards models were used to assess associations between 
exposure and lung cancer risk.
Results: Among 35,775 participants, lung cancer patients had lower BMI, higher 
smoking exposure, lower household income, and higher comorbidity scores 
than controls. PM2.5 exposure showed a modest association with increased lung 
cancer risk in the highest tertile (aHR = 1.06; 95% CI = 1.01–1.13). O₃ exposure 
was consistently associated with elevated risk across all tertiles (aHR = 1.42; 
95% CI = 1.34–1.50). Greenness exposure demonstrated a protective effect 
(aHR = 0.89; 95% CI = 0.86–0.91). Subgroup analyses indicated that PM2.5 
effects were more pronounced among male never smokers, O₃ exposure was 
associated with higher risk in female never smokers and males overall, and NDVI 
showed protective associations across all subgroups.
Conclusion: Long-term exposure to air pollution, particularly O₃, was 
significantly associated with an increased risk of lung cancer, independent of 
other confounders. In contrast, PM2.5 showed only a modest and inconsistent 
association, while high greenness exposure demonstrated a protective effect. 
These findings emphasize the need for region-specific environmental policies 
aimed at improving air quality and enhancing access to green spaces to reduce 
lung cancer risk.
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Introduction

Particulate matter (PM) is classified by aerodynamic diameter, 
which determines how deeply particles penetrate into the respiratory 
tract. Fine particles (PM2.5; ≤2.5 μm) can reach the alveoli and enter 
systemic circulation (1, 2). Long term exposure to PM2.5 adversely 
affects multiple organ systems (3), contributing to respiratory diseases 
such as chronic obstructive pulmonary disease (4), cardiovascular 
disease (5), neurodegenerative disorders (6). These health effects are 
mediated by biological mechanisms including oxidative stress, 
inflammation, DNA damage, and epigenetic alterations (5, 7–9).

Ozone (O₃), another major ambient air pollutant, is a highly 
reactive gas with well-documented adverse effects on both respiratory 
and cardiovascular health (10, 11). Large cohort studies have 
demonstrated that long-term exposure is associated with increased 
respiratory mortality, with a 10 ppb rise in ozone concentration 
conferring approximately a 4% higher risk of death from respiratory 
causes, independent of PM2.5 exposure (12). In addition, ozone 
exposure has been linked to new-onset asthma in children and 
exacerbation of asthma symptoms in affected individuals (13). The 
underlying biological mechanisms involve oxidative stress and the 
generation of reactive oxygen species, which damage DNA, impair 
antioxidant defenses, and induce chronic airway inflammation and 
epithelial injury (14, 15). Collectively, these processes may contribute 
to cellular proliferation, mutagenesis, and the initiation of lung 
carcinogenesis (16).

Multiple epidemiological studies have demonstrated a significant 
association between exposure to PM2.5 and elevated lung cancer risk, 
particularly in cases with a higher concentration and longer duration 
of exposure. In the European ESCAPE study, each 5 μg/m3 increase in 
PM2.5 concentrations was associated with an 18% increase in lung 
cancer risk (17). A large U. S. cohort study similarly reported increased 
rates of lung adenocarcinoma among never-smokers exposed to PM2.5 
(18). In another long-term investigation with a median follow-up of 
10 years, PM2.5 exposures was associated with a 12% increase in lung 
cancer risk (19). Meta-analyses further support these findings, 
consistently demonstrating that exposure to PM2.5 or PM₁₀ is linked 
to elevated lung cancer risk (20). Evidence from East Asia aligns with 
these observations; large-scale cohort studies have reported significant 
associations between PM2.5 exposures and both lung cancer incidence 
and mortality (21). A nationwide Chinese study also demonstrated 
significant associations between ambient PM2.5 concentrations and 
cause-specific mortality, including deaths from lung cancer (22). In 
Korea, an NHIS-based cohort study further reported elevated lung 
cancer mortality among individuals exposed to ozone alone or in 
combination with PM2.5 with odds ratios ranging from 1.15 to 
1.27 (23).

Based on accumulating evidence, the International Agency for 
Research on Cancer (IARC), a specialized agency of the World Health 
Organization (WHO), classified outdoor air pollution as a Group 1 
carcinogen in 2013, indicating sufficient evidence of carcinogenicity 
in humans (24). Notably particulate matter, a major component of 
outdoor air pollution, was evaluated separately and was also classified 
as carcinogenic to humans. Subsequent longitudinal cohort studies 
have strengthened this conclusion by providing temporal evidence of 
the health burden attributable to air pollution. For example, examined 
temporal trends in lung cancer mortality attributable to PM2.5 
exposures in China over a 30-year span using age-period-cohort 

analysis, demonstrating increasing burdens in older cohorts (25). 
Another investigation provided longitudinal insights into the health 
benefits of greenness, showing that reduced mortality was partly 
mediated by decreases in PM2.5 and NO₂ exposures, thereby 
highlighting the complex and time-varying interactions among 
environmental factors (26).

Although O3 has been classified by the International Agency for 
Research on Cancer (IARC) as Group  3, indicating that its 
carcinogenicity in humans is not classifiable, emerging evidence 
suggests a potential association between O₃ exposure and lung cancer 
risk. Long-term exposure to ambient O₃ has been linked to lung tissue 
injury and chronic airway inflammation, processes that may increase 
the susceptibility to various pulmonary diseases, including cancer (14, 
27). In addition, several studies have suggested that O₃ may contribute 
to carcinogenesis when combined with PM2.5, through mechanisms 
involving accelerated lung function decline and enhanced oxidative 
stress (28).

In this study, we  aimed to analyze the effects of long-term 
exposure to two air pollutants (PM2.5 and O3) on the development of 
lung cancer using nationwide data from the Korean National Health 
Insurance Service (NHIS) between 2002 to 2019. We further assessed 
the potential protective effects of residential greenness and examined 
whether the associations of air pollutants with lung cancer differed 
according to smoking status and sex. We hypothesized that long-term 
exposure to PM2.5 and O₃ would be associated with an increased risk 
of lung cancer, whereas residential greenness would be associated with 
a reduced risk.

Materials and methods

Study population

This study conducted a retrospective analysis utilizing the 
National Health Insurance Service-National Sample Cohort (NHIS-
NSC) database, a comprehensive dataset managed by the NHIS, which 
encompasses a representative sample of the Korean population. The 
NHIS in Korea maintains records of all covered inpatient and 
outpatient visits, procedures, and prescriptions. The NHIS established 
the target population using the National Health Information Database 
(NHID) in 2002 and created the NHIS-National Sample Cohort 
(NHIS-NSC) by randomly selecting a representative sample of 
1,137,896 individuals, corresponding to approximately 2.2% of the 
eligible Korean population at that time. The NHIS-NSC is a 
nationwide, retrospective cohort that spans from 2002 to 2019.

The study population comprised adults aged 20 years or older who 
had undergone at least one national health examination and for whom 
data on smoking status were available. The primary endpoint of this 
study was the occurrence of lung cancer identified during the 
follow-up period. Lung cancer cases were classified based on the 
International Classification of Diseases, 10th Revision (ICD-10) code 
C34.x. To reduce the possibility of reverse causation, individuals with 
a lung cancer diagnosis before 2003 were excluded from analysis. 
Incident cases were defined as those with a first recorded diagnosis of 
lung cancer between 2004 and 2019. Cases were defined as individuals 
receiving a first-time diagnosis of lung cancer within the study period. 
For the comparison group, control subjects without lung cancer were 
randomly selected and matched to cases in a 1:4 ratio using propensity 
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scores. Matching variables included age, sex, and year of cohort entry. 
Participants were tracked until the earliest of lung cancer diagnosis, 
death, or the end of 2019. Participants were censored at the time of 
death or at the end of the follow-up period if they did not develop 
lung cancer.

This study was approved by the Institutional Review Board (IRB) 
of Ewha Womans University Medical Center, Seoul, Republic of Korea 
(IRB number: SEUMC2021-08-003). The IRB waived the need to 
obtain informed consent considering the retrospective nature of the 
study. All procedures were conducted in accordance with the relevant 
guidelines and regulations outlined in the latest revision of the 
Declaration of Helsinki.

Air pollution and green space exposure

The exposure variables used in this study were 5-year average 
concentrations of PM2.5 and O3 and the normalized difference 
vegetation index (NDVI). PM2.5 and O3 concentrations were estimated 
using a satellite-based spatiotemporal model based on aerosol optical 
depth data from the National Aeronautics and Space Administration 
(NASA). Estimates were calculated at a spatial resolution of 
1 km × 1 km for each participant based on their residential address.

To determine the level of exposure to greenness, we used the 
NDVI, a satellite-derived metric that reflects vegetation density and 
plant health. NDVI data were collected from the Moderate Resolution 
Imaging Spectroradiometer (MODIS), as well as the Landsat 7 and 8 
collections provided by the United  States Geological Survey. The 
MODIS is the primary sensor for ground surface monitoring and is 
mounted on the Earth observation satellites Terra and Aqua. Its data 
are widely used to examine green space and other environmental 
factors. NDVI values were averaged for each participant based on the 
date of enrollment in the cohort. Long-term exposure to air pollution 
and green space was defined as the five-year average at participants’ 
residential addresses prior to cohort enrollment.

Statistical analysis

Descriptive statistics are expressed as the mean (standard 
deviation) for continuous variables and number (%) for categorical 
variables. Differences between groups were analyzed using the t-test 
for continuous variables and chi-square test for categorical variables. 
Kaplan–Meier analysis and the log-rank test were used to evaluate 
differences in lung cancer incidence across exposure categories. Cox 
proportional hazards models were applied to estimate the effects of air 
pollution and greenness on lung cancer risk by adjusting for 
confounding factors such as age, sex, smoking status, household 
income, residential area, body mass index (BMI), and Charlson 
Comorbidity Index (CCI). Subgroup analyses were performed to 
evaluate the associations of PM2.5, O3, and green space exposure with 
lung cancer risk according to gender and smoking status, and the 
impact of O3 was further examined by residential area. Adjusted 
covariates were selected based on established or suspected 
confounders identified in previous literature and known risk factors 
for the outcomes. Observations with missing values for any variable 
were excluded to preserve data integrity and ensure the validity of 
the results.

To assess the potential nonlinear association between exposure 
and lung cancer risk, we modeled the relationship using restricted 
cubic splines within the Cox proportional hazards framework. Hazard 
ratios (HRs) and 95% confidence intervals (CIs) were estimated across 
the full range of exposure. To enhance the precision of individual 
exposure assessment to air pollution and green space, we conducted 
a sensitivity analysis. For workers, who may be  exposed to 
environmental factors at both their workplace and residence, these 
exposures were explicitly considered. Using data from the NHIS, 
we  compared lung cancer risk by classifying health insurance 
subscribers into workplace-based and community-based groups. 
Hazard ratios (HRs) with 95% confidence intervals (CIs) were 
calculated for lung cancer risk. SAS version 9.4 (SAS Institute, Cary, 
NC, United States) was used for large-scale data management, and R 
software version 4.0.3 (R Foundation for Statistical Computing, 
Vienna, Austria) was used for data analysis. The primary R packages 
utilized were survival (v3.2-7), survminer (v0.4.8), splines (included 
in base R 4.0.3), dplyr (v1.0.2), and ggplot2 (v3.3.2), which facilitated 
comprehensive survival analysis, data processing, and high-quality 
visualization. The significance level was set at p < 0.05.

Results

We identified 672,951 individuals aged ≥20 years who underwent 
health examinations between 2002 and 2019  in the NHIS-NSC 
database. After excluding participants younger than 20 years, those 
diagnosed with lung cancer or who died during the 2002–2003 
washout period, and those with missing smoking or BMI data, 7,155 
patients with lung cancer remained. Using 1:4 propensity score 
matching, we selected 28,620 controls without lung cancer, yielding a 
final analytic cohort of 35,775 participants (Figure 1). The standardized 
mean differences for the propensity score matching variables, 
including age, sex, and enrollment year, were all below 0.1, indicating 
adequate covariate balance between the groups. A Love plot 
illustrating the covariate balance before and after matching is 
presented in the Supplementary Figure S1. Time-to-event analyses 
were conducted using a stratified Cox proportional hazards regression 
model based on the propensity score matching. The matched set ID 
was specified as strata, allowing the baseline hazard to vary across 
matched sets.

Baseline characteristics are summarized in Table 1. Compared 
with controls, patients with lung cancer had lower mean BMI, were 
more often current smokers with higher pack-years, and had lower 
household income, higher comorbidity scores, and were more likely 
to live in rural areas, and have higher CCI scores. The mean (standard 
deviation, SD) exposure levels for PM2.5, O₃, and greenness (NDVI) 
were 29.01 (2.42) μg/m3, 34.79 (3.41) ppb, and 0.16 (0.11), respectively 
(Supplementary Table S1). Correlation analysis of PM2.5, O3, and 
NDVI showed that PM2.5 and O3 showed a weak positive correlation, 
and PM2.5 and NDVI showed a weak negative correlation. There was 
almost no correlation between O3 and NDVI (Supplementary  
Figure S2).

Significant associations were identified between lung cancer risk 
and exposures to air pollution and greenness (Figure  2). After 
adjusting for major covariates, O3 was associated with increased 
lung cancer risk (aHR = 1.612; 95% CI = 1.297–1.978), and the 
NDVI demonstrated a protective effect (aHR = 0.885; 95% 
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CI = 0.858–0.912). When exposures were categorized into tertiles, 
PM2.5 was significantly associated with increased lung cancer risk in 
the 3rd tertile (aHR = 1.064; 95% CI = 1.006–1.127). O3 showed a 

positive association across all tertiles (aHR = 1.421; 95% CI = 1.342–
1.503). A high NDVI indicated significant protective effects in the 3rd 
tertile (aHR = 0.709; 95% CI = 0.658–0.764). Hazard ratios for 

FIGURE 1

Flow diagram for selection of the study population. This figure illustrates the selection of study subjects from the NHIS-NSC database (2002–2019). 
After applying exclusion criteria and propensity score matching, the final cohort comprised 7,155 lung cancer cases and 28,620 matched controls. 
NHIS-NSC, National Health Insurance Service–National Sample Cohort.

TABLE 1  Baseline characteristics.

Characteristics Without lung cancer (n = 28,620) Lung cancer (n = 7,155) P-value†

Age (years)* 76.7 ± 11.7 76.8 ± 11.9 0.338

 � 20 ~ 59 2,599 (9.1) 649 (9.1) 0.995

 � 60 ~ 70 13,637 (47.6) 3,414 (47.7)

 � >71 12,384 (43.3) 3,092 (43.2)

Men 19,300 (67.4) 4,826 (67.5) 0.982

BMI (kg/m2) 24.1 ± 0.2 23.4 ± 0.4 <0.001

Smoking status

 � Never 15,858 (55.4) 3,562 (49.8) <0.001

 � Former 9,494 (33.2) 1,935 (27.0)

 � Current 3,268 (14.4) 1,658 (23.2)

 � Smoking (pack-years) 8.0 ± 17.5 13.7 ± 22.6 <0.001

Household income

 � <$ 2000 7,347 (26.5) 2,076 (30.0) <0.001

 � $ 2000–5,000 11,955 (43.1) 2,909 (42.1)

 � >$ 5,000 8,452 (30.4) 1,926 (27.9)

Residential area

 � Metropolitan 14,297 (50.0) 3,036 (42.4) <0.001

 � Urban 11,089 (38.7) 2,838 (39.7)

 � Rural 3,234 (11.3) 1,281 (17.9)

CCI

 � 0 16,796 (91.6) 6,352 (88.8) <0.001

 � ≥1 1,510 (8.4) 803 (11.2)

† Two-sided chi-square and t-test where appropriate. * The median age was 77 years in both groups, with an interquartile range of about 69 to 85 years, under the assumption of approximate 
normality. Standardized mean differences for age and age categories were all <0.01.
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exposure by tertiles of air pollution and NDVI are provided in the 
Supplementary Table S2.

Kaplan–Meier analysis demonstrated higher cumulative 
incidence of lung cancer with high O₃ exposure and with low NDVI 
(both p < 0.001) (Figure 3). In subgroup analyses, PM2.5 exposure 
was associated with increased lung cancer risk particularly among 
male never smokers and ex-smokers. O3 exposure showed a 
significant association with lung cancer risk among all male subjects 
and female never smokers, and the NDVI demonstrated the 
protective effects of greenness exposure regardless of sex and 
smoking status (Table 2). Results stratified by IQR increases in air 
pollution and NDVI, respectively, are presented in the 
Supplementary Table S3. There is a trend toward an increased risk 
of lung cancer associated with ozone exposure in rural areas, and 
the difference in effect between regions is of borderline statistical 
significance (Supplementary Figure S3).

The dose–response analysis demonstrated a nonlinear association 
between exposure and lung cancer risk. To further elucidate this 
relationship, we  applied a restricted cubic spline model, and the 
resulting spline-based hazard ratio curve is presented in the 

Supplementary Figure S4. The curve indicates that the HR increases 
above a certain exposure level. The analysis of air pollution and green 
space exposure in relation to lung cancer risk between workplace-
based and community-based groups yielded comparable results, with 
no statistically significant interactions observed upon inclusion of 
interaction terms in the model (Supplementary Table S4).

Discussion

Overall, long-term PM2.5 exposure was not significantly associated 
with lung cancer risk; however, participants in the highest tertile of 
exposure showed a 6.4% higher risk compared with those in the lowest 
tertile. In contrast, O₃ exposure was associated with a 61.2% increased 
risk of lung cancer, even after adjustment for potential confounding 
factors. Exposure to residential greenness, measured by the NDVI, 
was associated with a 12% lower risk of lung cancer, with the strongest 
protective effects observed in the highest tertile. A clear dose–response 
relationship was observed for PM2.5, O₃, and greenness, with more 
pronounced effects at higher exposure levels.

FIGURE 2

Adjusted hazard ratios for lung cancer risk according to tertiles of PM2.5, O₃, and NDVI. This figure shows adjusted hazard ratios (aHRs) and 95% 
confidence intervals (CIs) for lung cancer risk according to tertiles of (A) PM2.5, (B) O₃, and (C) NDVI. “All” represents the overall association in the total 
study population. “T1 (Ref.)” indicates the reference group (lowest tertile), while T2 and T3 indicate the middle and highest tertiles, respectively. The red 
horizontal line denotes aHR = 1.0 (the null value). Adjusted hazard ratios were adjusted for age, sex, smoking status, body mass index, household 
income level, residential area, and Charlson comorbidity index. aHR, adjusted hazard ratio; BMI, body mass index; CCI, Charlson Comorbidity Index; 
NDVI, normalized difference vegetation index.
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Subgroup analyses indicated that never-smoking men were 
particularly susceptible to PM2.5 exposure. This may reflect biological 
factors, such as sex-specific differences in pulmonary responses or the 
lack of adaptive mechanisms that could be  present in smokers, 
although further research is needed to clarify this vulnerability (29). 
Previous studies have also reported that lung cancer risk among never 
smokers is influenced by ambient air pollution (30). For instance, the 
AHSMOG-2 cohort, predominantly composed of never smokers, 
demonstrated an elevated risk of lung cancer associated with PM2.5 
exposure among individuals with long-term residence or greater time 
spent outdoors, indicating a dose–response relationship (31). In 
contrast, this association was not observed among current smokers, 
likely because the strong carcinogenic effect of smoking may mask the 
association with PM2.5 exposure. Consistent with this, a meta-analysis 
reported that the effect of PM2.5 was attenuated after adjusting for 
smoking status (32).

Although recent studies have reported significant associations 
between PM2.5 exposure and lung cancer development among female 
never smokers, this association was not observed in our study. This 
discrepancy may be  explained by sex-specific differences in 
susceptibility and exposure levels. For example, one cohort study 
found that males were more susceptible to lung cancer at lower PM2.5 

concentrations (0–35 μg/m3), whereas females demonstrated greater 
susceptibility at higher concentrations (35–75, 75–115, and 
115–150 μg/m3) (33). Similarly, a study conducted in Taiwan reported 
that residential PM2.5 exposure above 30 μg/m3 was associated with an 
increased risk of lung adenocarcinoma among females (34). In our 
cohort, the mean PM2.5 concentration was 29.01 μg/m3, which falls 
within the range associated with increased susceptibility among males 
but not females.

PM2.5 has been classified as a Group  1 carcinogen by the 
International Agency for Research on Cancer (IARC), a specialized 
agency of the World Health Organization (WHO), with proposed 
mechanisms involving oxidative stress, chronic inflammation, DNA 
damage, and epigenetic alterations. A dose–response relationship 
between PM2.5 exposure and lung cancer risk has been consistently 
demonstrated in epidemiological studies (35, 36). Although evidence 
regarding O₃ remains inconclusive, our analyses showed that O₃ was 
more strongly associated with lung cancer risk than PM2.5, warranting 
consideration of several possible explanations.

First, subgroup analyses revealed that O₃ exposure was significantly 
associated with increased lung cancer risk in all male participants 
regardless of smoking status, and in female never and current smokers, 
but not in former smokers. Mechanistically, unlike PM2.5, which can 

FIGURE 3

Cumulative incidence of lung cancer according to levels of PM2.5, O₃, and NDVI. Cumulative incidence curves for lung cancer according to low (blue) 
and high (red) levels of (A) PM2.5, (B) O₃, and (C) NDVI. The y-axis represents the cumulative event probability, and the x-axis shows follow-up time 
(days). Numbers at risk at each time point are indicated below each panel. p-values compare incidence between exposure groups. NDVI, Normalized 
Difference Vegetation Index.
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reach the peripheral alveoli, O₃ primarily affects the airway epithelium 
(16), leading to localized oxidative injury and chronic inflammation. 
Smokers, who often have pre-existing airway inflammation, may 
therefore exhibit heightened susceptibility to O₃ exposure. In addition, 
this increased risk may also reflect behavioral factors, as males generally 
spend more time outdoors, thereby increasing cumulative O₃ exposure.

Second, recent trends suggest that O₃ exposure may pose a greater 
health risk compared with PM2.5 exposure. In Korea, as well as in North 
America and Europe, nationwide air pollution control policies have 
reduced the concentrations of major pollutants, including PM2.5 (37). 
According to data from Statistics Korea, mean PM2.5 levels decreased 
from 26.1 μg/m3 in 2015 to 23.6 μg/m3 in 2019 (38). In contrast, annual 
O₃ concentrations increased by approximately 13 ppb, corresponding 
to a 42% rise over a similar period, with higher levels in rural compared 
with urban areas (39). A Chinese study quantifying PM2.5-O₃ 
interactions similarly reported a 25.9% reduction in the health burden 
attributable to PM2.5 but an 11.8% increase in the burden attributable 
to O₃, primarily affecting cardiovascular, cerebrovascular, and 
respiratory diseases (40). Consistent with these findings, lung cancer 
incidence in our study was higher in rural areas. Although rural regions 
generally contain more green space, ambient O₃ levels are often elevated 
in such areas. In urban environments, nitric oxide (NO) emitted from 
traffic and industrial sources reacts with O₃, leading to reduced ambient 
concentrations. In contrast, in rural areas, O₃ precursors such as NO₂ 
can be  transported by wind and undergo photochemical reactions 
more readily, resulting in higher O₃ concentrations (39).

Lastly, global warming has been suggested to contribute to a 
climate penalty effect, characterized by elevated O₃ formation and 
adverse health outcomes. Mechanistically, higher temperatures 
facilitate photochemical reactions that increase ambient O₃ 
concentrations. Biologically, chronic O₃ exposure is associated with 
sustained airway inflammation and oxidative stress, which may 
promote carcinogenesis through DNA damage (41). From a public 
health perspective, vulnerable populations—including the older 
adult(s), socioeconomically disadvantaged individuals, and those with 

limited access to cooling resources—may be at heightened risk of lung 
cancer during periods of elevated temperature and O₃ levels (42).

In contrast to the adverse effects of air pollution, green 
environments may act as a protective factor against lung cancer. In our 
study, higher NDVI values were associated with reduced lung cancer 
risk, independent of sex and smoking status. Consistent with these 
findings, a meta-analysis reported significant reductions in lung 
cancer incidence and mortality with greater exposure to greenness 
(43). Moreover, another large-scale meta-analysis demonstrated that 
green space exerts a protective effect on respiratory health through 
multiple pathways, including improved air quality, reduced heat 
exposure, alleviated stress and inflammation, increased physical 
activity, and enhanced immune function (44).

The protective role of greenness has also been observed in relation 
to air pollution–related outcomes. For example, a previous study 
reported that green space exposure was associated with reduced PM2.5-
related mortality, with urban residents experiencing greater benefits 
than rural residents (45). In our study, however, the incidence of lung 
cancer was higher in rural populations. This finding underscores the 
need for region-specific greening strategies, particularly because rural 
areas often experience elevated O₃ levels due to long-range transport 
of precursors and enhanced photochemical reactions (38). Conversely, 
in urban settings, reductions in NOₓ emissions can paradoxically 
increase O₃ concentrations by reducing the scavenging of O₃ by freshly 
emitted NO, as illustrated in a case study from Zaragoza, Spain (46).

This study has several limitations. First, because the study 
population was restricted to Korea, regional differences in air pollutant 
composition, climate, and urban planning may limit the 
generalizability of our findings. For example, the toxicity of PM2.5 can 
vary depending on dominant emission sources such as coal 
combustion or traffic emissions (47). O₃ levels are influenced by 
meteorological and climatic conditions (48), while access to green 
spaces differs substantially across countries (49). Therefore, multi-
region cohort studies and meta-analyses are needed to confirm the 
applicability of our results in diverse environmental contexts.

TABLE 2  Subgroup analysis of lung cancer risk associated with air pollution and greenness exposure stratified by sex and smoking status.

Male Female

HR (95% CI) aHR† (95% CI) HR (95% CI) aHR† (95% CI)

PM2.5

Never smoker 1.189 (1.031–1.372) 1.193 (1.035–1.376) 0.924 (0.824–1.037) 0.957 (0.853–1.073)

Ex-smoker 1.145 (1.011–1.297) 1.138 (1.004–1.289) 1.283 (0.656–2.507) 1.536 (0.778–3.036)

Current smoker 1.064 (0.928–1.220) 1.071 (0.934–1.229) 0.553 (0.333–1.002) 0.617 (0.345–1.103)

O3

Never smoker 1.687 (1.442–1.973) 1.594 (1362–1.866) 1.044 (1.030–1.059) 1.358 (1.210–1.526)

Ex-smoker 1.414 (1.244–1.606) 1.399 (1.231–1.591) 0.822 (0.374–1.805) 0.926(0.413–2.075)

Current smoker 1.563 (1.354–1.803) 1.426 (1.235–1.646) 1.856 (1.101–3.130) 1.783 (1.054–3.016)

NDVI

Never smoker 0.088 (0.077–0.102) 0.089 (0.077–0.103) 0.084 (0.074–0.095) 0.084 (0.074–0.095)

Ex-smoker 0.084 (0.074–0.096) 0.085 (0.075–0.098) 0.046 (0.017–0.122) 0.041 (0.014–0.123)

Current smoker 0.094 (0.080–0.111) 0.093 (0.079–0.109) 0.132 (0.078–0.221) 0.115 (0.065–0.205)

† Adjusted hazard ratios (aHRs) were adjusted for age, body mass index (BMI), household income, residential area, and * Charlson Comorbidity Index (CCI). * PM2.5 and O3 were modeled per 
1 μg/m3 and 1 ppb increase, respectively, and NDVI per 0.1-unit increase. The bold values denote statistical significance.
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Second, exposure estimates for PM2.5, O₃, and greenness were 
derived from satellite-based models linked to residential addresses, 
which may not fully capture individual exposure variability, including 
workplace environments and indoor air quality.

Third, other air pollutants such as NO₂ were not considered, 
which could confound the observed associations. Future studies 
incorporating multi-pollutant models are needed to better reflect real-
world exposure conditions and to disentangle the independent and 
interactive effects of multiple pollutants on lung cancer risk. Such 
approaches are critical for advancing environmental epidemiology 
and informing effective public health policies (50, 51).

Fourth, residual confounding cannot be excluded. Unmeasured 
factors such as occupational exposures, lifestyle characteristics, dietary 
factors, and comorbidities may have influenced the results.

Fifth, NDVI reflects vegetation density but does not account for 
actual accessibility, quality, or individual utilization of green spaces 
(52). Future research should consider alternative metrics, such as 
proximity-based or quality-adjusted measures, to more accurately 
assess individuals’ true exposure to green environments.

Conclusion

In conclusion, while PM2.5 has been classified as a Group  1 
carcinogen by the International Agency for Research on Cancer 
(IARC), our findings indicate that long-term ozone exposure may 
represent an independent and underappreciated risk factor for lung 
cancer. Given anticipated changes in climate and atmospheric 
composition leading to rising and fluctuating ozone levels, ozone 
should be considered not only a short-term respiratory irritant but 
also a potential long-term contributor to lung carcinogenesis. 
Moreover, increasing access to urban green spaces may help mitigate 
lung cancer risk. Targeted early detection and prevention programs, 
particularly for high-risk groups such as never smokers and residents 
of high-ozone regions, may be warranted based on environmental 
exposure data. Finally, further research is needed to elucidate the 
biological pathways underlying ozone-related carcinogenesis, to 
examine interactions between PM2.5 and O₃, and to clarify the 
protective role of greenness across diverse populations and urban 
settings. Collectively, these findings provide evidence to inform global 
environmental interventions aimed at reducing the burden of lung 
cancer attributable to air pollution.
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