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Psychiatry in the age of Al:
transforming theory, practice,
and medical education
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Mental disorders constitute an urgent and escalating global public-health
concern. Recent advances in artificial intelligence (Al) have begun to transform
both psychiatric theory and clinical practice, generating unprecedented
opportunities for precision diagnosis, mechanistic insight and personalized
intervention. Here, we present a narrative review that examines the current
landscape of Al-enhanced psychiatry, evaluates Al's capacity to refine diagnostic
nosology, elucidate etiological mechanisms, formalize diagnostic criteria and
optimize treatment strategies, and delineates the concomitant ethical, legal and
social challenges—most notably those arising from data privacy, algorithmic
bias and inequitable access to technological resources. In parallel, the review
interrogates the implications of this technological inflection point for medical
education. It argues that contemporary training programs must evolve through
systematic curricular re-design, the incorporation of computational and data
science competencies, the adoption of integrative pedagogical models that
couple theoretical instruction with hands-on algorithmic practice, and the
reinforcement of bioethical literacy. Only by embedding Al fluency within a
robust framework of humanistic and professional values can the next generation
of psychiatrists be equipped to harness algorithmic tools responsibly and to
translate their outputs into clinically meaningful decisions.

KEYWORDS
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1 Introduction

Mental disorders have become one of the most pressing global public health challenges.
The World Health Organization (WHO) projects that, by 2030, mental illness will
represent the leading contributor to the worldwide burden of disease (1). Complementary
longitudinal analyses indicate that roughly one half of the global population is likely to
experience at least one clinically diagnosable mental disorder before the age of seventy-five
(2). Yet, despite the escalating demand for mental-health services, conventional psychiatry
remains constrained by longstanding diagnostic and therapeutic limitations. Current
classificatory systems—exemplified by the DSM and ICD—rely primarily on subjective
symptomatology and lack objective biomarker support, whereas treatment selection is
frequently guided by empirical trial-and-error, resulting in pronounced inter-individual
variation in efficacy (3). This intrinsic “imprecision” contributes to misdiagnosis, under-
diagnosis, and delayed intervention, underscoring the urgent need for transformative
technological paradigms in psychiatric care.
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Recent advances in artificial intelligence (AI) offer such
a paradigm. Owing to its capacity for high-dimensional
data integration and pattern discovery, AI has demonstrated
promising potential to redefine disease classification, elucidate
etiological mechanisms, refine diagnostic processes, and enable
precision therapeutics (4-7). Machine-learning models trained on
multimodal datasets—spanning neuroimaging (8, 9), electronic
health records (EHRs) (10), wearable-sensor streams (11, 12), and
social-media behavior (13)—can delineate biologically grounded
subtypes of mental disorders and predict individual treatment
response. Natural-language-processing (NLP) methods applied to
unstructured clinical text further permit the extraction of latent
symptom signals, enhancing early screening, risk stratification,
and outcome forecasting (14-16). Nevertheless, most existing
investigations are confined to small-scale or single-center
cohorts, and unresolved issues of data privacy, algorithmic
bias, and ethical accountability continue to hinder large-scale
translation (17). Moreover, the epistemic implications of Al for
foundational psychiatric theory remain insufficiently examined,
and the pathways from data-driven discovery to routine clinical
deployment require deeper elaboration.

The scholarly conversation has accelerated, with several
recent reviews surveying digital mental health, generative Al
and implementation challenges (18-20). These contributions
map opportunities and risks in apps, chatbots, and immersive
technologies and call for standardization, equity safeguards, and
stronger evidence pipelines. Yet most syntheses remain tool-centric
or service-oriented and less often bridge mechanistic biomarkers
with clinical workflow redesign and professional education. We
complement and extend that literature by integrating three
levels of analysis within a single framework: mechanistic and
theoretical advances, clinical applications and service redesign, and
pedagogical and governance implications for medical education.

In this narrative review, we first synthesize Al-mediated
contributions to psychiatric theory across four domains:
the reconstruction of nosologically systems, the elucidation
of causal mechanisms, the objectification of diagnosis, and
the individualization of treatment. Second, we survey the
clinical progress of Al-augmented psychiatry in decision
support, continuous health monitoring, and technology-assisted
psychotherapy. Finally, we propose evidence-informed strategies
for curriculum reform, advocating an integrative educational
model that balances technical proficiency with ethical and
empathic patient care. In delineating these dimensions, the article
furnishes a conceptual roadmap for psychiatry in the Al era and
offers practical guidance for optimizing the medical-education
system. The structure of the whole paper is shown in Figure 1.

2 Methods

We employed a structured search to ensure breadth and
transparency. We queried PubMed, Web of Science and IEEE
Xplore for records published between January 1, 2005 and
May 15, 2025, with no geographical restrictions. Searches
combined controlled vocabulary and free-text terms spanning
three conceptual blocks: psychiatry/mental health, artificial
intelligence/machine learning (including deep learning, GNNs,
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and large language models), and application domains (diagnosis,
treatment response, neuroimaging, EHRs, wearables, digital
phenotyping, and medical education). Two authors independently
screened titles/abstracts and full texts; discrepancies were resolved
by consensus. We included human-participant empirical studies,
methodological papers with clinical or neurobiological data,
systematic reviews, and policy/curricular frameworks directly
informing AI in psychiatry; purely technical reports without
mental-health relevance, single-case reports, and animal-only
studies were excluded. For pharmacotherapy response studies,
drug-specific evidence was required to avoid unwarranted class-
level generalization. For each included study, we extracted design,
setting, sample, data modality, AI method, task, validation,
and quantitative results where available. No meta-analysis was
undertaken due to heterogeneity; findings were narratively
synthesized with attention to effect sizes and external validity
when reported.

3 Artificial intelligence in psychiatry:
theoretical foundations and
implications

Over the past decade artificial intelligence (AI) technologies—
most notably machine learning and deep-learning algorithms—
have progressed at an extraordinary pace. These models can
autonomously extract multilevel features and discern complex
patterns in large-scale datasets; in domains such as image
recognition and natural-language processing they already equal or
surpass human performance (21). Medicine has rapidly adopted
this paradigm: by the close of 2023 the United States Food and Drug
Administration had authorized almost 700 Al-enabled medical
devices, and algorithmic decision aids are proliferating across
diverse clinical specialties (22).

In the field of psychiatry, the introduction of AI holds
significant promise for addressing long-standing challenges.
Current psychiatric diagnosis primarily relies on classification
systems such as the Diagnostic and Statistical Manual of Mental
Disorders (DSM), depending on symptomatologic assessment and
lacking objective biological markers. This subjective classification
approach results in considerable diagnostic heterogeneity among
patients, and clinical categories may not correspond to singular
etiological mechanisms (23). Many mental disorders exhibit
high rates of comorbidity and symptom overlap, blurring the
boundaries between different diagnoses and thereby increasing
the risk of misdiagnosis and underdiagnosis. Furthermore, the
etiology of mental disorders is highly complex, involving an
interplay of multiple factors including genetic, neurobiological,
biochemical, and environmental influences, making it challenging
for any single hypothesis to fully elucidate their pathogenesis.
Significant inter-individual variability also exists in treatment
response, with the same therapeutic modality yielding markedly
different outcomes across patients. For example, in a recent
multimodal deep graph learning study, sertraline response
could be predicted from baseline brain network signatures (24);
however, in routine care, first line antidepressant treatment
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Overall structure of the paper.

achieves remission in only a minority of patients (e.g., ~28-
33% in the STARD level 1 trial with citalopram), necessitating
subsequent treatment steps for many (25). The diagnostic
uncertainty and the trial-and-error nature of treatment underscore
the imprecision dilemma within psychiatry. The strengths
of AI technology in data mining, feature extraction, and
pattern recognition offer novel tools to address this situation.
Machine learning enables the discovery of subtle patterns from
multimodal data—patterns often imperceptible to the human
eye—thereby providing a foundation for the reclassification of
mental disorders, etiological exploration, objective diagnosis, and
precision treatment.

Overall, AI is progressively
research and theoretical development, with the potential to

empowering  psychiatric

transform traditional psychiatry by, for example, predicting
disease trajectories, assisting in diagnostic and therapeutic
and intervention

decision-making, enabling  personalized

strategies (26).
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3.1 Redefining the classification of mental
disorders

Traditional classification systems for mental disorders (e.g.,
DSM and ICD) categorize complex psychiatric conditions
into several classes based on clinical symptoms. However,
the subjectivity inherent in these criteria frequently leads
to “heterogeneity within diagnoses and homogeneity across
diagnoses™ patients classified under the same diagnosis may
exhibit vastly different symptom constellations, while conversely,
patients with similar underlying etiologies might be assigned
different labels under current standards. Consequently, clinical
diagnostic categories may not accurately reflect the biological
underpinnings of mental disorders (23).

With the ascent of data-driven methodologies, researchers
have begun to leverage AI to reshape the boundaries of
psychiatric classification. Machine learning models can integrate
multimodal data (e.g., neuroimaging, genetics, neuropsychological
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assessments, and clinical rating scales) to automatically learn
feature patterns from objective data, thereby proposing more
granular or entirely novel classification schemes compared to
traditional approaches (27). Such reclassification based on objective
data holds promise for dissecting the heterogeneity of mental
disorders: accumulating evidence suggests that subtypes identified
through multidimensional data fusion can correspond to different
disease trajectories and treatment responses, thereby enhancing the
accuracy of clinical prediction (28-32).

Simultaneously, some studies have moved beyond traditional
diagnostic frameworks by adopting transdiagnostic dimensional
models (such as the RDoC framework proposed by the U.S.
National Institute of Mental Health). These studies utilize AI to
identify common pathological patterns across functional domains
like cognition, affect, and arousal, aiming to elucidate the
mechanisms underlying high comorbidity rates (23). Notably,
multimodal data fusion imposes greater demands on sample
size and algorithmic performance. Preliminary research indicates
that multimodal AI models outperform single-modality models
in discriminating between individuals with mental disorders and
healthy controls, contributing to increased diagnostic objectivity
(33, 34). Nevertheless, the current endeavor to redefine psychiatric
classification using AI still faces considerable challenges. On
one hand, the data-driven subtypes identified in various studies
may not consistently replicate across different cohorts, indicating
a need for improved reproducibility. On the other hand,
the clinical significance of these algorithmically generated new
categories remains unclear, and their limited interpretability
restricts clinical application. Furthermore, achieving multimodal
integration requires overcoming difficulties in data sharing and
standardization, as well as persuading the clinical community to
adopt new classification paradigms.

Despite these challenges, the Al-driven reconstruction of
classification systems offers a novel perspective for psychiatric
theory: it provides an opportunity to define mental disorders
more precisely based on objective biological indicators rather than
subjective symptoms, laying the groundwork for future updates to
diagnostic manuals and personalized treatment.

3.2 Etiological hypotheses and mechanistic
exploration

Elucidating the etiology and mechanisms of mental disorders
has consistently been a core scientific challenge in psychiatry.
Traditional research has often focused on single-level hypotheses,
such as neurotransmitter imbalances, specific gene mutations,
or structural abnormalities in brain regions. However, mental
disorders are likely the result of multifactorial interactions,
making them difficult to analyze using linear approaches. Artificial
intelligence offers powerful tools for this endeavor: it can
mine complex non-linear associations within high-dimensional
data, thereby aiding in the generation and validation of novel
etiological hypotheses.

Deep learning methods, such as Graph Neural Networks
(GNNs), are increasingly being applied to the study of mechanisms
in mental disorders. The brain is inherently a complex network, and
GNNs can represent neuroimaging data as graph structures (where
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nodes represent brain regions and edges represent functional
connectivity, etc.), thereby capturing intricate interaction patterns
between different brain regions (35). Research indicates that
GNNss possess unique advantages in characterizing brain functional
architecture and can reveal network topological changes that are
difficult to identify using traditional methods. In major depressive
disorder, a multimodal deep graph learning study integrating
resting state fMRI and EEG derived baseline brain network
signatures that predicted differential outcomes to sertraline vs.
placebo. Salient nodes for sertraline response included the
inferior temporal gyrus and posterior cingulate cortex, whereas
placebo response prominently involved the precuneus and
supplementary motor area; cross modal consistent nodes included
the superior temporal gyrus and posterior cingulate. The implicated
connections spanned the frontoparietal control, dorsal/ventral
attention, and limbic networks. Model performance reached mean
R? of approximately 0.24 (sertraline) and 0.20 (placebo), with best
runs up to R> ~ 0.31 and R*> ~ 0.28, respectively (permutation P <
0.001) (24).

Beyond brain network analysis, Al is also being employed
to integrate data from genetics and large-scale electronic health
records (EHRs) to discover novel combinations of pathogenic
factors. Ensemble learning, by amalgamating predictions from
multiple models, enhances the ability to identify weak signals.
For example, a study on functional outcomes in schizophrenia
inputted genetic polymorphism data into an ensemble algorithm.
Through feature selection, it identified gene variant loci (e.g.,
G72 and MET gene polymorphisms) strongly associated with
prognosis and validated that this ensemble model outperformed
traditional statistical methods in predicting patients’ quality of
life and functional levels (36). These results suggest that the
aforementioned genetic pathways may influence the long-term
trajectory of the disorder, providing clues for in-depth research
into the biological mechanisms of schizophrenia. Similarly, in
disorders such as depression and bipolar disorder, machine
learning combined with genetic and epigenetic data has identified
several potential novel risk genes and molecular pathways.
Furthermore, Al is being utilized to construct complex causal
inference models and knowledge graphs, linking neurophysiology,
environmental stressors, and behavioral manifestations to simulate
the disease development process holistically. By conducting 'virtual
experiments’ within these models, researchers can test the strength
of causal relationships among different factors, thereby providing
quantitative support for etiological hypotheses.

Opverall, artificial intelligence is facilitating a paradigm shift in
psychiatry from experience-driven to data-driven approaches, and
from univariate to multidimensional network perspectives. With
the accumulation of more high-quality data and the emergence
of more powerful algorithms, it is anticipated that we can more
profoundly unravel the complex etiological networks of mental
disorders, providing empirical evidence for theoretical models.

3.3 Diagnostic criteria and objective
indicators

Due to the absence of visible biomarkers, psychiatric diagnosis
has long relied on clinical symptomatology and patients” subjective
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reports, a model susceptible to the experience of the evaluator
and the expressive capacity of the patient. To enhance diagnostic
objectivity, researchers have begun to explore novel concepts and
technologies such as digital phenotyping.

Digital phenotyping refers to the continuous quantification of
an individual’s behavioral and physiological states using objective
data from personal digital devices (37). Because most people
carry smartphones and wearables, passive sensing streams—such as
accelerometer and gyroscope derived activity, GPS based mobility,
and microphone derived prosodic features—and human-device
interaction traces—such as communication frequency, social media
use, and typing dynamics—offer high frequency correlates of
mental state (11, 13, 37). Early platform work introduced a
scalable, customizable smartphone research framework for data
driven psychiatry, but it did not evaluate clinical efficacy and
should not be taken as evidence that such tools already enable
objective diagnosis or continuous monitoring in routine care (38).
Likewise, the SEARCH cohort (39) is a school-based longitudinal
study of child health that neither focused on digital phenotyping
or Al in psychiatry nor employed personal electronic devices; its
findings are not generalizable to psychiatric disorders. More recent
overviews synthesize opportunities and limitations in Al-enabled
digital mental health—including privacy, consent, reproducibility,
and equity—and emphasize the need for stronger, externally
validated evidence (3, 40, 41). Within this cautious frame, machine
learning analyses of smartphone and wearable signals have related
fluctuations in mobility, social interaction, and diurnal regularity
to changes in depressive symptoms, pointing to a research pathway
toward dynamic, objective monitoring (11).

Similarly, voice analysis has emerged as an important tool
for digital phenotyping. Studies have found that patients with
depression or anxiety may exhibit slower speech rates, monotonous
intonation, and use more negative vocabulary (42). Al-driven
speech processing models can quantitatively capture these subtle
changes and have demonstrated high accuracy in identifying
conditions such as depression, anxiety, and post-traumatic stress
disorder (PTSD) (43-45). Reports indicate that acoustic and
linguistic features extracted by deep learning frameworks can
be used for the early diagnosis of mental disorders, with
accuracy in some studies surpassing that of clinical interviews
(46, 47).

More importantly, digital phenotyping paves the way for
establishing objective quantitative assessment tools. Through
continuous monitoring, clinicians can obtain information beyond
the scope of outpatient interviews, such as a patients sleep
fluctuations or degree of social isolation over a week, thereby
expanding diagnosis from a static, “snapshot” assessment to
a dynamic portrayal of the patient’s daily functioning (48).
Some researchers propose integrating these digital indicators with
existing diagnostic systems, for example, by introducing objective
quantitative scales into the DSM diagnostic process or developing
intelligent applications for auxiliary diagnosis, to achieve a fusion
of subjective reports and objective data (42). This approach
complements the “biopsychosocial” model, providing a fourth
dimension of support for the diagnosis of mental disorders.

Of course, the genuine integration of digital phenotyping into
clinical practice requires addressing numerous issues. Firstly, there
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are privacy and ethical considerations: continuous monitoring
of personal behavior may infringe upon privacy, necessitating
informed consent from patients and robust data security measures
(42). Secondly, technical standards are crucial: different studies
use varied sensor types and feature extraction methods, lacking
uniform standards, and differences in digital behavior patterns
across diverse populations and cultural backgrounds also require
calibration. Finally, large-scale prospective studies are needed to
validate the reliability and clinical utility of digital biomarkers to
persuade clinicians to adopt these new indicators.

Despite the
represents a future direction for the objectification of psychiatric

substantial challenges, digital phenotyping
diagnosis. With the increasing prevalence of mobile devices and
advancements in AI analytical capabilities, it is anticipated
that a system of objective indicators, complementary to

traditional symptomatology, can be established, making
the diagnostic criteria for mental disorders more scientific

and comprehensive.

3.4 Treatment strategies and precision
psychiatry

“Precision psychiatry” is a concept that has gained prominence
in recent years, introducing the principles of precision medicine
to the mental health field (49, 50). Its core objective is to
tailor treatment regimens based on an individual’s biological
characteristics and pathological mechanisms, thereby enhancing
therapeutic efficacy and reducing trial-and-error approaches.
Artificial intelligence provides crucial support for achieving this
vision: by learning from vast clinical and biological datasets, AI
models can help predict a patient’s response to a specific treatment,
inform clinical decision-making, and accelerate the development of
novel therapies.

In the domain of clinical decision support, machine learning
algorithms have been utilized to construct treatment response
prediction models. Traditionally, psychiatrists often engage
in iterative trials of pharmacological and psychotherapeutic
interventions to identify suitable treatments for patients. Al
models, however, can leverage a patient’s baseline multidimensional
data (including symptom assessments, neuroimaging, physiological
indicators, genetic information, etc.) to predict the probability of
their response to specific medications or therapies (24, 36). For
example, in patients with depression, models may predict their
sensitivity to SSRIs based on brain functional connectivity patterns
and genotypes, thereby guiding physicians in selecting medication
or switching to cognitive behavioral therapy.

Such precise predictions hold immense value in major
mental disorders, as they can shorten the duration of ineffective
treatment trials, facilitate earlier implementation of effective
interventions, and improve overall therapeutic outcomes. Research
has confirmed that brain biomarkers in different patient subtypes
are closely associated with treatment outcomes: variations in
brain networks often determine the intensity of effect of
antidepressants or antipsychotics on patients (24, 51, 52). Al
can mine these relationships and translate them into actionable
clinical tools.
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This indicates that through AI analysis, it is possible to
discern, prior to treatment initiation, which patients are more
likely to benefit from a specific intervention, thereby realizing
individualized treatment strategies akin to “prescribing the right
drug for the right patient.”

4 Applications of artificial intelligence
in clinical psychiatric practice

4.1 Intelligent auxiliary diagnosis

In clinical practice, Al is progressively assuming the role of
a “second diagnostic opinion.” Intelligent diagnostic systems can
integrate patients’ symptom descriptions, medical histories, and
auxiliary examination results to provide preliminary diagnostic
suggestions or risk assessments. For example, Natural Language
Processing (NLP) techniques can extract pertinent information
from physicians’ notes within electronic health records (EHRs)
and, through deep learning models, convert unstructured text
into structured diagnostic cues. A 2024 study developed a
Transformer model that automatically extracts multi-year health
data of patients from medical records to predict future disease
risk, generate differential diagnosis lists, and propose medication
recommendations (53). Although this model is still in the
validation phase and not yet directly applicable for decision
support, it demonstrates the potential of AI to automatically
organize and analyze complex clinical information to assist
in diagnosis.

Furthermore, some clinically-oriented AI systems have already
been implemented. For instance, mental health assessment
chatbots can collect symptom information in real-time through
conversations with patients, conduct preliminary screenings for
common conditions such as depression and anxiety, and flag
cases requiring further evaluation. Such Al-driven screening tools
can save clinicians’ time, enabling them to focus their efforts on
patients who require heightened attention (53). Additionally, to
provide a clearer overview of Al applications in psychiatry, we
have categorized AI applications according to different clinical
domains and annotated their current development stages, as shown
in Table 1.

Overall, Al-assisted diagnostic systems contribute to enhancing
the early detection rates and accuracy of mental disorders.
Particularly in resource-limited settings and environments with a
shortage of specialized professionals, they can serve as a beneficial
supplementary tool.

4.2 Personalized treatment decision
support

Al capabilities extend beyond “diagnosis” to assisting in
“decision-making.” In clinical psychiatry, each patients response
to treatment varies considerably. By analyzing the treatment
processes and outcomes of a large cohort of patients using
machine learning models, key features influencing therapeutic
efficacy can be identified, thereby providing reference suggestions
for individual patients during clinical decision-making (33).
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For example, Al models can predict a patient’s probability
of responding to a specific antidepressant or antipsychotic
medication based on their baseline characteristics (including
genetics, polysomnographic physiological indicators, and previous
treatment responses). If a model predicts a poor response to
a first-line medication for a particular patient, physicians can
adjust the treatment plan promptly based on this information,
avoiding delays associated with ineffective treatment. Such
decision support systems effectively internalize vast clinical
experience into algorithms, assisting physicians in making
evidence-driven decisions.

Literature indicates that AI has the potential to redefine
treatment strategies for mental disorders, rendering them more
precise (3). For instance, machine learning can optimize drug
dosages and combinations, reducing the risk of side effects.
Deep learning algorithms can also discern progress in cognitive
behavioral therapy from subtle changes such as handwriting
and language patterns, thereby prompting therapists to adjust
intervention strategies. It is crucial to emphasize that Al provides
recommendations rather than directives; the autonomy for clinical
decision-making remains with the physician. However, research
suggests that with AI assistance, the consistency and rationality
of clinical decisions may improve, and physicians’ efficiency in
utilizing big data may also be enhanced (54).

In the future, with the maturation and application of Al
decision support systems in psychiatry, physicians will be able to
formulate individualized treatment plans with greater confidence,
providing patients with “the right treatment for the right person at
the right time.”

4.3 Mental health monitoring and
prediction

Mental disorders frequently follow recurrent and chronic
courses, making longitudinal assessment essential for prognosis
and relapse prevention. Al-enabled personal sensing and digital
phenotyping leverage high-frequency data from smartphones and
wearables to derive behavioral and physiological proxies of mental
state. Passive streams (e.g., accelerometer- and gyroscope-derived
activity, GPS-based mobility, microphone-based prosodic features)
and human-device interaction traces (e.g., communication
patterns, social-media language, typing dynamics) have been
associated with fluctuations in symptoms and functioning,
offering near-continuous signals that complement clinic-based
assessments rather than replace them (11, 13, 37). In parallel,
wearable physiology has shown promise for individualized
prediction in specific contexts; for example, heart-rate-variability
features captured by consumer-grade devices, combined with
machine learning, have been used to predict the efficacy of
group cognitive-behavioral therapy (12). Within this cautious
frame, AI models trained on smartphone and social-media
data are being investigated for risk stratification of depressive
symptom worsening and suicidal ideation; while early reports and
study protocols highlight feasibility, robust external validation
and governance safeguards remain prerequisites for clinical
deployment (40, 55).
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TABLE 1 Summary of Al applications in psychiatry by clinical domain and their current evidence maturity level.

Diagnostic classification Multimodal data fusion for subtype identification Validation phase (24-30)
Etiological exploration Graph neural networks for brain network analysis Pilot phase (33-36)
Objective diagnosis Digital phenotyping via smartphones and wearables Deployment phase (38, 41, 48)
Treatment prediction Machine learning models for antidepressant response prediction Validation phase (22,37, 55)
Intelligent diagnostics NLP-based extraction from EHRSs for risk stratification Pilot phase (58, 59)
Decision support systems Predictive models for personalized treatment selection Validation phase (61-63)
Continuous monitoring Real-time behavioral tracking via wearables and mobile data Deployment phase (64, 66)
Psychotherapy assistance AI chatbots and VR-based therapeutic interactions Pilot/validation phase (59, 67, 68)

Evidence maturity levels are categorized as follows:
— Pilot Phase: Proof-of-concept studies, small samples, single-center.
— Validation Phase: Replicated in independent cohorts, methodological rigor improved.

— Deployment Phase: Implemented in real-world settings, with ongoing efficacy and safety monitoring.

Research has demonstrated that AI can predict an individual’s
risk of depressive episodes or suicidal ideation with considerable
accuracy by analyzing social media posts and data from wearable
devices (40, 55). Once a model identifies risk signals, it can
promptly issue alerts to the patient, their family members, or
healthcare providers, enabling intervention before a crisis occurs.
This Al-based mental health monitoring overcomes the reliance of
traditional healthcare on in-person visits, providing an opportunity
for “silent” conditions to be detected in a timely manner.

In summary, Al-driven monitoring and prediction are
transitioning mental healthcare from episodic, clinic-based
thereby
enhancing the capacity to prevent relapse and deterioration.

encounters to continuous, dynamic management,

4.4 Intelligent psychotherapy and
rehabilitation

In addition to auxiliary diagnosis and monitoring, Al is also
directly involved in psychological intervention practices, giving rise
to novel therapeutic modalities. For instance, chatbot therapy and
virtual reality (VR)-assisted therapy are two emerging directions
in recent years. Chatbots (e.g., Woebot) utilize Natural Language
Processing (NLP) techniques to engage in conversations with users,
guiding them to apply techniques such as cognitive behavioral
therapy (CBT) to regulate emotions. Although current chatbot
conversations remain relatively superficial, studies have indicated
their potential to alleviate mild to moderate symptoms of anxiety
and depression, serving as a supplement to traditional treatments.

More advanced therapeutic explorations combine virtual reality
with large language models (LLMs). In 2024, Spiegel et al. (56)
developed an extended reality (XR) AI assistant that integrates
VR scenarios with the GPT-4 model to provide precise mental
health support for patients with depression and anxiety. Upon
wearing VR equipment, the system simulates therapeutic scenarios,
converses with the patient, and provides responses based on CBT,
while an emotion analysis module adjusts the virtual therapists
expressions and tone (57). Preliminary results suggest that such AI
therapeutic assistants are attractive to patients reluctant to engage
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with human therapists, offering a new alternative to traditional
in-person counseling.

Furthermore, Al technology is also being employed to enhance
the accessibility and equity of mental health services. A 2024 study
introduced an Al-supported self-referral chatbot within the UK’s
National Health Service (NHS), resulting in a significant increase in
the proportion of individuals from ethnic minority groups seeking
mental health services through this system. Feedback indicated that
the Al chatbot reduced the cultural and linguistic barriers perceived
by these groups when seeking help, contributing to overcoming
long-standing health service inequalities (58). Thus, the application
of Al in psychotherapy and rehabilitation is evident not only at
the level of technological innovation but also in improving patient
experience and healthcare equity.

In the future, as generative AI becomes more adept at
understanding and responding to human emotions, we may
witness Al therapeutic assistants that are more “empathic,” further
expanding the boundaries of clinical psychiatric practice.

5 Adapting medical education to Al
challenges: curricular and training
strategies

5.1 Curricular adjustments and cultivation
of Al literacy

In response to the profound impact of AI on psychiatry,
medical education must proactively reform training programs to
ensure that future physicians are competent in technologically
empowered clinical environments. However, it is reported that
most medical school curricula have not yet systematically
incorporated Al-related content, and many medical students and
physicians lack fundamental knowledge of AI principles and
applications. This deficiency may hinder their ability to fully utilize
AT tools upon entering clinical practice (59).

To bridge this gap, the medical education community is
advocating for the integration of AI course modules into existing
curricula. Some scholars have proposed the development of a
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standardized core curriculum in “Medical Artificial Intelligence,”
incorporating four key pillars—technological concepts, model
ethical
into medical student training (60). For example, a group of

validation, guidelines, and outcome assessment—
medical students published an article in 2023 proposing an Al
teaching syllabus for global medical schools, aiming to cultivate
students’ competencies at three distinct levels: “Al tool users

» «

(consumers),” “Al clinical translators,” and “AI developers” (61).
This recommendation reflects the need for medical education
to impart Al-related knowledge in a tiered manner, tailored to
students’ diverse backgrounds. All future physicians should possess
basic literacy in selecting and using appropriate Al tools. Students
with an interest in data science could delve deeper into machine
learning methodologies to act as a bridge between clinical practice
and technology. A select few, proficient in both programming
and medicine, could become developers and leaders of medical
Al systems.

Regarding implementation, some institutions have begun
exploring pathways to incorporate Al into their curricula. For
instance, Harvard Medical School has pioneered the integration
of generative Al content into its medical curriculum, recognizing
that this technological revolution will profoundly alter the essential
skills required of physicians, thus advocating for students to
“learn to coexist with Al as early as possible”(62). For institutions
with already saturated curricula, elective workshops or online
modules can be adopted to teach AT knowledge, flexibly broadening
students’ perspectives (59).

To integrating Al into the curriculum in resource-limited
settings, a feasible pathway is to stage competencies across
cost-sensitive tiers. First, anchor practical instruction in an
open-source, CPU-only stack—Python with scikit-learn, pandas
and standard plotting libraries—using de-identified or synthetic
datasets (e.g., Synthea-generated EHRs and publicly available
fairness-audit corpora). Offline, self-contained notebooks should
prioritize classical machine learning, calibration, error analysis
and model critique before introducing deep learning. Second,
introduce a small pool of shared mid-range GPUs or tightly capped
cloud credits only to demonstrate concepts that truly benefit from
acceleration, such as basic sequence modeling or clinical NLP; favor
inference-only exercises with distilled models, small batch sizes
and non-identifiable data to control costs and governance risk.
Third, adopt a training-of-trainer approach to faculty development,
providing reusable case bundles, solution keys, performance
rubrics and objective assessments. Across all tiers, integrate data-
governance and algorithmic-fairness exercises and make learning
outcomes explicit so that students understand first principles,
appropriate indications and limitations of AL The pedagogical aim
is to cultivate critical users of Al—neither uncritical adopters nor
reflexive rejectors. In terms of workload, AI may reduce repetitive
answering and grading but adds responsibilities in task design,
oversight and integrity assurance; thus, its effect is best framed as
a redistribution of effort rather than a guaranteed reduction.

5.2 Innovation in teaching methodologies
In addition to adjustments in curriculum content, teaching
methodologies are also evolving with the integration of AL AI

technology can be leveraged to enhance the effectiveness of
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medical teaching and cultivate students” ability to adapt to future
intelligent healthcare environments. A significant innovation is the
introduction of intelligent tutoring and virtual simulation tools.
For instance, Al-driven chatbot tutors have been employed to
address challenging questions encountered by medical students
post-lecture. By utilizing powerful NLP models, these chatbots
can comprehend medical questions posed by students and
retrieve information from vast medical knowledge bases to
provide timely answers (63). Research indicates that such chatbot
assistants, available 24/7, can offer personalized learning support to
students, alleviate the burden on faculty for query resolution, and
simultaneously help students consolidate knowledge and develop
clinical decision-making skills through interactive dialogue.
However, it is also necessary to guide students in correctly
perceiving the limitations of Al-assisted teaching. For example,
chatbots
references or answers (the so-called “hallucination” phenomenon);

current general-purpose may generate incorrect
therefore, students should use them as auxiliary tools under faculty
guidance rather than as authoritative sources (63).

From an implementation standpoint, integrating Al typically
redistributes faculty workload. Upfront effort increases for policy
design, boundary setting, and academic-integrity oversight; once
guardrails and assessment artifacts are established—such as
requirements for process evidence, sampling-based verification of
outputs, and brief viva-style defenses—chatbots can triage routine
queries and enable more scalable formative feedback. The net
time effect is context-dependent and should be evaluated within
each course, while maintaining instructor accountability for high-
stakes judgments.

Another important transformation is the advancement of
virtual patients and simulation training. Traditional medical
education often utilizes standardized patients (portrayed by
actors) for students to practice history-taking and physical
examinations. Now, large language models (LLMs) have made
it possible to create realistic virtual patients. An educational
team at Harvard Medical School developed a “Standardized
Patient-Large Language Model (SP-LLM),” training an Al patient
capable of interacting with students using institution-specific
case data (64). Students can “communicate” with the virtual
patient via text or voice, simulating the entire outpatient process
from collecting medical history and conducting psychological
assessments to proposing diagnostic and treatment plans.
Commendably, these AI patients also provide feedback on student
performance from the dual perspectives of “patient” and “assessor”
after the simulation, including the thoroughness of clinical
reasoning and communication skills (64). This innovative teaching
method provides students with more opportunities for repeated
practice in a risk-free environment, thereby enhancing their
clinical skills.

Furthermore, Al is also being utilized for adaptive learning and
assessment. Intelligent teaching systems can adjust the teaching
pace and content according to students mastery levels and
even dynamically alter question difficulty during assessments
to specifically reinforce weaker areas. These learner-centered
pedagogical innovations fully embody the empowering role
of Al-cultivating students’ knowledge, skills, and competencies
through personalized and intelligent means, thereby laying the
foundation for their proficient application of AI in future
clinical practice.
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5.3 Transformation of clinical skills training

The era of artificial intelligence also compels medical educators
to re-examine the priorities in clinical skills training. As Al
assumes more prominent roles in diagnosis and decision-making,
the skill set required of physicians will undergo adjustments.
This is particularly true in the field of psychiatry. The value of
psychiatrists largely resides in “soft skills” such as establishing
therapeutic relationships with patients and conducting meticulous
psychological assessments (60, 65). These capacities for humanistic
care and communicative insight are core competencies that Al
can hardly replace. Consequently, medical education needs to
further reinforce the cultivation of humanistic competencies in
medical students. For instance, during psychiatric clerkships and
internships, greater emphasis should be placed on training students’
communication skills, empathic abilities, and keen observation of
patients’ non-verbal behaviors (66). Even if Al can provide auxiliary
diagnoses in the future, physicians will still need to understand
patients’ inner worlds and build bonds of trust through face-to-
face interviews.

Furthermore, medical students should practice skills for
collaborating with AI tools. This includes the ability to use
and interpret Al-generated results in clinical contexts and to
make final judgments after integrating AI suggestions with
traditional diagnostic and therapeutic information. This essentially
constitutes critical thinking training: students must learn
neither to blindly follow AI nor to disregard it, but rather
to use it as one reference for decision-making, adopting its
outputs after their own analysis and verification (61, 62, 67).
Some educational programs have begun to design case-based
teaching, allowing students to use AI decision support tools
in simulated scenarios and then discuss the reliability and
ethical implications of AI conclusions, thereby cultivating their
technological judgment.

Finally, medical education should also help students establish
a correct professional identity—that future physicians must
be both “technologically empowered” doctors proficient in
Al and, more importantly, “true humanistic physicians”
equipped with empathy and humanistic care. This requires
a continuous emphasis on the values of medical benevolence
throughout the teaching process, guiding students to reflect
on the irreplaceable role of humans in healthcare. Some
researchers have proposed a “Humanistic Medicine-Artificial
Intelligence Integrated Education (HuMe-AINE)” framework,
advocating for comprehensive reform in medical education
through standardized Al
training, full integration of AI tools into the curriculum,

initiatives such as competency
reinforcement of critical thinking exercises that merge technology
and humanism, and reshaping the professional identity of
physicians to encompass both technological and humanistic
literacy (68).

In summary, medical education must embrace the challenges
of Al with an open and forward-looking attitude. While imparting
Al knowledge and skills to students, it must also solidify
their humanistic foundation, cultivating a new generation of
psychiatrists who can both utilize advanced technology and retain
the warmth of a physician.
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5.4 Regulatory frameworks and governance

The rapid advancement of AI in psychiatry has prompted
international regulatory bodies to develop guidelines and
frameworks to ensure these technologies are safe, effective, ethical,
and equitable. Understanding these evolving regulatory landscapes
is crucial for clinicians, researchers, and developers aiming to
translate Al innovations into clinical practice.

World Health Organization (WHO): In 2021, the WHO
published its guidance on Ethics and Governance of Artificial
Intelligence for Health, which provides a comprehensive
framework for addressing ethical challenges (69). The report
outlines six core principles for the ethical use of AI in health: (1)
protecting human autonomy; (2) promoting human wellbeing
and safety and the public interest; (3) ensuring transparency,
explainability, and intelligibility; (4) fostering responsibility and
accountability; (5) ensuring inclusiveness and equity; and (6)
promoting Al that is responsive and sustainable. For psychiatry
specifically, the WHO’s emphasis on equity is critical. It mandates
that AI tools must be validated on diverse populations to avoid
perpetuating global mental health disparities. Furthermore, the
principle of protecting autonomy raises specific questions about
informed consent for patients with conditions that may impair
judgment, necessitating adaptable consent processes for the use of
passive digital phenotyping and monitoring tools.

European Union Artificial Intelligence Act (EU AI Act):
As the worlds first comprehensive legal framework for Al
the EU AI Act adopts a risk-based approach, classifying AI
systems into four categories: unacceptable risk, high risk, limited
risk, and minimal risk (70). AI systems used in mental health
are unequivocally classified as high-risk, falling under the
product safety legislation for medical devices. This classification
carries significant implications. Developers of Al-based diagnostic
software or treatment decision-support systems for psychiatry must
undergo a strict ex-ante (prior to market release) conformity
assessment. This includes demonstrating robustness, accuracy,
cybersecurity, and the provision of clear instructions for use.
Furthermore, the Act mandates fundamental rights impact
assessments and ensures human oversight, requiring that any Al-
assisted psychiatric diagnosis must be validated or confirmed by
a qualified human professional. The high-risk designation also
demands rigorous post-market monitoring to identify and mitigate
any emerging risks, such as algorithmic drift or newly discovered
biases when deployed in real-world clinical settings.

U.S. Food and Drug Administration (AI/ML-Based Software as
a Medical Device Action Plan): The FDA has taken a proactive but
adaptive approach to regulating AI/ML-based medical software.
Its central initiative is the development of a framework for
predetermined change control plans (22). This acknowledges that
Al models, unlike traditional medical devices, are designed to
learn and improve over time. For psychiatry, this is particularly
relevant for adaptive algorithms that personalize treatment
recommendations based on continuous patient data input. A
developer must pre-specify the types of modifications (SaMD
Pre-Specifications, or SPS) and the associated algorithm change
protocol (ACP) that will be used to retrain the model, ensuring
that all updates are performed in a controlled and validated manner
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that maintains safety and efficacy. This approach aims to foster
innovation while ensuring that “locked” algorithms (which do
not change) and “adaptive” algorithms (which do change) are
both appropriately monitored throughout their lifecycle. This is
essential for ensuring that a therapy recommendation algorithm for
depression does not evolve in an unpredictable or harmful way after
widespread deployment.

The convergence of these frameworks highlights a global
consensus on key tenets: the necessity of transparency, the
imperative for robust clinical validation across diverse populations,
the irreplaceable role of human oversight in psychiatric care, and
the need for lifelong monitoring of AI systems. For the field of
psychiatry, these regulations provide a crucial safeguard, ensuring
that the pursuit of technological advancement is inextricably
linked to the foundational principles of patient safety, equity, and
professional accountability.

6 Ethical and societal challenges of Al
applications and the role of medical
education

6.1 Data privacy and security

The application of AI in psychiatry inevitably involves the
collection and processing of highly sensitive personal mental health
data. This raises significant privacy and security concerns. If
patients’ electronic health records, treatment histories, or even
daily behavioral data are utilized for machine learning training
and prediction, the methods for storing, sharing, and protecting
such data become paramount ethical issues. Currently, due to
concerns regarding data security and accountability, different
institutions often adopt a cautious stance on data sharing.
This hinders medical AI from accessing large-scale, multi-center
datasets required to train high-precision models, thereby limiting
model performance. Even when data are accessible, stringent de-
identification and encryption measures must be ensured to prevent
patient privacy breaches. Furthermore, if mental health data are
improperly utilized (e.g., for commercial marketing or insurance
risk assessment), it could cause harm to patients’ rights.

Therefore, medical education should enhance data ethics
training for future physicians, enabling them to fully recognize
the importance of protecting patient privacy and to uphold their
commitment to data security and patient informed consent in their
professional practice (71). Only by ensuring that data are used in an
ethical and secure manner can the value of Al in the mental health
field be realized sustainably and responsibly.

6.2 Algorithmic bias and fairness

The performance and impartiality of AI models are highly
dependent on the training data. If the training data are imbalanced
with respect to race, gender, socioeconomic status, or other
demographic factors, the model may inadvertently reflect these
biases in its outputs, leading to systematically disadvantageous
decisions for certain groups (17, 72). For example, if a model
predicting suicide risk is primarily trained on data from Western
populations, its accuracy may decrease or it may produce
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erroneous judgments when applied to patients from other
cultural backgrounds, potentially delaying intervention or causing
unnecessary distress.

Furthermore, psychiatric diagnosis itself is susceptible to
preconceived notions; if Al learns from biased clinical records, it
may reinforce existing prejudices.

To mitigate these issues, researchers are developing Al fairness
auditing tools, such as Google’s What-If Tool and IBM’s Al
Fairness 360, which can be used to detect performance disparities
across different population subgroups and to facilitate adjustments
(3, 54, 72). Among these, Al Fairness 360 implements bias
detection metrics (e.g., statistical parity differences, differential
impact, and equal opportunity differences) and three intervention
series: pre-processing (e.g., reweighting, optimized pre-processing),
in-processing (e.g., adversarial de-biasing), and post-processing
(e.g., odds balancing and calibrated odds balancing). Through a
workflow similar to “dataset — metric review — mitigation
—  re-review, Al Fairness 360 is integrated into healthcare
AT development and validation. Medical education should play a
crucial role in this regard by cultivating in medical students an
awareness to identify and question AI bias. When an AI system
provides conclusions inconsistent with clinical intuition, physicians
should be capable of inquiring whether this could be attributable to
data or algorithmic bias. Through case-based teaching and ethical
discussions, students can learn how to detect and report potential
unfairness in Al systems and participate in their improvement.
This will help ensure that future applications of medical AI do not
compromise the interests of vulnerable populations.

It is noteworthy that, if designed and utilized appropriately,
Al can also promote health equity—for example, by incorporating
data from underserved regions into training to make models
applicable to a broader population, or by leveraging Al-assisted
decision-making to reduce the impact of human bias on diagnosis
and treatment (72). Therefore, educating medical graduates
about algorithmic fairness will equip them with the tools and
responsibility to safeguard medical justice in their practice.

6.3 Transparency and accountability

Many AI models, particularly deep learning models, operate
as “black boxes,” meaning it is difficult to explain to users the
specific basis for a given decision. This is especially sensitive in
psychiatric applications: if an Al suggests a patient has a high
suicide risk but cannot elucidate which behaviors or features led
to this conclusion, clinicians and patients may harbor doubts
about its reliability. Opaque decision-making processes also pose
challenges for accountability—if an AD's recommendation leads to
misdiagnosis or mistreatment, should the algorithm developer, data
provider, or the clinician using the AI be held responsible?

Therefore, enhancing the interpretability of Al decisions and
establishing clear accountability frameworks are crucial aspects of
Al ethics. Technologically, eXplainable Artificial Intelligence (XAI)
is an emerging field aimed at providing human-understandable
explanations for black-box models (73). In psychiatry, this might
involve highlighting the symptoms or indicators that the AI deems
most important, or providing references to similar cases, enabling
clinicians to assess the rationality of Al recommendations. Some
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researchers advocate for prioritizing the use of interpretable models
over purely black-box models for high-stakes clinical decision-
making (74).

At the regulatory level, many countries are beginning to explore
oversight and accountability mechanisms for medical Al requiring
AT systems used in clinical settings to meet certain standards
and to clearly delineate the division of responsibilities among
various parties in the event of adverse incidents (75). In this
domain, medical education can facilitate ethical case discussions
to encourage students to proactively consider dilemmas such as:
what should be done when AT’s opinion conflicts with a physician?
How should errors resulting from reliance on AI be managed?
By discussing these issues, students can cultivate the attitude and
ability to appropriately supervise Al and be accountable to patients
in their future professional practice.

In conclusion, enhancing transparency and clarifying
accountability are not merely technical and legal issues but also
essential professional competencies for future physicians.

6.4 Physician-patient relationship and
humanistic care

Perhaps the most profound and subtle challenge for psychiatry
lies in maintaining the centrality of humanistic care within a
highly technologized healthcare environment. The efficacy of
psychiatric treatment is largely dependent on the therapeutic
alliance and empathic support—patients need to feel understood
and cared for. With the increasing involvement of Al in
diagnosis and treatment, concerns have been raised that this
may weaken the emotional connection between physicians and
patients, potentially rendering healthcare cold and impersonal.
On one hand, if physicians become overly reliant on Al analysis,
they might reduce face-to-face interaction time with patients or
place insufficient emphasis on patients’ subjective experiences.
On the other hand, some patients may be resistant to Al
intervention in mental health services, fearing being treated by
a “machine” rather than cared for by a human. Furthermore,
healthcare professionals themselves may experience anxiety about
“replacement,” worrying that AI could devalue their meticulously
honed clinical skills and affect their sense of professional
meaning (76).

For medical educators, a crucial task is to strike a balance
between technology and humanism, ensuring that graduating
physicians are both proficient in AI and retain their human
warmth. Specific include:

strategies strengthening medical

humanities education by integrating psychology, ethics,
and communication skills training into the curriculum,
enabling students to deeply recognize the indispensable

role of human emotions and values in healthcare; fostering
correct perspectives by emphasizing that Al is an auxiliary
tool rather than a replacement for physicians, capable of
processing information but unable to substitute for human
understanding and compassion; and cultivating empathy through
teaching methods such as patient role-playing and narrative
medicine to reinforce students’ perception of and compassion
for patient experiences, thereby ensuring patient-centered care
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regardless of the extent of technological involvement in future
healthcare (77-79).

As advocated by Jeste et al. (80) for Al to genuinely improve
healthcare in the future, it must embody the concept of
“Artificial Wisdom”—integrating the empathy and ethics of
human intelligence to provide compassionate and ethical
care. To this end, medical education must undertake the
mission of cultivating students’ ethical reasoning abilities
and humanistic spirit, enabling them to both harness
the “intelligence” of AI and uphold the “benevolence” of

a physician.

7 Challenges and future perspectives

Despite  the prospects
artificial intelligence in the field of psychiatry, its large-

exciting demonstrated by

scale application still confronts numerous challenges,
necessitating sustained efforts from the research, clinical, and

educational communities.

7.1 Technical and clinical validation
challenges

Currently, many AI models exhibit excellent performance
on closed datasets; however, whether they can maintain this
performance in complex real-world environments remains
uncertain. Research has found that some machine learning
models trained on data from large clinical trials experience a
significant decline in performance when applied to independent,
real-world clinical datasets (81). This indicates an urgent need
to validate the external validity and generalizability of these
models through studies involving broader populations and longer
follow-up periods.

Furthermore, mental disorders are characterized by high
heterogeneity and dynamism, making the development of Al
models capable of capturing the full spectrum of disease and
sensitive to individual differences a non-trivial task (29). Future
research must strive to enhance model interpretability and
robustness concurrently with improving accuracy. For instance,
integrating interpretable models can help ensure clinician and
patient trust in Al-generated conclusions, while training with
multi-center data can improve model applicability across diverse
populations (82).

7.2 Regulatory and standardization
challenges

As Al tools progressively enter clinical practice, healthcare
regulatory bodies need to establish corresponding standards
and regulations to ensure their safe and effective use. This
includes independent evaluation and approval of Al algorithms,
as well as the establishment of continuous monitoring and
updating mechanisms. Some countries have begun to issue
provisional guidelines for medical Al but globally harmonized
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industry standards have yet to be formulated. Legal frameworks
for accountability and ethical guidelines also require further
clarification to balance the promotion of innovation with risk
mitigation (83). Collaborative dialogue among policymakers,
technology developers, and clinical experts will be crucial in
shaping a favorable environment for AT applications.

7.3 Future outlook

Looking ahead, artificial intelligence is poised for closer
integration and synergy with psychiatry. Firstly, in the realm
of scientific research, interdisciplinary collaboration will drive
the advancement of computational psychiatry. The partnership
between computer scientists and psychiatrists can lead to the
development of models more attuned to clinical needs and can
feed new data analysis findings back into disease theory research,
accelerating the transition of mental disorders from conceptual
classification to biomarker-based classification. Investment of
funding and resources is also crucial—for instance, the U.S.
National Institute of Mental Health (NIMH) has designated
explainable AI as a priority funding area, and private technology
companies are collaborating with mental health startups to
translate research findings into clinical tools (3).

Secondly, concerning clinical applications, we may witness
the emergence of AI systems that are more intelligent and
possess “emotional intelligence.” Just as current voice assistants
are continually becoming “smarter;” future psychiatric AI may,
to some extent, simulate human emotional responses, becoming
“machine colleagues” that genuinely understand patient emotions.
Literature suggests that future AI will need to incorporate aspects
of emotional intelligence, ethics, and empathy to be termed
“Artificial Wisdom” rather than merely Artificial Intelligence (3,
41, 84). This implies the potential emergence of Al therapeutic
assistants with personalized traits and emotional support robots;
scenarios previously confined to science fiction that are gradually
becoming feasible. Concurrently, the role of human physicians
will also evolve: future psychiatrists will increasingly act as
“supervisors” and “collaborators” with AI, combining their
professional expertise with AI’s computational advantages to serve
patients collectively.

Finally, medical education will also be a process of continuous
innovation. Curricular content must evolve with the times,
promptly incorporating new Al developments and lessons learned.
Teaching methodologies will fully leverage AI tools themselves,
such as intelligent tutors providing personalized guidance to
students and data analytics assisting in the evaluation of
teaching effectiveness (85). A more profound change lies in
the educational philosophy—emphasizing lifelong learning and
interdisciplinary collaboration, encouraging medical students to
continuously update their technological skills throughout their
careers, and to collaborate with experts in fields such as engineering
and ethics to solve complex problems. Only through such
endeavors can the medical community ensure that Al technology
is applied reasonably, effectively, and ethically in the field of
mental health.
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8 Conclusion

Artificial intelligence technology is reshaping the theory
and practice of psychiatry at an unprecedented pace. From
novel insights into disease classification and etiology at

the research end, to intelligent diagnostics, personalized
treatment, and real-time monitoring at the clinical end, AI
has demonstrated immense potential for enhancing mental
health services.

However, this transformation is accompanied by underlying
concerns and challenges, reminding us that technological
advancement must proceed in parallel with ethical reasoning.
Medical education plays a crucial bridging role in this context: it
must equip future psychiatrists with the “hard skills” of AI, while
simultaneously reinforcing their humanistic literacy and ethical
“soft power;” ensuring that physicians always prioritize patient
wellbeing when collaborating with AL

In essence, artificial intelligence is not an antagonist to human
therapists but rather holds the promise of becoming a powerful
partner for psychiatrists. Through a scientifically rigorous approach
and prudent, comprehensive educational training, we can leverage
the strengths of AI to compensate for human limitations, while
guiding AI development with human wisdom in a direction
beneficial to patients.

Looking forward, mental health services that integrate AI
technology and humanistic care will become more efficient, precise,
and compassionate, offering patients greater hope for recovery.
Provided that we utilize artificial intelligence judiciously and
adhere steadfastly to medical ethics, the future of psychiatry will
undoubtedly usher in a new era of human-machine collaboration

for co-creating health.
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