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Fangyuan Ju ® '*, Xu Han', Mengyun Zhao! and Shuo Wang?
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Background: As population aging accelerates, the development of precise health
monitoring technologies for older adults is crucial for mitigating functional
decline and chronic disease risks. The “Intrinsic Capacity (IC)" framework,
proposed by the World Health Organization(WHO), defines five core dimensions
of older adults’ functional ability: locomotion, vitality, cognition, psychological
and sensory. Wearable motion sensors provide a novel approach for early
detection and continuous monitoring of these dimensions.

Methods: This study conducts a systematic literature review of empirical
research in 20 years (from 2005 to 2025), focusing on how motion sensors
capture IC-related changes during brisk walking in older adults. A total of 23
studies were included after screening.

Results: Key findings reveal that adults aged 60-74 demonstrate the highest
levels of technology acceptance and compliance, whereas individuals over 80
years old favor simpler, more user-friendly devices. Triaxial accelerometers,
pressure sensors, photoplethysmography (PPG), and electrodermal activity (EDA)
sensors are used to monitor gait rhythm, stability, heart rate regulation, and
emotional stress, respectively.

Conclusions: The results indicate that motion sensor technologies offer
comprehensive coverage across all five IC dimensions and hold strong potential
for continuous assessment, anomaly detection, and personalized intervention.
Future research should prioritize multimodal sensor integration and algorithm
optimization to enhance real-world applications in health management and
remote monitoring for aging populations.
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1 Background

With global population aging, maintaining physiological function and independent
living in older adults has become a major focus of public health and clinical research (1, 2).
The World Health Organization (WHO) introduced the concept of “intrinsic capacity
(IC),” which refers to an individual’s composite physical, cognitive, and psychological
functioning (3-5). This framework has been widely adopted to assess health potential and
functional reserve in older adults (6, 7). IC consists of five core dimensions: locomotion,
vitality, sensory function, cognition, and psychological state (5, 8). Unlike traditional
assessments based on disease diagnosis or functional scales, the IC framework emphasizes
continuous functional change and highlights the urgent need for high-resolution, non-
invasive, multidimensional assessment tools (5, 6, 9).
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Among various lifestyle behaviors, brisk walking is regarded
as an ideal activity for reflecting IC status because it engages
neural, muscular, sensory, and cognitive systems simultaneously
(10, 11). Empirical studies have shown that brisk walking improves
lower limb strength, balance, and cardiorespiratory endurance,
and helps regulate blood pressure and glucose levels, thereby
reducing fall risk (12, 13). Walking also involves attentional control,
rhythmic regulation, and perceptual feedback, with behavioral
characteristics closely linked to multiple IC dimensions (11, 14).
For example, gait rhythm fluctuations may indicate cognitive load,
delayed movement initiation may reflect reduced vitality, and rapid
adaptation to terrain may signal efficient sensory processing (15,
16). Walking is thus not only an effective intervention but also a
valuable window into multidimensional IC assessment.

Motion sensor technology provides a key means of objectively
quantifying IC’s multidimensional functions during walking (17,
18). In recent years, wearable and ambient sensors—such as
inertial measurement units (IMUs), plantar pressure sensors,
hear trate variability (HRV)sensors, EDA, modules and PPG
modules—have been widely adopted to monitor older adults’
health behaviors (19, 20). These devices capture gait parameters,
movement patterns, reaction times, and physiological rhythms with
high frequency and low noise, mapping them to IC dimensions
through feature extraction and modeling (16, 21, 22). Technological
interventions have been shown to enhance older adults’ sense
of control and achievement, while supporting cognitive self-
monitoring, emotional regulation, and sustained autonomy (11,
23). Therefore, developing motion sensor-based IC assessment
systems represents a promising direction for digital health and
precision aging interventions.

This review aims to systematically examine how motion sensors
support walking in older adults, focusing on population-specific
adaptations, sensor mechanisms, and technical capabilities for
monitoring the five dimensions of intrinsic capacity.

2 Research method

2.1 Search strategy

This study adopted a systematic literature review approach and
conducted a comprehensive search in four major databases:
PubMed, Web of Science, EBSCOhost (SPORTDiscus &
CINAHL), and IEEE Xplore, while Google Scholar was used
as a complementary database for obtaining gray literature that
may not be gray literature that may not be indexed in mainstream
databases. The deadline for the search was 30 March 2025.

Abbreviations: IC, Intrinsic Capacity; QCRI, Qatar Computing Research
Institute; PPG, Photoplethysmography; HRV, Heart Rate Variability; HRR,
Heart Rate Recovery; EDA, Electrodermal Activity; ECG, Electrocardiography;
IMUs, Inertial Measurement Units; SVM, Vector Machine; CV, coefficient
of variation; MVPA, moderate, vigorous intensity physical activity; APP,
Application; CoP, Center of Pressure; MCI, Mild Cognitive Impairment;
SVM, Support Vector Machine; RF, random fores; DNN, Deep Neural
Network; SDNN, Standard Deviation of Normal to Normal RR Intervals;
SCR, skin conductance response; RMSSD, Root Mean Square of Successive

Differences.
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TABLE 1 PICOS framework.

Acronym Definition Scopes

P Population Older adults

Use of wearable or environmental
motion sensors (e.g., accelerometers,
pressure sensors, PPG, EDA)

I Intervention

No intervention, usual care, or
interventions without sensor-based
monitoring

Cc Comparison

O Outcome Changes in IC domains: locomotion,
vitality, cognition, sensory,
psychological status (measured via gait,

HRV, EDA, activity level, etc.)

S Study design Systematic reviews of experimental

studies

Keywords searched included: motion sensors, “older Adults”,
“brisk walking”, “ exercise monitor” and so on. During the search
process, keyword combinations were used and Boolean logic
operators (e.g., “AND”, “OR”, “NOT”) were applied to optimize
the search terms, ensuring the comprehensiveness and accuracy of
the search strategy. The specific search strategies are as follows.

2.1.1 Keyword combination

Combine “Wearable Devices” and “Older Adults”, and use the
Boolean operator “AND” to connect them, such as “Wearable
Devices AND Older Adults”. At the same time, use the “OR”
operator to connect related concepts, such as “Older adults OR
Aging Population”.

2.1.2 Exclusion criteria

The “NOT” operator was used to exclude literature that was
not relevant to the topic, e.g., “NOT Children”, to ensure that the
search results focused on the older adults population. For non-
wearable interventions, “NOT Non-Wearable Interventions” was
used to ensure consistency between the target population and the
objectives of the study.

In addition, reference lists, citation searches, and manual
searches were used to identify relevant literature that may have been
missed. The initial search yielded 2,382 articles.

2.2 Inclusion and exclusion criteria

This study screened the literature based on the population,
interventions, comparisons, findings and study design (PICOS)
model. The specific criteria are shown in Table 1.

Exclusion criteria included 1. studies in non-older adults
subjects (i.e., under 60 years of age) or interventions not related to
walking; 2. studies that were not peer-reviewed or did not have the
full text available; and 3. interventions involving only non-motor
sensors or studies with no specific motor findings.
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FIGURE 1
PRISMA flowchart.

2.3 Literature screening process

The literature screening process in this study strictly followed
the PRISMA 2020 standard and used the Rayyan Qatar Computing
Research Institute (QCRI) literature management tool to ensure
the objectivity and reproducibility of the screening. The screening
process included the following steps: first, all relevant literature was
extracted from various databases according to the search strategy;
subsequently, EndNoteX9 was used to perform automatic de-
duplication combined with manual screening to remove duplicates;
at the title and abstract screening stage, two independent reviewers
(Reviewer 1 & Reviewer 2) screened the literature according to
the inclusion criteria; for literature that met the initial screening
criteria, full-text reading screening was performed, and the
literature was finally identified. In case of disagreement during the
screening process, a third independent reviewer (Reviewer 3) made
a decision. The complete screening process and screening results
are detailed in Figure 1 (PRISMA flowchart) in the Results section.

2.4 Data extraction and analysis

Basic information about the study was extracted from

the included literature, including the study population,
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the intervention, and the main results. Standard data
forms were used to record the extracted information for
This

effectiveness

summarization and analysis.
evidence of the

in promoting exercise participation among older

study mainly focuses
on the of wearable sex
devices
and quantitative analyses
Table 2

23 papers

adults, and combines qualitative
for a comprehensive discussion. summarizes the

relevant information from the screened in

this exercise.

3 Results

3.1 Target audience

Of the 23 studies included in this systematic review,
all of them explicitly identified older adults as the core
target audience for exercise bracelet interventions, although
there were significant differences in how the concept of
“older adults” was defined, the enrolment criteria, and the
health status stratification. This reflects the fact that there
are still inconsistencies in the theoretical basis and practical
standards in the process of target user modeling in the
current study.
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TABLE 2 Characteristics of included studies (n = 23).

Population characteristics

Main sensors

10.3389/fpubh.2025.1659600

Key findings

Luetal. (34) Average age 60 with Accelerometer Moderate-to-vigorous activity is associated with better physical
community-dwelling women function, while sedentary behavior correlates with decline

Nagayoshi et al. Older adults with health Accelerometer Estimated activity intensity from accelerometer agrees with indirect

(25) calorimetry, supporting cross-age applicability

Nakajima et al. Older adults with independent walking Plantar pressure sensor Gait parameters such as pressure path and step length effectively assess

(22) ability gait stability in older adults

Asheretal. (41)

Older adults with health

PPG, plantar pressure
sensor, accelerometer

Synchronization of gait and heart rate reveals individual
physiological-behavioral rhythms for risk modeling

Bollaert et al. (36) Older adults with multiple sclerosis Accelerometer MS group showed lower activity, prolonged sitting, and functional
and healthy controls decline, supporting need for tailored intervention
Delmastro et al. Older adults with mild cognitive EDA, HRV Machine learning system identifies stress and training states, suitable

(23)

impairment and frailty

for cognitive health monitoring inMild Cognitive Impairment(MCI)

Master et al. (46)

Average age 65 with knee osteoarthritis

Tri-axial accelerometer

Physical function test (e.g., 400 m walk) predicts achieving 6,000
steps/day, supporting clinical goal-setting

Song et al. (39)

Older adults with weak foot and fall
risk

Plantar pressure sensor

Wearable pressure data based on weak foot characteristics effectively
assess fall risk and support intervention

Lee et al. (30)

Average age 74.5 with health

Plantar pressure board
sensor

GEMS improved step speed, stride length, and stance time; reduced
EMG activity and improved plantar pressure distribution

Howcroft et al.

Older adults with dual-task gait testing

Plantar pressure +

Dual-task condition impacts gait stability; sensor data support fall risk

(32) accelerometer assessment

Mori et al. (43) Older adults with walking training PPG Robot with integrated PPG accurately estimates exercise intensity with
assistance <1 bpm error

Kakita et al. (37) Older adults with cardiovascular Accelerometer Most activity is non-exercise based, emphasizing the value of daily
disease physical activity assessment

Soares-Miranda Older adults aged >65 from the 24-h Holter Physical activity is positively associated with HRYV, especially MVPA

etal. (42)

Cardiovascular Health Study

electrocardiography(ECG)

with HF HRYV; indicating benefit to autonomic nervous health

Kocuvan et al. (33) Older adults with simulated fall gait Accelerometer Wrist-worn device achieves 86% classification accuracy via Support
Vector Machine(SVM), outperforming phone (73%) for fall risk
prediction

Kumar et al. (38) Average age 65 with prefrail and frail Accelerometer 60-s continuous walking data identify frailty status with 76.8%

status sensitivity and 80% specificity

Yuetal. (24) Average age 78.9 with patients and PPG RGB camera estimates HR with RMSE of 0.48 bpm; HRV frequency

healthy individuals correlation up to 0.7; suitable for non-invasive monitoring

Nath et al. (26) Older adults with stress and cortisol EDA, PPG Multi-modal + cortisol-based XGBoost model achieves 87% accuracy

monitoring

for stress detection in older adults

Mickle et al. (28)

Average age 70 with
community-dwelling

Plantar pressure sensor

Foot pain and high plantar pressure correlate with fall risk;
intervention may help reduce falls

Laietal. (109) Average age 70 with independent Accelerometer Total MVPA duration more strongly linked to physical function than
walking ability specific activity periods

Clarke et al. (21) Older adults with functional Accelerometer AX3 effectively monitors walking activity, with high validity in
impairment and walking aids functionally impaired older adults

Karthikeyan et al. Older adults with gender-balanced HRV Multi-modal neurophysiological indicators accurately detect cognitive

(29) sample stress (accuracy 78-98%), sensitive to gender/activity

Choi et al. (44)

Older adults living alone (N = 14),
non-depressed

EDA, PPG, accelerometer

Machine learning model predicts depressive mood with recall of
82.7%, suitable for passive monitoring

Zhang et al. (31)

Older adults with and without fall
history

Plantar pressure insole,
accelerometer

Machine learning on multi-modal data achieves >85% fall prediction
accuracy; suitable for daily use in older adults

3.1.1 Differences in the use of different ages of
older adults
Age-related  differences

motion sensor systems (24). In particular, among advanced-
age populations, the deterioration of gait rhythm, circulatory

in physiological characteristics  system function, and skin electrodermal responsiveness

and motor abilities among older adults have a direct impact  often results in distorted sensor inputs and degraded output

on the signal acquisition quality and functional stability of data quality. These changes place greater demands on

Frontiersin Public Health 04 frontiersin.org


https://doi.org/10.3389/fpubh.2025.1659600
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Juetal

the adaptability and robustness of system-level monitoring
architectures (25-27).

In the younger-old age group (60-74 vyears), triaxial
accelerometers, PPG sensors, and EDA modules generally perform
within standard operational parameters (21, 24, 26, 28, 29). Gait
amplitude and movement intensity continue to elicit distinct
peak acceleration signals; the PPG sensor generates stable pulse
waveforms during short resting periods; and the EDA channel
exhibits effective responses to emotional stimuli and cognitive
task loads (24, 26). This cohort has demonstrated high device
compliance and favorable physiological responsiveness in existing
studies, enabling low-latency algorithm execution and high
recognition accuracy across sensor platforms.

In contrast, sensor systems deployed in the oldest-old group
(>85 years) or among frail individuals often encounter significant
performance constraints from both the signal source and user
interaction levels. For accelerometers, reduced stride amplitude
and frequency lead to smoothed waveform outputs, particularly
attenuating anterior—-posterior (X-axis) and lateral (Y-axis) signal
peaks, which in turn increase errors in gait cycle segmentation and
threshold-triggered event detection (25). For PPG sensors, reduced
skin permeability and age-related decline in microcirculation and
arterial elasticity flatten the pulsation waveform, compromising
the accuracy of key parameters such as heart rate recovery Heart
Rate Recovery (HRR) and HRV (24). Similarly, EDA signals are
weakened due to thickened stratum corneum and diminished
sweating response, significantly impairing sensitivity to emotional
stress detection (26).

In summary, the heterogeneity of physiological expression and
physical capacity across different older adults age groups critically
affects the signal acquisition efficiency of core sensors—including
accelerometers, PPG, and EDA modules—and diminishes the
reliability of output data. Older adults are more susceptible to
signal attenuation, waveform instability, and decreased recognition
accuracy, which in turn limits the effectiveness of standard
algorithms and conventional hardware designs. To address these
limitations, developing a stratified evaluation framework based
on age-specific physiological characteristics has emerged as a
key engineering direction for enhancing system robustness and
improving the precision of sensor-based interventions.

3.1.2 Functional requirement focus of older
adults with different health status

A total of 8 out of 23 included studies explicitly qualified
the health status of the subjects, reflecting the critical impact
of the health level of older adults on the deployment strategy
of sensor systems. Individuals in different functional states have
systematic differences in perceptual metrics, device acceptance,
and data accuracy requirements, which should be addressed with
fine stratification.

Among them, five focused on older adults with debilitated
function or high risk of falling, and commonly adopted a
synergistic solution of lumbar IMUs and plantar pressure
sensors for monitoring postural stability, gait symmetry, and
abnormal gait acceleration (28, 30, 31). Studies have shown
that the coeflicient of variation (CV) of gait is significantly
higher in this group in complex terrain or dual-task conditions,
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and sensor deployment requires high sampling frequency and
sensitive anomaly recognition (21, 32). For older adults with
chronic medical conditions (e.g., cardiovascular disease, diabetes,
etc.), studies have typically used multimodal devices integrating
PPG, HRYV, and triaxial acceleration to provide comprehensive
monitoring of locomotor center of motion dynamics, recovery
rate, and physiological stress levels (21, 24, 33). These devices
assist individuals with pacing and load self-awareness through
physiological threshold feedback. In contrast, healthy older adults
using lightweight, low-intervention accelerometer bracelets for
daily behavioral tracking and interactive motivation, mainly
monitoring moderate-vigorous intensity physical activity (MVPA)
time and average daily step count. Feedback was based on
APP notifications or vibration alerts, with emphasis on the
establishment of behavioral habits and exercise continuity
(25, 33, 34).

In summary, there are significant differences in the deployment
of sensors by older adults in different health states. The frail
individuals rely more on posture and stability monitoring, the
chronically ill need physiological load sensing support, and the
healthy group focuses on behavioral recording and interactive
based on health
stratification to build a functional matching model to achieve

feedback. Sensor interventions should be

optimal fit and intervention efficiency.

3.2 Differential effects of sensor types on
walking exercise monitoring

3.2.1 Triaxial accelerometers for step counting
and intensity recognition

As a core module of IMUs, triaxial accelerometers utilize
MEMS microstructures to detect linear acceleration along the X,
Y, and Z axes. They are widely used in older adults walking
monitoring systems due to their compact size, low power
consumption, and clear signal structure, enabling non-invasive,
continuous tracking of daily movement patterns (21, 25, 35) (refer
to Figure 2). These sensors are particularly suitable for monitoring
low-intensity activities in older adults.

Among the 23
accelerometers as the primary monitoring sensor to derive

studies reviewed, 10 utilized triaxial
multidimensional behavioral parameters such as step count,
moderate-to-vigorous physical activity (MVPA) duration, total
energy expenditure (EE), and daily activity patterns (25, 33, 34).
During the intervention period, participants’ average daily step
count increased by 1,120-1,920 steps, MVPA duration rose by
16.2%—31.7%, accompanied by simultaneous improvements in
self-efficacy and adherence (33, 35-37). These indicators are
derived from acceleration data, classified using time-window
segmentation and dynamic threshold algorithms, demonstrating
good temporal sensitivity and quantitative reliability.

Mainstream devices typically operate at a sampling frequency of
30-100 Hz, with a dynamic range of £6 g to +8 g, and apply first-
order low-pass filters to suppress high-frequency noise (25, 33, 35).
At the algorithmic level, features such as mean, standard deviation,
and signal magnitude area (SMA) are extracted within sliding
windows, and motion recognition models are developed using
dynamic thresholding or combined angular velocity—acceleration
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https://doi.org/10.3389/fpubh.2025.1659600
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Juetal

10.3389/fpubh.2025.1659600

(a)

®
@ C)
v

Right leg (side)

\

FIGURE 2

| 1

Accelerometers are placed at different locations on the body (a). Accelerometer placement and wrist location (47), copyright (2025), with permission
from MDPI. (b) Accelerometers are located at the waist and thighs (104), copyright (2018), with permission from MDPI. (c) Accelerometers are placed
on the ankles and arms (105), copyright (2021), with permission from MDPI.

(b)

Right arm (top)

— X - axis
—>
—

- axis

Z - axis

detection (31, 38). Some platforms further integrate posture
estimation and position classification modules to enhance the
detection of marginal behaviors such as standing, turning, and
slow walking (33). By incorporating wear-time tracking and
signal-loss compensation mechanisms, these systems can collect
comprehensive daily behavioral trajectories, supporting remote
management and follow-up interventions.

In summary, triaxial accelerometers serve as fundamental
sensing units in wearable motion monitoring systems, supported
by mature engineering configurations and data processing
frameworks. Future integration of sensors such as EDA and
PPG for multimodal data fusion, along with the adoption of
deep learning-based micro-behavior recognition algorithms, is
expected to enhance resolution in abnormal behavior detection,
personalized exercise prescription, and dynamic load management
for older adults.

3.2.2 Plantar pressure sensors for gait stability
assessment

Plantar pressure sensors reconstruct the center of pressure
(CoP) trajectory and support patterns throughout the gait cycle by
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capturing vertical load variations across multiple key regions of the
foot. These sensors are widely employed in gait stability assessment
and fall-prevention systems for older adults (39). Common device
types include flexible piezoresistive elements (e.g., conductive foam,
carbon nanocomposites) and capacitive structures (e.g., PDMS
dielectric with ITO electrodes), typically embedded within insoles
or smart footwear platforms using 8-16 channel arrays to cover
high-load zones such as the heel, metatarsal heads, first toe joint,
and lateral foot edge (22, 39, 40) (refer to Figure 3).

From an engineering perspective, high-resolution arrays enable
cycle-by-cycle pressure mapping (P-T mapping),
identification (stance-swing segmentation), and extraction of

gait phase

symmetry indices (39). Plantar signals demonstrate high sensitivity
to subtle gait perturbations, asymmetric support, and reduced
propulsion, making them particularly suitable for detecting gait
instability caused by age-related degeneration or fear of falling
(28, 39). Typical systems operate at a sampling frequency
of 50-100Hz, with channel linearity exceeding 0.95 and drift
stability within 5%, ensuring reliable reconstruction of true
gait dynamics.

Among the 23 studies reviewed, 5 explicitly evaluated plantar
pressure sensors in gait intervention settings. Systems combining
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FIGURE 3

(40), copyright (2021), with permission from MDPI.

Structure of foot pressure sensor and signal feature extraction workflow. (a) Diagram of the electrical system of the plantar pressure receptor (106),
copyright (2021), with permission from MDPI. (b) Proposed plantar pressure dynamic measurement system (107), copyright (2017), with permission
from MDPI. (c) Schematic and principle of foot plantar pressure (45), copyright (2019), with permission from MDPI. (d) Scheme of human gait analysis

(a) o
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Set window size &
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FIGURE 4

PPG (above) (108), copyright (2023), with permission from MDPI.

Optoelectronic volumetric sensors signal acquisition path diagram. (a) Overview of the proposed remote photoplethysmography (RPPG)-based
pulse rate estimation approach (24), copyright (2021), with permission from MDPI. (b) Difference of block diagram of in-ear PPG (below) and finger

(b)

>8-channel plantar arrays with triaxial IMUs were used to
derive cadence, ground contact time, step length variability CV
and fear of falling scores (FES-I). After intervention periods
averaging 6.5 weeks, CV decreased from 9.6% to 4.1%, step length
stability improved by 16.3%—23.1%, and FES-I scores reduced by
13.5%—17.8%, indicating both biomechanical and psychological
benefits (22, 28, 31).

In terms of signal processing, plantar systems are often
integrated with IMU data to construct support-phase rhythm
maps within time windows. Analytical methods include cross-
correlation, symmetry quantification, and CoP trajectory modeling
using polynomial fitting (39). Several studies have further

Frontiersin Public Health 07

incorporated machine learning-based fall-risk classifiers [e.g.,
SVM, random forests (RF)] and linked gait irregularities to
emotional stress markers, improving the timeliness and accuracy
of fall event prediction.

In summary, plantar pressure sensors, as highly sensitive
mechanical input devices, play a pivotal role in older adults gait
intervention systems. Their integration with IMUs enhances
tracking of both horizontal and vertical stability parameters
while providing robust data foundations for early fall risk
detection and personalized feedback on abnormal gait patterns.
Future directions include improvements in sensor flexibility
and comfort, on-device algorithm deployment, and enhanced
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FIGURE 5

“Schematic of a multi-channel EDA acquisition system and signal conditioning circuit. (a) Scheme of sensors and electrodes positioning (63),
copyright (2020), with permission from MDPI. (b) Electrodermal activity sensor building blocks (63), copyright (2020), with permission from MDPI.
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adaptability which
will significantly accelerate their adoption in remote health

to home-based monitoring scenarios,

management applications (30).

3.2.3 Optoelectronic volumetric sensors for
monitoring heart rate rhythm

Optoelectronic volumetric sensors, commonly known as PPG
sensors, continuously and non-invasively monitor heart rate (HR)
and HRV by detecting subcutaneous blood volume changes (24,
41, 42). These sensors are widely integrated into wearable devices
for recognizing physiological states during exercise interventions
in older adults (24, 42). Most PPG sensors are reflective
structures embedded within bracelets, wristwatches, or patch
devices, enabling real-time cardiovascular response tracking during
both rest and dynamic physical activities (41, 43) (refer to Figure 4).

Among the 23 studies included in this review, four utilized
wearable devices equipped with PPG modules for ambulatory
heart rate monitoring (24, 41-43). For instance, the BioStamp RC
wireless patch sensor achieved a Pearson correlation coefficient
of up to 0.94 in heart rate detection compared to standard
electrocardiogram (ECG), confirming high monitoring accuracy
even during indoor treadmill exercise (24, 42). PPG sensors
have also demonstrated clinical utility for remote continuous
monitoring; another study reported successful capture of heart
rate recovery curves during a 6-minute walk test, showing average
heart rate recovery times reduced from 87 to 69s (42, 43). These
findings highlight PPG’s potential in identifying post-exercise
recovery changes.
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In summary, as a core physiological sensing module within
older adults walking interventions, PPG sensors not only enhance
precision in exercise load regulation but also provide cardiovascular
safety warnings and personalized rhythmic feedback for older
adults. The closed-loop regulatory system created in collaboration
with accelerometers, respiratory sensors, and other modalities
significantly improves the scientific rigor and practical effectiveness
of intervention programs. Consequently, PPG has become one of
the critical technical components in developing age-appropriate
healthy exercise systems.

3.2.4 Electrodermal sensors for detecting stress
response during exercise

EDA sensors are extensively utilized for monitoring emotional
arousal, stress perception, and cognitive load, as they reflect
sympathetic nervous system activation through subtle changes
in skin conductance (26, 29) (refer to Figure 5). In older adults
walking interventions, EDA signals help identify anxiety state
changes pre- and post-exercise, cognitive stress responses during
dual-task walking, and startle responses during fall scenarios
(32). Thus, they effectively capture psychological variables that
traditional behavioral metrics cannot fully represent.

Data showed significant elevation of electrodermal
activity at the onset of exercise (meanskin conductance

response (SCR) frequency increasing from 0.08 to 0.16
beats/s), which subsequently stabilized following a sustained
six-week  intervention  (approximately = 37.5%  decrease),
reflecting adaptive emotional regulation (26, 29, 44).
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HRV
analysis in a bimodal algorithm can detect “hidden stress

Furthermore, integrating EDA with simultaneous
loads” during non-exercise periods (26, 41, 44), providing

critical ~insights for developing personalized rest and
motivation strategies.

In conclusion, electrodermal sensors uniquely complement
walking interventions for older adults by effectively detecting
emotional activation and psychological stress. Alongside exercise
behavior data, EDA can optimize feedback mechanisms, enhance
exercise confidence, provide psychological stress warnings, and
support personalized rehabilitation and emotionally regulated

exercise programs.

3.3 Sensor technology supports
multidimensional monitoring of intrinsic
abilities of the older adults

Intrinsic capacity reflects core functional dimensions of older
adults, including physical, psychological, cognitive, sensory, and
vitality domains. Conventional assessment methods lack sensitivity
to short-term fluctuations and ecological validity. Wearable sensor
technologies enable continuous, high-resolution monitoring of
behavioral and physiological signals, offering objective metrics for
early risk detection and intervention optimization. The following
subsections Figure 6. Multidimensional Sensor Framework for
Monitoring Intrinsic Capacity summarize sensor applications
across five IC dimensions.

10.3389/fpubh.2025.1659600

3.3.1 Improves accuracy of physical ability
monitoring for the older adults

In Older AdultSensor-based gait monitoring systems can
track older adults motor ability changes in natural environments
with high frequency and minimal interference, establishing
a continuous, quantitative assessment framework for physical
capabilities (21, 25, 45). Commonly utilized sensors include
plantar pressure sensors and triaxial accelerometers, which
respectively capture mechanical support distribution and linear
and angular motion characteristics (30, 31). Plantar pressure
sensors measure vertical pressure changes on support surfaces
using multi-point arrays, reconstructing the COP trajectories and
symmetry metrics (22, 28, 30). Triaxial accelerometers identify
dynamic movement patterns, such as initiating, moving, and
stopping, reflecting daily motor performance levels (22, 32).
These integrated systems offer reliable multidimensional data,
supporting personalized intervention planning and long-term
capability tracking.

Out of 23 studies reviewed, 14 specifically focused on
wearable sensor interventions or monitoring with physical
capability as a core metric. Eleven studies employed combined
plantar pressure sensors and accelerometers for comprehensive
monitoring of step length, step frequency, and gait CV (31, 33).
Interventions typically lasted 6-12 weeks, with some utilizing
dual-task walking experiments across multiple scenarios (22).
Results demonstrated notable improvements, including increased
average step length (from 0.47m to 0.56m), reduced step-
frequency CV by 3.8%—6.4%, and significant enhancements
in step stability, particularly when feedback mechanisms were

For Early Identification of
Sensory Degradation in
the Elderly

Triaxial
Accelerometer

|e:>160|oqo/(sd

Enhanced sensitivity
for mental state
recognition

intrinsic
capacity

Improving the accuracy
of physical performance
monitoring

Foot Pressure

Supports dynamic
recognition of energy
levels

Improve the ability to detect
changes in cognitive
function

FIGURE 6

Functional pathways of multi-sensor systems supporting multidimensional intrinsic capacity monitoring in older adults.
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employed (25, 36, 39). Additionally, three studies incorporated
gait cost indices and power spectral density (PSD) analyses to
assess muscular engagement and gait efficiency, finding energy
expenditure reductions between 8.5%—13.2% among older adults
guided by rhythm-based interventions (35, 36, 46). Moreover,
combining plantar feedback with rhythmic interventions enhanced
the support symmetry index from 0.76 to 0.89 and improved
6-meter walking speed by ~0.11-0.16 m/s in frail older adults
populations (25, 28, 32), confirming that sensor-assisted training
reliably boosts lower-limb motor coordination.

In summary, wearable sensor systems significantly enhance
monitoring accuracy of older adults physical capability through
detailed biomechanical data acquisition. These systems have
become essential components of daily behavioral assessments,
rehabilitation monitoring, and fall prevention frameworks. Their
ability to quantify support symmetry, gait rhythm, and dynamic
stability provides the technical foundation for scientifically
designing personalized exercise prescriptions and functional
training programs.

3.3.2 Enhance sensitivity of mental state
recognition in older adults

EDA and HRV primary
technological solutions for recognizing mental stress and

sensing modules represent
emotional arousal during physical activity in older adults
(24, 26, 29). EDA sensors capture subtle skin-conductivity changes
driven by sweat gland activity (26, 29). HRV monitoring uses PPG
or ECG to analyze heart rate interval variations, often employing
frequency-domain indices (LF/HF ratio) to assess autonomic
nervous system tension (24, 42). These technologies are typically
combined into bimodal systems to assess pre-exercise anxiety,
in-task stress responses, and post-exercise emotional recovery.

These studies integrated multimodal sensing and machine
learning to investigate stress recognition and regulation
mechanisms (23, 29). During intervention phases, EDA and
HRV signals were employed to train SVM, RE and deep neural
network (DNN) models, effectively classifying high- and low-
stress states (23, 26). Intervention outcomes revealed significant
improvements after 8 weeks of cognitive training, including a
31.2% reduction inSCR frequency, increased meanRR intervals
(from 806 ms to 861 ms), elevated Standard Deviation of Normal
to Normal RR Intervals (SDNN) values (from 34.7 ms to 44.1 ms),
and over 15.6% improvement in RMSSD. These findings highlight
substantial enhancements in autonomic nervous system regulation
(23, 29) Multimodal AlI-driven models incorporating EDA, HRYV,
and behavioral data achieved classification accuracies of 88.9%
(AUC = 0.92), representing an approximately 18.7% improvement
compared to single-channel EDA or HRV models (23, 29).

In summary, dual-channel EDA and HRV sensing technologies
sensitively detect stress states and emotional fluctuations in older
adults individuals during walking tasks. Their robust algorithm
integration and scalability highlight promising applications in
personalized intervention feedback and cognitive risk alerts,
positioning them as valuable components of future older

adults technologies.
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3.3.3 Supports dynamic identification of vitality
levels of older adults

Vitality serves as a core indicator for assessing the physical
and mental energy reserves, exercise recovery capability, and
daily activity tolerance among older adults individuals, directly
influencing their persistence and willingness to re-engage in
exercise interventions. Sensor systems continuously collect
behavioral and physiological dual-channel data, establishing
dynamic monitoring models with high temporal resolution to
detect subtle, non-subjective fatigue accumulation and vitality
fluctuations, facilitating early identification of physical decline
risks (24, 25, 42).

Devices combining triaxial accelerometers with PPG sensors
recorded average daily steps, moderate-to-vigorous physical
activity (MVPA)
intervention periods lasting 4-8 weeks (21, 24, 43). These

durations, and post-exercise HRR over
studies demonstrated that objective improvements in vitality
could be effectively identified through multi-parameter sensor
fusion systems.

Individual exercise tolerance and recovery capacities were
notably enhanced. Additionally, three studies compared dynamic
energy expenditure (measured in METs or kcal/day using
accelerometers) with vitality scores derived from the SF-36 quality-
of-life questionnaire, revealing significant correlations (21, 34, 47).
These findings confirm the practical feasibility of using quantitative
sensor indicators as objective substitutes for subjective vitality
assessments (21, 25, 38). In a study involving healthy older
women, accelerometer-measured MVPA segments of >10min
significantly predicted performance in 5 sit-to-stand tests and
6-min walk distances, highlighting the synergistic relationship
between enhanced exercise capacity and improved vitality (34).

In summary, integrated sensor systems combining HRR,
SEV, MVPA, and EE parameters provide excellent temporal
sensitivity and data interpretability, comprehensively capturing
dynamic vitality fluctuations in older adults under natural
conditions. Such systems significantly contribute to personalized
load management, exercise rhythm optimization, and motivation
for continued exercise participation, laying a robust foundation
for developing precise and age-friendly vitality monitoring and
intervention programs.

3.3.4 For early identification of sensory
degradation in the older adults

The degradation of sensory functions, especially vision and
vestibular sensation, is a key factor limiting the safety of gait
and path planning ability of the older adults. In particular
vestibular impairment compromises dynamic balance and postural
stability, critical for functional autonomy in older adults (32).In
walking interventions, sensory impairments often lead to slow
steering, poor spatial orientation and delayed environmental
response, significantly increasing the risk of falls (28, 32, 45).
Sensor technology provides an objective pathway to identify
potential signals of sensory degradation through continuous
monitoring of gait rhythm, acceleration fluctuations and head
posture changes, and can assist in the individual adaptation of
intervention programmes.
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A total of five of the included review studies used an integrated
system of IMUs (3-axis acceleration + gyroscope) with multipoint
plantar pressure sensors to monitor gait performance in sensory
decline groups (21, 30, 31). Three of them focused on walking
behavior under simulated low light or complex path conditions,
and showed that the CV of gait increased by about 38.4% and the
step length symmetry index decreased by more than 18% in sensory
impaired individuals, suggesting that their spatial sense is reduced
and their path control is weakened when they have insufficient
visual input (28). Two other analyses combining plantar center
of pressure trajectory (COP) and acceleration fluctuation metrics
to analyze steering co-ordination and path deviation rates found
that older adults with vestibular dysfunction had significantly
higher values of steering phase deviation than the control group
(21, 22, 31). These deviations correlate strongly with vestibular
deterioration, reflecting impaired sensorimotor integration and
postural compensation strategies, which are essential for safe
turning and adaptive locomotion.

In summary, the 3-axis acceleration and plantar pressure
synergistic sensing system has the engineering feasibility to identify
the risk of sensory function degradation in older adults, and in
particular, it demonstrates higher sensitivity in identifying micro-
signals such as steering slowness, support deviation and path
instability. This multimodal approach enables real-time monitoring
of sensory-related gait disturbances in ecologically valid settings,
and provides critical inputs for early screening, personalized fall-
prevention strategies, and adaptive rehabilitation protocols. It is of
great practical value for early screening, personalized intervention
design and fall risk prediction.

3.3.5 Improves detection of cognitive function
changes in the older adults

Cognitive functioning directly impacts path planning,
rhythmic control, and multitasking during brisk walking in older
adults Multimodal sensor systems offer dynamic and objective
methods for early detection of MCI, capturing synchronized
behavioral rhythms and physiological fluctuations (23, 36).
These systems effectively monitor rapid and subtle changes
often missed by traditional questionnaires by integrating
movement-related and physiological signals, enabling longitudinal
tracking of cognitive dynamics under ecologically valid and
task-relevant conditions.

Currently, multimodal combinations of triaxial accelerometers,
HRV, and EDA sensors are widely employed for cognitive
assessments (24, 26, 29). Accelerometers extract gait variability,
rhythmic control, and responsiveness to speed changes; HRV
measures autonomic nervous system regulation; and EDA
indicates stress levels and emotional arousal (21, 26, 29). Together,
these signals reflect the integration of motor, autonomic,
and affective pathways involved in cognitive control. In
dual-task gait scenarios, these systems simultaneously collect
behavioral and physiological signals, enabling analysis of
executive dysfunction and neural state alterations associated
with cognitive loads in individuals with MCI (23, 32).This is
particularly valuable in detecting early-stage impairments, where
overt clinical symptoms may be absent but compensatory
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mechanisms such as increased gait variability—begin
to emerge.

Numerous reviewed studies utilized these sensor combinations
to assess cognitive load and evaluate intervention effects in older
adults (23, 29). For example, during dual-task walking, individuals
with MCI exhibited increased gait variability (higher CV values)
and significantly reduced HRV parameters, such as SDNN,
reflecting heightened cognitive interference on motor control
systems (23, 32). Additionally, comparisons of electrodermal
activity pre- and post-cognitive training indicated reduced
SCR frequency and increased root mean square of successive
differences (RMSSD) values, suggesting decreased stress levels
and improved autonomic nervous function (23, 26, 29). These
physiological shifts provide objective, quantifiable evidence of
cognitive improvement, and may help tailor interventions
based on real-time feedback rather than relying solely on
subjective reporting.

In summary, multimodal sensor platforms demonstrate high
sensitivity and engineering adaptability for identifying MCI
risks and assessing cognitive regulatory capacity in older adults.
Compared to static questionnaire-based assessments, sensor-
based approaches provide real-time, high-frequency monitoring
in dynamic contexts, offering valuable insights for optimizing
cognitive interventions and developing effective risk-warning
mechanisms. They also promote the development of closed-
loop systems for proactive, personalized cognitive care in
aging populations.

4 Discussions

4.1 Multimodal sensor systems enhance
detection and monitoring accuracy and
effectiveness

A systematic review of 23 empirical studies demonstrates that
employing multimodal sensing systems in walking interventions
for older adults significantly enhances monitoring coverage
and feedback accuracy across behavioral, physiological, and
psychological dimensions—particularly in complex scenarios such
as gait recognition, physiological rhythm monitoring, and mood
fluctuation assessment (1, 48, 49) (refer to Figure 7). Compared
to single-sensor solutions, multimodal systems effectively bridge
the informational gaps between motor behavior, cognitive function,
and emotional state by integrating multiple sensory channels. This
integration enables real-time detection of older adults’ dynamic
conditions and facilitates personalized, interactive intervention
adjustments (29, 50, 51). As a result, these systems substantially
improve the responsiveness and individualization of intervention
programs, sustain user engagement, and strengthen the long-term
efficacy of interventions.

4.1.1 Highly integrated architecture enhances
system stability and response efficiency

Multimodal sensing systems usually adopt highly modular and
integrated hardware architecture, and through the collaborative
deployment of multiple sensors, they can achieve comprehensive
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Multimodal sensor fusion framework for behavioral and physiological state monitoring in older adults.

capture of the walking behavior, physiological changes and
of the adults.
configurations include plantar pressure sensors and IMUs for

environmental interactions older Typical
stability and gait rhythm analysis, PPG sensors combined with
triaxial accelerometers for monitoring heart rate load and activity
intensity, and EDA and HRV sensors for detecting emotional
stress and fearful states (21, 30, 52, 53). The collaborative data
acquisition between these hardware modules is achieved through a
unified clock synchronization mechanism, and relies on low-power
wireless protocols such as BLE 5.0 to ensure stable communication
and data integrity of multiple sensing sources.

At the system response level, the introduction of edge
computing unit has become a key means to improve the real-time
and intelligent level of the system. By realizing feature extraction,
preliminary anomaly screening and feedback generation at local
nodes, the system can effectively reduce data latency, alleviate the
network transmission burden, and improve the feedback efficiency
in emergency situations (54-56). For example, for the detected
sudden change in gait, sudden increase in heart rate, or violent
fluctuations in mood, the edge node can instantly generate alert
signals to warn the user through vibration, voice, or light effects.

This type of highly integrated, low-latency design not only
improves data processing efficiency and system stability, but also
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contributes to the long-term operation of the device in real-
world scenarios and the maintenance of user stickiness. Studies
have shown that this type of system has significant advantages in
improving exercise duration, rhythm stability and subjective sense
of security, which is an important technical guarantee to promote
the standardization of daily exercise behavior and maximize the
effectiveness of intervention for the older adults (57-59).

4.1.2 Adaptive algorithms and multimodal data
fusion to enhance individual recognition accuracy
In multimodal sensing systems, the scientific rigor and
adaptability of the data fusion strategy directly influence the
recognition performance and feedback accuracy for complex
adults.
approaches include time-window-based synchronous feature

behavioral states in older Currently, mainstream
extraction, modality normalization, and weighted integration,
often implemented through deep learning models such as support
vector machines (SVMs), CNNs, and long short-term memory
(LSTM) networks. These algorithms are effective in capturing
temporal correlations within behavioral dynamics, allowing for
joint modeling of gait patterns, rhythmic variations, and emotional

fluctuations (60, 61).
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To account for inter-individual differences in physiological
states and behavioral responses, some studies have introduced
adaptive fusion mechanisms (62). These systems dynamically
adjust the weight distribution of each sensing channel based
on individual-specific parameters, such as resting heart rate,
baseline gait rhythm, or galvanic skin response. For instance,
in users with unstable gait, the algorithm prioritizes IMU and
plantar pressure signals, whereas for emotionally sensitive or
anxiety-prone individuals, it increases the processing sensitivity of
EDA and HRV inputs (21, 45, 63). This approach substantially
enhances the system’s ability to adapt to individual characteristics
and generalize across diverse populations—making intervention
strategies not only “tailored to the individual”’but also“evolving
with the individual”.

In summary, multimodal sensing systems have demonstrated
superior monitoring coverage and accuracy in gait interventions
for older adults, enabling comprehensive capture of gait
characteristics and behavioral changes. These systems provide a
robust technological foundation for personalized and dynamically
responsive health interventions. By integrating data from multiple
sensing modalities, they offer improved risk assessment, more
accurate anomaly detection, and enhanced relevance and timeliness
of intervention strategies. Future development should prioritize
the co-optimization of hardware and software design, along
with the advancement of intelligent and user-friendly feedback
mechanisms, to facilitate the transition of such systems from
experimental validation to real-world application. Moreover,
attention should be given to wearability, energy efficiency, and
behavioral adaptability to deliver an intelligent health support
solution that is continuous, convenient, and focused on behavioral
guidance for older adults.

4.2 Prospects: focus on accurate
identification, personalized modeling, and
intelligent feedback

With ongoing advancements in sensor hardware, low-power
communication protocols, and artificial intelligence algorithms,
older adults walking intervention systems are evolving from
single-indicator detection to comprehensive, multidimensional
state assessment (64). Future research should focus on three
key dimensions: multimodal perception fusion, personalized
intervention modeling, and interactive feedback mechanism
optimization, to enhance the system’s accuracy, adaptability, and
user experience (65, 66).

4.2.1 Accurate identification

Multimodal perception fusion is expected to significantly
enhance the system’s recognition accuracy and contextual
awareness of complex behavioral states in older adults. Existing
studies have shown that multiple sensing device such as plantar
pressure sensors, triaxial accelerometers, PPG, and EDA can be
synchronized to capture various state features, including gait
rhythm, heart rate variability, and emotional stress responses
(67-69). should further address technical
challenges in multi-sensor data fusion, including asynchronous

Future research
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data acquisition, transmission delays, and noise interference (70).
Additionally, researchers should explore real-time multi-source
data co-processing architectures, develop advanced algorithms
for feature-level and decision-level fusion, and optimize time
synchronization mechanisms to overcome the limitations of
single-sensor systems, such as missing data, false alarms, and
pose dependency (71, 72). These advancements will enable more
accurate and real-time monitoring and early warnings for common
risks among older adults, including fall detection, fatigue or
overload identification, and gait abnormalities.

4.2.2 Personalized modeling

Personalized intervention modeling will be central to
enhancing the relevance and effectiveness of intervention systems.
The older adults population is highly heterogeneous in terms of
physiological status, cognitive function, perceptual ability, and
motivation for exercise, leading to widely varied responses to
the same intervention programs (73). Traditional standardized
intervention models often fail to adequately address this variability,
resulting in unsustainable outcomes. Therefore, future research
should enhance dynamic monitoring and build individualized
models based on personal parameters such as resting heart rate,
gait symmetry, skin conductance frequency, and daily activity
capabilities (74). By leveraging advanced machine learning and
deep learning, adaptive intervention models can be developed to
deliver precise, personalized feedback and strategy adjustments
tailored to specific contexts and timeframes (75).ultimately
supporting sustained participation in walking and enhancing older
adults’ confidence and ability in managing their health.

4.2.3 Intelligent feedback

intelligent feedback

mechanisms will be crucial for improving user engagement

Developing and  context-aware
and adherence. Current systems often rely on static charts or text
notifications, offering limited interactivity and delayed feedback,
which fail to meet the older adults’ need for immediate interaction
and sustained motivation (76, 77). Future research should explore
richer multimodal interactions—such as personalized voice
prompts, adaptive vibrations, visual animations, and haptic
feedback—and incorporate context-aware elements to deliver
timely, user-specific feedback (78, 79). In addition, a closed-loop
system of real-time data sharing and feedback involving family
members, caregivers, and healthcare professionals should be
developed to foster a collaborative health management ecosystem
(80). This would promote data transparency, enable personalized
interventions, and support proactive health risk management and
precise behavioral intervention.

In summary, future walking intervention systems for older
adults should center on three core technologies: accurate
identification, personalized modeling, and intelligent feedback.
They should closely align with user needs and promote the
evolution of motion sensors from mere data collectors to intelligent
health management tools. This can not only slow functional decline
and reduce fall risks among older adults, but also offer essential
technical and theoretical support for implementing active healthy
aging strategies.
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4.3 Limitations: design rigor, inclusiveness,
validation, deployment, ethics in older
adults walking systems

This study systematically integrates empirical research on
motion sensor interventions targeting walking behavior among
older adults and establishes a logical technical framework
encompassing sensor types, functional mechanisms, and intrinsic
ability support. However, current evidence still presents critical
limitations across five dimensions: design rigor, population
inclusiveness, long-term validation, realistic deployment and
ethical governance.

4.3.1 Design rigor

Notable heterogeneity exists among the included studies
regarding sensor types and functional indicators, limiting direct
comparability of research outcomes. Significant variability was
observed in sensor devices, sensing parameters (such as sampling
frequency and number of measurement channels), and functional
modules (e.g., IMU integration, real-time feedback) (81, 82). Some
studies relied solely on simple accelerometers or wristband devices,
inadequately capturing gait stability, physiological rhythms, and
psychological states, thereby limiting the generalizability of
intervention effects (74, 83). Future studies should incorporate
subclass clustering strategies—such as classification based on device
integration or perceptual dimensions—to enhance methodological
structure and precision.

4.3.2 Inclusiveness

The study samples exhibit significant selection bias, challenging
the representativeness of all older adults. Current research
predominantly focuses on urban, cognitively healthy, and
technologically adept older populations, neglecting special-needs
groups, including mobility-impaired individuals, rural residents,
and those averse to technology. Such bias may overestimate
technology acceptance and adherence, thereby limiting the
practical applicability and policy implications of the findings
(84). Expanding participant scope by incorporating diverse
demographic factors (e.g., age, gender, geographic location,
health status, education, and digital literacy) and conducting
detailed subgroup analyses will enhance generalizability and policy
relevance (85, 86). Furthermore, user adaptation periods and
technical barriers encountered during actual deployment must be
considered to improve practical effectiveness.

4.3.3 Validation

Existing intervention studies typically have short data
collection periods, mostly ranging from 4 to 8 weeks, with
few extending to or beyond 12 weeks. Short-term designs may
primarily reflect transient behavioral motivation rather than
sustained functional improvement or capability reconstruction
(87). Moreover, inadequate tracking during the post-intervention
or ”off-device” phase restricts reliable assessments of behavioral
internalization and long-term self-driven effects of technological
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interventions. Future interventions should therefore extend the
duration of data collection and strengthen follow-up phases to
fully elucidate the long-term behavioral change mechanisms
(88).
internalization mechanisms are necessary to clarify how technology

Additionally, theoretical explorations into behavioral

facilitates enduring self-driven behaviors among older adults (89).

4.3.4 Deployment

Current research is confined to controlled

largely
environments, overlooking real-world interference factors
such as environmental noise, equipment maintenance, and
data transmission stability (90, 91). Specifically, environmental
noise may disrupt signal clarity and introduce artifacts in
sensor readings; inadequate equipment maintenance can lead
to hardware malfunction or calibration drift over time; and
unstable data transmission may result in delays, data loss, or
incomplete monitoring records (92-94). These factors collectively
undermine the accuracy, continuity, and reliability of sensor-based
monitoring in real-world aging care settings. In addition, factors
such as individual variability in daily activities, the presence of
caregivers, and the diversity of living environments can also affect
the performance and effectiveness of sensor-based technologies
(51, 95).Therefore, future research should emphasize field tests in
real-world settings to systematically evaluate technological stability
and reliability across diverse practical scenarios (96).Moreover,
attention should be given to long-term device use, including
wearability, user comfort, and the adaptability of technologies
to different living conditions and user needs, to ensure broader

applicability and sustained effectiveness of interventions (97, 98).

4.3.5 Ethics

Additionally, the ethical dimensions of deploying sensor-based
health monitoring systems, particularly regarding data privacy, user
consent, and digital autonomy, remain underexplored in much
of the current literature (99). As these systems collect sensitive
physiological and behavioral data in real time, they raise critical
concerns surrounding data ownership, informed consent clarity,
security vulnerabilities, and the potential for surveillance or misuse
(100, 101). Future research should not only incorporate transparent
ethical frameworks and privacy-by-design protocols, but also
actively engage with institutional review boards and stakeholder
communities to ensure compliance with regulatory standards and
moral obligations (102, 103). Establishing trust, accountability, and
user empowerment should be integral to the development and
deployment of wearable technologies for older adults.

In conclusion, although existing research initially demonstrates
the potential of sensor technology in monitoring and intervening
in older adults walking behavior, continuous improvements
in research design, validation of long-term effects, sample
representativeness, real-world deployment considerations, and
privacy and ethical safeguards are essential. Such enhancements
will ensure future sensor-based interventions are more practical,
feasible, equitable, universally applicable, and sustainable,
thereby effectively contributing to achieving strategic goals for

healthy aging.
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5 Conclusions

This systematic review analyzed 23 empirical studies evaluating
motion sensors supporting older adults’ walking across population
characteristics, device types, and intrinsic capacity dimensions.
Results indicated the 60-74 age group had optimal technology
acceptance, whereas seniors over 85 required intuitive, user-
friendly devices. Plantar pressure sensors effectively assessed
gait stability; PPG and HRV sensors enhanced physiological
monitoring; accelerometers excelled in behavioral assessment; and
EDA sensors sensitively detected emotional stress. Multimodal
fusion and Al-driven feedback mechanisms offer significant
potential for personalized interventions, tele-rehabilitation, and
comprehensive health assessments.
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