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Background: As population aging accelerates, the development of precise health 
monitoring technologies for older adults is crucial for mitigating functional 
decline and chronic disease risks. The “Intrinsic Capacity (IC)” framework, 
proposed by the World Health Organization(WHO), defines five core dimensions 
of older adults’ functional ability: locomotion, vitality, cognition, psychological 
and sensory. Wearable motion sensors provide a novel approach for early 
detection and continuous monitoring of these dimensions. 
Methods: This study conducts a systematic literature review of empirical 
research in 20 years (from 2005 to 2025), focusing on how motion sensors 
capture IC-related changes during brisk walking in older adults. A total of 23 
studies were included after screening. 
Results: Key findings reveal that adults aged 60–74 demonstrate the highest 
levels of technology acceptance and compliance, whereas individuals over 80 
years old favor simpler, more user-friendly devices. Triaxial accelerometers, 
pressure sensors, photoplethysmography (PPG), and electrodermal activity (EDA) 
sensors are used to monitor gait rhythm, stability, heart rate regulation, and 
emotional stress, respectively. 
Conclusions: The results indicate that motion sensor technologies offer 
comprehensive coverage across all five IC dimensions and hold strong potential 
for continuous assessment, anomaly detection, and personalized intervention. 
Future research should prioritize multimodal sensor integration and algorithm 
optimization to enhance real-world applications in health management and 
remote monitoring for aging populations. 
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1 Background 

With global population aging, maintaining physiological function and independent 
living in older adults has become a major focus of public health and clinical research (1, 2). 
The World Health Organization (WHO) introduced the concept of “intrinsic capacity 
(IC),” which refers to an individual’s composite physical, cognitive, and psychological 
functioning (3–5). This framework has been widely adopted to assess health potential and 
functional reserve in older adults (6, 7). IC consists of five core dimensions: locomotion, 
vitality, sensory function, cognition, and psychological state (5, 8). Unlike traditional 
assessments based on disease diagnosis or functional scales, the IC framework emphasizes 
continuous functional change and highlights the urgent need for high-resolution, non-
invasive, multidimensional assessment tools (5, 6, 9). 
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Among various lifestyle behaviors, brisk walking is regarded 
as an ideal activity for reflecting IC status because it engages 
neural, muscular, sensory, and cognitive systems simultaneously 
(10, 11). Empirical studies have shown that brisk walking improves 
lower limb strength, balance, and cardiorespiratory endurance, 
and helps regulate blood pressure and glucose levels, thereby 
reducing fall risk (12, 13). Walking also involves attentional control, 
rhythmic regulation, and perceptual feedback, with behavioral 
characteristics closely linked to multiple IC dimensions (11, 14). 
For example, gait rhythm fluctuations may indicate cognitive load, 
delayed movement initiation may reflect reduced vitality, and rapid 
adaptation to terrain may signal efficient sensory processing (15, 
16). Walking is thus not only an effective intervention but also a 
valuable window into multidimensional IC assessment. 

Motion sensor technology provides a key means of objectively 
quantifying IC’s multidimensional functions during walking (17, 
18). In recent years, wearable and ambient sensors—such as 
inertial measurement units (IMUs), plantar pressure sensors, 
hear trate variability (HRV)sensors, EDA, modules and PPG 
modules—have been widely adopted to monitor older adults‘ 
health behaviors (19, 20). These devices capture gait parameters, 
movement patterns, reaction times, and physiological rhythms with 
high frequency and low noise, mapping them to IC dimensions 
through feature extraction and modeling (16, 21, 22). Technological 
interventions have been shown to enhance older adults’ sense 
of control and achievement, while supporting cognitive self-
monitoring, emotional regulation, and sustained autonomy (11, 
23). Therefore, developing motion sensor–based IC assessment 
systems represents a promising direction for digital health and 
precision aging interventions. 

This review aims to systematically examine how motion sensors 
support walking in older adults, focusing on population-specific 
adaptations, sensor mechanisms, and technical capabilities for 
monitoring the five dimensions of intrinsic capacity. 

2 Research method 

2.1 Search strategy 

This study adopted a systematic literature review approach and 
conducted a comprehensive search in four major databases: 
PubMed, Web of Science, EBSCOhost (SPORTDiscus & 
CINAHL), and IEEE Xplore, while Google Scholar was used 
as a complementary database for obtaining gray literature that 
may not be gray literature that may not be indexed in mainstream 
databases. The deadline for the search was 30 March 2025. 

Abbreviations: IC, Intrinsic Capacity; QCRI, Qatar Computing Research 

Institute; PPG, Photoplethysmography; HRV, Heart Rate Variability; HRR, 

Heart Rate Recovery; EDA, Electrodermal Activity; ECG, Electrocardiography; 

IMUs, Inertial Measurement Units; SVM, Vector Machine; CV, coefficient 

of variation; MVPA, moderate, vigorous intensity physical activity; APP, 

Application; CoP, Center of Pressure; MCI, Mild Cognitive Impairment; 

SVM, Support Vector Machine; RF, random fores; DNN, Deep Neural 

Network; SDNN, Standard Deviation of Normal to Normal RR Intervals; 

SCR, skin conductance response; RMSSD, Root Mean Square of Successive 

Differences. 

TABLE 1 PICOS framework. 

Acronym Definition Scopes 

P Population Older adults 

I Intervention Use of wearable or environmental  
motion sensors (e.g., accelerometers, 
pressure sensors, PPG, EDA) 

C Comparison No intervention, usual care, or 
interventions without sensor-based 
monitoring 

O Outcome Changes in IC domains: locomotion, 
vitality, cognition, sensory, 
psychological status (measured via gait, 
HRV, EDA, activity level, etc.) 

S Study design Systematic reviews of experimental 
studies 

Keywords searched included: motion sensors, “older Adults”, 
“brisk walking”, “ exercise monitor” and so on. During the search 
process, keyword combinations were used and Boolean logic 
operators (e.g., “AND”, “OR”, “NOT”) were applied to optimize 
the search terms, ensuring the comprehensiveness and accuracy of 
the search strategy. The specific search strategies are as follows. 

2.1.1 Keyword combination 
Combine “Wearable Devices” and “Older Adults”, and use the 

Boolean operator “AND” to connect them, such as “Wearable 
Devices AND Older Adults”. At the same time, use the “OR” 
operator to connect related concepts, such as “Older adults OR 
Aging Population”. 

2.1.2 Exclusion criteria 
The “NOT” operator was used to exclude literature that was 

not relevant to the topic, e.g., “NOT Children”, to ensure that the 
search results focused on the older adults population. For non-
wearable interventions, “NOT Non-Wearable Interventions” was 
used to ensure consistency between the target population and the 
objectives of the study. 

In addition, reference lists, citation searches, and manual 
searches were used to identify relevant literature that may have been 
missed. The initial search yielded 2,382 articles. 

2.2 Inclusion and exclusion criteria 

This study screened the literature based on the population, 
interventions, comparisons, findings and study design (PICOS) 
model. The specific criteria are shown in Table 1. 

Exclusion criteria included 1. studies in non-older adults 
subjects (i.e., under 60 years of age) or interventions not related to 
walking; 2. studies that were not peer-reviewed or did not have the 
full text available; and 3. interventions involving only non-motor 
sensors or studies with no specific motor findings. 
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FIGURE 1 

PRISMA flowchart. 

2.3 Literature screening process 

The literature screening process in this study strictly followed 
the PRISMA 2020 standard and used the Rayyan Qatar Computing 
Research Institute (QCRI) literature management tool to ensure 
the objectivity and reproducibility of the screening. The screening 
process included the following steps: first, all relevant literature was 
extracted from various databases according to the search strategy; 
subsequently, EndNoteX9 was used to perform automatic de-
duplication combined with manual screening to remove duplicates; 
at the title and abstract screening stage, two independent reviewers 
(Reviewer 1 & Reviewer 2) screened the literature according to 
the inclusion criteria; for literature that met the initial screening 
criteria, full-text reading screening was performed, and the 
literature was finally identified. In case of disagreement during the 
screening process, a third independent reviewer (Reviewer 3) made 
a decision. The complete screening process and screening results 
are detailed in Figure 1 (PRISMA flowchart) in the Results section. 

2.4 Data extraction and analysis 

Basic information about the study was extracted from 
the included literature, including the study population, 

the intervention, and the main results. Standard data 
forms were used to record the extracted information for 
summarization and analysis. This study mainly focuses 
on the evidence of the effectiveness of wearable sex 
devices in promoting exercise participation among older 
adults, and combines qualitative and quantitative analyses 
for a comprehensive discussion. Table 2 summarizes the 
relevant information from the 23 papers screened in 
this exercise. 

3 Results 

3.1 Target audience 

Of the 23 studies included in this systematic review, 
all of them explicitly identified older adults as the core 
target audience for exercise bracelet interventions, although 
there were significant differences in how the concept of 
“older adults” was defined, the enrolment criteria, and the 
health status stratification. This reflects the fact that there 
are still inconsistencies in the theoretical basis and practical 
standards in the process of target user modeling in the 
current study. 
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TABLE 2 Characteristics of included studies (n = 23). 

Author Population characteristics Main sensors Key findings 

Lu et al. (34) Average age 60 with 
community-dwelling women 

Accelerometer Moderate-to-vigorous activity is associated with better physical 
function, while sedentary behavior correlates with decline 

Nagayoshi et al. 
(25) 

Older adults with health Accelerometer Estimated activity intensity from accelerometer agrees with indirect 
calorimetry, supporting cross-age applicability 

Nakajima et al. 
(22) 

Older adults with independent walking 
ability 

Plantar pressure sensor Gait parameters such as pressure path and step length effectively assess 
gait stability in older adults 

Asher et al. (41) Older adults with health PPG, plantar pressure 
sensor, accelerometer 

Synchronization of gait and heart rate reveals individual 
physiological-behavioral rhythms for risk modeling 

Bollaert et al. (36) Older adults with multiple sclerosis 
and healthy controls 

Accelerometer MS group showed lower activity, prolonged sitting, and functional 
decline, supporting need for tailored intervention 

Delmastro et al. 
(23) 

Older adults with mild cognitive 
impairment and frailty 

EDA, HRV Machine learning system identifies stress and training states, suitable 
for cognitive health monitoring inMild Cognitive Impairment(MCI) 

Master et al. (46) Average age 65 with knee osteoarthritis Tri-axial accelerometer Physical function test (e.g., 400 m walk) predicts achieving 6,000 
steps/day, supporting clinical goal-setting 

Song et al. (39) Older adults with weak foot and fall 
risk 

Plantar pressure sensor Wearable pressure data based on weak foot characteristics effectively 
assess fall risk and support intervention 

Lee et al. (30) Average age 74.5 with health Plantar pressure board 
sensor 

GEMS improved step speed, stride length, and stance time; reduced 
EMG activity and improved plantar pressure distribution 

Howcroft et al. 
(32) 

Older adults with dual-task gait testing Plantar pressure + 
accelerometer 

Dual-task condition impacts gait stability; sensor data support fall risk 
assessment 

Mori et al. (43) Older adults with walking training 
assistance 

PPG Robot with integrated PPG accurately estimates exercise intensity with 
<1 bpm error 

Kakita et al. (37) Older adults with cardiovascular 
disease 

Accelerometer Most activity is non-exercise based, emphasizing the value of daily 
physical activity assessment 

Soares-Miranda 
et al. (42) 

Older adults aged >65 from the 
Cardiovascular Health Study 

24-h Holter 
electrocardiography(ECG) 

Physical activity is positively associated with HRV, especially MVPA 
with HF HRV, indicating benefit to autonomic nervous health 

Kocuvan et al. (33) Older adults with simulated fall gait Accelerometer Wrist-worn device achieves 86% classification accuracy via Support 
Vector Machine(SVM), outperforming phone (73%) for fall risk 
prediction 

Kumar et al. (38) Average age 65 with prefrail and frail 
status 

Accelerometer 60-s continuous walking data identify frailty status with 76.8% 
sensitivity and 80% specificity 

Yu et al. (24) Average age 78.9 with patients and 
healthy individuals 

PPG RGB camera estimates HR with RMSE of 0.48 bpm; HRV frequency 
correlation up to 0.7; suitable for non-invasive monitoring 

Nath et al. (26) Older adults with stress and cortisol 
monitoring 

EDA, PPG Multi-modal + cortisol-based XGBoost model achieves 87% accuracy 
for stress detection in older adults 

Mickle et al. (28) Average age 70 with 
community-dwelling 

Plantar pressure sensor Foot pain and high plantar pressure correlate with fall risk; 
intervention may help reduce falls 

Lai et al. (109) Average age 70 with independent 
walking ability 

Accelerometer Total MVPA duration more strongly linked to physical function than 
specific activity periods 

Clarke et al. (21) Older adults with functional 
impairment and walking aids 

Accelerometer AX3 effectively monitors walking activity, with high validity in 
functionally impaired older adults 

Karthikeyan et al. 
(29) 

Older adults with gender-balanced 
sample 

HRV Multi-modal neurophysiological indicators accurately detect cognitive 
stress (accuracy 78–98%), sensitive to gender/activity 

Choi et al. (44) Older adults living alone (N = 14), 
non-depressed 

EDA, PPG, accelerometer Machine learning model predicts depressive mood with recall of 
82.7%, suitable for passive monitoring 

Zhang et al. (31) Older adults with and without fall 
history 

Plantar pressure insole, 
accelerometer 

Machine learning on multi-modal data achieves >85% fall prediction 
accuracy; suitable for daily use in older adults 

3.1.1 Differences in the use of different ages of 
older adults 

Age-related differences in physiological characteristics 
and motor abilities among older adults have a direct impact 
on the signal acquisition quality and functional stability of 

motion sensor systems (24). In particular, among advanced-
age populations, the deterioration of gait rhythm, circulatory 
system function, and skin electrodermal responsiveness 
often results in distorted sensor inputs and degraded output 
data quality. These changes place greater demands on 
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the adaptability and robustness of system-level monitoring 
architectures (25–27). 

In the younger-old age group (60–74 years), triaxial 
accelerometers, PPG sensors, and EDA modules generally perform 
within standard operational parameters (21, 24, 26, 28, 29). Gait 
amplitude and movement intensity continue to elicit distinct 
peak acceleration signals; the PPG sensor generates stable pulse 
waveforms during short resting periods; and the EDA channel 
exhibits effective responses to emotional stimuli and cognitive 
task loads (24, 26). This cohort has demonstrated high device 
compliance and favorable physiological responsiveness in existing 
studies, enabling low-latency algorithm execution and high 
recognition accuracy across sensor platforms. 

In contrast, sensor systems deployed in the oldest-old group 
(≥85 years) or among frail individuals often encounter significant 
performance constraints from both the signal source and user 
interaction levels. For accelerometers, reduced stride amplitude 
and frequency lead to smoothed waveform outputs, particularly 
attenuating anterior–posterior (X-axis) and lateral (Y-axis) signal 
peaks, which in turn increase errors in gait cycle segmentation and 
threshold-triggered event detection (25). For PPG sensors, reduced 
skin permeability and age-related decline in microcirculation and 
arterial elasticity flatten the pulsation waveform, compromising 
the accuracy of key parameters such as heart rate recovery Heart 
Rate Recovery (HRR) and HRV (24). Similarly, EDA signals are 
weakened due to thickened stratum corneum and diminished 
sweating response, significantly impairing sensitivity to emotional 
stress detection (26). 

In summary, the heterogeneity of physiological expression and 
physical capacity across different older adults age groups critically 
affects the signal acquisition efficiency of core sensors—including 
accelerometers, PPG, and EDA modules—and diminishes the 
reliability of output data. Older adults are more susceptible to 
signal attenuation, waveform instability, and decreased recognition 
accuracy, which in turn limits the effectiveness of standard 
algorithms and conventional hardware designs. To address these 
limitations, developing a stratified evaluation framework based 
on age-specific physiological characteristics has emerged as a 
key engineering direction for enhancing system robustness and 
improving the precision of sensor-based interventions. 

3.1.2 Functional requirement focus of older 
adults with different health status 

A total of 8 out of 23 included studies explicitly qualified 
the health status of the subjects, reflecting the critical impact 
of the health level of older adults on the deployment strategy 
of sensor systems. Individuals in different functional states have 
systematic differences in perceptual metrics, device acceptance, 
and data accuracy requirements, which should be addressed with 
fine stratification. 

Among them, five focused on older adults with debilitated 
function or high risk of falling, and commonly adopted a 
synergistic solution of lumbar IMUs and plantar pressure 
sensors for monitoring postural stability, gait symmetry, and 
abnormal gait acceleration (28, 30, 31). Studies have shown 
that the coefficient of variation (CV) of gait is significantly 
higher in this group in complex terrain or dual-task conditions, 

and sensor deployment requires high sampling frequency and 
sensitive anomaly recognition (21, 32). For older adults with 
chronic medical conditions (e.g., cardiovascular disease, diabetes, 
etc.), studies have typically used multimodal devices integrating 
PPG, HRV, and triaxial acceleration to provide comprehensive 
monitoring of locomotor center of motion dynamics, recovery 
rate, and physiological stress levels (21, 24, 33). These devices 
assist individuals with pacing and load self-awareness through 
physiological threshold feedback. In contrast, healthy older adults 
using lightweight, low-intervention accelerometer bracelets for 
daily behavioral tracking and interactive motivation, mainly 
monitoring moderate-vigorous intensity physical activity (MVPA) 
time and average daily step count. Feedback was based on 
APP notifications or vibration alerts, with emphasis on the 
establishment of behavioral habits and exercise continuity 
(25, 33, 34). 

In summary, there are significant differences in the deployment 
of sensors by older adults in different health states. The frail 
individuals rely more on posture and stability monitoring, the 
chronically ill need physiological load sensing support, and the 
healthy group focuses on behavioral recording and interactive 
feedback. Sensor interventions should be based on health 
stratification to build a functional matching model to achieve 
optimal fit and intervention efficiency. 

3.2 Differential effects of sensor types on 
walking exercise monitoring 

3.2.1 Triaxial accelerometers for step counting 
and intensity recognition 

As a core module of IMUs, triaxial accelerometers utilize 
MEMS microstructures to detect linear acceleration along the X, 
Y, and Z axes. They are widely used in older adults walking 
monitoring systems due to their compact size, low power 
consumption, and clear signal structure, enabling non-invasive, 
continuous tracking of daily movement patterns (21, 25, 35) (refer 
to Figure 2). These sensors are particularly suitable for monitoring 
low-intensity activities in older adults. 

Among the 23 studies reviewed, 10 utilized triaxial 
accelerometers as the primary monitoring sensor to derive 
multidimensional behavioral parameters such as step count, 
moderate-to-vigorous physical activity (MVPA) duration, total 
energy expenditure (EE), and daily activity patterns (25, 33, 34). 
During the intervention period, participants’ average daily step 
count increased by 1,120–1,920 steps, MVPA duration rose by 
16.2%−31.7%, accompanied by simultaneous improvements in 
self-efficacy and adherence (33, 35–37). These indicators are 
derived from acceleration data, classified using time-window 
segmentation and dynamic threshold algorithms, demonstrating 
good temporal sensitivity and quantitative reliability. 

Mainstream devices typically operate at a sampling frequency of 
30–100 Hz, with a dynamic range of ±6 g  to  ±8 g, and apply first-
order low-pass filters to suppress high-frequency noise (25, 33, 35). 
At the algorithmic level, features such as mean, standard deviation, 
and signal magnitude area (SMA) are extracted within sliding 
windows, and motion recognition models are developed using 
dynamic thresholding or combined angular velocity–acceleration 
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FIGURE 2 

Accelerometers are placed at different locations on the body (a). Accelerometer placement and wrist location (47), copyright (2025), with permission 
from MDPI. (b) Accelerometers are located at the waist and thighs (104), copyright (2018), with permission from MDPI. (c) Accelerometers are placed 
on the ankles and arms (105), copyright (2021), with permission from MDPI. 

detection (31, 38). Some platforms further integrate posture 
estimation and position classification modules to enhance the 
detection of marginal behaviors such as standing, turning, and 
slow walking (33). By incorporating wear-time tracking and 
signal-loss compensation mechanisms, these systems can collect 
comprehensive daily behavioral trajectories, supporting remote 
management and follow-up interventions. 

In summary, triaxial accelerometers serve as fundamental 
sensing units in wearable motion monitoring systems, supported 
by mature engineering configurations and data processing 
frameworks. Future integration of sensors such as EDA and 
PPG for multimodal data fusion, along with the adoption of 
deep learning-based micro-behavior recognition algorithms, is 
expected to enhance resolution in abnormal behavior detection, 
personalized exercise prescription, and dynamic load management 
for older adults. 

3.2.2 Plantar pressure sensors for gait stability 
assessment 

Plantar pressure sensors reconstruct the center of pressure 
(CoP) trajectory and support patterns throughout the gait cycle by 

capturing vertical load variations across multiple key regions of the 
foot. These sensors are widely employed in gait stability assessment 
and fall-prevention systems for older adults (39). Common device 
types include flexible piezoresistive elements (e.g., conductive foam, 
carbon nanocomposites) and capacitive structures (e.g., PDMS 
dielectric with ITO electrodes), typically embedded within insoles 
or smart footwear platforms using 8–16 channel arrays to cover 
high-load zones such as the heel, metatarsal heads, first toe joint, 
and lateral foot edge (22, 39, 40) (refer to Figure 3). 

From an engineering perspective, high-resolution arrays enable 
cycle-by-cycle pressure mapping (P–T mapping), gait phase 
identification (stance–swing segmentation), and extraction of 
symmetry indices (39). Plantar signals demonstrate high sensitivity 
to subtle gait perturbations, asymmetric support, and reduced 
propulsion, making them particularly suitable for detecting gait 
instability caused by age-related degeneration or fear of falling 
(28, 39). Typical systems operate at a sampling frequency 
of 50–100 Hz, with channel linearity exceeding 0.95 and drift 
stability within 5%, ensuring reliable reconstruction of true 
gait dynamics. 

Among the 23 studies reviewed, 5 explicitly evaluated plantar 
pressure sensors in gait intervention settings. Systems combining 
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FIGURE 3 

Structure of foot pressure sensor and signal feature extraction workflow. (a) Diagram of the electrical system of the plantar pressure receptor (106), 
copyright (2021), with permission from MDPI. (b) Proposed plantar pressure dynamic measurement system (107), copyright (2017), with permission 
from MDPI. (c) Schematic and principle of foot plantar pressure (45), copyright (2019), with permission from MDPI. (d) Scheme of human gait analysis 
(40), copyright (2021), with permission from MDPI. 

FIGURE 4 

Optoelectronic volumetric sensors signal acquisition path diagram. (a) Overview of the proposed remote photoplethysmography (RPPG)-based 
pulse rate estimation approach (24), copyright (2021), with permission from MDPI. (b) Difference of block diagram of in-ear PPG (below) and finger 
PPG (above) (108), copyright (2023), with permission from MDPI. 

≥8-channel plantar arrays with triaxial IMUs were used to 
derive cadence, ground contact time, step length variability CV 
and fear of falling scores (FES-I). After intervention periods 
averaging 6.5 weeks, CV decreased from 9.6% to 4.1%, step length 
stability improved by 16.3%−23.1%, and FES-I scores reduced by 
13.5%−17.8%, indicating both biomechanical and psychological 
benefits (22, 28, 31). 

In terms of signal processing, plantar systems are often 
integrated with IMU data to construct support-phase rhythm 
maps within time windows. Analytical methods include cross-
correlation, symmetry quantification, and CoP trajectory modeling 
using polynomial fitting (39). Several studies have further 

incorporated machine learning-based fall-risk classifiers [e.g., 
SVM, random forests (RF)] and linked gait irregularities to 
emotional stress markers, improving the timeliness and accuracy 
of fall event prediction. 

In summary, plantar pressure sensors, as highly sensitive 
mechanical input devices, play a pivotal role in older adults gait 
intervention systems. Their integration with IMUs enhances 
tracking of both horizontal and vertical stability parameters 
while providing robust data foundations for early fall risk 
detection and personalized feedback on abnormal gait patterns. 
Future directions include improvements in sensor flexibility 
and comfort, on-device algorithm deployment, and enhanced 
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FIGURE 5 

“Schematic of a multi-channel EDA acquisition system and signal conditioning circuit. (a) Scheme of sensors and electrodes positioning (63), 
copyright (2020), with permission from MDPI. (b) Electrodermal activity sensor building blocks (63), copyright (2020), with permission from MDPI. 

adaptability to home-based monitoring scenarios, which 
will significantly accelerate their adoption in remote health 
management applications (30). 

3.2.3 Optoelectronic volumetric sensors for 
monitoring heart rate rhythm 

Optoelectronic volumetric sensors, commonly known as PPG 
sensors, continuously and non-invasively monitor heart rate (HR) 
and HRV by detecting subcutaneous blood volume changes (24, 
41, 42). These sensors are widely integrated into wearable devices 
for recognizing physiological states during exercise interventions 
in older adults (24, 42). Most PPG sensors are reflective 
structures embedded within bracelets, wristwatches, or patch 
devices, enabling real-time cardiovascular response tracking during 
both rest and dynamic physical activities (41, 43) (refer to Figure 4). 

Among the 23 studies included in this review, four utilized 
wearable devices equipped with PPG modules for ambulatory 
heart rate monitoring (24, 41–43). For instance, the BioStamp RC 
wireless patch sensor achieved a Pearson correlation coefficient 
of up to 0.94 in heart rate detection compared to standard 
electrocardiogram (ECG), confirming high monitoring accuracy 
even during indoor treadmill exercise (24, 42). PPG sensors 
have also demonstrated clinical utility for remote continuous 
monitoring; another study reported successful capture of heart 
rate recovery curves during a 6-minute walk test, showing average 
heart rate recovery times reduced from 87 to 69 s (42, 43). These 
findings highlight PPG’s potential in identifying post-exercise 
recovery changes. 

In summary, as a core physiological sensing module within 
older adults walking interventions, PPG sensors not only enhance 
precision in exercise load regulation but also provide cardiovascular 
safety warnings and personalized rhythmic feedback for older 
adults. The closed-loop regulatory system created in collaboration 
with accelerometers, respiratory sensors, and other modalities 
significantly improves the scientific rigor and practical effectiveness 
of intervention programs. Consequently, PPG has become one of 
the critical technical components in developing age-appropriate 
healthy exercise systems. 

3.2.4 Electrodermal sensors for detecting stress 
response during exercise 

EDA sensors are extensively utilized for monitoring emotional 
arousal, stress perception, and cognitive load, as they reflect 
sympathetic nervous system activation through subtle changes 
in skin conductance (26, 29) (refer to Figure 5). In older adults 
walking interventions, EDA signals help identify anxiety state 
changes pre- and post-exercise, cognitive stress responses during 
dual-task walking, and startle responses during fall scenarios 
(32). Thus, they effectively capture psychological variables that 
traditional behavioral metrics cannot fully represent. 

Data showed significant elevation of electrodermal 
activity at the onset of exercise (meanskin conductance 
response (SCR) frequency increasing from 0.08 to 0.16 
beats/s), which subsequently stabilized following a sustained 
six-week intervention (approximately 37.5% decrease), 
reflecting adaptive emotional regulation (26, 29, 44). 
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Furthermore, integrating EDA with simultaneous HRV 
analysis in a bimodal algorithm can detect “hidden stress 
loads” during non-exercise periods (26, 41, 44), providing 
critical insights for developing personalized rest and 
motivation strategies. 

In conclusion, electrodermal sensors uniquely complement 
walking interventions for older adults by effectively detecting 
emotional activation and psychological stress. Alongside exercise 
behavior data, EDA can optimize feedback mechanisms, enhance 
exercise confidence, provide psychological stress warnings, and 
support personalized rehabilitation and emotionally regulated 
exercise programs. 

3.3 Sensor technology supports 
multidimensional monitoring of intrinsic 
abilities of the older adults 

Intrinsic capacity reflects core functional dimensions of older 
adults, including physical, psychological, cognitive, sensory, and 
vitality domains. Conventional assessment methods lack sensitivity 
to short-term fluctuations and ecological validity. Wearable sensor 
technologies enable continuous, high-resolution monitoring of 
behavioral and physiological signals, offering objective metrics for 
early risk detection and intervention optimization. The following 
subsections Figure 6. Multidimensional Sensor Framework for 
Monitoring Intrinsic Capacity summarize sensor applications 
across five IC dimensions. 

3.3.1 Improves accuracy of physical ability 
monitoring for the older adults 

In Older AdultSensor-based gait monitoring systems can 
track older adults motor ability changes in natural environments 
with high frequency and minimal interference, establishing 
a continuous, quantitative assessment framework for physical 
capabilities (21, 25, 45). Commonly utilized sensors include 
plantar pressure sensors and triaxial accelerometers, which 
respectively capture mechanical support distribution and linear 
and angular motion characteristics (30, 31). Plantar pressure 
sensors measure vertical pressure changes on support surfaces 
using multi-point arrays, reconstructing the COP trajectories and 
symmetry metrics (22, 28, 30). Triaxial accelerometers identify 
dynamic movement patterns, such as initiating, moving, and 
stopping, reflecting daily motor performance levels (22, 32). 
These integrated systems offer reliable multidimensional data, 
supporting personalized intervention planning and long-term 
capability tracking. 

Out of 23 studies reviewed, 14 specifically focused on 
wearable sensor interventions or monitoring with physical 
capability as a core metric. Eleven studies employed combined 
plantar pressure sensors and accelerometers for comprehensive 
monitoring of step length, step frequency, and gait CV (31, 33). 
Interventions typically lasted 6–12 weeks, with some utilizing 
dual-task walking experiments across multiple scenarios (22). 
Results demonstrated notable improvements, including increased 
average step length (from 0.47 m to 0.56 m), reduced step-
frequency CV by 3.8%−6.4%, and significant enhancements 
in step stability, particularly when feedback mechanisms were 

FIGURE 6 

Functional pathways of multi-sensor systems supporting multidimensional intrinsic capacity monitoring in older adults. 
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employed (25, 36, 39). Additionally, three studies incorporated 
gait cost indices and power spectral density (PSD) analyses to 
assess muscular engagement and gait efficiency, finding energy 
expenditure reductions between 8.5%−13.2% among older adults 
guided by rhythm-based interventions (35, 36, 46). Moreover, 
combining plantar feedback with rhythmic interventions enhanced 
the support symmetry index from 0.76 to 0.89 and improved 
6-meter walking speed by ∼0.11–0.16 m/s in frail older adults 
populations (25, 28, 32), confirming that sensor-assisted training 
reliably boosts lower-limb motor coordination. 

In summary, wearable sensor systems significantly enhance 
monitoring accuracy of older adults physical capability through 
detailed biomechanical data acquisition. These systems have 
become essential components of daily behavioral assessments, 
rehabilitation monitoring, and fall prevention frameworks. Their 
ability to quantify support symmetry, gait rhythm, and dynamic 
stability provides the technical foundation for scientifically 
designing personalized exercise prescriptions and functional 
training programs. 

3.3.2 Enhance sensitivity of mental state 
recognition in older adults 

EDA and HRV sensing modules represent primary 
technological solutions for recognizing mental stress and 
emotional arousal during physical activity in older adults 
(24, 26, 29). EDA sensors capture subtle skin-conductivity changes 
driven by sweat gland activity (26, 29). HRV monitoring uses PPG 
or ECG to analyze heart rate interval variations, often employing 
frequency-domain indices (LF/HF ratio) to assess autonomic 
nervous system tension (24, 42). These technologies are typically 
combined into bimodal systems to assess pre-exercise anxiety, 
in-task stress responses, and post-exercise emotional recovery. 

These studies integrated multimodal sensing and machine 
learning to investigate stress recognition and regulation 
mechanisms (23, 29). During intervention phases, EDA and 
HRV signals were employed to train SVM, RF, and deep neural 
network (DNN) models, effectively classifying high- and low-
stress states (23, 26). Intervention outcomes revealed significant 
improvements after 8 weeks of cognitive training, including a 
31.2% reduction inSCR frequency, increased meanRR intervals 
(from 806 ms to 861 ms), elevated Standard Deviation of Normal 
to Normal RR Intervals (SDNN) values (from 34.7 ms to 44.1 ms), 
and over 15.6% improvement in RMSSD. These findings highlight 
substantial enhancements in autonomic nervous system regulation 
(23, 29) Multimodal AI-driven models incorporating EDA, HRV, 
and behavioral data achieved classification accuracies of 88.9% 
(AUC = 0.92), representing an approximately 18.7% improvement 
compared to single-channel EDA or HRV models (23, 29). 

In summary, dual-channel EDA and HRV sensing technologies 
sensitively detect stress states and emotional fluctuations in older 
adults individuals during walking tasks. Their robust algorithm 
integration and scalability highlight promising applications in 
personalized intervention feedback and cognitive risk alerts, 
positioning them as valuable components of future older 
adults technologies. 

3.3.3 Supports dynamic identification of vitality 
levels of older adults 

Vitality serves as a core indicator for assessing the physical 
and mental energy reserves, exercise recovery capability, and 
daily activity tolerance among older adults individuals, directly 
influencing their persistence and willingness to re-engage in 
exercise interventions. Sensor systems continuously collect 
behavioral and physiological dual-channel data, establishing 
dynamic monitoring models with high temporal resolution to 
detect subtle, non-subjective fatigue accumulation and vitality 
fluctuations, facilitating early identification of physical decline 
risks (24, 25, 42). 

Devices combining triaxial accelerometers with PPG sensors 
recorded average daily steps, moderate-to-vigorous physical 
activity (MVPA) durations, and post-exercise HRR over 
intervention periods lasting 4–8 weeks (21, 24, 43). These 
studies demonstrated that objective improvements in vitality 
could be effectively identified through multi-parameter sensor 
fusion systems. 

Individual exercise tolerance and recovery capacities were 
notably enhanced. Additionally, three studies compared dynamic 
energy expenditure (measured in METs or kcal/day using 
accelerometers) with vitality scores derived from the SF-36 quality-
of-life questionnaire, revealing significant correlations (21, 34, 47). 
These findings confirm the practical feasibility of using quantitative 
sensor indicators as objective substitutes for subjective vitality 
assessments (21, 25, 38). In a study involving healthy older 
women, accelerometer-measured MVPA segments of ≥10 min 
significantly predicted performance in 5 sit-to-stand tests and 
6-min walk distances, highlighting the synergistic relationship 
between enhanced exercise capacity and improved vitality (34). 

In summary, integrated sensor systems combining HRR, 
SFV, MVPA, and EE parameters provide excellent temporal 
sensitivity and data interpretability, comprehensively capturing 
dynamic vitality fluctuations in older adults under natural 
conditions. Such systems significantly contribute to personalized 
load management, exercise rhythm optimization, and motivation 
for continued exercise participation, laying a robust foundation 
for developing precise and age-friendly vitality monitoring and 
intervention programs. 

3.3.4 For early identification of sensory 
degradation in the older adults 

The degradation of sensory functions, especially vision and 
vestibular sensation, is a key factor limiting the safety of gait 
and path planning ability of the older adults. In particular 
vestibular impairment compromises dynamic balance and postural 
stability, critical for functional autonomy in older adults (32).In 
walking interventions, sensory impairments often lead to slow 
steering, poor spatial orientation and delayed environmental 
response, significantly increasing the risk of falls (28, 32, 45). 
Sensor technology provides an objective pathway to identify 
potential signals of sensory degradation through continuous 
monitoring of gait rhythm, acceleration fluctuations and head 
posture changes, and can assist in the individual adaptation of 
intervention programmes. 
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A total of five of the included review studies used an integrated 
system of IMUs (3-axis acceleration + gyroscope) with multipoint 
plantar pressure sensors to monitor gait performance in sensory 
decline groups (21, 30, 31). Three of them focused on walking 
behavior under simulated low light or complex path conditions, 
and showed that the CV of gait increased by about 38.4% and the 
step length symmetry index decreased by more than 18% in sensory 
impaired individuals, suggesting that their spatial sense is reduced 
and their path control is weakened when they have insufficient 
visual input (28). Two other analyses combining plantar center 
of pressure trajectory (COP) and acceleration fluctuation metrics 
to analyze steering co-ordination and path deviation rates found 
that older adults with vestibular dysfunction had significantly 
higher values of steering phase deviation than the control group 
(21, 22, 31). These deviations correlate strongly with vestibular 
deterioration, reflecting impaired sensorimotor integration and 
postural compensation strategies, which are essential for safe 
turning and adaptive locomotion. 

In summary, the 3-axis acceleration and plantar pressure 
synergistic sensing system has the engineering feasibility to identify 
the risk of sensory function degradation in older adults, and in 
particular, it demonstrates higher sensitivity in identifying micro-
signals such as steering slowness, support deviation and path 
instability. This multimodal approach enables real-time monitoring 
of sensory-related gait disturbances in ecologically valid settings, 
and provides critical inputs for early screening, personalized fall-
prevention strategies, and adaptive rehabilitation protocols. It is of 
great practical value for early screening, personalized intervention 
design and fall risk prediction. 

3.3.5 Improves detection of cognitive function 
changes in the older adults 

Cognitive functioning directly impacts path planning, 
rhythmic control, and multitasking during brisk walking in older 
adults Multimodal sensor systems offer dynamic and objective 
methods for early detection of MCI, capturing synchronized 
behavioral rhythms and physiological fluctuations (23, 36). 
These systems effectively monitor rapid and subtle changes 
often missed by traditional questionnaires by integrating 
movement-related and physiological signals, enabling longitudinal 
tracking of cognitive dynamics under ecologically valid and 
task-relevant conditions. 

Currently, multimodal combinations of triaxial accelerometers, 
HRV, and EDA sensors are widely employed for cognitive 
assessments (24, 26, 29). Accelerometers extract gait variability, 
rhythmic control, and responsiveness to speed changes; HRV 
measures autonomic nervous system regulation; and EDA 
indicates stress levels and emotional arousal (21, 26, 29). Together, 
these signals reflect the integration of motor, autonomic, 
and affective pathways involved in cognitive control. In 
dual-task gait scenarios, these systems simultaneously collect 
behavioral and physiological signals, enabling analysis of 
executive dysfunction and neural state alterations associated 
with cognitive loads in individuals with MCI (23, 32).This is 
particularly valuable in detecting early-stage impairments, where 
overt clinical symptoms may be absent but compensatory 

mechanisms such as increased gait variability—begin 
to emerge. 

Numerous reviewed studies utilized these sensor combinations 
to assess cognitive load and evaluate intervention effects in older 
adults (23, 29). For example, during dual-task walking, individuals 
with MCI exhibited increased gait variability (higher CV values) 
and significantly reduced HRV parameters, such as SDNN, 
reflecting heightened cognitive interference on motor control 
systems (23, 32). Additionally, comparisons of electrodermal 
activity pre- and post-cognitive training indicated reduced 
SCR frequency and increased root mean square of successive 
differences (RMSSD) values, suggesting decreased stress levels 
and improved autonomic nervous function (23, 26, 29). These 
physiological shifts provide objective, quantifiable evidence of 
cognitive improvement, and may help tailor interventions 
based on real-time feedback rather than relying solely on 
subjective reporting. 

In summary, multimodal sensor platforms demonstrate high 
sensitivity and engineering adaptability for identifying MCI 
risks and assessing cognitive regulatory capacity in older adults. 
Compared to static questionnaire-based assessments, sensor-
based approaches provide real-time, high-frequency monitoring 
in dynamic contexts, offering valuable insights for optimizing 
cognitive interventions and developing effective risk-warning 
mechanisms. They also promote the development of closed-
loop systems for proactive, personalized cognitive care in 
aging populations. 

4 Discussions 

4.1 Multimodal sensor systems enhance 
detection and monitoring accuracy and 
effectiveness 

A systematic review of 23 empirical studies demonstrates that 
employing multimodal sensing systems in walking interventions 
for older adults significantly enhances monitoring coverage 
and feedback accuracy across behavioral, physiological, and 
psychological dimensions—particularly in complex scenarios such 
as gait recognition, physiological rhythm monitoring, and mood 
fluctuation assessment (1, 48, 49) (refer to Figure 7). Compared 
to single-sensor solutions, multimodal systems effectively bridge 
the informational gaps between motor behavior, cognitive function, 
and emotional state by integrating multiple sensory channels. This 
integration enables real-time detection of older adults’ dynamic 
conditions and facilitates personalized, interactive intervention 
adjustments (29, 50, 51). As a result, these systems substantially 
improve the responsiveness and individualization of intervention 
programs, sustain user engagement, and strengthen the long-term 
efficacy of interventions. 

4.1.1 Highly integrated architecture enhances 
system stability and response efficiency 

Multimodal sensing systems usually adopt highly modular and 
integrated hardware architecture, and through the collaborative 
deployment of multiple sensors, they can achieve comprehensive 
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FIGURE 7 

Multimodal sensor fusion framework for behavioral and physiological state monitoring in older adults. 

capture of the walking behavior, physiological changes and 
environmental interactions of the older adults. Typical 
configurations include plantar pressure sensors and IMUs for 
stability and gait rhythm analysis, PPG sensors combined with 
triaxial accelerometers for monitoring heart rate load and activity 
intensity, and EDA and HRV sensors for detecting emotional 
stress and fearful states (21, 30, 52, 53). The collaborative data 
acquisition between these hardware modules is achieved through a 
unified clock synchronization mechanism, and relies on low-power 
wireless protocols such as BLE 5.0 to ensure stable communication 
and data integrity of multiple sensing sources. 

At the system response level, the introduction of edge 
computing unit has become a key means to improve the real-time 
and intelligent level of the system. By realizing feature extraction, 
preliminary anomaly screening and feedback generation at local 
nodes, the system can effectively reduce data latency, alleviate the 
network transmission burden, and improve the feedback efficiency 
in emergency situations (54–56). For example, for the detected 
sudden change in gait, sudden increase in heart rate, or violent 
fluctuations in mood, the edge node can instantly generate alert 
signals to warn the user through vibration, voice, or light effects. 

This type of highly integrated, low-latency design not only 
improves data processing efficiency and system stability, but also 

contributes to the long-term operation of the device in real-
world scenarios and the maintenance of user stickiness. Studies 
have shown that this type of system has significant advantages in 
improving exercise duration, rhythm stability and subjective sense 
of security, which is an important technical guarantee to promote 
the standardization of daily exercise behavior and maximize the 
effectiveness of intervention for the older adults (57–59). 

4.1.2 Adaptive algorithms and multimodal data 
fusion to enhance individual recognition accuracy 

In multimodal sensing systems, the scientific rigor and 
adaptability of the data fusion strategy directly influence the 
recognition performance and feedback accuracy for complex 
behavioral states in older adults. Currently, mainstream 
approaches include time-window-based synchronous feature 
extraction, modality normalization, and weighted integration, 
often implemented through deep learning models such as support 
vector machines (SVMs), CNNs, and long short-term memory 
(LSTM) networks. These algorithms are effective in capturing 
temporal correlations within behavioral dynamics, allowing for 
joint modeling of gait patterns, rhythmic variations, and emotional 
fluctuations (60, 61). 
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To account for inter-individual differences in physiological 
states and behavioral responses, some studies have introduced 
adaptive fusion mechanisms (62). These systems dynamically 
adjust the weight distribution of each sensing channel based 
on individual-specific parameters, such as resting heart rate, 
baseline gait rhythm, or galvanic skin response. For instance, 
in users with unstable gait, the algorithm prioritizes IMU and 
plantar pressure signals, whereas for emotionally sensitive or 
anxiety-prone individuals, it increases the processing sensitivity of 
EDA and HRV inputs (21, 45, 63). This approach substantially 
enhances the system’s ability to adapt to individual characteristics 
and generalize across diverse populations—making intervention 
strategies not only “tailored to the individual”but also“evolving 
with the individual”. 

In summary, multimodal sensing systems have demonstrated 
superior monitoring coverage and accuracy in gait interventions 
for older adults, enabling comprehensive capture of gait 
characteristics and behavioral changes. These systems provide a 
robust technological foundation for personalized and dynamically 
responsive health interventions. By integrating data from multiple 
sensing modalities, they offer improved risk assessment, more 
accurate anomaly detection, and enhanced relevance and timeliness 
of intervention strategies. Future development should prioritize 
the co-optimization of hardware and software design, along 
with the advancement of intelligent and user-friendly feedback 
mechanisms, to facilitate the transition of such systems from 
experimental validation to real-world application. Moreover, 
attention should be given to wearability, energy efficiency, and 
behavioral adaptability to deliver an intelligent health support 
solution that is continuous, convenient, and focused on behavioral 
guidance for older adults. 

4.2 Prospects: focus on accurate 
identification, personalized modeling, and 
intelligent feedback 

With ongoing advancements in sensor hardware, low-power 
communication protocols, and artificial intelligence algorithms, 
older adults walking intervention systems are evolving from 
single-indicator detection to comprehensive, multidimensional 
state assessment (64). Future research should focus on three 
key dimensions: multimodal perception fusion, personalized 
intervention modeling, and interactive feedback mechanism 
optimization, to enhance the system’s accuracy, adaptability, and 
user experience (65, 66). 

4.2.1 Accurate identification 
Multimodal perception fusion is expected to significantly 

enhance the system’s recognition accuracy and contextual 
awareness of complex behavioral states in older adults. Existing 
studies have shown that multiple sensing device such as plantar 
pressure sensors, triaxial accelerometers, PPG, and EDA can be 
synchronized to capture various state features, including gait 
rhythm, heart rate variability, and emotional stress responses 
(67–69). Future research should further address technical 
challenges in multi-sensor data fusion, including asynchronous 

data acquisition, transmission delays, and noise interference (70). 
Additionally, researchers should explore real-time multi-source 
data co-processing architectures, develop advanced algorithms 
for feature-level and decision-level fusion, and optimize time 
synchronization mechanisms to overcome the limitations of 
single-sensor systems, such as missing data, false alarms, and 
pose dependency (71, 72). These advancements will enable more 
accurate and real-time monitoring and early warnings for common 
risks among older adults, including fall detection, fatigue or 
overload identification, and gait abnormalities. 

4.2.2 Personalized modeling 
Personalized intervention modeling will be central to 

enhancing the relevance and effectiveness of intervention systems. 
The older adults population is highly heterogeneous in terms of 
physiological status, cognitive function, perceptual ability, and 
motivation for exercise, leading to widely varied responses to 
the same intervention programs (73). Traditional standardized 
intervention models often fail to adequately address this variability, 
resulting in unsustainable outcomes. Therefore, future research 
should enhance dynamic monitoring and build individualized 
models based on personal parameters such as resting heart rate, 
gait symmetry, skin conductance frequency, and daily activity 
capabilities (74). By leveraging advanced machine learning and 
deep learning, adaptive intervention models can be developed to 
deliver precise, personalized feedback and strategy adjustments 
tailored to specific contexts and timeframes (75).ultimately 
supporting sustained participation in walking and enhancing older 
adults’ confidence and ability in managing their health. 

4.2.3 Intelligent feedback 
Developing intelligent and context-aware feedback 

mechanisms will be crucial for improving user engagement 
and adherence. Current systems often rely on static charts or text 
notifications, offering limited interactivity and delayed feedback, 
which fail to meet the older adults’ need for immediate interaction 
and sustained motivation (76, 77). Future research should explore 
richer multimodal interactions—such as personalized voice 
prompts, adaptive vibrations, visual animations, and haptic 
feedback—and incorporate context-aware elements to deliver 
timely, user-specific feedback (78, 79). In addition, a closed-loop 
system of real-time data sharing and feedback involving family 
members, caregivers, and healthcare professionals should be 
developed to foster a collaborative health management ecosystem 
(80). This would promote data transparency, enable personalized 
interventions, and support proactive health risk management and 
precise behavioral intervention. 

In summary, future walking intervention systems for older 
adults should center on three core technologies: accurate 
identification, personalized modeling, and intelligent feedback. 
They should closely align with user needs and promote the 
evolution of motion sensors from mere data collectors to intelligent 
health management tools. This can not only slow functional decline 
and reduce fall risks among older adults, but also offer essential 
technical and theoretical support for implementing active healthy 
aging strategies. 
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4.3 Limitations: design rigor, inclusiveness, 
validation, deployment, ethics in older 
adults walking systems 

This study systematically integrates empirical research on 
motion sensor interventions targeting walking behavior among 
older adults and establishes a logical technical framework 
encompassing sensor types, functional mechanisms, and intrinsic 
ability support. However, current evidence still presents critical 
limitations across five dimensions: design rigor, population 
inclusiveness, long-term validation, realistic deployment and 
ethical governance. 

4.3.1 Design rigor 
Notable heterogeneity exists among the included studies 

regarding sensor types and functional indicators, limiting direct 
comparability of research outcomes. Significant variability was 
observed in sensor devices, sensing parameters (such as sampling 
frequency and number of measurement channels), and functional 
modules (e.g., IMU integration, real-time feedback) (81, 82). Some 
studies relied solely on simple accelerometers or wristband devices, 
inadequately capturing gait stability, physiological rhythms, and 
psychological states, thereby limiting the generalizability of 
intervention effects (74, 83). Future studies should incorporate 
subclass clustering strategies—such as classification based on device 
integration or perceptual dimensions—to enhance methodological 
structure and precision. 

4.3.2 Inclusiveness 
The study samples exhibit significant selection bias, challenging 

the representativeness of all older adults. Current research 
predominantly focuses on urban, cognitively healthy, and 
technologically adept older populations, neglecting special-needs 
groups, including mobility-impaired individuals, rural residents, 
and those averse to technology. Such bias may overestimate 
technology acceptance and adherence, thereby limiting the 
practical applicability and policy implications of the findings 
(84). Expanding participant scope by incorporating diverse 
demographic factors (e.g., age, gender, geographic location, 
health status, education, and digital literacy) and conducting 
detailed subgroup analyses will enhance generalizability and policy 
relevance (85, 86). Furthermore, user adaptation periods and 
technical barriers encountered during actual deployment must be 
considered to improve practical effectiveness. 

4.3.3 Validation 
Existing intervention studies typically have short data 

collection periods, mostly ranging from 4 to 8 weeks, with 
few extending to or beyond 12 weeks. Short-term designs may 
primarily reflect transient behavioral motivation rather than 
sustained functional improvement or capability reconstruction 
(87). Moreover, inadequate tracking during the post-intervention 
or ”off-device” phase restricts reliable assessments of behavioral 
internalization and long-term self-driven effects of technological 

interventions. Future interventions should therefore extend the 
duration of data collection and strengthen follow-up phases to 
fully elucidate the long-term behavioral change mechanisms 
(88). Additionally, theoretical explorations into behavioral 
internalization mechanisms are necessary to clarify how technology 
facilitates enduring self-driven behaviors among older adults (89). 

4.3.4 Deployment 
Current research is largely confined to controlled 

environments, overlooking real-world interference factors 
such as environmental noise, equipment maintenance, and 
data transmission stability (90, 91). Specifically, environmental 
noise may disrupt signal clarity and introduce artifacts in 
sensor readings; inadequate equipment maintenance can lead 
to hardware malfunction or calibration drift over time; and 
unstable data transmission may result in delays, data loss, or 
incomplete monitoring records (92–94). These factors collectively 
undermine the accuracy, continuity, and reliability of sensor-based 
monitoring in real-world aging care settings. In addition, factors 
such as individual variability in daily activities, the presence of 
caregivers, and the diversity of living environments can also affect 
the performance and effectiveness of sensor-based technologies 
(51, 95).Therefore, future research should emphasize field tests in 
real-world settings to systematically evaluate technological stability 
and reliability across diverse practical scenarios (96).Moreover, 
attention should be given to long-term device use, including 
wearability, user comfort, and the adaptability of technologies 
to different living conditions and user needs, to ensure broader 
applicability and sustained effectiveness of interventions (97, 98). 

4.3.5 Ethics 
Additionally, the ethical dimensions of deploying sensor-based 

health monitoring systems, particularly regarding data privacy, user 
consent, and digital autonomy, remain underexplored in much 
of the current literature (99). As these systems collect sensitive 
physiological and behavioral data in real time, they raise critical 
concerns surrounding data ownership, informed consent clarity, 
security vulnerabilities, and the potential for surveillance or misuse 
(100, 101). Future research should not only incorporate transparent 
ethical frameworks and privacy-by-design protocols, but also 
actively engage with institutional review boards and stakeholder 
communities to ensure compliance with regulatory standards and 
moral obligations (102, 103). Establishing trust, accountability, and 
user empowerment should be integral to the development and 
deployment of wearable technologies for older adults. 

In conclusion, although existing research initially demonstrates 
the potential of sensor technology in monitoring and intervening 
in older adults’ walking behavior, continuous improvements 
in research design, validation of long-term effects, sample 
representativeness, real-world deployment considerations, and 
privacy and ethical safeguards are essential. Such enhancements 
will ensure future sensor-based interventions are more practical, 
feasible, equitable, universally applicable, and sustainable, 
thereby effectively contributing to achieving strategic goals for 
healthy aging. 
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5 Conclusions 

This systematic review analyzed 23 empirical studies evaluating 
motion sensors supporting older adults’ walking across population 
characteristics, device types, and intrinsic capacity dimensions. 
Results indicated the 60–74 age group had optimal technology 
acceptance, whereas seniors over 85 required intuitive, user-
friendly devices. Plantar pressure sensors effectively assessed 
gait stability; PPG and HRV sensors enhanced physiological 
monitoring; accelerometers excelled in behavioral assessment; and 
EDA sensors sensitively detected emotional stress. Multimodal 
fusion and AI-driven feedback mechanisms offer significant 
potential for personalized interventions, tele-rehabilitation, and 
comprehensive health assessments. 
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