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The olive tree and its derivatives—olives, olive oil, and their by-products—are
foundational to the Mediterranean diet and are increasingly recognized for their
roles in nutrition, medicine, and ecological sustainability. Indeed, one of the most
prominent examples of sustainable production and consumption paradigm in a
changing climate lies in the olive sector, approached within One Health framework,
i.e., the interconnectedness of human health with animal and environmental
health. This review explores the multifaceted roles of olive cultivation, olive oil
production and consumption, and olive by-products in relation to health benefits,
sustainable agriculture, and environmental impact. Olive oil consumption offers
significant human health benefits, primarily involving its anti-inflammatory and
antioxidant properties. These effects, largely attributed to its rich composition of
monounsaturated fatty acids and other antioxidants, mediate its cardioprotective
and neuroprotective roles. Beyond human health, olive oil cultivation and its
by-products (such as pomace and mill wastewater) have gained attention as
valuable feed additives in animal nutrition. These enhance livestock health and
welfare, improve meat and dairy quality, and promote sustainable agricultural
practices and bioenergy production—ultimately reducing environmental impact
and supporting circular economies. From an environmental perspective, the olive
sector contributes meaningfully to soil conservation, biodiversity support, and
climate change mitigation through carbon sequestration and reduced greenhouse
gas emissions. As such, the olive tree is more than a source of a valuable food
product: it is a nexus of sustainable development, public health, and ecosystem
stewardship. Considering the olive sector within the One Health paradigm highlights
its relevance in addressing global challenges at the intersection of food systems,
health, and environmental sustainability.
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1 Introduction

One Health is a multi-sectoral approach which recognizes that
human health is connected to animal health and to the environment,
emphasizing the need for integrated actions to address global health
challenges (1, 2). Olives and olive oil, renowned for their nutritional
and medicinal properties, represents a compelling case study within
this framework due to its significant impacts across all three domains
(3, 4) (Figure 1).

As a staple of the Mediterranean diet, olives and olive oil has been
celebrated for centuries for its role in promoting health and longevity, an
acknowledgment reflected in its recognition by UNESCO as part of the
Mediterranean diet’s Intangible Cultural Heritage of Humanity (5, 6).
More recently, the concept has been expanded beyond the Mediterranean
basin through the “Planeterranean” food-pyramid proposal for Asia,
which adapts the diet’s sustainability and health principles to regional
culinary traditions (7, 8). Rich in monounsaturated fats, polyphenols
and antioxidants, olive oil consumption has been linked to up to a 31%
reduction in cardiovascular events, a 28% lower risk of dementia-related
death, and anti-inflammatory effects, including reductions in
inflammatory markers, such as C-reactive protein and interleukin-6
(9-22). While most associations come from observational studies and

should be interpreted with caution, evidence from intervention trials is
growing. Some findings, especially in cognition, remain mixed,
highlighting the need for more long-term randomized studies (16, 17).
However, the relevance of olives and olive oil extends beyond human
health. From an environmental perspective, the cultivation of olive trees
plays an important role in promoting biodiversity, improving soil quality,
and mitigating climate change through carbon sequestration (23, 24). In
addition, by-products of olive oil production (such as pomace, leaves,
pits and even mill wastewater) together represent up to 78% of the olive
mass and are increasingly valorised in livestock feed. These by-products
can replace 15-20% of conventional concentrate ruminant diets (the
grain-based, high-energy component that complements bulkier forage),
thereby closing resource loops within a circular One Health framework
(Figure 2). This practice supports animal health, improves production
efficiency, and reduces agricultural waste (25, 26), in accordance with
circular economy principles and contributing to more sustainable
agricultural systems (27, 28).

Considering olive cultivation in a One Health framework allows
for a comprehensive assessment of the multifaceted contributions of
olive tree and olives to human, animal, and environmental health. This
integrated perspective highlights their potential not only as valuable
nutritional and economic resources, but also as a crop that addresses
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The One Health approach in the context of olives, olive oil and their by-products. The blue section highlights implications for human health, including
nutrition, medical applications, and disease prevention. The brown section focuses on animal health, covering aspects such as livestock nutrition,
nutraceuticals, food quality and security. The green section represents environmental health, including carbon and soil stewardship, circular
bioproducts, and renewable bioenergy. The figure was created using BioRender (https://BioRender.com).
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Olive oil production process and the utilization of its by-products. Olives (containing 10—25% Oil, 20—-35% Dry Matter, 25-35% Pits, 65—-75% Pulp and
45-55% Olive Water) are harvested and processed to produce olive oil. The resulting by-products—de-stoned pomace (the by-product of olive oil
extraction after the pit has been removed from the olive paste), olive mill wastewater, olive leaves, olive seeds, and olive cake (the remaining pulp,
skins, and sometimes stones after the oil has been extracted from the olives)—are repurposed into a variety of applications, including livestock
nutrition, nutraceuticals and pharmaceuticals, water irrigation, biodiversity and soil conservation, carbon sequestration, bioenergy production and
biodegradable packaging. The figure was created using BioRender (https://BioRender.com).

critical global challenges related to sustainability, food security, and
health. This review considers the role of olives, olive oil and their
by-products within the One Health paradigm, and focuses on their
health benefits, sustainable agricultural production practices and
environmental implications of its production.

2 The health benefits of olives, olive
oil and their by-products

The health-promoting properties of olives and olive oil are well-
established, and supported by clinical, epidemiological and laboratory
studies. They contain monounsaturated fatty acids (MUFAs),
polyphenols, sterols and tocopherols which exhibit therapeutic
potential for both humans and animals (11, 29-34).

2.1 Human health

Multiple studies have demonstrated the cardioprotective effects of
olive oil, largely attributed to its rich content of MUFAs (primarily
oleic acid) and a diverse array of bioactive compounds, including
tocopherols, squalene, phytosterols, and various polyphenols (e.g.,
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oleocanthal and oleuropein) (10, 11, 35, 36). These constituents help
mitigate oxidative stress, inflammation, and lipid oxidation—key
processes in the pathogenesis of atherosclerosis and other chronic
diseases. Notably, phenolic alcohols (e.g., hydroxytyrosol, tyrosol),
secoiridoids (e.g., oleuropein aglycone, oleacein, oleocanthal), lignans
(e.g., (+)-pinoresinol, (+)-acetoxypinoresinol), and a-tocopherol have
been identified as major contributors to the antioxidant and anti-
inflammatory properties of extra virgin olive oil (EVOO) (3, 10, 35,
37-40). Reflecting these benefits, olive oil polyphenols (particularly
hydroxytyrosol and its derivatives) have earned a health claim
endorsement under EC Regulation 432/2012 (41). More recently,
advances in machine learning and artificial intelligence (AI) have been
applied to identify EVOO phytochemicals with the highest potential
to modulate disease-associated protein networks, offering new
opportunities for precision nutrition (42).

EVOO phenolics directly scavenge reactive oxygen species (ROS)
(such as superoxide and hydroxyl and peroxyl radicals) through
hydrogen atom donation. Compounds like hydroxytyrosol (HT) and
oleuropein (OLE) also chelate transition metals (Fe’*, Cu**), reducing
oxidative damage (29, 43). Furthermore, these bioactives enhance
endogenous antioxidant defense systems leading to increased
expression of antioxidant enzymes, including superoxide dismutase
(SOD), catalase, glutathione peroxidase (GPx), and heme oxygenase-1
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(HO-1) (44, 45). In addition, EVOO compounds (e.g., OLE and HT)
inhibit pro-oxidant enzymes [such as NADPH oxidase (NOX2/4) and
xanthine oxidase], further reducing ROS generation (29, 46).

Olive oil constituents also modulate inflammation through several
complementary pathways (47). Oleocanthal inhibits cyclooxygenase-1
and -2 (COX-1/COX-2), reducing prostaglandin synthesis in a
manner similar to non-steroidal anti-inflammatory drugs (NSAIDs)
(3, 48). Hydroxytyrosol and OLE suppress the NF-xB and AP-1
pathways, leading to reduced production of pro-inflammatory
cytokines, including tumor necrosis factor alpha (TNF-a), interleukin
1P (IL-1p), and interleukin 6 (IL-6) (29, 43). In addition, HT has been
found to interfere with the NLRP3 inflammatory complex, thereby
limiting the activation of downstream inflammatory signals (49).
Notably, a recent meta-analysis concluded that EVOO consumption
did not consistently lower inflammatory markers (such as CRP or
IL-6), reflecting variability in findings across intervention trials (50).
The antioxidant and anti-inflammatory properties of EVOO translate
into multiple cardiovascular health benefits (21). By reducing
low-density lipoprotein (LDL) oxidation and enhancing high-density
lipoprotein (HDL) functionality, EVOO constituents help prevent the
accumulation of cholesterol-laden immune cells that drive
atherosclerotic plaque development (10, 11, 36, 51). In
(NO)
bioavailability and lower oxidative stress after a high-phenolic EVOO

hypercholesterolaemic ~ subjects, higher nitric oxide
meal improve endothelial-dependent vasodilation (ischemic reactive
hyperaemia), an early protective mechanism against atherosclerosis
(52). Moreover, longer-term olive oil interventions have been shown
in multiple randomized controlled trials to increase brachial artery
flow-mediated dilation, a marker of vascular health and predictor of
reduced cardiovascular risk (53). Inhibition of platelet aggregation
through lowering thromboxane A, production by oleocanthal
supports anti-thrombotic effects (3, 48). Large clinical trials—most
notably PREDIMED, a Spanish multicentre randomized controlled
trial in 7,447 high-risk adults testing a Mediterranean diet
supplemented with EVOO against a low-fat control—showed a
significant reduction in rates of major cardiovascular events,
indicating cardiovascular benefits linked to EVOO supplementation
(11). Systematic reviews of similar interventions report modest
improvements in standard lipid measures, such as LDL-C, HDL-C and
triglycerides (54). In addition, a large meta-analysis of 33 randomized
clinical trials found that EVOO consumption lowered fasting insulin
and insulin resistance, as measured by the homeostasis model
assessment of insulin resistance (HOMA-IR), but, interestingly, had
no consistent effects on inflammatory markers (CRP, IL-6), lipids, or
blood pressure (55). These findings suggest that while EVOO shows
clear benefits for insulin sensitivity, its effects on inflammation and
cardiometabolic risk factors remain heterogeneous across trials, which
may help explain differences compared with individual studies
reporting positive results.

EVOO has been associated with a lower risk of neurodegenerative
diseases (including Alzheimer’s and Parkinsons) (56-59) through
multiple mechanisms. Preclinical and observational human studies
suggest that phenolic components of olive oil (such as HT and
oleacein)—may help preserve cognitive health in aging by modulating
oxidative stress and inflammation; however, clinical trial evidence
remains limited and inconsistent (60). Randomized clinical trials have
reported improvements in memory performance and clinical
dementia ratings in individuals with mild cognitive impairment
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following high-phenolic EVOO consumption (13). Activation of
antioxidant enzymes (e.g., SOD and catalase) preserves mitochondrial
integrity and promotes neuronal survival, a crucial effect given the
overwhelming evidence implicating mitochondrial dysfunction as a
causal factor in these diseases (29, 43, 58). EVOO secoiridoids
(especially oleocanthal and oleacein) help strengthen the protective
barriers between brain cells and reduce processes that can damage
brain tissue (61, 62), maintaining blood-brain barrier function and
preserving neuronal connectivity (13). Moreover, in Parkinson’s
disease models, EVOO phenolics (HT, oleacein, mixed phenolic
extracts) modulate microglial activation, thereby lowering IL-1p and
TNF-a release and attenuating neuro-inflammation (63-65). Recent
reviews suggest that dietary polyphenols (e.g., sulforaphane,
resveratrol, luteolin, curcumin) improve oxidative stress and
inflammation in autism models, alleviating impaired sociability and
repetitive behaviors (66, 67). Small clinical studies have reported
modest benefits in irritability and hyperactivity (68), although
confirmatory trials are still lacking (66, 67, 69).

Epidemiological and clinical data indicate that regular EVOO
consumption helps prevent and manage type 2 diabetes (12, 70, 71).
In Mediterranean-diet cohorts, including the PREDIMED trial, higher
EVOO intake was associated with markedly lower diabetes incidence
compared to a low-fat control diet (12, 70). This finding is consistent
with modest improvements in fasting glucose and insulin sensitivity
observed in randomized EVOO trials (71, 72). Meta-analyses of
Mediterranean diet adherence report an overall 16-19% risk reduction
of diabetes (71, 72), and a recent dose-response meta-analysis that
include cohort studies and randomized clinical trials found a 13-22%
reduction in the risk of type 2 diabetes with daily olive oil consumption
emphasizing the need for further randomized clinical trials to confirm
causality (73). EVOO phenolics also display anti-cancer properties
through multiple, complementary actions, including (i) repression of
oxidative DNA damage, (ii) modulation of estrogen-receptor
signaling, (iii) inhibition of pro-tumor inflammatory and angiogenic
pathways, and (iv) promotion of tumor-cell apoptosis while blocking
metastasis (29, 74-77). Population studies have linked higher olive oil
intake to lower incidence of hormone-dependent malignancies, such
as breast and ovarian cancer (78, 79). In addition, EVOO-derived
compounds (like oleocanthal and OLE) have been shown to suppress
proliferation across a range of tumor cell lines in vitro (80).
Collectively, these anti-proliferative, pro-apoptotic and anti-
angiogenic effects position EVOO polyphenols as plausible nutritional
supplements for cancer prevention. While these findings are
promising, most are derived from preclinical or observational studies.
Clinical trials are needed to confirm whether these effects translate
into consistent cancer risk reduction in humans. These mechanisms—
particularly the modulation of oxidative stress and inflammatory
pathways—are also relevant in animals, where olive-derived
compounds demonstrate similar pathophysiological benefits.

2.2 Animal health

Olive oil, in combination with by-products from olive cultivation
and processing (such as pomace, mill wastewater, leaves, and stones
or seeds) is increasingly valued as a source of functional feed additives,
due to their rich content of bioactive compounds, including
polyphenols, MUFAs, sterols, and dietary fiber (25, 26, 81-87). These
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components offer antioxidant, antimicrobial, and anti-inflammatory
properties, making them beneficial for animal nutrition and health,
while contributing to sustainable waste management in olive oil
production (86, 88-91).

In ruminants, incorporating olive oil by-products into feed has
demonstrated notable nutritional and health benefits. For example,
supplementation of diets with polyphenol-rich extracts from olive mill
wastewater led to reductions in the urea content (up to 16%) and
somatic cell counts (up to 59%) in Sarda ewes—findings indicative of
improved udder health and reduced inflammation (92). In cattle,
similar dietary inclusion of olive by-products (e.g., olive pomace)
enhanced milk quality, increasing MUFA levels (=5%) while reducing
saturated fats (~7%) (85, 93).

In swine, supplementing diets with HT- and polyphenol-rich olive
by-products have been found to enhance immune function, reduce
oxidative stress, and improve lipid metabolism (26, 86, 94). Studies
indicate that HT not only supports antioxidant defense mechanisms
but also mitigates inflammatory responses, which may contribute to
better overall health and productivity in pigs (26, 95, 96). When
destoned olive cake was included as 5-10% of the total feed, finishing
pigs showed improved feed conversion ratios (FCR), reduced back-fat
thickness and a healthier intramuscular fatty-acid profile, i.e., richer
in MUFASs and polyunsaturated fatty acids (PUFAs) (97). In addition,
supplementation of finishing diets with a polyphenol extract from
olive mill wastewater positively remodeled gut microbiota and
intestinal morphology, changes that support better gastrointestinal
health (98).

In poultry production, the benefits of dietary supplementation
with olive oil and its by-products have been well-documented,
particularly for egg and meat quality (87, 99-102). Diets supplemented
with 2-5% olive oil can lead to egg yolks with higher levels of the total
unsaturated (mainly monounsaturated) fatty acid content (100).
Similarly, the fortification of rations with 4-6% dried olive pulp
deepened yolk color, reduced shell defects and positively modulated
gut microbiota (103). Reductions in hens’ serum cholesterol have been
reported, but evidence for direct cholesterol reduction in egg yolks
remains inconclusive (100). Modification in the lipid composition of
eggs is of particular interest given that eggs are a daily staple in many
diets and, accordingly, even modest improvements in their nutrient
profile could have a substantial public health impact. In broiler
chickens, diets containing 2% or 4% olive cake meal (supplemented
with Bacillus licheniformis) have been shown to improve weight gain
and FCR, reflecting enhanced feed efficiency (104). Similarly, olive oil
supplementation enhanced body weight gain, while olive cake
inclusion (up to 15%) maintained feed intake and efficiency, with 10%
boosting feed conversion and improving survival rates (105-107).
Broilers given HT-rich olive by-products (e.g., olive mill wastewater
permeate or polyphenol-rich EVOO) showed enhanced antioxidant
status (as evidenced by higher catalase and superoxide-dismutase
activities and lower lipid and protein oxidation in blood and tissues),
while growth performance (body-weight gain and feed-conversion
ratio) remained largely unchanged (108, 109). Incorporation of 5%
olive oil in broiler diets improved the unsaturated-to-saturated fatty
acid ratio in breast and drumstick meat while reducing serum
triglyceride levels and increasing HDL cholesterol. However, early
growth performance of the animals was slightly reduced (110).
Overall, supplementation with olive oil and by-products in broilers
enhances antioxidant status—an important benefit given that stressors
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common in commercial poultry production (environmental,
pathogenic, and nutritional) negatively impact growth, health, and
feed efficiency. However, the effects on growth performance
remain inconsistent.

Beyond nutritional benefits, olive oil and its by-products enhance
immune function and gut microbiota balance in livestock (26, 111).
Enriched diets lower oxidative stress markers, improve animal health,
and reduce antibiotic need, contributing to antimicrobial resistance
mitigation (26, 86-89, 112, 113). Key phenolics (e.g., OLE and HT)
modulate inflammatory and oxidative stress pathways, enhancing
resilience (90). In broilers, dietary supplementation with olive oil
increased antibody titers against Newcastle disease virus (105), while
olive-derived supplements, up-regulated antioxidant enzymes (HO-1,
SOD, catalase, GPx), and boosted IL-2/interferon-y and IgA-IgG-IgM
levels, changes that strengthen immune defenses (26, 83, 114).
Inclusion of olive by-products in feed can also mitigate antimicrobial
resistance by lowering caecal multidrug-resistant Campylobacter and
ESBL (extended spectrum beta-lactamase)-producing E. coli loads
and, in vitro, OLE and oleocanthal have been shown to inhibit
bacterial efflux pumps and biofilm formation (115). Hydroxytyrosol
has demonstrated antioxidant and immunomodulatory effects in
immunosuppressed broiler chickens, by improving gut health,
lowering inflammation, and strengthening important immune cells
(e.g., CD4" and CD8" T-cells) (113). In swine, dietary supplementation
with polyphenol-rich olive extracts fostered beneficial gut bacteria,
suppressed pathogens, and promoted digestion and gut health
(116, 117).

Feeding olive oil or its processing by-products to livestock
consistently yields foods of animal origin with a more favorable lipid
profile. In finishing pigs, replacing 5-10% of the concentrate portion
of the diet with destoned olive cake increased the proportions of
MUFA + PUFA in muscle without impairing growth performance
(97). Dairy products also show improvements. For example, including
olive cake in cow diets increased the oleic and conjugated linoleic acid
content of cheese without affecting milk yield, and enhanced the
appearance, aroma and flavor of the cheese (118). Similarly, when 8%
olive cake was incorporated into Holstein cow rations, the resulting
Provola cheese contained more oleic acid and retained bioactive
polyphenols (119). In broiler chickens, adding 2.5-10% dried olive
pulp produced breast meat richer in oleic acid and less prone to
oxidation (101, 120). Collectively, these studies demonstrate that
incorporating olive oil by-products into livestock feed can transform
Mediterranean agro-waste into value-added pork, poultry, and dairy
products with improved fatty-acid profiles and oxidative stability—
traits that support their classification as functional foods. Beyond their
nutritional value, olive-derived products also influence environmental
dynamics—directly through agricultural practices and indirectly by
shaping circular systems that impact soil, biodiversity, and climate
resilience. These broader ecological roles are explored in the
following section.

3 Impacts on environmental health
and climate

The incorporation of olive oil by-products into animal feed
provides both environmental and economic benefits (27). Olive oil
production generates substantial waste, and repurposing these
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materials as livestock feed reduces pollution, supports sustainable
waste management, and promotes circular economy principles (121,
122). By replacing a portion of conventional cereal-based feeds, olive
by-products lower the ecological footprint of livestock production,
and enhance resource efficiency (84, 85, 121, 123). Given that intensive
agriculture consumes vast amounts of water, energy, and
~70% of global
withdrawals (124, 125)—shifting feed sources away from high-input

agrochemicals—accounting  for freshwater
crops can yield measurable life-cycle savings and free water for human
use. Anaerobic digestion of olive mill wastewater fosters also a circular
economy by generating biogas and nutrient-rich digestate suitable for
fertilization (126, 127), while olive seeds can be processed into
functional protein isolates for food or feed applications, providing an
additional high-value route for the valorisation of olive-mill solids
(128, 129).

Olive trees, known for their longevity and adaptability, play a key
role in Mediterranean agroecosystems by conserving soil, enhancing
biodiversity, and supporting agroecological stability through their
deep-root systems and low-input requirements (130, 131). Although
well adapted to semi-arid climates, increasing exposure to prolonged
droughts, temperature extremes and erratic weather are posing risks
to olive trees yields and grove resilience (132).

These risks are projected to intensify under future climatic
changes (particularly in the Mediterranean region), with possible
negative consequences for the composition and nutritional quality of
olive oil, as well as the sector’s long-term productive capacity (133).
Paradoxically, these same shifts have expanded the geographical range
of olive cultivation, enabling the crop to be established in regions
previously considered unsuitable (133, 134). These considerations
highlight the importance—but also the uncertainty—of future
cultivation zones under evolving climate conditions. While efforts to
develop heat- and drought-tolerant cultivars are showing promise
(131, 133), field validation under real-world environmental variability
remains limited. As such, climate adaptation strategies in the olive
sector should be grounded in region-specific data, accounting for
uncertainties in climate and yield projections, and informed by local
agronomic knowledge (132, 133). Organic farming practices (such as
reduced pesticide use and intercropping) promote biodiversity and
soil health (135-137). Despite their potential, by-products of olive
cultivation and harvesting are still infrequently used as fertilizer
alternatives due to toxicity concerns (unless properly treated, such as
through spray drying) (138). Composting or vermicomposting with
bacterial and fungal communities is being widely investigated as a
bioremediation step. These microbes metabolize phenolics,
detoxifying the waste and rendering the resulting compost/
vermicompost suitable for reuse as an organic soil amendment (135,
139). The utility/value of this approach was shown in a recent life-
cycle study of organic olive-tree nurseries in Tuscany, where
transitioning from conventional to organic practices (including the
use of compost and reduced peat) reduced cradle-to-gate greenhouse
gas emissions by 13%, rising to 15.7% when accounting for carbon
stored in the seedlings (140).

While still in early development, emerging nanotechnologies
(including metal-oxide nanofertilizers) present promising tools for
reducing dependence on agrochemicals and enhancing nutrient-use
efficiency in agriculture. These strategies have been tested in cereals
and vegetables and may hold potential for improving crop resilience
to abiotic stresses (e.g., drought, salinity) and biotic threats (e.g.,
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pathogens) (141, 142). Notably, Zhao et al. (143) describe a suite of
innovations—from stress-signaling primers to smart nutrient
coatings—that collectively improve plant tolerance to drought, heat
and pathogens. Cerium-oxide nanoclusters, for example, have been
shown to activate abscisic acid (ABA)-responsive drought genes and
boost biomass under water stress by ~31%, demonstrating a
substantive mitigation of water-stress damage (144). Similarly, seed
priming with reactive oxygen species-generating nanoparticles has
also improved antioxidant capacity and conferred multi-stress
tolerance in maize (145). While these findings are compelling, their
translation to perennial crops (such as olives) remain speculative.
Olive-specific trials are lacking, and responses in woody plants may
differ due to physiological and phenological differences. Nevertheless,
early evidence from selenium-based nanomaterials have demonstrated
the ability to enhance plant immunity and nutritional quality,
suggesting future applicability in increasing olive resistance to fungal
pathogens while enriching fruit micronutrient content (146).
Additional studies are required to assess these technologies in olive-
specific contexts and ensure safe, scalable use.

Olive trees help mitigate climate change through the process of
carbon sequestration, both in their biomass and surrounding soil. As
perennial plants, they absorb carbon dioxide over long time frames,
with groves sequestering ~2.2 metric tons of carbon per hectare per
year (23, 147-149). Their extensive root systems help maintain soil
organic carbon levels, further promoting long-term carbon storage
(148, 150, 151). Emerging research suggests that olive trees could also
play a role in improving environmental conditions in urban settings,
such as air quality enhancement through pollutant capture (152).

Recently, the valorization of cellulose-rich olive oil pomace has gained
attention for developing biodegradable food packaging materials as a
sustainable alternative to plastics. Given its high cellulose and fiber
content, pomace enhances the mechanical strength and water resistance
of starch-based films, making them more suitable for food packaging
applications (153). Olive stones are widely used as biomass fuel,
particularly in Spain where they generate heat and electricity for
agricultural operations and residential heating (154). In a recent
innovation, Karim et al. developed a microwave-assisted hydrothermal
carbonization process to convert olive pomace slurry into biochar-like
hydrochar, a solid biofuel with high calorific value for electricity
generation (155). Similar studies have shown that both hydrothermal
carbonization and traditional slow-pyrolysis of olive residues yield
carbon-rich biochar solids that can serve as renewable fuel, soil-
amendment, and long-term carbon-sequestration agents, thereby
extending the circular-economy benefits of the olive sector (126, 155, 156).

Of the many ways that the products of the olive sector bring
benefit to humanity, perhaps one that is least developed and receives
the least attention is the olive stone. This is likely due to the long
tradition of thinking of biomass that contains high quantities of
lignin as being recalcitrant and extremely difficult to process. In
recent years, significant progress has been made in valorizing lignin
(122, 157, 158). It has been estimated that the olive stone comprises
18-22% lignin (158). While lignin from olive stones has been
demonstrated to be useful in applications ranging from biochar (159)
to heavy-metal extractions from water (160), techniques are emerging
to transform the stone lignin. For example, oxidative processes under
relatively mild catalytic conditions allow the conversion of whole
lignin into constituent specialty chemicals that can be used as high-
value ingredients in formulated products, such as vanillin
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(3-methoxy-4-hydroxybenzaldehyde) and 2,6-dimethoxy-1,4-
benzoquinone (DMBQ) (157). In addition, novel polycarbonate
polymers can be formed by breaking down lignin into monomers and
promoting subsequent repolymerization (161). The rapidly
progressing research area of lignin processing holds promise for the
olive stone to contribute to the overall economics of an olive refinery
concept where every component adds value.

At the industry level, producers are increasingly adopting
renewable energy sources (such as solar panels and wind turbines)
that reduce reliance on fossil fuels and minimize emissions associated
with production (162). The introduction and application of carbon-
neutral initiatives (including reforestation projects, waste reduction
strategies, and renewable energy integration) are also positioning the
olive sector as a leader in climate-smart agriculture (27). These
sustainability-driven efforts highlight a commitment to balancing
productivity with environmental responsibility.

4 Conclusion

Olives, olive oil and their by-products play a pivotal role within the
One Health framework, linking human health, animal nutrition, and
environmental sustainability. As a keystone of the Mediterranean diet,
the olive tree also reinforces sustainable food systems, linking cultural
heritage, environmental stewardship, and long-term public health. The
olive’s rich composition of monounsaturated fatty acids, polyphenols,
and antioxidants provides significant cardioprotective, neuroprotective,
and metabolic benefits, while its by-products enhance livestock health,
improve food quality, and reduce agricultural waste. Olive cultivation
supports biodiversity, soil conservation, and carbon sequestration,
making it a sustainable agricultural practice. However, climate change
and resource constraints still threaten the long-term viability of olive
cultivation, necessitating renewable energy adoption, climate-resilient
farming, and waste valorization. By embracing sustainable strategies
and circular economy principles, the olive sector can continue to
promote health, environmental stewardship, and economic resilience
in a rapidly evolving global landscape.
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