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The olive tree and its derivatives—olives, olive oil, and their by-products—are 
foundational to the Mediterranean diet and are increasingly recognized for their 
roles in nutrition, medicine, and ecological sustainability. Indeed, one of the most 
prominent examples of sustainable production and consumption paradigm in a 
changing climate lies in the olive sector, approached within One Health framework, 
i.e., the interconnectedness of human health with animal and environmental 
health. This review explores the multifaceted roles of olive cultivation, olive oil 
production and consumption, and olive by-products in relation to health benefits, 
sustainable agriculture, and environmental impact. Olive oil consumption offers 
significant human health benefits, primarily involving its anti-inflammatory and 
antioxidant properties. These effects, largely attributed to its rich composition of 
monounsaturated fatty acids and other antioxidants, mediate its cardioprotective 
and neuroprotective roles. Beyond human health, olive oil cultivation and its 
by-products (such as pomace and mill wastewater) have gained attention as 
valuable feed additives in animal nutrition. These enhance livestock health and 
welfare, improve meat and dairy quality, and promote sustainable agricultural 
practices and bioenergy production—ultimately reducing environmental impact 
and supporting circular economies. From an environmental perspective, the olive 
sector contributes meaningfully to soil conservation, biodiversity support, and 
climate change mitigation through carbon sequestration and reduced greenhouse 
gas emissions. As such, the olive tree is more than a source of a valuable food 
product: it is a nexus of sustainable development, public health, and ecosystem 
stewardship. Considering the olive sector within the One Health paradigm highlights 
its relevance in addressing global challenges at the intersection of food systems, 
health, and environmental sustainability.

OPEN ACCESS

EDITED BY

Elisavet Stavropoulou,  
Centre Hospitalier Universitaire Vaudois 
(CHUV), Switzerland

REVIEWED BY

Watcharin Joemsittiprasert,  
New York Institution for Continuing 
Education, United States
Anka Trajkovska Petkoska,  
University St. Clement of Ohrid, North 
Macedonia

*CORRESPONDENCE

Angeliki I. Katsafadou  
 agkatsaf@uth.gr  

Vasilis Vasiliou  
 vasilis.vasiliou@yale.edu

RECEIVED 08 July 2025
ACCEPTED 09 September 2025
PUBLISHED 19 September 2025

CITATION

Katsafadou AI, Prodromou SI, Aalizadeh R, 
White JC, Thomaidis NS, Vizirianakis IS, 
Anastas PT, Kyriakides TC, Pastides H, 
Piscitelli P, Colao A, Thompson DC and 
Vasiliou V (2025) Olive tree at the intersection 
of environment, public health, and One 
Health: a sustainable path to global wellbeing.
Front. Public Health 13:1658525.
doi: 10.3389/fpubh.2025.1658525

COPYRIGHT

© 2025 Katsafadou, Prodromou, Aalizadeh, 
White, Thomaidis, Vizirianakis, Anastas, 
Kyriakides, Pastides, Piscitelli, Colao, 
Thompson and Vasiliou. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Review
PUBLISHED  19 September 2025
DOI  10.3389/fpubh.2025.1658525

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2025.1658525&domain=pdf&date_stamp=2025-09-19
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1658525/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1658525/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1658525/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1658525/full
mailto:agkatsaf@uth.gr
mailto:vasilis.vasiliou@yale.edu
https://doi.org/10.3389/fpubh.2025.1658525
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2025.1658525


Katsafadou et al.� 10.3389/fpubh.2025.1658525

Frontiers in Public Health 02 frontiersin.org

KEYWORDS

biodiversity, circular economy, environmental resilience, Mediterranean diet, 
nutrition, olive oil, olive by-products, One Health

1 Introduction

One Health is a multi-sectoral approach which recognizes that 
human health is connected to animal health and to the environment, 
emphasizing the need for integrated actions to address global health 
challenges (1, 2). Olives and olive oil, renowned for their nutritional 
and medicinal properties, represents a compelling case study within 
this framework due to its significant impacts across all three domains 
(3, 4) (Figure 1).

As a staple of the Mediterranean diet, olives and olive oil has been 
celebrated for centuries for its role in promoting health and longevity, an 
acknowledgment reflected in its recognition by UNESCO as part of the 
Mediterranean diet’s Intangible Cultural Heritage of Humanity (5, 6). 
More recently, the concept has been expanded beyond the Mediterranean 
basin through the “Planeterranean” food-pyramid proposal for Asia, 
which adapts the diet’s sustainability and health principles to regional 
culinary traditions (7, 8). Rich in monounsaturated fats, polyphenols 
and antioxidants, olive oil consumption has been linked to up to a 31% 
reduction in cardiovascular events, a 28% lower risk of dementia-related 
death, and anti-inflammatory effects, including reductions in 
inflammatory markers, such as C-reactive protein and interleukin-6 
(9–22). While most associations come from observational studies and 

should be interpreted with caution, evidence from intervention trials is 
growing. Some findings, especially in cognition, remain mixed, 
highlighting the need for more long-term randomized studies (16, 17). 
However, the relevance of olives and olive oil extends beyond human 
health. From an environmental perspective, the cultivation of olive trees 
plays an important role in promoting biodiversity, improving soil quality, 
and mitigating climate change through carbon sequestration (23, 24). In 
addition, by-products of olive oil production (such as pomace, leaves, 
pits and even mill wastewater) together represent up to 78% of the olive 
mass and are increasingly valorised in livestock feed. These by-products 
can replace 15–20% of conventional concentrate ruminant diets (the 
grain-based, high-energy component that complements bulkier forage), 
thereby closing resource loops within a circular One Health framework 
(Figure 2). This practice supports animal health, improves production 
efficiency, and reduces agricultural waste (25, 26), in accordance with 
circular economy principles and contributing to more sustainable 
agricultural systems (27, 28).

Considering olive cultivation in a One Health framework allows 
for a comprehensive assessment of the multifaceted contributions of 
olive tree and olives to human, animal, and environmental health. This 
integrated perspective highlights their potential not only as valuable 
nutritional and economic resources, but also as a crop that addresses 

FIGURE 1

The One Health approach in the context of olives, olive oil and their by-products. The blue section highlights implications for human health, including 
nutrition, medical applications, and disease prevention. The brown section focuses on animal health, covering aspects such as livestock nutrition, 
nutraceuticals, food quality and security. The green section represents environmental health, including carbon and soil stewardship, circular 
bioproducts, and renewable bioenergy. The figure was created using BioRender (https://BioRender.com).
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critical global challenges related to sustainability, food security, and 
health. This review considers the role of olives, olive oil and their 
by-products within the One Health paradigm, and focuses on their 
health benefits, sustainable agricultural production practices and 
environmental implications of its production.

2 The health benefits of olives, olive 
oil and their by-products

The health-promoting properties of olives and olive oil are well-
established, and supported by clinical, epidemiological and laboratory 
studies. They contain monounsaturated fatty acids (MUFAs), 
polyphenols, sterols and tocopherols which exhibit therapeutic 
potential for both humans and animals (11, 29–34).

2.1 Human health

Multiple studies have demonstrated the cardioprotective effects of 
olive oil, largely attributed to its rich content of MUFAs (primarily 
oleic acid) and a diverse array of bioactive compounds, including 
tocopherols, squalene, phytosterols, and various polyphenols (e.g., 

oleocanthal and oleuropein) (10, 11, 35, 36). These constituents help 
mitigate oxidative stress, inflammation, and lipid oxidation—key 
processes in the pathogenesis of atherosclerosis and other chronic 
diseases. Notably, phenolic alcohols (e.g., hydroxytyrosol, tyrosol), 
secoiridoids (e.g., oleuropein aglycone, oleacein, oleocanthal), lignans 
(e.g., (+)-pinoresinol, (+)-acetoxypinoresinol), and α-tocopherol have 
been identified as major contributors to the antioxidant and anti-
inflammatory properties of extra virgin olive oil (EVOO) (3, 10, 35, 
37–40). Reflecting these benefits, olive oil polyphenols (particularly 
hydroxytyrosol and its derivatives) have earned a health claim 
endorsement under EC Regulation 432/2012 (41). More recently, 
advances in machine learning and artificial intelligence (AI) have been 
applied to identify EVOO phytochemicals with the highest potential 
to modulate disease-associated protein networks, offering new 
opportunities for precision nutrition (42).

EVOO phenolics directly scavenge reactive oxygen species (ROS) 
(such as superoxide and hydroxyl and peroxyl radicals) through 
hydrogen atom donation. Compounds like hydroxytyrosol (HT) and 
oleuropein (OLE) also chelate transition metals (Fe2+, Cu2+), reducing 
oxidative damage (29, 43). Furthermore, these bioactives enhance 
endogenous antioxidant defense systems leading to increased 
expression of antioxidant enzymes, including superoxide dismutase 
(SOD), catalase, glutathione peroxidase (GPx), and heme oxygenase-1 

FIGURE 2

Olive oil production process and the utilization of its by-products. Olives (containing 10–25% Oil, 20–35% Dry Matter, 25–35% Pits, 65–75% Pulp and 
45–55% Olive Water) are harvested and processed to produce olive oil. The resulting by-products—de-stoned pomace (the by-product of olive oil 
extraction after the pit has been removed from the olive paste), olive mill wastewater, olive leaves, olive seeds, and olive cake (the remaining pulp, 
skins, and sometimes stones after the oil has been extracted from the olives)—are repurposed into a variety of applications, including livestock 
nutrition, nutraceuticals and pharmaceuticals, water irrigation, biodiversity and soil conservation, carbon sequestration, bioenergy production and 
biodegradable packaging. The figure was created using BioRender (https://BioRender.com).
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(HO-1) (44, 45). In addition, EVOO compounds (e.g., OLE and HT) 
inhibit pro-oxidant enzymes [such as NADPH oxidase (NOX2/4) and 
xanthine oxidase], further reducing ROS generation (29, 46).

Olive oil constituents also modulate inflammation through several 
complementary pathways (47). Oleocanthal inhibits cyclooxygenase-1 
and -2 (COX-1/COX-2), reducing prostaglandin synthesis in a 
manner similar to non-steroidal anti-inflammatory drugs (NSAIDs) 
(3, 48). Hydroxytyrosol and OLE suppress the NF-κB and AP-1 
pathways, leading to reduced production of pro-inflammatory 
cytokines, including tumor necrosis factor alpha (TNF-α), interleukin 
1β (IL-1β), and interleukin 6 (IL-6) (29, 43). In addition, HT has been 
found to interfere with the NLRP3 inflammatory complex, thereby 
limiting the activation of downstream inflammatory signals (49). 
Notably, a recent meta-analysis concluded that EVOO consumption 
did not consistently lower inflammatory markers (such as CRP or 
IL-6), reflecting variability in findings across intervention trials (50). 
The antioxidant and anti-inflammatory properties of EVOO translate 
into multiple cardiovascular health benefits (21). By reducing 
low-density lipoprotein (LDL) oxidation and enhancing high-density 
lipoprotein (HDL) functionality, EVOO constituents help prevent the 
accumulation of cholesterol-laden immune cells that drive 
atherosclerotic plaque development (10, 11, 36, 51). In 
hypercholesterolaemic subjects, higher nitric oxide (ΝΟ) 
bioavailability and lower oxidative stress after a high-phenolic EVOO 
meal improve endothelial-dependent vasodilation (ischemic reactive 
hyperaemia), an early protective mechanism against atherosclerosis 
(52). Moreover, longer-term olive oil interventions have been shown 
in multiple randomized controlled trials to increase brachial artery 
flow-mediated dilation, a marker of vascular health and predictor of 
reduced cardiovascular risk (53). Inhibition of platelet aggregation 
through lowering thromboxane A₂ production by oleocanthal 
supports anti-thrombotic effects (3, 48). Large clinical trials—most 
notably PREDIMED, a Spanish multicentre randomized controlled 
trial in 7,447 high-risk adults testing a Mediterranean diet 
supplemented with EVOO against a low-fat control—showed a 
significant reduction in rates of major cardiovascular events, 
indicating cardiovascular benefits linked to EVOO supplementation 
(11). Systematic reviews of similar interventions report modest 
improvements in standard lipid measures, such as LDL-C, HDL-C and 
triglycerides (54). In addition, a large meta-analysis of 33 randomized 
clinical trials found that EVOO consumption lowered fasting insulin 
and insulin resistance, as measured by the homeostasis model 
assessment of insulin resistance (HOMA-IR), but, interestingly, had 
no consistent effects on inflammatory markers (CRP, IL-6), lipids, or 
blood pressure (55). These findings suggest that while EVOO shows 
clear benefits for insulin sensitivity, its effects on inflammation and 
cardiometabolic risk factors remain heterogeneous across trials, which 
may help explain differences compared with individual studies 
reporting positive results.

EVOO has been associated with a lower risk of neurodegenerative 
diseases (including Alzheimer’s and Parkinson’s) (56–59) through 
multiple mechanisms. Preclinical and observational human studies 
suggest that phenolic components of olive oil (such as HT and 
oleacein)—may help preserve cognitive health in aging by modulating 
oxidative stress and inflammation; however, clinical trial evidence 
remains limited and inconsistent (60). Randomized clinical trials have 
reported improvements in memory performance and clinical 
dementia ratings in individuals with mild cognitive impairment 

following high-phenolic EVOO consumption (13). Activation of 
antioxidant enzymes (e.g., SOD and catalase) preserves mitochondrial 
integrity and promotes neuronal survival, a crucial effect given the 
overwhelming evidence implicating mitochondrial dysfunction as a 
causal factor in these diseases (29, 43, 58). EVOO secoiridoids 
(especially oleocanthal and oleacein) help strengthen the protective 
barriers between brain cells and reduce processes that can damage 
brain tissue (61, 62), maintaining blood–brain barrier function and 
preserving neuronal connectivity (13). Moreover, in Parkinson’s 
disease models, EVOO phenolics (HT, oleacein, mixed phenolic 
extracts) modulate microglial activation, thereby lowering IL-1β and 
TNF-α release and attenuating neuro-inflammation (63–65). Recent 
reviews suggest that dietary polyphenols (e.g., sulforaphane, 
resveratrol, luteolin, curcumin) improve oxidative stress and 
inflammation in autism models, alleviating impaired sociability and 
repetitive behaviors (66, 67). Small clinical studies have reported 
modest benefits in irritability and hyperactivity (68), although 
confirmatory trials are still lacking (66, 67, 69).

Epidemiological and clinical data indicate that regular EVOO 
consumption helps prevent and manage type 2 diabetes (12, 70, 71). 
In Mediterranean-diet cohorts, including the PREDIMED trial, higher 
EVOO intake was associated with markedly lower diabetes incidence 
compared to a low-fat control diet (12, 70). This finding is consistent 
with modest improvements in fasting glucose and insulin sensitivity 
observed in randomized EVOO trials (71, 72). Meta-analyses of 
Mediterranean diet adherence report an overall 16–19% risk reduction 
of diabetes (71, 72), and a recent dose–response meta-analysis that 
include cohort studies and randomized clinical trials found a 13–22% 
reduction in the risk of type 2 diabetes with daily olive oil consumption 
emphasizing the need for further randomized clinical trials to confirm 
causality (73). EVOO phenolics also display anti-cancer properties 
through multiple, complementary actions, including (i) repression of 
oxidative DNA damage, (ii) modulation of estrogen-receptor 
signaling, (iii) inhibition of pro-tumor inflammatory and angiogenic 
pathways, and (iv) promotion of tumor-cell apoptosis while blocking 
metastasis (29, 74–77). Population studies have linked higher olive oil 
intake to lower incidence of hormone-dependent malignancies, such 
as breast and ovarian cancer (78, 79). In addition, EVOO-derived 
compounds (like oleocanthal and OLE) have been shown to suppress 
proliferation across a range of tumor cell lines in  vitro (80). 
Collectively, these anti-proliferative, pro-apoptotic and anti-
angiogenic effects position EVOO polyphenols as plausible nutritional 
supplements for cancer prevention. While these findings are 
promising, most are derived from preclinical or observational studies. 
Clinical trials are needed to confirm whether these effects translate 
into consistent cancer risk reduction in humans. These mechanisms—
particularly the modulation of oxidative stress and inflammatory 
pathways—are also relevant in animals, where olive-derived 
compounds demonstrate similar pathophysiological benefits.

2.2 Animal health

Olive oil, in combination with by-products from olive cultivation 
and processing (such as pomace, mill wastewater, leaves, and stones 
or seeds) is increasingly valued as a source of functional feed additives, 
due to their rich content of bioactive compounds, including 
polyphenols, MUFAs, sterols, and dietary fiber (25, 26, 81–87). These 
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components offer antioxidant, antimicrobial, and anti-inflammatory 
properties, making them beneficial for animal nutrition and health, 
while contributing to sustainable waste management in olive oil 
production (86, 88–91).

In ruminants, incorporating olive oil by-products into feed has 
demonstrated notable nutritional and health benefits. For example, 
supplementation of diets with polyphenol-rich extracts from olive mill 
wastewater led to reductions in the urea content (up to 16%) and 
somatic cell counts (up to 59%) in Sarda ewes—findings indicative of 
improved udder health and reduced inflammation (92). In cattle, 
similar dietary inclusion of olive by-products (e.g., olive pomace) 
enhanced milk quality, increasing MUFA levels (≈5%) while reducing 
saturated fats (≈7%) (85, 93).

In swine, supplementing diets with HT- and polyphenol-rich olive 
by-products have been found to enhance immune function, reduce 
oxidative stress, and improve lipid metabolism (26, 86, 94). Studies 
indicate that HT not only supports antioxidant defense mechanisms 
but also mitigates inflammatory responses, which may contribute to 
better overall health and productivity in pigs (26, 95, 96). When 
destoned olive cake was included as 5–10% of the total feed, finishing 
pigs showed improved feed conversion ratios (FCR), reduced back-fat 
thickness and a healthier intramuscular fatty-acid profile, i.e., richer 
in MUFAs and polyunsaturated fatty acids (PUFAs) (97). In addition, 
supplementation of finishing diets with a polyphenol extract from 
olive mill wastewater positively remodeled gut microbiota and 
intestinal morphology, changes that support better gastrointestinal 
health (98).

In poultry production, the benefits of dietary supplementation 
with olive oil and its by-products have been well-documented, 
particularly for egg and meat quality (87, 99–102). Diets supplemented 
with 2–5% olive oil can lead to egg yolks with higher levels of the total 
unsaturated (mainly monounsaturated) fatty acid content (100). 
Similarly, the fortification of rations with 4–6% dried olive pulp 
deepened yolk color, reduced shell defects and positively modulated 
gut microbiota (103). Reductions in hens’ serum cholesterol have been 
reported, but evidence for direct cholesterol reduction in egg yolks 
remains inconclusive (100). Modification in the lipid composition of 
eggs is of particular interest given that eggs are a daily staple in many 
diets and, accordingly, even modest improvements in their nutrient 
profile could have a substantial public health impact. In broiler 
chickens, diets containing 2% or 4% olive cake meal (supplemented 
with Bacillus licheniformis) have been shown to improve weight gain 
and FCR, reflecting enhanced feed efficiency (104). Similarly, olive oil 
supplementation enhanced body weight gain, while olive cake 
inclusion (up to 15%) maintained feed intake and efficiency, with 10% 
boosting feed conversion and improving survival rates (105–107). 
Broilers given HT-rich olive by-products (e.g., olive mill wastewater 
permeate or polyphenol-rich EVOO) showed enhanced antioxidant 
status (as evidenced by higher catalase and superoxide-dismutase 
activities and lower lipid and protein oxidation in blood and tissues), 
while growth performance (body-weight gain and feed-conversion 
ratio) remained largely unchanged (108, 109). Incorporation of 5% 
olive oil in broiler diets improved the unsaturated-to-saturated fatty 
acid ratio in breast and drumstick meat while reducing serum 
triglyceride levels and increasing HDL cholesterol. However, early 
growth performance of the animals was slightly reduced (110). 
Overall, supplementation with olive oil and by-products in broilers 
enhances antioxidant status—an important benefit given that stressors 

common in commercial poultry production (environmental, 
pathogenic, and nutritional) negatively impact growth, health, and 
feed efficiency. However, the effects on growth performance 
remain inconsistent.

Beyond nutritional benefits, olive oil and its by-products enhance 
immune function and gut microbiota balance in livestock (26, 111). 
Enriched diets lower oxidative stress markers, improve animal health, 
and reduce antibiotic need, contributing to antimicrobial resistance 
mitigation (26, 86–89, 112, 113). Key phenolics (e.g., OLE and HT) 
modulate inflammatory and oxidative stress pathways, enhancing 
resilience (90). In broilers, dietary supplementation with olive oil 
increased antibody titers against Newcastle disease virus (105), while 
olive-derived supplements, up-regulated antioxidant enzymes (HO-1, 
SOD, catalase, GPx), and boosted IL-2/interferon-γ and IgA-IgG-IgM 
levels, changes that strengthen immune defenses (26, 83, 114). 
Inclusion of olive by-products in feed can also mitigate antimicrobial 
resistance by lowering caecal multidrug-resistant Campylobacter and 
ESBL (extended spectrum beta-lactamase)-producing E. coli loads 
and, in  vitro, OLE and oleocanthal have been shown to inhibit 
bacterial efflux pumps and biofilm formation (115). Hydroxytyrosol 
has demonstrated antioxidant and immunomodulatory effects in 
immunosuppressed broiler chickens, by improving gut health, 
lowering inflammation, and strengthening important immune cells 
(e.g., CD4+ and CD8+ T-cells) (113). In swine, dietary supplementation 
with polyphenol-rich olive extracts fostered beneficial gut bacteria, 
suppressed pathogens, and promoted digestion and gut health 
(116, 117).

Feeding olive oil or its processing by-products to livestock 
consistently yields foods of animal origin with a more favorable lipid 
profile. In finishing pigs, replacing 5–10% of the concentrate portion 
of the diet with destoned olive cake increased the proportions of 
MUFA + PUFA in muscle without impairing growth performance 
(97). Dairy products also show improvements. For example, including 
olive cake in cow diets increased the oleic and conjugated linoleic acid 
content of cheese without affecting milk yield, and enhanced the 
appearance, aroma and flavor of the cheese (118). Similarly, when 8% 
olive cake was incorporated into Holstein cow rations, the resulting 
Provola cheese contained more oleic acid and retained bioactive 
polyphenols (119). In broiler chickens, adding 2.5–10% dried olive 
pulp produced breast meat richer in oleic acid and less prone to 
oxidation (101, 120). Collectively, these studies demonstrate that 
incorporating olive oil by-products into livestock feed can transform 
Mediterranean agro-waste into value-added pork, poultry, and dairy 
products with improved fatty-acid profiles and oxidative stability—
traits that support their classification as functional foods. Beyond their 
nutritional value, olive-derived products also influence environmental 
dynamics—directly through agricultural practices and indirectly by 
shaping circular systems that impact soil, biodiversity, and climate 
resilience. These broader ecological roles are explored in the 
following section.

3 Impacts on environmental health 
and climate

The incorporation of olive oil by-products into animal feed 
provides both environmental and economic benefits (27). Olive oil 
production generates substantial waste, and repurposing these 
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materials as livestock feed reduces pollution, supports sustainable 
waste management, and promotes circular economy principles (121, 
122). By replacing a portion of conventional cereal-based feeds, olive 
by-products lower the ecological footprint of livestock production, 
and enhance resource efficiency (84, 85, 121, 123). Given that intensive 
agriculture consumes vast amounts of water, energy, and 
agrochemicals—accounting for ≈70% of global freshwater 
withdrawals (124, 125)—shifting feed sources away from high-input 
crops can yield measurable life-cycle savings and free water for human 
use. Anaerobic digestion of olive mill wastewater fosters also a circular 
economy by generating biogas and nutrient-rich digestate suitable for 
fertilization (126, 127), while olive seeds can be  processed into 
functional protein isolates for food or feed applications, providing an 
additional high-value route for the valorisation of olive-mill solids 
(128, 129).

Olive trees, known for their longevity and adaptability, play a key 
role in Mediterranean agroecosystems by conserving soil, enhancing 
biodiversity, and supporting agroecological stability through their 
deep-root systems and low-input requirements (130, 131). Although 
well adapted to semi-arid climates, increasing exposure to prolonged 
droughts, temperature extremes and erratic weather are posing risks 
to olive trees yields and grove resilience (132).

These risks are projected to intensify under future climatic 
changes (particularly in the Mediterranean region), with possible 
negative consequences for the composition and nutritional quality of 
olive oil, as well as the sector’s long-term productive capacity (133). 
Paradoxically, these same shifts have expanded the geographical range 
of olive cultivation, enabling the crop to be established in regions 
previously considered unsuitable (133, 134). These considerations 
highlight the importance—but also the uncertainty—of future 
cultivation zones under evolving climate conditions. While efforts to 
develop heat- and drought-tolerant cultivars are showing promise 
(131, 133), field validation under real-world environmental variability 
remains limited. As such, climate adaptation strategies in the olive 
sector should be grounded in region-specific data, accounting for 
uncertainties in climate and yield projections, and informed by local 
agronomic knowledge (132, 133). Organic farming practices (such as 
reduced pesticide use and intercropping) promote biodiversity and 
soil health (135–137). Despite their potential, by-products of olive 
cultivation and harvesting are still infrequently used as fertilizer 
alternatives due to toxicity concerns (unless properly treated, such as 
through spray drying) (138). Composting or vermicomposting with 
bacterial and fungal communities is being widely investigated as a 
bioremediation step. These microbes metabolize phenolics, 
detoxifying the waste and rendering the resulting compost/
vermicompost suitable for reuse as an organic soil amendment (135, 
139). The utility/value of this approach was shown in a recent life-
cycle study of organic olive-tree nurseries in Tuscany, where 
transitioning from conventional to organic practices (including the 
use of compost and reduced peat) reduced cradle-to-gate greenhouse 
gas emissions by 13%, rising to 15.7% when accounting for carbon 
stored in the seedlings (140).

While still in early development, emerging nanotechnologies 
(including metal-oxide nanofertilizers) present promising tools for 
reducing dependence on agrochemicals and enhancing nutrient-use 
efficiency in agriculture. These strategies have been tested in cereals 
and vegetables and may hold potential for improving crop resilience 
to abiotic stresses (e.g., drought, salinity) and biotic threats (e.g., 

pathogens) (141, 142). Notably, Zhao et al. (143) describe a suite of 
innovations—from stress-signaling primers to smart nutrient 
coatings—that collectively improve plant tolerance to drought, heat 
and pathogens. Cerium-oxide nanoclusters, for example, have been 
shown to activate abscisic acid (ABA)-responsive drought genes and 
boost biomass under water stress by ≈31%, demonstrating a 
substantive mitigation of water-stress damage (144). Similarly, seed 
priming with reactive oxygen species-generating nanoparticles has 
also improved antioxidant capacity and conferred multi-stress 
tolerance in maize (145). While these findings are compelling, their 
translation to perennial crops (such as olives) remain speculative. 
Olive-specific trials are lacking, and responses in woody plants may 
differ due to physiological and phenological differences. Nevertheless, 
early evidence from selenium-based nanomaterials have demonstrated 
the ability to enhance plant immunity and nutritional quality, 
suggesting future applicability in increasing olive resistance to fungal 
pathogens while enriching fruit micronutrient content (146). 
Additional studies are required to assess these technologies in olive-
specific contexts and ensure safe, scalable use.

Olive trees help mitigate climate change through the process of 
carbon sequestration, both in their biomass and surrounding soil. As 
perennial plants, they absorb carbon dioxide over long time frames, 
with groves sequestering ≈2.2 metric tons of carbon per hectare per 
year (23, 147–149). Their extensive root systems help maintain soil 
organic carbon levels, further promoting long-term carbon storage 
(148, 150, 151). Emerging research suggests that olive trees could also 
play a role in improving environmental conditions in urban settings, 
such as air quality enhancement through pollutant capture (152).

Recently, the valorization of cellulose-rich olive oil pomace has gained 
attention for developing biodegradable food packaging materials as a 
sustainable alternative to plastics. Given its high cellulose and fiber 
content, pomace enhances the mechanical strength and water resistance 
of starch-based films, making them more suitable for food packaging 
applications (153). Olive stones are widely used as biomass fuel, 
particularly in Spain where they generate heat and electricity for 
agricultural operations and residential heating (154). In a recent 
innovation, Karim et al. developed a microwave-assisted hydrothermal 
carbonization process to convert olive pomace slurry into biochar-like 
hydrochar, a solid biofuel with high calorific value for electricity 
generation (155). Similar studies have shown that both hydrothermal 
carbonization and traditional slow-pyrolysis of olive residues yield 
carbon-rich biochar solids that can serve as renewable fuel, soil-
amendment, and long-term carbon-sequestration agents, thereby 
extending the circular-economy benefits of the olive sector (126, 155, 156).

Of the many ways that the products of the olive sector bring 
benefit to humanity, perhaps one that is least developed and receives 
the least attention is the olive stone. This is likely due to the long 
tradition of thinking of biomass that contains high quantities of 
lignin as being recalcitrant and extremely difficult to process. In 
recent years, significant progress has been made in valorizing lignin 
(122, 157, 158). It has been estimated that the olive stone comprises 
18–22% lignin (158). While lignin from olive stones has been 
demonstrated to be useful in applications ranging from biochar (159) 
to heavy-metal extractions from water (160), techniques are emerging 
to transform the stone lignin. For example, oxidative processes under 
relatively mild catalytic conditions allow the conversion of whole 
lignin into constituent specialty chemicals that can be used as high-
value ingredients in formulated products, such as vanillin 
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(3-methoxy-4-hydroxybenzaldehyde) and 2,6-dimethoxy-1,4-
benzoquinone (DMBQ) (157). In addition, novel polycarbonate 
polymers can be formed by breaking down lignin into monomers and 
promoting subsequent repolymerization (161). The rapidly 
progressing research area of lignin processing holds promise for the 
olive stone to contribute to the overall economics of an olive refinery 
concept where every component adds value.

At the industry level, producers are increasingly adopting 
renewable energy sources (such as solar panels and wind turbines) 
that reduce reliance on fossil fuels and minimize emissions associated 
with production (162). The introduction and application of carbon-
neutral initiatives (including reforestation projects, waste reduction 
strategies, and renewable energy integration) are also positioning the 
olive sector as a leader in climate-smart agriculture (27). These 
sustainability-driven efforts highlight a commitment to balancing 
productivity with environmental responsibility.

4 Conclusion

Olives, olive oil and their by-products play a pivotal role within the 
One Health framework, linking human health, animal nutrition, and 
environmental sustainability. As a keystone of the Mediterranean diet, 
the olive tree also reinforces sustainable food systems, linking cultural 
heritage, environmental stewardship, and long-term public health. The 
olive’s rich composition of monounsaturated fatty acids, polyphenols, 
and antioxidants provides significant cardioprotective, neuroprotective, 
and metabolic benefits, while its by-products enhance livestock health, 
improve food quality, and reduce agricultural waste. Olive cultivation 
supports biodiversity, soil conservation, and carbon sequestration, 
making it a sustainable agricultural practice. However, climate change 
and resource constraints still threaten the long-term viability of olive 
cultivation, necessitating renewable energy adoption, climate-resilient 
farming, and waste valorization. By embracing sustainable strategies 
and circular economy principles, the olive sector can continue to 
promote health, environmental stewardship, and economic resilience 
in a rapidly evolving global landscape.
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