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Background: Whether environmentally relevant exposure to volatile organic 
compounds (VOCs) contributes to frailty remains unknown. We  examined 
urinary VOC metabolites (VOCms) and their mixtures in relation to frailty in a 
nationally representative U.S. cohort.
Methods: We analysed 2,715 adults (≥ 20 y) from NHANES 2011–2018  in 
a cross-sectional design. Frailty was defined with a 48-item index. Sixteen 
creatinine-adjusted VOCms were quantified. Single metabolites were evaluated 
with survey-weighted logistic regression. Two-directional weighted-quantile-
sum regression (WQS), grouped Bayesian kernel machine regression (BKMR) 
and quantile g-computation (qgcomp) characterized mixture effects, and sex- 
and age-stratified subgroup analyses were performed. Mediation by γ-glutamyl-
transferase (GGT), bilirubin, albumin, the Dietary Oxidant/Antioxidant Balance 
Score (OBS), and high-sensitivity C-reactive protein (hs-CRP) was assessed.
Results: Four metabolites—DHBMA, CEMA, HPMMA and MHBMA3—were each 
positively associated with frailty (adjusted OR per log₁₀-unit 1.67–2.59). The 
positive WQS index increased frailty odds by 25% (OR = 1.25, 95% CI 1.17–1.33), 
whereas the negative index lowered odds by 17% (OR = 0.83, 0.75–0.91). Only 
the positive index remained significant in men and in adults ≥ 65 y; MHBMA3 
dominated male weights (18%), HPMMA female weights (16%). BKMR confirmed 
a monotonic dose–response for the positive group, whereas qgcomp 
detected no overall effect. Bilirubin and albumin jointly mediated 5–20% of the 
associations; GGT showed no significant mediation.
Conclusion: Urinary VOCm mixtures are linked to frailty at population exposure 
levels, with risk driven by four metabolites and most pronounced in men and 
older adults. Oxidative stress explains part—but not all—of the association, 
suggesting additional pathways. Reducing VOC exposure may help preserve 
physiological reserve; longitudinal studies are warranted to confirm causality.
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1 Introduction

Volatile organic compounds (VOCs) are a diverse class of gases 
emitted from fuels, plastics, solvents, and tobacco smoke; once 
absorbed, many are conjugated with cysteine and excreted as 
mercapturic-acid metabolites of VOCs (VOCms), providing an 
objective record of internal dose (1, 2). After absorption, VOCs 
undergo sequential biotransformation through Phase I and Phase II 
enzymatic pathways. Cytochrome P450-mediated oxidation generates 
electrophilic intermediates, which conjugate with glutathione and are 
subsequently processed via the mercapturic acid pathway. The 
resulting N-acetyl-L-cysteine conjugates are excreted in urine as 
mercapturic acid metabolites, which serve as stable and specific 
biomarkers of VOC exposure.

These pollutants are virtually ubiquitous: more than 90% of 
U.S. adults carry detectable urinary levels of at least one VOCm (3). 
Epidemiologic studies have linked elevated VOC or VOCm burdens 
to a spectrum of age-related disorders, including cardiovascular 
disease, liver steatosis, rheumatoid arthritis, and sarcopenia (4, 5). 
Mixture-oriented analyses show that combined exposure to N-acetyl-
S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA, a urinary metabolite of 
1,3-butadiene), N-acetyl-S-(2-Carboxyethyl)-L-cysteine (CEMA, a 
urinary metabolite of acrylonitrile), and several aliphatic metabolites 
amplifies cardiometabolic risk beyond single-compound models. 
Mechanistic data implicate oxidative stress, endothelial dysfunction, 
and mitochondrial impairment (6, 7). Oxidative stress, in particular, 
is increasingly recognized as a molecular catalyst of frailty, promoting 
muscle loss, inflammation, and metabolic dysregulation across the 
adult life-course (8). Because adults accumulate lifelong exposure 
while detoxification capacity declines with age, the entire adult life-
course—particularly later life—may be vulnerable to subtle shifts in 
VOC mixture profiles that translate into clinically meaningful 
health deficits.

Frailty, a multidimensional syndrome of diminished physiologic 
reserve, has emerged as an overarching indicator of healthy ageing, 
predicting disability, hospitalization, and mortality better than single-
organ metrics (9). Although U.S. prevalence reaches 10–15% among 
adults ≥ 65 years and exceeds 25% past age 80, frailty can begin much 
earlier and progress across adulthood (10). While intrinsic factors 
such as sarcopenia, inflammation, and endocrine change initiate the 
frailty trajectory, mounting evidence suggests that environmental 
pollution accelerates its progression. Meta-analytic data show that 
each 10 μg m−3 rise in fine particulate matter with an aerodynamic 
diameter ≤2.5 μm (PM₂․₅) increases frailty odds by ~19%, and cohort 
studies in China and India link indoor or household air pollution to 
faster frailty development (11–13). Yet these investigations focus on 
particulate and gaseous pollutants; the toxicologically diverse VOC 
family remains largely unexplored, making the VOC–frailty nexus 
both biologically plausible and clinically urgent.

In the past five years, nationally representative NHANES analyses 
and large Asian cohorts have mapped the health footprint of urinary 
VOC metabolites. Two NHANES studies tie urinary VOCms to 
ageing outcomes: elevated DHBMA and CEMA, together with 
N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine (HPMMA), 
predicted 30–60% higher sarcopenia odds, while a mixture dominated 
by N-acetyl-S-(2-cyanoethyl)-L-cysteine (CYMA) was inversely 
related to the anti-ageing protein α-Klotho (14, 15). Mixture-model 
analyses indicate that combined VOCm exposure aggravates 

blood-pressure control, elevates the odds of metabolic syndrome and 
type 2 diabetes, and increases cardiovascular-disease risk by roughly 
20% (4, 16, 17). Because hypertension, diabetes, coronary heart 
disease, sarcopenia, and low α-Klotho are all recognized precursors or 
integral components of the frailty trajectory, this constellation of 
cardiovascular, metabolic, and musculoskeletal disturbances offers a 
compelling mechanistic bridge linking VOCm mixtures to frailty.

Pollution-frailty research has grown in parallel. A nine-study meta-
analysis reported a 19% increase in frailty odds per 10 μg m−3 PM₂․₅ 
(11), while Chinese and Indian cohorts linked indoor pollutants to 
accelerated frailty progression (12, 13). Collectively, the evidence 
highlights two themes: first, chemical mixtures often produce 
stronger—and sometimes opposing—health effects than individual 
pollutants; second, susceptibility to these exposures rises across 
adulthood and is greatest in later life. Nevertheless, no investigation has 
yet examined whether urinary VOCms—alone or in combination—are 
associated with frailty in the general adult population, leaving a critical 
gap at the intersection of geriatric epidemiology and exposomics. It 
also remains unclear which structural classes of VOCms drive risk, 
whether opposing mixture effects coexist, and to what extent oxidative 
stress mediates any association.

We therefore assessed urinary VOCm mixtures and frailty in 
U.S. adults aged ≥ 20 years using NHANES 2011–2018. Positive and 
negative mixture effects were estimated with two-directional 
weighted-quantile-sum regression and verified with quantile 
g-computation. Key metabolites were then identified by LASSO 
penalized selection and examined in direction-specific Bayesian 
kernel machine regression to delineate dose–response functions. 
Finally, mediation analysis evaluated γ-glutamyl-transferase, bilirubin, 
and albumin as oxidative-stress pathways, providing both risk 
estimates and mechanistic insight.

2 Methods

2.1 Population

From four NHANES cycles (2011–2018, n = 39,156), we retained 
adults aged ≥ 20 years (n = 22,617) and removed 8,591 participants 
without urine-creatinine data, leaving 14,026 adults. Restricting the 
sample to those with complete measurements for 16 reliably detectable 
VOCm metabolites—together with their parent VOCs listed in 
Table 1—excluded another 3,757 participants. After omitting 3,254 
individuals with incomplete frailty data, the final analytic cohort 
comprised 2,715 adults for single-metabolite, mixture, and mediation 
analyses. The full selection process is shown in Figure 1.

2.2 Exposure

Participants provided non-fasting urine samples, stored at −70 
°C until analysis. Urinary VOCms were quantified by ultra-
performance liquid chromatography–tandem mass spectrometry 
using stable isotope-labeled internal standards. We emphasize that all 
laboratory analyses were conducted by the National Center for 
Environmental Health, Centers for Disease Control and Prevention 
(CDC) as part of the NHANES biomonitoring program. The LC–MS/
MS workflow, including sample preparation, chromatographic 
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separation, mass spectrometry conditions, and the use of isotope-
labeled internal standards, followed standardized CDC laboratory 
protocols, which are publicly available in the NHANES Laboratory 
Method Files. The analyzed VOC metabolites included 
2-methylhippuric acid (2-MHA), 3,4-methylhippuric acid (3,4-
MHA), N-Acetyl-S-(2-carbamoylethyl)-L-Cysteine (AAMA), 
N-Acetyl-S-(N-methylcarbamoyl)-L-Cysteine (AMCC), 2-amino-
thiazoline-4-carboxylic acid (ATCA), N-Acetyl-S-(benzyl)-L-
Cysteine (SBMA), N-Acetyl-S-(n-propyl)-L-Cysteine (BPMA), 
mandelic acid (MA), N-Acetyl-S- (4-hydroxy-2-butenyl)-L-Cysteine 
(MHBMA3), phenylglyoxylic acid (PGA), as well as DHBMA, 
CEMA, HPMMA, and CYMA. In accordance with established 
practices in NHANES VOC biomonitoring research, we excluded 
VOCms for which more than one-third (>33%) of participants had 
concentrations below the analytical limit of detection (LOD) or had 
identical values across all participants. This threshold is commonly 
applied to minimize bias from heavily censored data and to ensure 
sufficient variability for reliable statistical modeling (18, 19). 
Concentrations below the limit of detection (LOD) were imputed as 
LOD/√2, following NHANES analytic guidelines (20).

2.3 Covariates

We adjusted for a set of demographic, socioeconomic, and lifestyle 
variables that have been consistently associated with both VOC 
exposure and frailty in prior epidemiological research (21, 22). Age and 
sex were included as fundamental demographic factors. Race/ethnicity 
was categorized as non-Hispanic White, non-Hispanic Black, 
non-Hispanic Asian, Mexican American, other Hispanic, or other race, 
reflecting NHANES classification standards. Educational attainment 
was grouped into three levels: less than 11th grade, high-school 
graduate, and at least some college, to capture differences in 
socioeconomic background and health literacy. Smoking status (never, 

former, current) and physical activity level (none, moderate, vigorous) 
were derived from standardized NHANES questionnaires, as these 
behaviors influence both exposure patterns and frailty risk. Economic 
status was expressed as the family income-to-poverty ratio, divided into 
quartiles, while dietary intake was represented by total energy intake 
(mean of two 24-h recalls), also divided into quartiles; these variables 
account for nutritional and economic determinants of health. To control 
for temporal variation in sampling and laboratory procedures, 
we additionally adjusted for the NHANES survey cycle. Because BMI is 
included as one of the deficit items used to calculate the frailty index 
(Supplementary Table  1, item 42), it was not entered as a separate 
covariate in the primary models to avoid potential over-adjustment. In 
addition, a sensitivity analysis was performed by further adjusting for 
BMI. Missing values for covariates were imputed using the k-nearest 
neighbors (KNN) algorithm to ensure a complete dataset for analysis.

2.4 Outcome

Frailty was assessed with the 48-item NHANES Frailty Index 
described in earlier studies (23, 24) (item list in Supplementary Table 1). 
Participants were included if they had completed at least 80% of the 
items (≥39/48). For each participant, the index was calculated as the 
proportion of deficits present out of the total number of non-missing 
items, thereby yielding a score between 0 and 1. Following previous 
literature, scores <0.21 were classified as non-frailty and scores ≥0.21 
as frailty (25, 26).

2.5 Statistical analysis

Missing covariates were imputed with KNN using the VIM 
package, preserving multivariable structure; family income showed 
the highest missingness (10.9%).

TABLE 1  Relative parent volatile organic compounds (VOCs) to the metabolites of VOCs (VOCms).

Parent VOCs Urine metabolites of VOCs (VOCms) Abbreviation of VOCms LLOD (ng/mL)

Acrolein N-Acetyl-S-(3-hydroxypropyl)-L-cysteine 3HPMA 13.00

Crotonaldehyde N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine HPMMA 1.13

Acrylamide N-Acetyl-S-(2-carbamoylethyl)-L-cysteine AAMA 2.20

Acrylonitrile
N-Acetyl-S-(2-Carbxyethyl)-L-cysteine CEMA 6.96

N-Acetyl-S-(2-cyanoethyl)-L-cysteine CYMA 0.50

Cyanide 2-Aminothiazoline-4-carboxylic acid ATCA 15.00

Ethylbenzene, styrene Phenylglyoxylic acid PGA 12.00

Benzene Mandelic acid MA 12.00

N, N-Dimethylformamide N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine AMCC 6.26

Propylene oxide N-Acetyl-S-(2-hydroxypropyl)-L-cysteine 2HPMA 5.30

Styrene N-Acetyl-S-(benzyl)-L-cysteine SBMA 0.50

Xylene
2-Methylhippuric acid 2MHA 5.00

3,4-Methylhippuric acid 3,4-MHA 8.00

1,3-Butadiene
N-Acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine MHBMA3 0.60

N-ace-S- (3,4-dihidxybutl)-L-cysteine DHBMA 5.25

1-Bromopropane N-acetyl-S-(n-propyl)-L-cysteine BPMA 1.20

LLOD, lower limit of detection.
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Baseline characteristics were analyzed using survey-weighted 
methods to account for the NHANES complex sampling design. 
Continuous variables were reported as medians with interquartile 
ranges (IQR) and compared using the Mann-Whitney U test, while 
categorical variables were presented as survey-weighted percentages 
and compared using the Rao–Scott adjusted χ2 test. All analyses 
incorporated NHANES sampling weights, strata, and primary 
sampling units (PSUs) to ensure nationally representative estimates.

Urinary VOCm concentrations were adjusted for urinary 
creatinine and log-transformed to normalize their distributions. These 
transformed VOCm levels were entered into survey-weighted logistic 
regression models both as continuous variables and as quartiles (with 
Q1 as the reference group) to evaluate their associations with frailty.

To assess mixture effects, we applied direction-specific Weighted 
Quantile Sum (WQS) regression. Urinary VOCms were categorized 
into quartiles to reduce skewness and limit the influence of extreme 
values. Separate positive and negative WQS indices were modeled, 
with each metabolite assigned a weight reflecting its relative 
contribution to the mixture effect (27, 28). In typical applications, a 
larger proportion of the dataset is used for training and a smaller part 

for validation. However, in this study, we chose a 40% training and 
60% validation split because a larger validation set provided more 
stable weight estimation across repeated bootstrap samples, while the 
40% training set was still sufficient to build the model given our 
relatively large sample size. For the primary WQS analyses, all 
measured VOC metabolites were included a priori, consistent with 
standard practice in WQS mixture modeling. This allows estimation 
of the overall mixture effect under directional constraints without 
preselection of exposures. To further assess robustness, we additionally 
performed a sensitivity analysis where LASSO-selected metabolites 
were entered into the WQS model. Each model was fitted with 1,000 
bootstrap resamples using the gWQS R package.

We further performed quantile-based g-computation (qgcomp), 
a recently developed approach for mixture analysis that simultaneously 
estimates the overall effect of increasing all exposures by one quantile 
while allowing both positive and negative contributions of individual 
components. This method was implemented using the qgcomp R 
package, following the framework described by Keil et al. (29, 30). 
Results were reported as the overall mixture effect (per one quantile 
increase in the joint exposure index) with 95% confidence intervals, 

FIGURE 1

Participant selection flowchart.
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along with component-specific weights reflecting the relative positive 
or negative contributions of each VOC metabolite. Employing both 
WQS and qgcomp in parallel strengthened the interpretability and 
robustness of our mixture analysis findings.

Complementing the WQS and qgcomp analyses, we used Bayesian 
Kernel Machine Regression (BKMR) to further examine potential 
non-linear and interactive effects among VOCms. To improve 
computational efficiency and minimize noise from variables with 
negligible associations, we first applied the least absolute shrinkage 
and selection operator (LASSO) regression to the full set of urinary 
VOC metabolites. The subset of VOCs retained by LASSO was then 
entered into the BKMR models. Metabolites selected by LASSO were 
grouped according to the direction of their crude association with 
frailty (positive or negative) and analyzed in separate BKMR models.

BKMR models provided estimates of overall mixture effects, 
subgroup-specific effects for positively and negatively associated 
metabolites, and variable importance, expressed as group posterior 
inclusion probabilities (groupPIP) and conditional posterior inclusion 
probabilities (condPIP). Each model was run for 10,000 Markov 
Chain Monte Carlo (MCMC) iterations to ensure convergence, with 
stability verified through inspection of trace plots and convergence 
diagnostics (31, 32). All three mixture models (WQS, qgcomp, and 
BKMR) were adjusted for the same covariates as the primary logistic 
regression analyses, ensuring comparability across methods.

To explore potential effect modification, stratified analyses were 
conducted by sex (men vs. women) and by age group (< 65 years vs. 
≥ 65 years). In each subgroup, WQS, qgcomp, and BKMR models 
were re-run using the same covariate adjustments as in the primary 
analyses. Stratified analyses were also stratified by smoking status 
(current, former, and never smokers), with WQS and BKMR models 
re-estimated using the same covariate adjustments as in the 
main analyses.

Additionally, to further explore potential synergistic and 
antagonistic effects within the mixture, we  calculated the urinary 
DHBMA/SBMA concentration ratio (after creatinine standardization 
and log-transformation) and evaluated its association with frailty 
using survey-weighted logistic regression models. The ratio was 
analyzed both as a continuous variable and by quartiles.

Recognizing oxidative stress as a putative molecular catalyst of 
frailty (8), we  examined whether redox biomarkers mediated the 
association between urinary VOCm mixtures and frailty. Mediation 
analyses were conducted with the mediation R package, using the 
WQS-derived mixture index as the exposure and frailty status as the 
outcome. Separate models were fitted for γ-glutamyl-transferase 
(GGT), bilirubin, and albumin, followed by a joint multiple-mediator 
model that included all three biomarkers. In addition, we extended the 
mediation framework to include the Dietary Antioxidant/Oxidant 
Balance Score (OBS), which reflects dietary oxidative balance, as an 
additional mediator. Given the limited availability of inflammatory 
markers in NHANES, we further conducted exploratory mediation 
analyses using high-sensitivity C-reactive protein (hs-CRP) as an 
inflammatory biomarker. Since hs-CRP was only measured in the 
2015–2018 NHANES cycle, these analyses were restricted to that 
subsample. The oxidative balance score (OBS) was calculated based 
on 16 dietary components and 4 lifestyle factors (physical activity, 
body mass index, alcohol intake, and cotinine), following established 
protocols (33, 34). Antioxidants and prooxidants were scored in 

opposite directions, with higher OBS values reflecting a predominance 
of antioxidant exposures (see Supplementary Table 2).

Each analysis decomposed the total effect (TE) into a direct effect 
(DE) and an indirect effect (IE) operating through the mediator(s); 
the proportion mediated was calculated as IE/TE. Statistical inference 
relied on non-parametric bootstrapping with 1,000 resamples to 
generate survey-weighted 95% confidence intervals for DE, IE, and 
TE. All mediation models adjusted for the same covariates used in the 
primary analyses. All analyses were conducted in R (version 4.4.1), 
and statistical significance was defined as a two-sided p < 0.05.

2.6 Ethical approval

The NHANES survey protocol was approved by the National 
Center for Health Statistics Research Ethics Review Board, and written 
informed consent was obtained from all participants in accordance 
with the Declaration of Helsinki.

3 Results

3.1 Baseline characteristics

As shown in Table 2, frail adults (n = 1,383) were similar in age to 
non-frail adults (median 64 y) but were more often female, more likely 
to be non-Hispanic Black or of another minority race, and tended to 
have lower education and income (all p < 0.001). They reported less 
vigorous activity and more inactivity, and current smoking was 
slightly more common. Energy intake also shifted toward lower 
quartiles in the frailty group. Baseline characteristics after imputation 
of missing covariate values using the k-nearest neighbors (KNN) 
algorithm are provided in Supplementary Table  3, which shows 
patterns consistent with those in the primary dataset.

3.2 Individual VOCms and frailty risk

In the non-adjusted multivariable regression models 
(Supplementary Figure 1), several urinary VOC metabolites showed 
significant positive associations with frailty. The strongest association 
was observed for DHBMA (OR = 5.85, 95% CI 3.12–10.98, p < 0.001). 
CEMA (OR = 2.60, 95% CI 1.94–3.49, p  < 0.001) and HPMMA 
(OR = 2.40, 95% CI 1.81–3.18, p < 0.001) also demonstrated robust 
associations. Additional significant metabolites included AAMA 
(OR = 1.92, 95% CI 1.37–2.70, p < 0.001), AMCC (OR = 2.01, 95% CI 
1.48–2.72, p  < 0.001), CYMA (OR = 1.42, 95% CI 1.26–1.61, 
p < 0.001), MA (OR = 2.63, 95% CI 1.61–4.30, p < 0.001), and 3HPMA 
(OR = 1.88, 95% CI 1.45–2.45, p < 0.001).

We evaluated 16 urinary VOCm metabolites in relation to frailty 
using survey-weighted, fully adjusted logistic models (Figure 2). Four 
biomarkers showed robust, positive associations (p < 0.05). The 
strongest signal was for DHBMA (OR = 2.59, 95% CI 1.33–5.04), 
followed by CEMA (OR = 1.86, 95% CI 1.30–2.65). Both MHBMA3 
(OR = 1.67, 95% CI 1.13–2.45) and HPMMA (OR = 1.69, 95% CI 
1.18–2.43) were likewise associated with greater odds of frailty. As a 
sensitivity analysis, we  further adjusted the models for BMI. The 
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results were consistent with those of the primary models, suggesting 
that our findings were robust (Supplementary Figure 2).

Supplementary Figure 3 displays fully adjusted, quartile-based 
dose-response curves for the 16 urinary VOCms. For CEMA, 
MHBMA3, and HPMMA, frailty odds were higher in Q2–Q4 than in 

Q1, though without a strictly monotonic trend; for DHBMA, the 
association was evident only in Q3 and Q4. PGA shows a lone 
protective dip at Q3, whereas 3HPMA peaks at Q3—the only quartile 
with a significant risk elevation. The p for trend analysis indicated that 
CEMA, DHBMA, 3HPMA, MHBMA3, and HPMMA exhibited 

TABLE 2  Characteristics of participants.

Characteristics Total Non-frailty Frailty p-value

No. of participants 2,715 1,332 1,383

Age (years) 64 (56–72) 64 (60–71) 64 (54–74) 0.637

Sex, % <0.001

 � Female 1,322 (48.69%) 556 (41.74%) 766 (55.39%)

 � Male 1,393 (51.31%) 776 (58.26%) 617 (44.61%)

Ethnicity, % <0.001

 � Mexican American 300 (11.05%) 158 (11.86%) 142 (10.27%)

 � Other Hispanic 282 (10.39%) 140 (10.51%) 142 (10.27%)

 � Non-Hispanic White 1,130 (41.62%) 532 (39.94%) 598 (43.24%)

 � Non-Hispanic Black 656 (24.16%) 298 (22.37%) 358 (25.89%)

 � Non-Hispanic Asian 245 (9.02%) 169 (12.69%) 76 (5.50%)

 � Other Race 102 (3.76%) 35 (2.63%) 67 (4.84%)

Education level % <0.001

 � Less than high school 363 (13.38%) 159 (11.95%) 204 (14.75%)

 � High school or GED 1,056 (38.92%) 479 (36.02%) 577 (41.72%)

 � Above high school 1,294 (47.70%) 692 (52.03%) 602 (43.53%)

 �   (Missing) 2 2 0

Physical activity <0.001

 � Never 880 (32.68%) 320 (24.13%) 560 (40.97%)

 � Moderate 399 (14.82%) 183 (13.80%) 216 (15.80%)

 � Vigorous 1,414 (52.50%) 823 (62.07%) 591 (43.23%)

 �   (Missing) 22 6 16

Smoking status <0.001

 � Never 1,274 (46.94%) 704 (52.89%) 570 (41.21%)

 � Former 568 (20.93%) 217 (16.30%) 351 (25.38%)

 � Current 872 (32.13%) 410 (30.80%) 462 (33.41%)

 �   (Missing) 1 1 0

Family income, % <0.001

 � Q1 (<1.020) 605 (25.02%) 220 (18.58%) 385 (31.20%)

 � Q2 (1.020–1.770) 607 (25.10%) 268 (22.64%) 339 (27.47%)

 � Q3 (1.770–3.525) 601 (24.86%) 312 (26.35%) 289 (23.42%)

 � Q4 (>3.525) 605 (25.02%) 384 (32.43%) 221 (17.91%)

 �   (Missing) 297 148 149

Total energy intake(kcal) 0.005

 � Q1 (<1,362) 632 (25.01%) 278 (22.38%) 354 (27.55%)

 � Q2 (1362–1812) 632 (25.01%) 301 (24.24%) 331 (25.76%)

 � Q3 (1812–2,355) 633 (25.05%) 330 (26.57%) 303 (23.58%)

 � Q4 (>2,355) 630 (24.93%) 333 (26.81%) 297 (23.11%)

 �   (Missing) 188 90 98

The continuous variables were presented as median (interquartile range, IQR), and the categorical variables were presented as number and percentages.
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significant linear trends with frailty risk (all p  < 0.05), while no 
significant trends were observed for other metabolites.

3.3 Mixed VOCms and frailty risk

3.3.1 WQS and Qgcomp analysis
The bidirectional WQS model identified two mixture indices with 

opposite directions of effect (Figure 3a). After covariate adjustment, a 
one-unit increase in the positive index was associated with 25% higher 
odds of frailty (OR = 1.25, 95% CI 1.17–1.33), whereas a one-unit 
increase in the negative index corresponded to 17% lower odds 
(OR = 0.83, 95% CI 0.75–0.91).

In the positive index, the largest weights were assigned to 
DHBMA (22%) and HPMMA (21%), followed by CEMA (13%) and 
MA (8%). 3,4-MHA, CYMA and 2-HPMA each accounted for 5–7%, 
and no other metabolite exceeded 5%.

The negative index was led by SBMA (17%), AAMA (12%) and 
2-MHA (10%). ATCA, MHBMA3 and 3-HPMA contributed 8–10%, 
while every remaining metabolite contributed less than 6%. In a 
sensitivity analysis using LASSO-selected metabolites within the 
WQS framework, the results remained consistent with those from the 

primary WQS model, further supporting the robustness of our 
findings (Supplementary Figure 4).

To confirm robustness, we ran a quantile g-computation analysis, 
which showed no overall association (OR = 1.02, 95% CI 0.86–1.21; 
p = 0.81); component weights appear in Supplementary Figure 5.

3.3.2 BKMR analysis
To address multicollinearity and pinpoint influential VOCms, 

we  ran 10-fold cross-validated LASSO logistic regression 
(Supplementary Figures 6, 7). Choosing the penalty at one standard 
error above the minimum deviance produced a parsimonious model 
with nine metabolites—four positively and five negatively related to 
frailty (Supplementary Table 4). These coefficient signs matched the 
qgcomp weights, supporting the positive- versus negative-grouping 
adopted for the BKMR analyses.

We then fitted three separate BKMR models to explore the overall 
and direction-specific mixture effects of these metabolites on frailty. 
For the overall BKMR model (Figure 3b), the estimated exposure–
frailty relationship rises across quantiles, but its 95% confidence 
intervals consistently include zero, indicating no statistically 
significant association. In contrast, the positive-group BKMR curve 
(Figure 3c) is bidirectional: frailty risk is lower at the lowest quartiles, 

FIGURE 2

Adjusted associations between individual urinary VOCms and frailty risk. Forest plot displays survey-weighted odds ratios (ORs) and 95% confidence 
intervals (horizontal bars) obtained from multivariable logistic regression models. Each model was adjusted for sex, age, educational attainment, race/
ethnicity, poverty-income ratio, smoking status, physical activity, survey cycle,and total energy intake. The dashed vertical line marks the null value 
(OR = 1). Red squares highlight metabolites with statistically significant associations (two-sided p < 0.05); black squares indicate non-significant 
findings.
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flattens near the 50th percentile, and then increases steadily at higher 
exposure levels. The negatively associated group showed a slight 
downward trend, but the overall effect was minimal and not 
statistically significant (Supplementary Figure 8). Figure 3d presents 
the hierarchical BKMR variable selection, identifying two metabolite 
clusters with groupPIPs of 0.999 and 1.000. In the first cluster, only 
ATCA showed a strong conditional inclusion probability 
(condPIP = 0.98), whereas 2MHA, SBMA, 2HPMA, and PGA were 
all ≤ 0.02. In the second cluster, DHBMA dominated 
(condPIP = 0.892), with MHBMA3 (0.09) and HPMMA (0.017) 
contributing modestly and CEMA effectively excluded 
(condPIP = 0.001). Supplementary Figure 9 shows that DHBMA is 
positively associated with frailty, as its 75th-percentile credible interval 
lies entirely above zero, whereas ATCA is inversely associated, with its 
75th-percentile interval entirely below zero. All other metabolites have 
intervals crossing zero at every percentile, indicating no clear link to 
frailty. Supplementary Figure 10 shows marginal BKMR curves for 
each VOCm (others fixed at their median). DHBMA rises linearly 
with frailty across its full range. MHBMA3 and ATCA both peak at 

intermediate exposures, forming inverted-U shapes. All other 
metabolites hug the null line with 95% credible intervals crossing zero, 
indicating negligible individual effects.

3.4 Subgroup analysis

In stratified WQS models (Supplementary Figure 11), the positive 
mixture index was significant in all strata—men (OR = 1.13, 95% CI 
1.04–1.23), women (OR = 1.27, 95% CI 1.11–1.46), adults < 65 y 
(OR = 1.19, 95% CI 1.03–1.37) and adults ≥ 65 y (OR = 1.35, 95% CI 
1.09–1.68). The metabolite composition of the positive index varied 
by subgroup: MHBMA3 contributed most in men (18%), HPMMA in 
women (16%), while DHBMA dominated both age groups—
accounting for 19% of the weight in adults < 65 y and 15% in adults ≥ 
65 y. For the negative index, significant associations appeared only in 
women (OR = 0.80, 95% CI 0.71–0.90) and adults < 65 y (OR = 0.87, 
95% CI 0.76–0.97). PGA carried the largest negative weight in both 
strata—14% in women and 15% in younger adults. Subgroup BKMR 

FIGURE 3

Integrated mixture analysis of urinary VOCms in relation to frailty. (a)Two-directional WQS weights. Bars show positive-(left) and negative-weight (right) 
contributions to the frailty mixture; red dashed lines mark the equal-weight threshold. Mixture odds ratios (OR, 95% CI) appear above each panel; (b) 
BKMR—overall mixture. Posterior mean frailty function h (Z) across exposure quantiles for the full set of nine LASSO-selected VOCms (shaded 
bars = 95% credible intervals; red dashed line = null); (c) BKMR—positively associated group. Exposure-response curve for the four VOCms with 
positive LASSO coefficients; (d) Hierarchical BKMR selection. Posterior inclusion probabilities: groupPIP denotes the probability that each cluster enters 
the model; condPIP ranks individual metabolites within clusters.
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and qgcomp findings (Supplementary Figures 12, 13) were consistent 
with the unstratified analyses. In stratified analyses by smoking status, 
WQS and BKMR models showed stronger associations among current 
smokers, whereas associations in former and never smokers were 
weaker (Supplementary Figure 14).

3.5 Exploratory ratio analysis

As an exploratory analysis, we  further examined the urinary 
DHBMA/SBMA ratio in relation to frailty (Supplementary Figure 15). 
Higher DHBMA/SBMA ratios were significantly associated with 
increased odds of frailty (OR = 1.54, 95% CI: 1.07–2.22, p = 0.025). 
When categorized into quartiles, individuals in the highest quartile 
(Q4) had significantly greater frailty risk compared with Q1 
(OR = 1.52, 95% CI: 1.07–2.17, p = 0.026). A significant trend across 
quartiles was observed (p for trend = 0.014).

3.6 Mediated analysis

Table  3 summarizes the mediation of the VOCm–frailty 
association by oxidative-stress markers. For DHBMA, mediation via 
GGT, bilirubin, and albumin accounted for 3.69, 5.41, and 11.56% of 
the total effect, respectively, with the direct effect remaining 
predominant. For CEMA, bilirubin and albumin mediated 13.90 and 
15.44%, respectively, while GGT mediation was negligible. MHBMA3 
showed a 20.29% mediated share through bilirubin, with no 
significant mediation by GGT or albumin. For HPMMA, only 
bilirubin exhibited a significant indirect effect (12.00%). In addition, 
the oxidative balance score (OBS) significantly mediated the 
association between DHBMA and frailty (indirect effect = 0.00168, 
p  = 0.044), accounting for 1.76% of the total effect, whereas no 
significant mediation effects of OBS were observed for other 
metabolites. Regarding inflammation, hs-CRP showed a significant 
mediation effect for CEMA (indirect effect = 0.0116, p  = 0.046), 
explaining 9.21% of the total effect. However, mediation via hs-CRP 
was not observed for DHBMA, MHBMA3, or HPMMA. Given that 
hs-CRP measurements were only available in the 2015–2018 
NHANES cycles, these findings should be interpreted with caution. 

Taken together, Table  3 presents only the statistically significant 
mediation pathways, while the full set of mediation results is provided 
in Supplementary Table 5.

4 Discussion

Our results can be distilled into four inter-locking observations 
that together delineate the full exposure-to-outcome continuum. 
First, in single-metabolite analyses we observed consistent, exposure-
dependent associations for four urinary VOC metabolites—DHBMA, 
CEMA, HPMMA, and MHBMA3. Modeled as log₁₀-transformed 
continuous variables, each metabolite was positively related to frailty, 
with fully adjusted odds ratios (ORs) ranging from 1.67 to 2.59 per 
one-unit increase in concentration. When the same metabolites were 
categorized into quartiles, participants in the highest quartile (Q4) 
had 1.65- to 1.97-fold higher odds of frailty than those in the lowest 
quartile (Q1), reaffirming a monotonic, dose-responsive pattern. 
Second, when the 16 metabolites were treated as a mixture in 
two-directional weighted-quantile-sum (WQS) regression, 
we observed a clear bidirectional pattern: a one-unit increase in the 
positive-direction index was associated with a 25% increase in frailty 
odds, whereas a one-unit increase in the negative-direction index 
corresponded to a 17% decrease. Sex- and age-stratified WQS models 
showed that this risk-increasing (positive) index remained significant 
only in men and in adults ≥ 65 y; within that index, DHBMA 
dominated the weights in men (18%), whereas HPMMA led in 
women (16%), signaling sex-specific drivers. Third, Bayesian kernel 
machine regression (BKMR) built on LASSO-selected positive and 
negative groups corroborated these findings: the positive group 
displayed a monotonic, upward exposure–response curve, while the 
negative group showed no consistent relationship, reinforcing the 
notion that risk is concentrated in a small subset of metabolites. 
Fourth, causal-mediation analysis indicated that oxidative-stress 
markers—particularly albumin and bilirubin—mediated 5–20% of 
the associations for the four key metabolites, implicating oxidative 
imbalance as a partial pathway. Beyond conventional hepatic 
oxidative stress markers, we  incorporated OBS and hs-CRP to 
strengthen the biological plausibility of the pathway interpretation. 
OBS provided partial evidence of oxidative imbalance mediation for 

TABLE 3  Significant mediation analysis between VOCms and frailty.

Result VOCms Mediator Indirect effect Direct effect Total effect Mediation 
proportions

(p-value) (p-value) (p-value)

Frailty DHBMA Gamma glutamyl transferase 0.004109 (0.042) 0.107177 (< 0.001) 0.111286 (< 0.001) 3.69%

Bilirubin 0.006017 (0.012) 0.105181 (< 0.001) 0.111198 (< 0.001) 5.41%

Albumin 0.01303 (0.01) 0.09966 (< 0.001) 0.11269 (< 0.001) 11.56%

Dietary Antioxidant/Oxidant 

Balance Scores(OBS)

0.00168 (0.044) 0.0936 (<0.001) 0.0953 (<0.001) 1.76%

CEMA Bilirubin 0.01133 (< 0.001) 0.07020 (0.024) 0.08154 (0.01) 13.90%

Albumin 0.01279 (0.008) 0.07005 (0.016) 0.08283 (0.004) 15.44%

hs-CRP 0.011578 (0.046) 0.114155 (<0.001) 0.125733 (<0.001) 9.21%

MHBMA3 Bilirubin 0.01599 (< 0.001) 0.06282 (0.024) 0.07881 (0.008) 20.29%

HPMMA Bilirubin 0.01000 (< 0.001) 0.07111 (0.008) 0.08111 (0.0006) 12.00%
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DHBMA, while hs-CRP mediated the effect of CEMA on frailty. 
Notably, hs-CRP results were limited to NHANES 2015–2018, which 
may restrict generalizability and attenuate statistical power. A 
robustness check using quantile g-computation (qgcomp) produced 
a null overall mixture estimate.

Urinary mercapturic acids are increasingly recognized as 
sensitive sentinels of systemic VOC exposure. Earlier NHANES 
studies linked higher VOCm burdens to hypertension, metabolic 
syndrome and sarcopenia, suggesting that solvent exposure affects 
multiple organ systems (4, 19, 35). Recent evidence has moved 
further toward functional-ageing outcomes. A multi-country analysis 
of community-dwelling older adults reported that reliance on 
unclean cooking fuels—an important source of indoor VOCs—was 
associated with slower gait speed and impaired balance, while a 
decade-long rural Chinese panel reached similar conclusions for 
mobility and quality-of-life indicators (36, 37). Experimental work 
echoes these observations: in mice, low-dose mixtures of butadiene- 
and acrolein-derived metabolites reduced skeletal-muscle mass and 
elevated reactive-oxygen species, whereas in cultured myotubes they 
disrupted mitochondrial membrane potential, damaged mtDNA and 
depleted glutathione (38, 39). Taken together, these human and 
mechanistic data portray VOCs as multi-system stressors that erode 
cardiovascular, metabolic and musculoskeletal reserves—the core 
physiological domains captured by frailty indices. Our finding that 
four metabolites (DHBMA, CEMA, HPMMA and MHBMA3) are 
positively associated with frailty in a nationally representative 
U.S. cohort therefore extends VOC research from organ-specific 
endpoints to an integrated ageing metric, underscoring the potential 
public-health value of stricter ambient and indoor VOC control.

The risk-increasing component of the mixture is driven by four 
metabolites—DHBMA, CEMA, HPMMA, and MHBMA3—whose 
epoxide or aldehyde groups readily deplete glutathione and initiate 
oxidative-stress cascades (40, 41). Sex-stratified WQS weights 
uncovered distinct lead compounds: in men, MHBMA3 (a 
metabolite of 1,3-butadiene) carried the greatest weight, whereas 
in women HPMMA (a metabolite of crotonaldehyde) 
predominated. Such differences are biologically plausible, given 
sex-specific patterns in glutathione-S-transferase expression and 
adipose storage that can modulate the internal dose of lipophilic 
VOCs (42, 43). Age further shaped the mixture profile. Among 
adults younger than 65 years, both the positive and the negative 
WQS indices remained significant. The inverse (negative) index—
anchored by ATCA and 2-MHA—most likely reflects rapid 
metabolic clearance: efficient detoxification can elevate urinary 
metabolite concentrations without increasing true tissue burden. 
A short-lived hormetic response may also be involved; very low 
VOC doses have been shown to transiently activate Nrf2-
dependent antioxidant pathways (44, 45), and the BKMR curve for 
ATCA exhibits an inverted-U pattern consistent with this 
mechanism. In contrast, the negative index disappeared in adults 
aged 65 years or older, a finding that dovetails with well-
documented age-related declines in glutathione synthesis and renal 
excretory capacity. Under these conditions, elevated urinary 
VOCm levels are more likely to signify genuine internal exposure 
rather than swift elimination. BKMR likewise detected no 
protective signal in either age stratum, reinforcing the view that the 
apparent benefit seen in younger adults arises from detoxification 
kinetics or transient hormesis rather than inherently benign 

chemistry. Collectively, these subgroup patterns highlight 
biotransformation capacity and redox reserve as critical modifiers 
of the VOC-frailty relationship. Our WQS regression analyses 
identified significant mixture effects in both the positive and 
negative directions. Although this may initially appear 
counterintuitive, it reflects the internal heterogeneity of the VOC 
mixture. Specifically, certain metabolites demonstrated positive 
associations with frailty risk, while others showed inverse 
associations, resulting in bidirectional mixture effects when 
modeled separately. For instance, the exploratory ratio analysis 
revealed that a higher DHBMA/SBMA concentration ratio was 
associated with increased frailty risk. These findings indicate that 
the predominance of DHBMA over SBMA may elevate the 
likelihood of frailty, pointing to potential synergistic and 
antagonistic interactions within the VOC mixture. This ratio-based 
approach provides an additional perspective for capturing the 
complexity of co-exposures, complementing insights from single-
pollutant models. Taken together, these findings indicate that VOC 
exposures may not act uniformly but instead involve both risk-
enhancing and potentially protective components, highlighting the 
complexity of real-world chemical mixtures.

The main risk metabolites—DHBMA, CEMA, HPMMA, and 
MHBMA3—originate from VOCs (1,3-butadiene, acrylonitrile, 
crotonaldehyde) that form reactive epoxides or aldehydes, deplete 
glutathione, and generate ROS (41). Lab work supports this: 
butadiene epoxide boosts malondialdehyde and disrupts 
mitochondrial potential, while acrolein derivatives give only a brief 
Nrf2 surge before antioxidants are overwhelmed (46, 47). Although 
animal studies provide important mechanistic insights, caution is 
needed when extrapolating these findings to humans, as not all 
pathways directly translate. Our mediation analysis echoes this 
biology. The systemic redox markers bilirubin and albumin jointly 
accounted for 5–20% of the frailty association for each metabolite 
(greatest for MHBMA3), whereas the hepatic enzyme γ-glutamyl-
transferase contributed little, pointing to generalized rather than 
liver-specific oxidative stress. Because most of the total effect 
remained direct, additional pathways—such as endocrine 
disruption, low-grade inflammation, or mitochondrial 
dysfunction—are likely involved. Taken together, the partial 
statistical mediation and convergent toxicological evidence render 
oxidative imbalance a credible, although not yet definitive, 
mechanistic bridge between VOC exposure, as indexed by urinary 
metabolites, and frailty.

Smoking is a well-recognized source of VOC exposure. In our 
stratified analyses, associations between urinary VOC metabolites 
and frailty were more evident among current smokers, while 
results were less consistent in former and never smokers. This 
suggests that smoking status influences the detectability of VOC–
frailty relationships. Nevertheless, several of the key VOCs 
identified, including 1,3-butadiene, crotonaldehyde, and xylene, 
also derive from environmental and occupational sources unrelated 
to tobacco smoke. Thus, while smoking remains an important 
contributor, it does not fully explain the observed associations. 
Residual confounding by smoking-related exposures cannot 
be entirely excluded and should be considered when interpreting 
our findings.

This study is the first to relate urinary VOCm mixtures to frailty 
in a nationally representative sample of U.S. adults. By integrating 
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three complementary mixture approaches—direction-specific 
WQS, grouped BKMR, and qgcomp—together with oxidative-stress 
mediation, we were able to triangulate risk estimates and pinpoint 
sex- and age-specific drivers. The convergent signal across WQS 
and BKMR highlights a small subset of metabolites (DHBMA, 
CEMA, HPMMA, MHBMA3) as principal hazards, with mediation 
analysis indicating that systemic oxidative imbalance could 
represent one possible mechanism underlying the observed 
associations. These results reinforce the notion that VOC control 
could promote healthier ageing trajectories.

Several caveats temper these conclusions. First, the NHANES 
design is cross-sectional; directionality and causality cannot 
be established. Second, exposure was assessed from a single spot-
urine sample, which is susceptible to within-person variability and 
may misclassify long-term exposure—bias that would generally 
attenuate associations. Third, qgcomp yielded a null overall estimate; 
this likely reflects its lower statistical power when a mixture contains 
components with opposing effects, but it nonetheless underlines the 
need for caution in interpreting borderline associations. Fourth, 
residual confounding is possible, and sample sizes for sex- and 
age-stratified analyses were modest, limiting precision. Finally, 
NHANES is representative of the U.S. population; since VOC sources 
and exposure levels may differ across countries, the generalizability 
of our findings to other populations should be  interpreted 
with caution.

Future work should couple repeated urinary and blood 
measurements with personal air monitoring, apply high-resolution 
exposomic and multi-omics panels, and follow participants 
longitudinally to confirm temporality, delineate additional pathways—
such as endocrine or mitochondrial disruption—and test whether 
targeted VOC-reduction strategies can meaningfully delay 
frailty onset.

5 Conclusion

Urinary VOCm mixtures—driven by metabolites DHBMA, 
CEMA, HPMMA, and MHBMA3—are linked to greater frailty, 
especially in men and adults ≥ 65 y. Oxidative stress mediates part of 
this risk, yet most effects remain direct. Controlling environmentally 
relevant VOC exposure could support healthier ageing; longitudinal 
confirmation is warranted.
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