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Background: Whether environmentally relevant exposure to volatile organic
compounds (VOCs) contributes to frailty remains unknown. We examined
urinary VOC metabolites (VOCms) and their mixtures in relation to frailty in a
nationally representative U.S. cohort.

Methods: We analysed 2,715 adults (> 20 y) from NHANES 2011-2018 in
a cross-sectional design. Frailty was defined with a 48-item index. Sixteen
creatinine-adjusted VOCms were quantified. Single metabolites were evaluated
with survey-weighted logistic regression. Two-directional weighted-quantile-
sum regression (WQS), grouped Bayesian kernel machine regression (BKMR)
and quantile g-computation (qgcomp) characterized mixture effects, and sex-
and age-stratified subgroup analyses were performed. Mediation by y-glutamyl-
transferase (GGT), bilirubin, albumin, the Dietary Oxidant/Antioxidant Balance
Score (OBS), and high-sensitivity C-reactive protein (hs-CRP) was assessed.
Results: Four metabolites—DHBMA, CEMA, HPMMA and MHBMA3—were each
positively associated with frailty (adjusted OR per logye-unit 1.67-2.59). The
positive WQS index increased frailty odds by 25% (OR = 1.25, 95% CI 1.17-1.33),
whereas the negative index lowered odds by 17% (OR = 0.83, 0.75-0.91). Only
the positive index remained significant in men and in adults > 65 y; MHBMA3
dominated male weights (18%), HPMMA female weights (16%). BKMR confirmed
a monotonic dose-response for the positive group, whereas ggcomp
detected no overall effect. Bilirubin and albumin jointly mediated 5-20% of the
associations; GGT showed no significant mediation.

Conclusion: Urinary VOCm mixtures are linked to frailty at population exposure
levels, with risk driven by four metabolites and most pronounced in men and
older adults. Oxidative stress explains part—but not all—of the association,
suggesting additional pathways. Reducing VOC exposure may help preserve
physiological reserve; longitudinal studies are warranted to confirm causality.
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1 Introduction

Volatile organic compounds (VOCs) are a diverse class of gases
emitted from fuels, plastics, solvents, and tobacco smoke; once
absorbed, many are conjugated with cysteine and excreted as
mercapturic-acid metabolites of VOCs (VOCms), providing an
objective record of internal dose (I, 2). After absorption, VOCs
undergo sequential biotransformation through Phase I and Phase II
enzymatic pathways. Cytochrome P450-mediated oxidation generates
electrophilic intermediates, which conjugate with glutathione and are
subsequently processed via the mercapturic acid pathway. The
resulting N-acetyl-L-cysteine conjugates are excreted in urine as
mercapturic acid metabolites, which serve as stable and specific
biomarkers of VOC exposure.

These pollutants are virtually ubiquitous: more than 90% of
U.S. adults carry detectable urinary levels of at least one VOCm (3).
Epidemiologic studies have linked elevated VOC or VOCm burdens
to a spectrum of age-related disorders, including cardiovascular
disease, liver steatosis, rheumatoid arthritis, and sarcopenia (4, 5).
Mixture-oriented analyses show that combined exposure to N-acetyl-
S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA, a urinary metabolite of
1,3-butadiene), N-acetyl-S-(2-Carboxyethyl)-L-cysteine (CEMA, a
urinary metabolite of acrylonitrile), and several aliphatic metabolites
amplifies cardiometabolic risk beyond single-compound models.
Mechanistic data implicate oxidative stress, endothelial dysfunction,
and mitochondrial impairment (6, 7). Oxidative stress, in particular,
is increasingly recognized as a molecular catalyst of frailty, promoting
muscle loss, inflammation, and metabolic dysregulation across the
adult life-course (8). Because adults accumulate lifelong exposure
while detoxification capacity declines with age, the entire adult life-
course—particularly later life—may be vulnerable to subtle shifts in
VOC mixture profiles that translate into clinically meaningful
health deficits.

Frailty, a multidimensional syndrome of diminished physiologic
reserve, has emerged as an overarching indicator of healthy ageing,
predicting disability, hospitalization, and mortality better than single-
organ metrics (9). Although U.S. prevalence reaches 10-15% among
adults > 65 years and exceeds 25% past age 80, frailty can begin much
earlier and progress across adulthood (10). While intrinsic factors
such as sarcopenia, inflammation, and endocrine change initiate the
frailty trajectory, mounting evidence suggests that environmental
pollution accelerates its progression. Meta-analytic data show that
each 10 pg m™ rise in fine particulate matter with an aerodynamic
diameter <2.5 pm (PM, . 5) increases frailty odds by ~19%, and cohort
studies in China and India link indoor or household air pollution to
faster frailty development (11-13). Yet these investigations focus on
particulate and gaseous pollutants; the toxicologically diverse VOC
family remains largely unexplored, making the VOC-frailty nexus
both biologically plausible and clinically urgent.

In the past five years, nationally representative NHANES analyses
and large Asian cohorts have mapped the health footprint of urinary
VOC metabolites. Two NHANES studies tie urinary VOCms to
ageing outcomes: elevated DHBMA and CEMA, together with
(HPMMA),
predicted 30-60% higher sarcopenia odds, while a mixture dominated

N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine
by N-acetyl-S-(2-cyanoethyl)-L-cysteine (CYMA) was inversely

related to the anti-ageing protein a-Klotho (14, 15). Mixture-model
analyses indicate that combined VOCm exposure aggravates
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blood-pressure control, elevates the odds of metabolic syndrome and
type 2 diabetes, and increases cardiovascular-disease risk by roughly
20% (4, 16, 17). Because hypertension, diabetes, coronary heart
disease, sarcopenia, and low a-Klotho are all recognized precursors or
integral components of the frailty trajectory, this constellation of
cardiovascular, metabolic, and musculoskeletal disturbances offers a
compelling mechanistic bridge linking VOCm mixtures to frailty.

Pollution-frailty research has grown in parallel. A nine-study meta-
analysis reported a 19% increase in frailty odds per 10 pg m™ PM,. 5
(11), while Chinese and Indian cohorts linked indoor pollutants to
accelerated frailty progression (12, 13). Collectively, the evidence
highlights two themes: first, chemical mixtures often produce
stronger—and sometimes opposing—health effects than individual
pollutants; second, susceptibility to these exposures rises across
adulthood and is greatest in later life. Nevertheless, no investigation has
yet examined whether urinary VOCms—alone or in combination—are
associated with frailty in the general adult population, leaving a critical
gap at the intersection of geriatric epidemiology and exposomics. It
also remains unclear which structural classes of VOCms drive risk,
whether opposing mixture effects coexist, and to what extent oxidative
stress mediates any association.

We therefore assessed urinary VOCm mixtures and frailty in
U.S. adults aged > 20 years using NHANES 2011-2018. Positive and
negative mixture effects were estimated with two-directional
weighted-quantile-sum regression and verified with quantile
g-computation. Key metabolites were then identified by LASSO
penalized selection and examined in direction-specific Bayesian
kernel machine regression to delineate dose-response functions.
Finally, mediation analysis evaluated y-glutamyl-transferase, bilirubin,
and albumin as oxidative-stress pathways, providing both risk
estimates and mechanistic insight.

2 Methods
2.1 Population

From four NHANES cycles (2011-2018, n = 39,156), we retained
adults aged > 20 years (n = 22,617) and removed 8,591 participants
without urine-creatinine data, leaving 14,026 adults. Restricting the
sample to those with complete measurements for 16 reliably detectable
VOCm metabolites—together with their parent VOCs listed in
Table 1—excluded another 3,757 participants. After omitting 3,254
individuals with incomplete frailty data, the final analytic cohort
comprised 2,715 adults for single-metabolite, mixture, and mediation
analyses. The full selection process is shown in Figure 1.

2.2 Exposure

Participants provided non-fasting urine samples, stored at —70
°C until analysis. Urinary VOCms were quantified by ultra-
performance liquid chromatography-tandem mass spectrometry
using stable isotope-labeled internal standards. We emphasize that all
laboratory analyses were conducted by the National Center for
Environmental Health, Centers for Disease Control and Prevention
(CDC) as part of the NHANES biomonitoring program. The LC-MS/
MS workflow, including sample preparation, chromatographic

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1655214
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Quetal.

10.3389/fpubh.2025.1655214

TABLE 1 Relative parent volatile organic compounds (VOCs) to the metabolites of VOCs (VOCms).

Parent VOCs Urine metabolites of VOCs (VOCms)  Abbreviation of VOCms LLOD (ng/mL)
Acrolein N-Acetyl-S-(3-hydroxypropyl)-L-cysteine 3HPMA 13.00
Crotonaldehyde N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine HPMMA 1.13
Acrylamide N-Acetyl-S-(2-carbamoylethyl)-L-cysteine AAMA 2.20

N-Acetyl-S-(2-Carbxyethyl)-L-cysteine CEMA 6.96
Acrylonitrile

N-Acetyl-S-(2-cyanoethyl)-L-cysteine CYMA 0.50
Cyanide 2-Aminothiazoline-4-carboxylic acid ATCA 15.00
Ethylbenzene, styrene Phenylglyoxylic acid PGA 12.00
Benzene Mandelic acid MA 12.00
N, N-Dimethylformamide N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine AMCC 6.26
Propylene oxide N-Acetyl-S-(2-hydroxypropyl)-L-cysteine 2HPMA 5.30
Styrene N-Acetyl-S-(benzyl)-L-cysteine SBMA 0.50

2-Methylhippuric acid 2MHA 5.00
Xylene

3,4-Methylhippuric acid 3,4-MHA 8.00

N-Acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine MHBMA3 0.60
1,3-Butadiene

N-ace-S- (3,4-dihidxybutl)-L-cysteine DHBMA 5.25
1-Bromopropane N-acetyl-S-(n-propyl)-L-cysteine BPMA 1.20

LLOD, lower limit of detection.

separation, mass spectrometry conditions, and the use of isotope-
labeled internal standards, followed standardized CDC laboratory
protocols, which are publicly available in the NHANES Laboratory
Method Files. The analyzed VOC metabolites included
2-methylhippuric acid (2-MHA), 3,4-methylhippuric acid (3,4-
MHA), N-Acetyl-S-(2-carbamoylethyl)-L-Cysteine (AAMA),
N-Acetyl-S-(N-methylcarbamoyl)-L-Cysteine (AMCC), 2-amino-
thiazoline-4-carboxylic acid (ATCA), N-Acetyl-S-(benzyl)-L-
Cysteine (SBMA), N-Acetyl-S-(n-propyl)-L-Cysteine (BPMA),
mandelic acid (MA), N-Acetyl-S- (4-hydroxy-2-butenyl)-L-Cysteine
(MHBMA3), phenylglyoxylic acid (PGA), as well as DHBMA,
CEMA, HPMMA, and CYMA. In accordance with established
practices in NHANES VOC biomonitoring research, we excluded
VOCms for which more than one-third (>33%) of participants had
concentrations below the analytical limit of detection (LOD) or had
identical values across all participants. This threshold is commonly
applied to minimize bias from heavily censored data and to ensure
sufficient variability for reliable statistical modeling (18, 19).
Concentrations below the limit of detection (LOD) were imputed as
LOD/ \/ 2, following NHANES analytic guidelines (20).

2.3 Covariates

We adjusted for a set of demographic, socioeconomic, and lifestyle
variables that have been consistently associated with both VOC
exposure and frailty in prior epidemiological research (21, 22). Age and
sex were included as fundamental demographic factors. Race/ethnicity
was categorized as non-Hispanic White, non-Hispanic Black,
non-Hispanic Asian, Mexican American, other Hispanic, or other race,
reflecting NHANES classification standards. Educational attainment
was grouped into three levels: less than 11th grade, high-school
graduate, and at least some college, to capture differences in
socioeconomic background and health literacy. Smoking status (never,
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former, current) and physical activity level (none, moderate, vigorous)
were derived from standardized NHANES questionnaires, as these
behaviors influence both exposure patterns and frailty risk. Economic
status was expressed as the family income-to-poverty ratio, divided into
quartiles, while dietary intake was represented by total energy intake
(mean of two 24-h recalls), also divided into quartiles; these variables
account for nutritional and economic determinants of health. To control
for temporal variation in sampling and laboratory procedures,
we additionally adjusted for the NHANES survey cycle. Because BMI is
included as one of the deficit items used to calculate the frailty index
(Supplementary Table 1, item 42), it was not entered as a separate
covariate in the primary models to avoid potential over-adjustment. In
addition, a sensitivity analysis was performed by further adjusting for
BMI. Missing values for covariates were imputed using the k-nearest
neighbors (KNN) algorithm to ensure a complete dataset for analysis.

2.4 Outcome

Frailty was assessed with the 48-item NHANES Frailty Index
described in earlier studies (23, 24) (item list in Supplementary Table 1).
Participants were included if they had completed at least 80% of the
items (>39/48). For each participant, the index was calculated as the
proportion of deficits present out of the total number of non-missing
items, thereby yielding a score between 0 and 1. Following previous
literature, scores <0.21 were classified as non-frailty and scores >0.21
as frailty (25, 26).

2.5 Statistical analysis
Missing covariates were imputed with KNN using the VIM

package, preserving multivariable structure; family income showed
the highest missingness (10.9%).
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39156 NHANES participants between
2011-2018
> Age <20 years old (n=16539)
A
22617 participants aged
= 20 years
> No laboratory data on urine creatinine (n=8591)
A
21141 participants with urine
creatinine
No laboratory data on urine mVOCs,
10 of 26 identified mVOCs were excluded because
= more than 1/3 of subjects had the same value or
A under the detection limit (n=3757)
5969 participants with 16
mVOCs screened for
outcome (frailty)
> Incomplete or poor quality of frailty index(n=3254)
A
@715 participants included for final analys@
Association with Association with Mediator for the
individual mVOCs mixed mVOCs association
FIGURE 1
Participant selection flowchart.

Baseline characteristics were analyzed using survey-weighted
methods to account for the NHANES complex sampling design.
Continuous variables were reported as medians with interquartile
ranges (IQR) and compared using the Mann-Whitney U test, while
categorical variables were presented as survey-weighted percentages
and compared using the Rao-Scott adjusted y* test. All analyses
incorporated NHANES sampling weights, strata, and primary
sampling units (PSUs) to ensure nationally representative estimates.

Urinary VOCm concentrations were adjusted for urinary
creatinine and log-transformed to normalize their distributions. These
transformed VOCm levels were entered into survey-weighted logistic
regression models both as continuous variables and as quartiles (with
Q1 as the reference group) to evaluate their associations with frailty.

To assess mixture effects, we applied direction-specific Weighted
Quantile Sum (WQS) regression. Urinary VOCms were categorized
into quartiles to reduce skewness and limit the influence of extreme
values. Separate positive and negative WQS indices were modeled,
with each metabolite assigned a weight reflecting its relative
contribution to the mixture effect (27, 28). In typical applications, a
larger proportion of the dataset is used for training and a smaller part
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for validation. However, in this study, we chose a 40% training and
60% validation split because a larger validation set provided more
stable weight estimation across repeated bootstrap samples, while the
40% training set was still sufficient to build the model given our
relatively large sample size. For the primary WQS analyses, all
measured VOC metabolites were included a priori, consistent with
standard practice in WQS mixture modeling. This allows estimation
of the overall mixture effect under directional constraints without
preselection of exposures. To further assess robustness, we additionally
performed a sensitivity analysis where LASSO-selected metabolites
were entered into the WQS model. Each model was fitted with 1,000
bootstrap resamples using the gWQS R package.

We further performed quantile-based g-computation (qgcomp),
arecently developed approach for mixture analysis that simultaneously
estimates the overall effect of increasing all exposures by one quantile
while allowing both positive and negative contributions of individual
components. This method was implemented using the qgcomp R
package, following the framework described by Keil et al. (29, 30).
Results were reported as the overall mixture effect (per one quantile
increase in the joint exposure index) with 95% confidence intervals,
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along with component-specific weights reflecting the relative positive
or negative contributions of each VOC metabolite. Employing both
WQS and qgcomp in parallel strengthened the interpretability and
robustness of our mixture analysis findings.

Complementing the WQS and qgcomp analyses, we used Bayesian
Kernel Machine Regression (BKMR) to further examine potential
non-linear and interactive effects among VOCms. To improve
computational efficiency and minimize noise from variables with
negligible associations, we first applied the least absolute shrinkage
and selection operator (LASSO) regression to the full set of urinary
VOC metabolites. The subset of VOCs retained by LASSO was then
entered into the BKMR models. Metabolites selected by LASSO were
grouped according to the direction of their crude association with
frailty (positive or negative) and analyzed in separate BRMR models.

BKMR models provided estimates of overall mixture effects,
subgroup-specific effects for positively and negatively associated
metabolites, and variable importance, expressed as group posterior
inclusion probabilities (groupPIP) and conditional posterior inclusion
probabilities (condPIP). Each model was run for 10,000 Markov
Chain Monte Carlo (MCMC) iterations to ensure convergence, with
stability verified through inspection of trace plots and convergence
diagnostics (31, 32). All three mixture models (WQS, qgcomp, and
BKMR) were adjusted for the same covariates as the primary logistic
regression analyses, ensuring comparability across methods.

To explore potential effect modification, stratified analyses were
conducted by sex (men vs. women) and by age group (< 65 years vs.
> 65 years). In each subgroup, WQS, qgcomp, and BKMR models
were re-run using the same covariate adjustments as in the primary
analyses. Stratified analyses were also stratified by smoking status
(current, former, and never smokers), with WQS and BKMR models
re-estimated using the same covariate adjustments as in the
main analyses.

Additionally, to further explore potential synergistic and
antagonistic effects within the mixture, we calculated the urinary
DHBMA/SBMA concentration ratio (after creatinine standardization
and log-transformation) and evaluated its association with frailty
using survey-weighted logistic regression models. The ratio was
analyzed both as a continuous variable and by quartiles.

Recognizing oxidative stress as a putative molecular catalyst of
frailty (8), we examined whether redox biomarkers mediated the
association between urinary VOCm mixtures and frailty. Mediation
analyses were conducted with the mediation R package, using the
WQS-derived mixture index as the exposure and frailty status as the
outcome. Separate models were fitted for y-glutamyl-transferase
(GGT), bilirubin, and albumin, followed by a joint multiple-mediator
model that included all three biomarkers. In addition, we extended the
mediation framework to include the Dietary Antioxidant/Oxidant
Balance Score (OBS), which reflects dietary oxidative balance, as an
additional mediator. Given the limited availability of inflammatory
markers in NHANES, we further conducted exploratory mediation
analyses using high-sensitivity C-reactive protein (hs-CRP) as an
inflammatory biomarker. Since hs-CRP was only measured in the
2015-2018 NHANES cycle, these analyses were restricted to that
subsample. The oxidative balance score (OBS) was calculated based
on 16 dietary components and 4 lifestyle factors (physical activity,
body mass index, alcohol intake, and cotinine), following established
protocols (33, 34). Antioxidants and prooxidants were scored in
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opposite directions, with higher OBS values reflecting a predominance
of antioxidant exposures (see Supplementary Table 2).

Each analysis decomposed the total effect (TE) into a direct effect
(DE) and an indirect effect (IE) operating through the mediator(s);
the proportion mediated was calculated as IE/TE. Statistical inference
relied on non-parametric bootstrapping with 1,000 resamples to
generate survey-weighted 95% confidence intervals for DE, IE, and
TE. All mediation models adjusted for the same covariates used in the
primary analyses. All analyses were conducted in R (version 4.4.1),
and statistical significance was defined as a two-sided p < 0.05.

2.6 Ethical approval

The NHANES survey protocol was approved by the National
Center for Health Statistics Research Ethics Review Board, and written
informed consent was obtained from all participants in accordance
with the Declaration of Helsinki.

3 Results
3.1 Baseline characteristics

As shown in Table 2, frail adults (n = 1,383) were similar in age to
non-frail adults (median 64 y) but were more often female, more likely
to be non-Hispanic Black or of another minority race, and tended to
have lower education and income (all p < 0.001). They reported less
vigorous activity and more inactivity, and current smoking was
slightly more common. Energy intake also shifted toward lower
quartiles in the frailty group. Baseline characteristics after imputation
of missing covariate values using the k-nearest neighbors (KNN)
algorithm are provided in Supplementary Table 3, which shows
patterns consistent with those in the primary dataset.

3.2 Individual VOCms and frailty risk

In the
(Supplementary Figure 1), several urinary VOC metabolites showed

non-adjusted multivariable regression models
significant positive associations with frailty. The strongest association
was observed for DHBMA (OR = 5.85, 95% CI 3.12-10.98, p < 0.001).
CEMA (OR =2.60, 95% CI 1.94-3.49, p <0.001) and HPMMA
(OR =2.40, 95% CI 1.81-3.18, p < 0.001) also demonstrated robust
associations. Additional significant metabolites included AAMA
(OR =1.92,95% CI 1.37-2.70, p < 0.001), AMCC (OR = 2.01, 95% CI
1.48-2.72, p <0.001), CYMA (OR=142, 95% CI 1.26-1.61,
p <0.001), MA (OR = 2.63,95% CI 1.61-4.30, p < 0.001), and 3HPMA
(OR =1.88,95% CI 1.45-2.45, p < 0.001).

We evaluated 16 urinary VOCm metabolites in relation to frailty
using survey-weighted, fully adjusted logistic models (Figure 2). Four
biomarkers showed robust, positive associations (p < 0.05). The
strongest signal was for DHBMA (OR = 2.59, 95% CI 1.33-5.04),
followed by CEMA (OR = 1.86, 95% CI 1.30-2.65). Both MHBMA3
(OR = 1.67, 95% CI 1.13-2.45) and HPMMA (OR = 1.69, 95% CI
1.18-2.43) were likewise associated with greater odds of frailty. As a
sensitivity analysis, we further adjusted the models for BMI. The
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TABLE 2 Characteristics of participants.

Characteristics Non-frailty Frailty
No. of participants 2,715 1,332 1,383
Age (years) 64 (56-72) 64 (60-71) 64 (54-74) 0.637
Sex, % <0.001
Female 1,322 (48.69%) 556 (41.74%) 766 (55.39%)
Male 1,393 (51.31%) 776 (58.26%) 617 (44.61%)
Ethnicity, % <0.001
Mexican American 300 (11.05%) 158 (11.86%) 142 (10.27%)
Other Hispanic 282 (10.39%) 140 (10.51%) 142 (10.27%)
Non-Hispanic White 1,130 (41.62%) 532 (39.94%) 598 (43.24%)
Non-Hispanic Black 656 (24.16%) 298 (22.37%) 358 (25.89%)
Non-Hispanic Asian 245 (9.02%) 169 (12.69%) 76 (5.50%)
Other Race 102 (3.76%) 35 (2.63%) 67 (4.84%)
Education level % <0.001
Less than high school 363 (13.38%) 159 (11.95%) 204 (14.75%)
High school or GED 1,056 (38.92%) 479 (36.02%) 577 (41.72%)
Above high school 1,294 (47.70%) 692 (52.03%) 602 (43.53%)
(Missing) 2 2 0
Physical activity <0.001
Never 880 (32.68%) 320 (24.13%) 560 (40.97%)
Moderate 399 (14.82%) 183 (13.80%) 216 (15.80%)
Vigorous 1,414 (52.50%) 823 (62.07%) 591 (43.23%)
(Missing) 22 6 16
Smoking status <0.001
Never 1,274 (46.94%) 704 (52.89%) 570 (41.21%)
Former 568 (20.93%) 217 (16.30%) 351 (25.38%)
Current 872 (32.13%) 410 (30.80%) 462 (33.41%)
(Missing) 1 1 0
Family income, % <0.001
QI (<1.020) 605 (25.02%) 220 (18.58%) 385 (31.20%)
Q2 (1.020-1.770) 607 (25.10%) 268 (22.64%) 339 (27.47%)
Q3 (1.770-3.525) 601 (24.86%) 312 (26.35%) 289 (23.42%)
Q4 (>3.525) 605 (25.02%) 384 (32.43%) 221 (17.91%)
(Missing) 297 148 149
Total energy intake(kcal) 0.005
Q1 (<1,362) 632 (25.01%) 278 (22.38%) 354 (27.55%)
Q2 (1362-1812) 632 (25.01%) 301 (24.24%) 331 (25.76%)
Q3 (1812-2,355) 633 (25.05%) 330 (26.57%) 303 (23.58%)
Q4 (>2,355) 630 (24.93%) 333 (26.81%) 297 (23.11%)
(Missing) 188 90 98

The continuous variables were presented as median (interquartile range, IQR), and the categorical variables were presented as number and percentages.

results were consistent with those of the primary models, suggesting ~ Q1, though without a strictly monotonic trend; for DHBMA, the
that our findings were robust (Supplementary Figure 2). association was evident only in Q3 and Q4. PGA shows a lone

Supplementary Figure 3 displays fully adjusted, quartile-based  protective dip at Q3, whereas SHPMA peaks at Q3—the only quartile
dose-response curves for the 16 urinary VOCms. For CEMA,  with a significant risk elevation. The p for trend analysis indicated that
MHBMA3, and HPMMA, frailty odds were higher in Q2-Q4 thanin =~ CEMA, DHBMA, 3HPMA, MHBMA3, and HPMMA exhibited
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VOCms
2-MHA
3,4-MHA
AAMA
AMCC
ATCA
SBMA
BPMA
CEMA
CYMA
DHBMA
2HPMA
3HPMA
MA
MHBMA3

OR(95%CI)P

0.88 (0.65 - 1.17) 0.367
0.89 (0.65 - 1.22) 0.455
1.07 (0.68 - 1.70) 0.765
1.18 (0.79 - 1.78) 0.408
0.77 (0.55 - 1.06) 0.105
0.79 (0.56 - 1.12) 0.182
0.99 (0.82 - 1.19) 0.873
1.86 (1.30 - 2.65) 0.001
1.13 (0.90 - 1.42) 0.283
2.59 (1.33 - 5.04) 0.006
0.84 (0.64 - 1.12) 0.226
1.32 (0.93 - 1.86) 0.116
1.53 (0.93 - 2.49) 0.089
1.67 (1.13 - 2.45) 0.011
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Adjusted associations between individual urinary VOCms and frailty risk. Forest plot displays survey-weighted odds ratios (ORs) and 95% confidence
intervals (horizontal bars) obtained from multivariable logistic regression models. Each model was adjusted for sex, age, educational attainment, race/
ethnicity, poverty-income ratio, smoking status, physical activity, survey cycle,and total energy intake. The dashed vertical line marks the null value
(OR = 1). Red squares highlight metabolites with statistically significant associations (two-sided p < 0.05); black squares indicate non-significant

significant linear trends with frailty risk (all p <0.05), while no
significant trends were observed for other metabolites.

3.3 Mixed VOCms and frailty risk

3.3.1 WQS and Qgcomp analysis

The bidirectional WQS model identified two mixture indices with
opposite directions of effect (Figure 3a). After covariate adjustment, a
one-unit increase in the positive index was associated with 25% higher
odds of frailty (OR = 1.25, 95% CI 1.17-1.33), whereas a one-unit
increase in the negative index corresponded to 17% lower odds
(OR = 0.83, 95% CI 0.75-0.91).

In the positive index, the largest weights were assigned to
DHBMA (22%) and HPMMA (21%), followed by CEMA (13%) and
MA (8%). 3,4-MHA, CYMA and 2-HPMA each accounted for 5-7%,
and no other metabolite exceeded 5%.

The negative index was led by SBMA (17%), AAMA (12%) and
2-MHA (10%). ATCA, MHBMA3 and 3-HPMA contributed 8-10%,
while every remaining metabolite contributed less than 6%. In a
sensitivity analysis using LASSO-selected metabolites within the
WQS framework, the results remained consistent with those from the

Frontiers in Public Health

primary WQS model, further supporting the robustness of our
findings (Supplementary Figure 4).

To confirm robustness, we ran a quantile g-computation analysis,
which showed no overall association (OR = 1.02, 95% CI 0.86-1.21;
p = 0.81); component weights appear in Supplementary Figure 5.

3.3.2 BKMR analysis

To address multicollinearity and pinpoint influential VOCms,
10-fold ~cross-validated LASSO
(Supplementary Figures 6, 7). Choosing the penalty at one standard

we ran logistic regression
error above the minimum deviance produced a parsimonious model
with nine metabolites—four positively and five negatively related to
frailty (Supplementary Table 4). These coefficient signs matched the
qgcomp weights, supporting the positive- versus negative-grouping
adopted for the BKMR analyses.

We then fitted three separate BRMR models to explore the overall
and direction-specific mixture effects of these metabolites on frailty.
For the overall BKMR model (Figure 3b), the estimated exposure—
frailty relationship rises across quantiles, but its 95% confidence
intervals consistently include zero, indicating no statistically
significant association. In contrast, the positive-group BKMR curve
(Figure 3c) is bidirectional: frailty risk is lower at the lowest quartiles,
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positive weights 1.25 (1.17-1.33) <0.001 negative weights 0.83 (0.75-0.91) <0.001
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FIGURE 3
Integrated mixture analysis of urinary VOCms in relation to frailty. (@) Two-directional WQS weights. Bars show positive-(left) and negative-weight (right)
contributions to the frailty mixture; red dashed lines mark the equal-weight threshold. Mixture odds ratios (OR, 95% CI) appear above each panel; (b)
BKMR—overall mixture. Posterior mean frailty function h (Z) across exposure quantiles for the full set of nine LASSO-selected VOCms (shaded
bars = 95% credible intervals; red dashed line = null); (c) BKMR—positively associated group. Exposure-response curve for the four VOCms with
positive LASSO coefficients; (d) Hierarchical BKMR selection. Posterior inclusion probabilities: groupPIP denotes the probability that each cluster enters
the model; condPIP ranks individual metabolites within clusters.

flattens near the 50th percentile, and then increases steadily at higher
exposure levels. The negatively associated group showed a slight
downward trend, but the overall effect was minimal and not
statistically significant (Supplementary Figure 8). Figure 3d presents
the hierarchical BKMR variable selection, identifying two metabolite
clusters with groupPIPs of 0.999 and 1.000. In the first cluster, only
ATCA showed a strong conditional inclusion probability
(condPIP = 0.98), whereas 2MHA, SBMA, 2HPMA, and PGA were
all < 0.02. In the second cluster, DHBMA dominated
(condPIP = 0.892), with MHBMA3 (0.09) and HPMMA (0.017)
contributing modestly and CEMA effectively excluded
(condPIP = 0.001). Supplementary Figure 9 shows that DHBMA is
positively associated with frailty, as its 75th-percentile credible interval
lies entirely above zero, whereas ATCA is inversely associated, with its
75th-percentile interval entirely below zero. All other metabolites have
intervals crossing zero at every percentile, indicating no clear link to
frailty. Supplementary Figure 10 shows marginal BKMR curves for
each VOCm (others fixed at their median). DHBMA rises linearly
with frailty across its full range. MHBMA3 and ATCA both peak at
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intermediate exposures, forming inverted-U shapes. All other
metabolites hug the null line with 95% credible intervals crossing zero,
indicating negligible individual effects.

3.4 Subgroup analysis

In stratified WQS models (Supplementary Figure 11), the positive
mixture index was significant in all strata—men (OR = 1.13, 95% CI
1.04-1.23), women (OR =1.27, 95% CI 1.11-1.46), adults < 65 y
(OR =1.19,95% CI 1.03-1.37) and adults > 65 y (OR = 1.35, 95% CI
1.09-1.68). The metabolite composition of the positive index varied
by subgroup: MHBMA3 contributed most in men (18%), HPMMA in
women (16%), while DHBMA dominated both age groups—
accounting for 19% of the weight in adults < 65 y and 15% in adults >
65 y. For the negative index, significant associations appeared only in
women (OR = 0.80, 95% CI 0.71-0.90) and adults < 65 y (OR = 0.87,
95% CI 0.76-0.97). PGA carried the largest negative weight in both
strata—14% in women and 15% in younger adults. Subgroup BKMR
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and qgcomp findings (Supplementary Figures 12, 13) were consistent
with the unstratified analyses. In stratified analyses by smoking status,
WQS and BKMR models showed stronger associations among current
smokers, whereas associations in former and never smokers were
weaker (Supplementary Figure 14).

3.5 Exploratory ratio analysis

As an exploratory analysis, we further examined the urinary
DHBMA/SBMA ratio in relation to frailty (Supplementary Figure 15).
Higher DHBMA/SBMA ratios were significantly associated with
increased odds of frailty (OR = 1.54, 95% CI: 1.07-2.22, p = 0.025).
When categorized into quartiles, individuals in the highest quartile
(Q4) had significantly greater frailty risk compared with Ql
(OR =1.52,95% CI: 1.07-2.17, p = 0.026). A significant trend across
quartiles was observed (p for trend = 0.014).

3.6 Mediated analysis

Table 3 summarizes the mediation of the VOCm-frailty
association by oxidative-stress markers. For DHBMA, mediation via
GGT, bilirubin, and albumin accounted for 3.69, 5.41, and 11.56% of
the total effect, respectively, with the direct effect remaining
predominant. For CEMA, bilirubin and albumin mediated 13.90 and
15.44%, respectively, while GGT mediation was negligible. MHBMA3
showed a 20.29% mediated share through bilirubin, with no
significant mediation by GGT or albumin. For HPMMA, only
bilirubin exhibited a significant indirect effect (12.00%). In addition,
the oxidative balance score (OBS) significantly mediated the
association between DHBMA and frailty (indirect effect = 0.00168,
p =0.044), accounting for 1.76% of the total effect, whereas no
significant mediation effects of OBS were observed for other
metabolites. Regarding inflammation, hs-CRP showed a significant
mediation effect for CEMA (indirect effect = 0.0116, p = 0.046),
explaining 9.21% of the total effect. However, mediation via hs-CRP
was not observed for DHBMA, MHBMAS3, or HPMMA. Given that
hs-CRP measurements were only available in the 2015-2018
NHANES cycles, these findings should be interpreted with caution.

TABLE 3 Significant mediation analysis between VOCms and frailty.

Result VOCms Mediator

Indirect effect

10.3389/fpubh.2025.1655214

Taken together, Table 3 presents only the statistically significant
mediation pathways, while the full set of mediation results is provided
in Supplementary Table 5.

4 Discussion

Our results can be distilled into four inter-locking observations
that together delineate the full exposure-to-outcome continuum.
First, in single-metabolite analyses we observed consistent, exposure-
dependent associations for four urinary VOC metabolites—DHBMA,
CEMA, HPMMA, and MHBMA3. Modeled as logi,-transformed
continuous variables, each metabolite was positively related to frailty,
with fully adjusted odds ratios (ORs) ranging from 1.67 to 2.59 per
one-unit increase in concentration. When the same metabolites were
categorized into quartiles, participants in the highest quartile (Q4)
had 1.65- to 1.97-fold higher odds of frailty than those in the lowest
quartile (Q1), reaffirming a monotonic, dose-responsive pattern.
Second, when the 16 metabolites were treated as a mixture in
(WQS)

we observed a clear bidirectional pattern: a one-unit increase in the

two-directional ~ weighted-quantile-sum regression,
positive-direction index was associated with a 25% increase in frailty
odds, whereas a one-unit increase in the negative-direction index
corresponded to a 17% decrease. Sex- and age-stratified WQS models
showed that this risk-increasing (positive) index remained significant
only in men and in adults > 65 y; within that index, DHBMA
dominated the weights in men (18%), whereas HPMMA led in
women (16%), signaling sex-specific drivers. Third, Bayesian kernel
machine regression (BKMR) built on LASSO-selected positive and
negative groups corroborated these findings: the positive group
displayed a monotonic, upward exposure-response curve, while the
negative group showed no consistent relationship, reinforcing the
notion that risk is concentrated in a small subset of metabolites.
Fourth, causal-mediation analysis indicated that oxidative-stress
markers—particularly albumin and bilirubin—mediated 5-20% of
the associations for the four key metabolites, implicating oxidative
imbalance as a partial pathway. Beyond conventional hepatic
oxidative stress markers, we incorporated OBS and hs-CRP to
strengthen the biological plausibility of the pathway interpretation.
OBS provided partial evidence of oxidative imbalance mediation for

Total effect Mediation

proportions

Direct effect

(p-value)

(p-value)

(p-value)

Frailty DHBMA Gamma glutamyl transferase 0.004109 (0.042) 0.107177 (< 0.001) 0.111286 (< 0.001) 3.69%
Bilirubin 0.006017 (0.012) 0.105181 (< 0.001) 0.111198 (< 0.001) 5.41%
Albumin 0.01303 (0.01) 0.09966 (< 0.001) 0.11269 (< 0.001) 11.56%
Dietary Antioxidant/Oxidant 0.00168 (0.044) 0.0936 (<0.001) 0.0953 (<0.001) 1.76%
Balance Scores(OBS)
CEMA Bilirubin 0.01133 (< 0.001) 0.07020 (0.024) 0.08154 (0.01) 13.90%
Albumin 0.01279 (0.008) 0.07005 (0.016) 0.08283 (0.004) 15.44%
hs-CRP 0.011578 (0.046) 0.114155 (<0.001) 0.125733 (<0.001) 9.21%
MHBMA3 Bilirubin 0.01599 (< 0.001) 0.06282 (0.024) 0.07881 (0.008) 20.29%
HPMMA Bilirubin 0.01000 (< 0.001) 0.07111 (0.008) 0.08111 (0.0006) 12.00%
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DHBMA, while hs-CRP mediated the effect of CEMA on frailty.
Notably, hs-CRP results were limited to NHANES 2015-2018, which
may restrict generalizability and attenuate statistical power. A
robustness check using quantile g-computation (qgcomp) produced
a null overall mixture estimate.

Urinary mercapturic acids are increasingly recognized as
sensitive sentinels of systemic VOC exposure. Earlier NHANES
studies linked higher VOCm burdens to hypertension, metabolic
syndrome and sarcopenia, suggesting that solvent exposure affects
multiple organ systems (4, 19, 35). Recent evidence has moved
further toward functional-ageing outcomes. A multi-country analysis
of community-dwelling older adults reported that reliance on
unclean cooking fuels—an important source of indoor VOCs—was
associated with slower gait speed and impaired balance, while a
decade-long rural Chinese panel reached similar conclusions for
mobility and quality-of-life indicators (36, 37). Experimental work
echoes these observations: in mice, low-dose mixtures of butadiene-
and acrolein-derived metabolites reduced skeletal-muscle mass and
elevated reactive-oxygen species, whereas in cultured myotubes they
disrupted mitochondrial membrane potential, damaged mtDNA and
depleted glutathione (38, 39). Taken together, these human and
mechanistic data portray VOCs as multi-system stressors that erode
cardiovascular, metabolic and musculoskeletal reserves—the core
physiological domains captured by frailty indices. Our finding that
four metabolites (DHBMA, CEMA, HPMMA and MHBMAJ3) are
positively associated with frailty in a nationally representative
U.S. cohort therefore extends VOC research from organ-specific
endpoints to an integrated ageing metric, underscoring the potential
public-health value of stricter ambient and indoor VOC control.

The risk-increasing component of the mixture is driven by four
metabolites—DHBMA, CEMA, HPMMA, and MHBMA3—whose
epoxide or aldehyde groups readily deplete glutathione and initiate
oxidative-stress cascades (40, 41). Sex-stratified WQS weights
uncovered distinct lead compounds: in men, MHBMA3 (a
metabolite of 1,3-butadiene) carried the greatest weight, whereas
in women HPMMA (a
predominated. Such differences are biologically plausible, given

metabolite of crotonaldehyde)
sex-specific patterns in glutathione-S-transferase expression and
adipose storage that can modulate the internal dose of lipophilic
VOCs (42, 43). Age further shaped the mixture profile. Among
adults younger than 65 years, both the positive and the negative
WQS indices remained significant. The inverse (negative) index—
anchored by ATCA and 2-MHA—most likely reflects rapid
metabolic clearance: efficient detoxification can elevate urinary
metabolite concentrations without increasing true tissue burden.
A short-lived hormetic response may also be involved; very low
VOC doses have been shown to transiently activate Nrf2-
dependent antioxidant pathways (44, 45), and the BKMR curve for
ATCA exhibits an inverted-U pattern consistent with this
mechanism. In contrast, the negative index disappeared in adults
aged 65 years or older, a finding that dovetails with well-
documented age-related declines in glutathione synthesis and renal
excretory capacity. Under these conditions, elevated urinary
VOCm levels are more likely to signify genuine internal exposure
rather than swift elimination. BKMR likewise detected no
protective signal in either age stratum, reinforcing the view that the
apparent benefit seen in younger adults arises from detoxification
kinetics or transient hormesis rather than inherently benign
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chemistry. Collectively, these subgroup patterns highlight
biotransformation capacity and redox reserve as critical modifiers
of the VOC-frailty relationship. Our WQS regression analyses
identified significant mixture effects in both the positive and
Although this
counterintuitive, it reflects the internal heterogeneity of the VOC

negative directions. may initially appear
mixture. Specifically, certain metabolites demonstrated positive
associations with frailty risk, while others showed inverse
associations, resulting in bidirectional mixture effects when
modeled separately. For instance, the exploratory ratio analysis
revealed that a higher DHBMA/SBMA concentration ratio was
associated with increased frailty risk. These findings indicate that
the predominance of DHBMA over SBMA may elevate the
likelihood of frailty, pointing to potential synergistic and
antagonistic interactions within the VOC mixture. This ratio-based
approach provides an additional perspective for capturing the
complexity of co-exposures, complementing insights from single-
pollutant models. Taken together, these findings indicate that VOC
exposures may not act uniformly but instead involve both risk-
enhancing and potentially protective components, highlighting the
complexity of real-world chemical mixtures.

The main risk metabolites—DHBMA, CEMA, HPMMA, and
MHBMA3—originate from VOCs (1,3-butadiene, acrylonitrile,
crotonaldehyde) that form reactive epoxides or aldehydes, deplete
glutathione, and generate ROS (41). Lab work supports this:
butadiene epoxide boosts malondialdehyde and disrupts
mitochondrial potential, while acrolein derivatives give only a brief
Nrf2 surge before antioxidants are overwhelmed (46, 47). Although
animal studies provide important mechanistic insights, caution is
needed when extrapolating these findings to humans, as not all
pathways directly translate. Our mediation analysis echoes this
biology. The systemic redox markers bilirubin and albumin jointly
accounted for 5-20% of the frailty association for each metabolite
(greatest for MHBMA3), whereas the hepatic enzyme y-glutamyl-
transferase contributed little, pointing to generalized rather than
liver-specific oxidative stress. Because most of the total effect
endocrine

remained direct, additional pathways—such as

disruption, low-grade inflammation, or mitochondrial
dysfunction—are likely involved. Taken together, the partial
statistical mediation and convergent toxicological evidence render
oxidative imbalance a credible, although not yet definitive,
mechanistic bridge between VOC exposure, as indexed by urinary
metabolites, and frailty.

Smoking is a well-recognized source of VOC exposure. In our
stratified analyses, associations between urinary VOC metabolites
and frailty were more evident among current smokers, while
results were less consistent in former and never smokers. This
suggests that smoking status influences the detectability of VOC-
frailty relationships. Nevertheless, several of the key VOCs
identified, including 1,3-butadiene, crotonaldehyde, and xylene,
also derive from environmental and occupational sources unrelated
to tobacco smoke. Thus, while smoking remains an important
contributor, it does not fully explain the observed associations.
Residual confounding by smoking-related exposures cannot
be entirely excluded and should be considered when interpreting
our findings.

This study is the first to relate urinary VOCm mixtures to frailty

in a nationally representative sample of U.S. adults. By integrating
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three complementary mixture approaches—direction-specific
WQS, grouped BKMR, and qgcomp—together with oxidative-stress
mediation, we were able to triangulate risk estimates and pinpoint
sex- and age-specific drivers. The convergent signal across WQS
and BKMR highlights a small subset of metabolites (DHBMA,
CEMA, HPMMA, MHBMA3) as principal hazards, with mediation
analysis indicating that systemic oxidative imbalance could
represent one possible mechanism underlying the observed
associations. These results reinforce the notion that VOC control
could promote healthier ageing trajectories.

Several caveats temper these conclusions. First, the NHANES
design is cross-sectional; directionality and causality cannot
be established. Second, exposure was assessed from a single spot-
urine sample, which is susceptible to within-person variability and
may misclassify long-term exposure—bias that would generally
attenuate associations. Third, qgcomp yielded a null overall estimate;
this likely reflects its lower statistical power when a mixture contains
components with opposing effects, but it nonetheless underlines the
need for caution in interpreting borderline associations. Fourth,
residual confounding is possible, and sample sizes for sex- and
age-stratified analyses were modest, limiting precision. Finally,
NHANES is representative of the U.S. population; since VOC sources
and exposure levels may differ across countries, the generalizability
of our findings to other populations should be interpreted
with caution.

Future work should couple repeated urinary and blood
measurements with personal air monitoring, apply high-resolution
exposomic and multi-omics panels, and follow participants
longitudinally to confirm temporality, delineate additional pathways—
such as endocrine or mitochondrial disruption—and test whether
targeted VOC-reduction
frailty onset.

strategies can meaningfully delay

5 Conclusion

Urinary VOCm mixtures—driven by metabolites DHBMA,
CEMA, HPMMA, and MHBMA3—are linked to greater frailty,
especially in men and adults > 65 y. Oxidative stress mediates part of
this risk, yet most effects remain direct. Controlling environmentally
relevant VOC exposure could support healthier ageing; longitudinal
confirmation is warranted.
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