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Does new infrastructure improve 
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As a key pillar of new infrastructure development, smart city construction seeks 
to meet residents’ growing demand for high quality urban living by creating 
environments that are technologically integrated. To identify the causal effect of 
new infrastructure development on public health, we exploit the staggered launch 
of the national smart city pilot program in China as a quasi-natural experiment. 
We apply a multi-period difference-in-differences approach with 18,993 individual-
level observations from 2010 to 2020. Our empirical results indicate that smart 
city construction significantly improves the health of residents, though the effect 
emerges with a time lag. The findings are consistently supported across robustness 
checks. Mechanism analysis reveals that smart city construction improves public 
health by raising income levels, increasing opportunities for physical exercise, 
and improving air quality. Further analysis shows that the health effects of smart 
city construction are heterogeneous across regions and city sizes. Theoretical 
implications and targeted policy recommendations are provided to promote public 
health in the context of smart city advancement.
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1 Introduction

Rapid urbanization has given rise to pressing challenges, including resource depletion, air 
pollution, and escalating public health risks. As a result, the concept of the smart city has 
gained increasing global attention. Smart cities represent an emerging approach of social 
development. Although no unified definition has been established, scholars generally agree 
that smart city development improves resource efficiency, enhances governance, and promotes 
better living conditions for residents (1).

It is well established that living conditions are fundamental determinants of public health 
(2). Better air quality and enhanced provision of urban public services have been shown to 
contribute to public health gains (3). Research from the United  States confirms that air 
pollution reduction improves health (4), with studies from African economies yielding 
consistent results (5). Growing scholarly attention has been devoted to examining how smart 
city development improves urban living conditions. The implementation of digital and 
communication technologies in smart cities aims to advance residents’ well-being (6, 7). Well-
designed urban planning further supports physical and mental health by optimizing living 
environments (8). Related work has examined the health implications of emerging technologies 
embedded in smart city programs (9) and has shown that information and communication 
technologies can reduce costs and resource use while enhancing service quality (10). 
Nevertheless, rigorous evidence on health effects from the perspective of new infrastructure 
remains limited. While much of the existing research has emphasized the environmental and 
economic implications of smart cities at a macro level, little attention has been directed to the 
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causal relationship between smart city construction and public health, 
as well as the mechanisms underlying such effects. Our study therefore 
evaluates the impact of smart city development, characterized by the 
integration of digital and communication technologies, on public 
health, with the aim of informing policy.

Since the beginning of the 21st century, major countries and 
regions worldwide have successively initiated smart city construction. 
Currently, over 1,000 smart cities around the world are under 
construction or being initiated, and this number is expected to grow 
at an annual rate of 20%. China has introduced a series of policies to 
promote smart city development since 2010. This provides an 
opportunity to identify the impact of new infrastructure construction 
on public health. Following the launch of the first batch of national 
smart city pilot programs by the Ministry of Housing and Urban–
Rural Development in late 2012, the number of participating cities has 
continued to grow. In 2021, smart city development was formally 
incorporated in China’s 14th Five-Year Plan for National Economic 
and Social Development and in the Outline of Long-Term Goals for 
2035. As a key part of new infrastructure, the smart city program aims 
to fulfill people’s aspirations for a better life through technological 
innovation. According to the Guiding Opinions on Promoting the 
Healthy Development of Smart Cities issued by China’s National 
Development and Reform Commission, the core objective of smart 
city construction is to enhance residents’ sense of well-being, with 
health identified as a central factor.

This paper advances existing research by exploring the impact of 
smart city construction on public health from a distinctive perspective 
of new infrastructure development, drawing on the Chinese 
experience. Diverging from previous studies that emphasize macro 
level patterns, we conduct a resident level analysis based on 18,993 
observations. Treating the pilot program in China as a quasi-natural 
experiment, we  employ a multi-period difference-in-differences 
approach to estimate the impact of smart city construction on public 
health. A comprehensive mechanism analysis is conducted to explore 
the channels through which the effects operate. The findings are 
consistently supported across robustness checks. To account for 
endogeneity, a reliable instrumental variable is adopted to address 
potential concerns. Further analysis reveals the heterogeneity of such 
impact. These findings not only enrich the empirical understanding 
of how smart city development influences public health, but also 
provide practical implications for policy efforts aimed at fostering 
healthier urban environments.

The paper is organized as follows. Section 2 develops the 
theoretical framework and hypotheses. Section 3 outlines the 
methodology. Section 4 presents the empirical results. Section 5 offers 
concluding remarks.

2 Theoretical development and 
hypotheses

Smart cities offer a novel approach to urban governance, relying on 
new infrastructure, particularly digital and intelligent technologies, to 
foster resilient, inclusive, and sustainable urban growth. Existing 
studies indicate that smart cities significantly contribute to improved 
quality of life and public health by optimizing service delivery and 
fostering resilient systems (11, 12). A critical objective of smart city 
construction is to achieve sustainable development (13), with access to 

public services and infrastructure playing a central role. Smart cities 
are grounded in a people-centered philosophy, addressing the diverse 
needs of residents while emphasizing inclusivity, equity, and civic 
engagement. By integrating new infrastructure into urban planning 
and healthcare systems, smart cities optimize the allocation of medical 
resources (32). The application of ICT improves the operation of urban 
systems, thereby facilitating more effective public health services (14).

Digital platform development drives the integration of household 
health data, resulting in expanded healthcare coverage (15). 
Meanwhile, the concept of smart health incorporates technologies into 
urban emergency response systems, supporting a shift from reactive 
to preventive care models (16). Empirical studies show that cities with 
robust IoT architectures demonstrate greater responsiveness to public 
health shocks, leading to improved individual health outcomes (17).

Beyond advancements in health service, smart city construction 
promotes green development through the adoption of environmentally 
sustainable practices. These initiatives help create health-friendly 
living conditions and reduce exposure to health risks. Combined with 
efficient, smart cities exert a positive influence on the physical and 
mental well-being of residents (9).

Based on the above analysis, we propose the following hypothesis:

H1: Smart city construction has a positive impact on public health.

Technological innovation in smart cities contributes to increased 
income levels among residents. The integration of ICT with sustainable 
urban planning creates new drivers of economic growth. Ecology-
oriented urban development promotes industrial upgrading and 
enhances residents’ living conditions.

Smart city construction strengthens information infrastructure 
and supports the development of digital platforms. The establishment 
of new digital infrastructure fosters innovation ecosystems and 
increases urban attractiveness to emerging industries (18). According 
to Chen et al. (19), smart city development improves administrative 
efficiency and optimizes spatial planning, thereby reinforcing urban 
competitiveness. Economic vitality is further stimulated through the 
application of advanced technologies, which attracts business 
investment. Capital inflows lead to more employment and higher 
disposable income, ultimately contributing to better health outcomes.

Moreover, smart city development promotes inclusive economic 
growth by creating income opportunities for marginalized groups 
(19). Such inclusion increases labor force participation and drives 
higher average wage levels. Enhanced quality of life, in turn, leads to 
better health outcomes. In addition, better governance in smart cities 
promotes further income growth and strengthens public trust in 
health-related policies (20). A more livable urban environment also 
encourages positive lifestyle attitudes and supports overall health.

Drawing on the above arguments, we  propose the 
second hypothesis:

H2: Smart city construction improves public health by increasing 
income levels.

Smart city construction holds considerable potential to enhance 
physical activity and improve overall public health outcomes. 
Community engagement in physical activity is shaped not only by 
personal characteristics but also by environmental factors, such as the 
accessibility of sports facilities. Smart cities support healthy lifestyles 
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and encourages exercise-friendly urban environments. New urban 
infrastructure promotes participation in physical activity (21). 
Empirical studies have demonstrated that the development of smart 
city parks and leisure facilities effectively reduces barriers to exercise, 
thereby increasing residents’ engagement in sports activities (22). Park 
and Fujii (23) emphasize that people-centered urban design, when 
aligned with local preferences, significantly enhances residents’ 
willingness to utilize fitness resources and engage in physical activity.

Data-driven urban design also contributes significantly to 
promoting active lifestyles. Urban intelligence has integrated emerging 
technologies into the sports industry, leading to an increase in exercise 
frequency among residents. The development of digital platforms and 
new technology-enabled activity scenarios not only provides diverse 
exercise options for sports enthusiasts, but also encourages more 
active participation in physical activities (24).

Meanwhile, smart city construction improves personalized 
exercise experiences, enhancing residents’ satisfaction. Supported by 
integrated data platforms and digital infrastructure, residents’ physical 
profiles, preferences, and activity data can be continuously recorded 
and analyzed, promoting more scientific and tailored exercise 
guidance. Yue (25) finds that leveraging public health data allows 
urban planners to formulate targeted public policies, improve the 
quality of physical education, and effectively promote youth 
participation in regular physical activity.

Building on the preceding analysis, we  formulate the third 
hypothesis as follows:

H3: Smart city construction improves public health by promoting 
physical exercise.

Air pollution remains one of the most pressing challenges to 
achieving high-quality urban development. Smart city construction 
inherently encompasses the principles of green and low-carbon 
development. By integrating emerging technologies with data-driven 
solutions, such programs foster innovation in urban governance and 
contribute to a significant reduction in air pollution. A clean 
atmosphere and healthy living environment are closely associated with 
improved health outcomes.

Empirical evidence indicates that green urban planning can 
significantly improve air quality by reducing atmospheric pollutants 
(26). Smart cities facilitate the deployment of air quality monitoring 
systems, enabling the effective tracking of pollution. The integration 

of environmental sensors into urban infrastructure allows for accurate, 
real-time monitoring and provides reliable data for assessing air 
quality. These networks can detect emerging pollution trends and 
issue early warnings. In addition, residents can actively participate in 
monitoring and data collection through mobile applications. The 
availability of real-time air quality information raises public awareness 
of pollution exposure and encourages individuals to make health-
related decisions (27). Furthermore, deep learning models can predict 
individual exposure to harmful pollutants, thereby offering valuable 
support for more precise public health policies (28).

Accordingly, the following hypothesis is proposed:

H4: Smart city construction improves public health by improving 
air quality.

The theoretical framework is depicted in Figure 1.

3 Methodology

3.1 Specification

The construction of smart cities in China began in late 2012 with 
the launch of the first batch of pilot cities by the Ministry of Housing 
and Urban–Rural Development, followed by two successive rounds of 
pilot city designations. In our analysis, we treat the staggered rollout 
of the smart city policy as a quasi-natural experiment. Following the 
approach recommended by Beck et al. (29), we employ a multi-period 
difference-in-differences (DID) approach to estimate the impact of 
smart city construction on public health. Specifically, our benchmark 
specification is:

	 ijt i t ijt it i t ijthealthy a a treat post X W0 1 β µ γ ξ= + ⋅ + + θ + + +
	 (1)

In Equation 1, healthyijt stands for the health status of individual 𝑗 
in city i at time t. treati is a dummy variable indicating whether city i is 
included in the smart city pilot program. It equals 1 if city 𝑖 is included 
in the smart city pilot program, and 0 otherwise. postt is a time dummy 
equal to 1 for years following the implementation of the smart city 
program, and 0 otherwise. The interaction term treati·postt serves as 
the variable “smart city construction,” with α1 capturing the estimated 

FIGURE 1

Theoretical framework. Source: by authors.
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policy effect. Xijt denotes a vector of individual-level control variables, 
while Wit represents a vector of city-level controls. γt and μi represents 
year and city fixed effects, respectively. ξijt is the random error term.

3.2 Variable definition

3.2.1 Dependent variable
The core dependent variable in our study is public health healthy. 

To comprehensively capture individual health conditions, we employ 
a self-reported health indicator based on respondents’ subjective 
assessment in the CFPS survey. Respondents were asked: “How would 
you rate your current health status?” Responses were categorized into 
five levels: unhealthy, average, relatively healthy, healthy, and very 
healthy, coded from 1 to 5, with higher values indicating better 
perceived health. In the robustness analysis, we employ an objective 
health indicator based on the absolute deviation of an individual’s 
actual Body Mass Index (BMI) from an ideal benchmark. Following 
Duan (30), we set 22 as the ideal BMI. The objective health indicator 
is thus defined as the absolute value of the difference between an 
individual’s actual BMI and 22.

3.2.2 Core independent variable
The core independent variable is the smart city construction 

policy. The interaction term treati*postt serves as the DID estimator. 
treati is a binary variable equal to 1 if city 𝑖 was included in the national 
smart city pilot list during the period 2013–2015, and 0 otherwise. 
postt is a time dummy variable that equals 1 in the year following the 
policy implementation and in all subsequent years, and 0 otherwise.

3.2.3 Intermediary variables
Three intermediary variables are used to explore the potential 

mechanisms through which smart city construction may influence 
public health.

The first intermediary variable is residents’ income level 
(income). It is measured using responses to the following CFPS 
survey question: “In the past 12 months, taking into account wages, 
bonuses, cash benefits, and in-kind subsidies, and after deducting 
taxes and social security contributions, how much did you earn per 
month on average from this job?” The logarithm of this value is 
used as a proxy for residents’ income level. The second intermediary 
variable is physical exercise(train). It is based on the CFPS question: 
“In the past year, how often did you engage in physical exercise 
during your spare time?” Responses are coded on a five-point 
scale:1 = never;2 = less than once a month or 1–3 times per 
month;3 = 1–2 times or 3–4 times per week;4 = about 5 times per 
week;5 = once or more per day. A higher score indicates greater 
physical activity intensity. The third intermediary variable is air 
quality(PM). It is proxied by the annual average concentration of 
fine particulate matter PM2.5. A higher concentration of PM2.5 
reflects worse air quality and indicates a more polluted 
urban environment.

3.2.4 Control variables
Control variables at the city level include medical and health 

infrastructure, total population, population density, economic 
development level, and urban industrial structure. At the individual 
level, control variables include gender, age, marital status, education 

level, household registration status, income, health care expenditure, 
physical exercise, social interaction, and Internet usage.

Definitions and descriptive statistics of all variables are provided 
in Table 1.

3.3 Data

Our sample period covers 2010–2020, starting in 2010 when 
China introduced a series of policies to promote smart city 
development, and ending in 2020  in order to exclude potential 
confounding effects of the COVID-19 pandemic. The data used in our 
study come from two sources. First, the micro-level data are drawn 
from the China Family Panel Studies (CFPS) covering the period from 
2010 to 2020. The CFPS is a nationally representative longitudinal 
survey conducted by the Institute of Social Science Survey at Peking 
University. It collects rich and dynamic information on individuals, 
focusing on social, economic, demographic, and health-related 
changes in China. After excluding outliers and observations with 
missing values, a total of 18,993 valid individual-level samples are 
retained. Second, the macro-level data are obtained from the China 
City Statistical Yearbook (2010–2020) and the official websites of local 
municipal statistical bureaus. Based on these sources, we compile 
indicators of public service provision across 30 provinces, autonomous 
regions, and municipalities in China (excluding the Tibet Autonomous 
Region) for the period 2010–2020. These macro-level indicators are 
subsequently matched with micro-level data by city and year.

4 Results

4.1 Baseline regression results

We treat the smart city pilot program as a quasi-natural 
experiment and employs the difference-in-differences approach to 
identify the causal effect of smart city construction on public health. 
The baseline regression results are presented in Table 2. Specifically, 
Column (1) controls for time and city fixed effects only. Column (2) 
incorporates individual-level control variables, Column (3) adds city-
level control variables, and Column (4) includes both sets of control 
variables, along with time and city fixed effects.

Based on the regression results presented above, several key 
findings emerge. First, smart city construction shows a positive 
effect on public health, regardless of whether additional control 
variables are included. Specifically, Column (4) shows that smart 
city construction increases residents’ self-reported health by 0.231 
points, which is statistically significant at the 1% level. This result, 
to a certain extent, illustrates how digital and information 
technologies contribute to the people-centered urban development. 
It also offers empirical support for promoting high-quality urban 
growth through technological innovation. Second, the estimated 
effects of control variables yield further insights. After accounting 
for key factors, cities with larger populations tend to have healthier 
residents. In contrast, higher population density is associated with 
poorer health outcomes. These findings motivate the following 
heterogeneity analysis. The estimated effects of the remaining 
control variables are broadly consistent with theoretical 
expectations and are not discussed further for the sake of brevity. 
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Overall, the findings provide strong evidence that smart city 
construction plays a significantly positive role in improving 
public health.

4.2 Parallel trends and placebo test

A key identification condition for the Difference-in-Differences 
approach is the parallel trends assumption, which requires that the 
treatment and control groups exhibit similar trends prior to the policy 
intervention. Figure 2 illustrates the results of the parallel trends test, 
using 2013 as the policy time point, along with the dynamic effects on 
the outcome variable over time.

As shown in Figure 2, there is no significant difference in the 
health trends between the treatment and control groups prior to 
the implementation of the smart city program, supporting the 
validity of the parallel trends assumption required for the 
Difference-in-Differences approach. After the program was 
implemented in 2013, the positive impact on residents’ physical 
health showed a generally increasing trend, although this effect 
emerged with a time lag. This delayed response aligns with the 
nature of smart city development, where the positive effects of 
digital infrastructure take time to materialize due to the 
requirement for widespread adoption.

Given that the estimated effect of smart city construction on 
public health may be  influenced by other concurrent policy 
interventions, which could lead to an overestimation or 
underestimation of the true policy impact, we conduct a placebo test 
to assess the robustness of the results. Specifically, we  artificially 
advance the policy implementation year by one (dt-advan1), two (dt-
advan2) and 3 years (dt-advan3). Each is then interacted with the 
treatment group indicator to construct three interaction terms: smart 
city construction_advan2010, smart city construction_advan2011, 
and smart city construction_advan2012. These variables are 
subsequently included in the estimating equation. If none of the three 
placebo variables has a significant effect on public health, it indicates 
that changes in health outcomes were not influenced by any pre-policy 
placebo interventions. If some of the placebo variables are significant 
but have smaller absolute coefficients than the main policy effect 
(0.231), this may suggest a degree of overestimation. However, as long 
as the estimated effects remain in the same direction, the results can 
still be considered robust. Table 3 reports the results of the placebo test.

4.3 Baseline regression results

To assess the reliability of the regression results, we  conduct 
several robustness checks.

TABLE 1  Descriptive statistics.

Variable Definition Obs. Mean Std. 
Dev.

Healthy Self-rated health status: 1–5, higher values indicate better perceived health. 18,993 3.143 1.175

BMI
BMI-based health status: logarithm of the absolute deviation from BMI 22, calculated as ln(|(weight/2) / 

(height/100)2–22|)
18,993 1.322 1.998

Smart city 

construction
Smart city pilot policy indicator: 1 = treated; 0 = not treated. 18,993 0.092 0.281

Gender Gender: 1 = male; 0 = female. 18,993 0.533 0.489

Age Age in years. 18,993 45.899 9.985

Marriage Marital status: 1 = married; 0 = unmarried. 18,993 0.956 0.321

Edu Education level: 1–8,1 = illiterate; 8 = doctoral degree 18,993 4.987 2.463

Register Household registration status: 1 = non-agricultural; 0 = agricultural. 18,993 0.759 0.433

income Residents’ income: natural logarithm of monthly household income. 18,993 8.254 1.087

HealPay Health care expenditure: natural logarithm of household spending on health and fitness in the previous year. 18,993 1.067 2.58

Train Physical exercise: 1–5, higher values indicate greater intensity. 18,993 3.251 0.835

Social Frequency of social interaction: 1 = frequent; 0 = infrequent. 18,993 0.613 0.479

Internet Internet usage: 1 = used; 0 = otherwise. 18,993 0.574 0.492

PM Air quality: natural logarithm of annual mean PM2.5 concentration. 18,993 1.342 1.988

Medical Medical condition: number of hospital beds per 1,000 residents. 1,375 5.169 1.172

Population Urban population: natural logarithm of the total population in municipal districts. 1,375 4.872 3.323

Density Population density: 10,000 persons/km2 in built-up area 1,375 15.314 0.672

PerGDP Real per capita GDP: natural logarithm of inflation-adjusted per capita GDP. 1,375 10.542 0.636

Industry Urban industrial structure: ratio of secondary to tertiary industry output. 1,375 1.341 2.443

Smartnet Number of internet accounts per 100 households 1,375 0.056 0.043

SmartDX Urban innovation`: natural logarithm of urban innovation index 1,375 2.086 3.745

Altitude Altitude: natural logarithm of altitude variation 1,375 5.298 5.127
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First, we replace the dependent variable with the natural logarithm 
of the absolute deviation from the ideal BMI value. Column (1) of 
Table 4 reports the regression result using the indicator for smart city 
construction as the core independent variable.

Second, we  replace the core independent variable. The original 
interaction term treati·postt is replaced with two alternative indicators 
reflecting urban smart development. One proxy is smartnet, defined as 
the number of internet users per 100 people, calculated from the number 
of internet broadband users and the total population based on data from 
the China City Statistical Yearbook. Another proxy is smartdx, the urban 

innovation index developed by Fudan University. Columns (2) and (3) 
of Table 4 display the regression results using these proxy indicators.

Third, to address potential endogeneity concerns, we  further 
conduct an instrumental variable (IV) estimation. A valid exogenous 
IV must meet both the relevance and exogeneity conditions. We use 
terrain undulation, measured as the standard deviation of altitude 
within each sample area, as the instrumental variable. This decision 
is shaped by various considerations. Network infrastructure 
constitutes a core element of smart city development, and existing 
studies indicate that terrain undulation significantly increases the 

TABLE 2  Baseline regression results.

Variable (1) (2) (3) (4)

Smart city construction
0.407***

(0.038)

0.299***

(0.092)

0.324***

(0.086)

0.231***

(0.081)

Gender
0.458**

(0.223)

0.348***

(0.107)

Age
−0.078***

(0.023)

−0.653***

(0.019)

Marriage
0.678**

(0.323)

0.763***

(0.116)

Edu
0.134***

(0.023)

0.135***

(0.023)

Register
−0.005

(0.031)

−0.018

(0.032)

Income
0.984***

(0.134)

0.873***

(0.095)

Healpay
0.344***

(0.106)

0.367***

(0.113)

Train
0.082***

(0.012)

0.051***

(0.013)

Social
0.516***

(0.168)

0.058**

(0.024)

Internet
0.0189**

(0.009)

0.0171**

(0.008)

Medical
2.308***

(0.509)

1.344***

(0.413)

Population
0.912***

(0.114)

0.556***

(0.093)

Density
−1.765***

(0.228)

−0.951***

(0.114)

Pergdp
0.877**

(0.345)

0.253**

(0.109)

Industry
−8.179***

(2.003)

−3.011***

(0.708)

City fixed effects Y Y Y Y

Year fixed effects Y Y Y Y

Constant
2.673*** 2.655*** 2.782*** 2.769***

(0.0047) (0.0064) (0.0149) (0.0164)

R-squared 0.0235 0.0425 0.0859 0.0873

Observations 18,993 18,993 18,993 18,993

*p < 0.1, **p < 0.05, ***p < 0.01. Robust standard errors clustered at the regional level are reported in parentheses.
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cost of infrastructure deployment (33). Generally, areas with more 
complex terrain and steeper elevation gradients face higher costs for 
network infrastructure deployment. In addition, terrain undulation 
also affects internet signal quality, with mountainous and hilly areas 
showing weaker coverage than flat regions. Thus, urban terrain 
variation is strongly correlated with smart city development. At the 
same time, terrain variation does not directly affect public health, 
satisfying the exogeneity condition. Therefore, using terrain 
undulation as an instrumental variable is appropriate. Based on the 
regression model in column (3), we use the natural logarithm of 
terrain undulation (altitude) as the external IV, and conduct two-stage 
least squares (2SLS) regression. The estimation results are reported 
in Column (4).

Table 4 also reports the results of IV validity tests. The F-test in the 
first-stage regression rejects the null hypothesis of no correlation 
between the instrumental variable and the endogenous core independent 
variables (smartnet and smartdx), indicating a strong linear relationship. 
The Kleibergen-Paap rk LM test yields p-values well below 1%, rejecting 
the null of underidentification and confirming that the instrument is 
statistically capable of identifying the endogenous variables. Given the 
use of robust standard errors, the Kleibergen-Paap rk Wald F statistic is 
employed to test for weak instruments. The F-values for the two models 
are 26.347 and 27.312, both substantially exceeding conventional 
threshold values, indicating that the instrument is not weak and 
possesses sufficient explanatory power. Accordingly, it can be concluded 
that the instrumental variables used are statistically valid.

FIGURE 2

Parallel trend and dynamic treatment effects.

TABLE 3  Placebo test results.

Variable (1) (2) (3)

Smart city construction-advan2010
0.0228**

(0.0103)

Smart city construction-advan2011
0.0215***

(0.0056)

Smart city construction-advan2012
0.0142**

(0.0062)

Constant
2.5277*** 2.5111*** 2.5467***

(0.0211) (0.0204) (0.0263)

Control variables Y Y Y

City fixed effects Y Y Y

Year fixed effects Y Y Y

R-squared 0.4354 0.4322 0.4475

Observations 18,993 18,993 18,993

*p < 0.1, **p < 0.05, ***p < 0.01. Robust standard errors clustered at the regional level are reported in parentheses.
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From the regression results presented in Table  4, the 
coefficients of both smartnet and smartdex remain positive and 
statistically significant at the 10% level after replacing the core 
independent variables, reinforcing the robustness of the 
association between smart city development and public health. 
To address potential endogeneity, the study employs IV 
estimation using two-stage least squares (2SLS). The results are 
consistent with the baseline estimates in both sign and 
significance, supporting a positive causal effect of smart city 
construction on public health.

4.4 Mechanism analysis

To empirically test the potential mechanisms through which 
smart city construction affects public health, we follow the mediation 
effect approach proposed by Baron and Kenny (31) and specify 
Equations 2 and 3 as follows:

	 ijt i t ijt it i t ijtM c a treat post X W0 µ γ ξ= + × ⋅ +β + θ + + +
	 (2)

	 ijt ijt ijt it i t ijthealthy c b M X W0 µ γ ξ= + × +β +θ + + +
	 (3)

If both coefficients a and b are statistically significant in the above 
equations, it indicates that the variable “smart city construction” has a 
significant mediation effect on public health through the mediator Mijt. 

The mediators examined include residents’ income level (income), 
intensity of physical exercise (train), and air quality (PM). Table 5 
reports the estimation results.

Specifically, regarding the income mechanism, Columns (1) and 
(2) of Table  5 show that the coefficients on the smart city policy 
variable and residents’ income level (income) are both significantly 
positive at the 1% level. This indicates that smart city construction 
significantly increases residents’ income, which in turn contributes 
positively to their health.

As for the physical exercise mechanism, Columns (3) and (4) 
demonstrate that both the smart city policy variable and the exercise 
variable (train) are significantly positive at the 5% level. This suggests 
that smart city construction promotes higher levels of physical activity, 
thereby enhancing public health.

With respect to the air quality mechanism, Columns (5) and (6) 
reveal that the coefficients on the smart city policy variable and air 
quality (PM) are both significantly positive at the 1% level, indicating 
that smart city construction leads to improved air quality, which 
subsequently has a significant positive effect on public health.

4.5 Heterogeneous effects

China’s vast territory is characterized by significant spatial and 
regional disparities in economic development. According to the 
general patterns of spatial economic evolution, the eastern region 
enjoys the highest level of economic development, followed by the 
central and northeastern regions, while the western region remains 

TABLE 4  Robustness checks.

Variable (1) (2) (3) (4) (5) (6)

Smart city 
construction

FE FE IV-2SLS FE IV-2SLS

Smart city construction
−0.134***

(0.0233)

Smartnet
−0.115*** 0.0568***

(0.0247) (0.0114)

Smartdx
0.099** 0.0811* 0.0775**

(0.047) (0.0416) (0.0353)

Constant
1.080*** 5.117*** 1.185*** 1.792***

(0.0991) (0.341) (0.0918) (0.29)

Control variables Y Y Y Y Y Y

City fixed effects Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y

R-squared 0.2646 0.2194 0.5126 0.4451 0.5482 0.4934

F statistic
11.68

[0.0006]

15.48

[0.0001]

Kleibergen-Paap rk LM 

statistic

13.804

[0.0002]

12.888

[0.0016]

Kleibergen-Paap rk 

Wald F statistic
26.347 27.312

Observations 18,993 18,993 18,993 18,993 18,993 18,993

*p < 0.1, **p < 0.05, ***p < 0.01. Robust standard errors clustered at the regional level are reported in parentheses.
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relatively underdeveloped. Based on this spatial classification, 
we divide the sample cities into four groups: eastern, central, western, 
and northeastern regions. As reported in Table  6, smart city 
construction has a statistically significant positive effect on public 
health at the 5% level in the eastern and central regions. However, 
such a significant effect is not observed in the northeastern and 
western regions. Several reasons may account for this disparity. The 
eastern and central regions benefit from stronger economic 
foundations, more developed service sectors, greater openness to 
innovation, and more advanced urban infrastructure, all of which 
enhance the positive effects of smart city development. As a result, 
these regions experience relatively faster industrial upgrading, 
leading to higher resident income levels. Higher income, in turn, 
enables individuals to prioritize their health more effectively. 
Moreover, cities in the eastern and central regions demonstrate 
higher levels of operational efficiency and digitalization. Smart 
transportation systems function effectively, and urban air quality has 

improved considerably, contributing to better living conditions. In 
addition, residents in these regions have greater access to smart 
fitness devices and intelligent exercise facilities, which increase the 
flexibility of physical activity and support more convenient 
exercise opportunities.

City population may also influence public health. Following the 
2014 classification standard for urban population in China, cities are 
grouped by population size. Table 7 presents the subgroup regression 
results. The results reveal heterogeneous effects of smart city 
construction across cities, depending on their population size. 
Specifically, among large cities with populations exceeding 1 million, 
the positive effect of smart city construction on public health becomes 
more pronounced as population size increases. In contrast, the effect 
is not statistically significant in small and medium-sized cities with 
populations below 1 million. A possible explanation is that larger cities 
adopt smart and digital infrastructure more rapidly. Accelerated 
upgrades in urban management and technology foster economic 

TABLE 6  Heterogeneity effects by geographic region.

Variable Eastern Central Western Northeastern

Smart city construction
0.0537** 0.0338* 0.0588 0.1876

(0.0257) (0.0186) (0.1765) (1.105)

Constant
2.46*** 3.57*** 2.75*** 3.69***

(0.367) (0.876) (0.913) (0.907)

Control variables Y Y Y Y

City fixed effects Y Y Y Y

Year fixed effects Y Y Y Y

R-squared 0.2985 0.2756 0.1935 0.2490

Observations 6,899 4,167 5,692 2,235

*p < 0.1, **p < 0.05, ***p < 0.01. Robust standard errors clustered at the regional level are reported in parentheses.

TABLE 5  Mechanism analysis.

Variable (1) (2) (3) (4) (5) (6)

Residents’ income Physical exercise Air quality

Income Healthy Train Healthy PM Healthy

Smart city construction
0.0513***

(0.0148)

0.0676**

(0.0332)

0.0776***

(0.0211)

Income
0.728***

(0.0608)

Train
0.9414***

(0.1136)

PM
0.4452*

(0.2608)

Control variables Y Y Y Y Y Y

City fixed effects Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y

Constant
4.7798***

(0.0141)

3.0637***

(0.0102)

3.5482***

(0.0267)

2.7678***

(0.0198)

1.7687***

(0.0302)

2.7804***

(0.025)

R-squared 0.3214 0.2739 0.1874 0.2117 0.1697 0.3459

Observations 18,993 18,993 18,993 18,993 18,993 18,993

*p < 0.1, **p < 0.05, ***p < 0.01. Robust standard errors clustered at the regional level are reported in parentheses.
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development, improve quality of life, and increase residents’ access to 
physical exercise opportunities.

5 Conclusion

5.1 Theoretical implications

This paper offers new evidence regarding the impact of smart city 
initiatives on public health by situating the analysis within the broader 
framework of new infrastructure development. Exploiting the 
staggered rollout of smart city pilot program in China as a quasi-
natural experiment, the study applies a multi-period DID approach to 
obtain credible causal estimates. It further investigates the underlying 
mechanisms through a systematic analysis of channels. Robustness 
checks corroborate the findings, while heterogeneity analysis reveals 
differentiated effects across groups.

The main findings of this paper are as follows. First, the 
construction of smart cities has a significantly positive impact on 
public health. Second, smart city development improves physical 
health outcomes through multiple channels, including increasing 
household income, enhancing opportunities for physical exercise, and 
improving air quality. Third, the health effects of smart city 
construction are heterogeneous across regions and city sizes. 
Specifically, the positive impact is statistically significant at the 5% 
level in the eastern and central regions, but not in the northeastern 
and western regions. In terms of city size, the positive effect is more 
pronounced in large cities with populations exceeding 1 million, 
whereas no significant effect is observed in small and medium-sized 
cities. Thus, this study advanced the understanding of unban 
development on public health, thereby advocating for a city design.

5.2 Practical implications

These findings carry several policy recommendations. First, 
smart city initiatives should be prioritized as a strategic means to 
improve public health. Beyond investing in robust ICT backbones, 
governments should actively drive the integration of digital 
technologies across urban governance, public healthcare, and public 
services. Integrating AI-enabled screening and remote monitoring 
across connected care systems, while linking these tools to public 

health data, helps to expedite clinical responses. Public health 
platforms might integrate IoT surveillance, while public fitness 
facilities are recommended to be upgraded to encourage physical 
activity among residents.

Second, promote the coordinated integration of smart city 
development with urban development strategies. Smart city programs 
grounded in new infrastructure should be advanced with a clear focus 
on improving public health. Healthy community planning should 
incorporate intelligent facilities and environmental monitoring 
systems into neighborhood design. Meanwhile, projects in smart 
healthcare, intelligent aging care, and related domains should 
be  supported, with demonstration pilots rolled out into routine 
practice. Additionally, broaden digital financial inclusion so that all 
population groups can access and benefit from new infrastructure 
services, advancing smart city development and public 
health concurrently.

Third, a nationally coordinated smart city strategy is encouraged 
to mitigate spatial inequality and ensure equitable access to the 
benefits of digital urban transformation. Smart city development 
should extend beyond large metropolitan areas. Despite relatively 
weaker foundations, small and medium-sized cities play a crucial role 
in national urbanization. Efforts must be made to prevent regional 
divergence by extending successful models from more developed to 
less-developed regions. Financial support, targeted technical training, 
and cross regional knowledge-sharing platforms would help ensure 
regionally balanced development of digital capacities that support 
public health. Locally adapted design should be tailored to ensure the 
practicality of new infrastructure and smart services, contributing to 
a more balanced and inclusive pattern of urban development.

Data availability statement

Publicly available datasets were analyzed in this study. This data 
can be found at: The micro-level data are from the China Family Panel 
Studies (CFPS), administered by the Institute of Social Science Survey 
(ISSS) at Peking University and accessible at: http://www.isss.pku.edu.
cn/cfps/. The macro-level data were obtained from the China Urban 
Statistical Yearbook, published by the National Bureau of Statistics of 
China and available at: https://www.stats.gov.cn/, as well as from the 
official websites of various municipal statistics bureaus. These data are 
publicly available.

TABLE 7  Heterogeneity effects by population.

Variable pop∈ (0, 50) pop∈ (50, 100) pop∈ (100, 300) pop∈ (300, +∞)

Smart city construction
0.0684 0.0834 0.0639* 0.0899**

(0.1248) (0.1029) (0.0345) (0.0434)

Constant
3.143*** 2.844*** 2.505*** 2.972***

(0.041) (0.025) (0.027) (0.079)

Control variables Y Y Y Y

City fixed effects Y Y Y Y

Year fixed effects Y Y Y Y

R-squared 0.2116 0.3317 0.3124 0.2713

Observations 3,674 3,788 4,632 8,677

*p < 0.1, **p < 0.05, ***p < 0.01. Robust standard errors clustered at the regional level are reported in parentheses.
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