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Heavy metal pollution and
Ischemic stroke: multimechanistic
pathogenesis and
countermeasures

Junge Liu and Lin Wu*

Department of Cardiology, Shengjing Hospital, China Medical University, Shenyang, China

Heavy metal pollution is a significant environmental risk factor that profoundly
impacts cerebrovascular health, particularly in the pathophysiology of ischemic
stroke. This article outlines the relationship between metal exposure and stroke risk,
highlighting regional differences potentially caused by contaminated food chains
and industrial processes. We provide an in-depth discussion on the complex roles
of lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), copper (Cu), and zinc (Zn)
in the pathophysiology of stroke, with a particular focus on five key mechanisms:
redox imbalance, neurotransmitter dysregulation, neuroinflammation, endothelial
dysfunction, and coagulation disorders. Additionally, the review summarizes
recent targeted therapeutic strategies for heavy metals, including antioxidants,
metal chelators, inflammasome inhibitors, and epigenetic modifications, which
show promise in neuroprotection. Research indicates that these strategies offer
new perspectives for precision medicine in stroke treatment. We emphasize the
importance of considering environmental factors in stroke prevention and advocate
for pollution reduction as a means to improve public health. This review integrates
molecular neuroscience and environmental toxicology, providing new insights
and potential solutions to address the cerebrovascular diseases associated with
heavy metals. These findings not only enhance our understanding of stroke’s
pathophysiological mechanisms but also lay the foundation for future clinical
treatment and prevention strategies.
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1 Introduction

Heavy metal pollution has emerged as a global environmental and public health crisis,
driven by anthropogenic activities such as industrial emissions, agricultural practices, and
improper waste disposal. These activities contribute to widespread contamination of soil,
water, and air (1), with disparate regional exposure patterns directly shaping population-level
cerebrovascular health disparities. Recent studies have shown that exposure to heavy metals
can adversely affect human health by inducing oxidative stress, inflammation, and coagulation
dysfunction (2-4). Long-lasting contaminants in food pose a subtle but significant threat to
human health, particularly through their association with cardiovascular diseases (CVDs),
such as ischemic stroke, which remains the leading cause of death and disability
worldwide (5, 6).

Ischemic stroke, recognized as a critical component of the CVD continuum, arises from
thromboembolic cerebrovascular events and shares pathomechanistic foundations with
hypertension, atherosclerosis, and systemic inflammation through common pathways (7).
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Emerging epidemiological evidence establishes dose-dependent
associations between chronic heavy metal exposure (particularly
blood lead, cadmium, arsenic, and urinary cadmium) and stroke
incidence, with distinct regional exposure paradigms—including
southern Taiwan (China) and southern China (8, 9), where industrial
and occupational pollution as well as dietary exposure contribute to
increased stroke risk. Notably, in 2021, global stroke deaths
attributable to Pb exposure reached approximately 556,600, with
ischemic stroke accounting for the highest age-standardized mortality
rate (3.21 per 100,000 population) among all stroke subtypes (8).
Regionally, cadmium (Cd) contamination in rice cultivation in
southern China has exacerbated the burden of stroke, while in South
Asia, As contamination in groundwater irrigation and the use of
Cd-rich phosphate fertilizers have led to sustained exposure of major
crops to these harmful substances (9, 10). These cases show pollution-
driven food chain amplification turns heavy metals into insidious,
population-wide threats to cerebrovascular health, highlighting the
need to reassess environmental-cerebrovascular interplay amid
industrialized agricultural pollution’s growing global impact.

Although existing studies have established a significant association
between ischemic stroke and heavy metal pollution, the mechanisms
underlying this relationship remain inadequately elucidated. Current
research primarily focuses on oxidative stress and endothelial
dysfunction induced by heavy metals. However, more research is
needed to determine the precise roles that these factors play in the
pathophysiology of ischemic stroke, particularly with regard to
neurovascular unit responses and post-ischemic molecular
mechanisms (11). Five major pathogenic mechanisms have been
identified based on current scientific evidence: (1) redox imbalance,
(2) inflammatory immune activation, (3) endothelial injury, (4)
neurotransmitter dysregulation, and (5) abnormalities in platelet
hyperactivation and coagulation.

To effectively address the pathogenic impact of heavy metals,
novel therapeutic strategies have been proposed, including multi-
target interventions such as antioxidants (12), metal chelators (13),
inflammasome inhibitors (14), and epigenetic modifications (15).
With the aid of modern nanoparticle delivery systems, these strategies
significantly enhance the efficiency of drugs crossing the blood-brain
barrier (BBB). Furthermore, the multi-mechanism synergistic
approach not only improves therapeutic efficacy but also increases the
flexibility and adaptability of treatment plans.

This review, from the perspectives of molecular neurobiology and
environmental toxicology, suggests innovative strategies for combating
pollution-induced cerebrovascular diseases. It advocates for
integrating the concept of planetary health into stroke prevention,
offering theoretical support for the management of heavy metal-
related strokes and advancing the field of cerebrovascular
disease prevention.

2 The association between heavy
metal exposure and stroke

Heavy metals, due to their persistence and bioaccumulation,
pose significant risks to health and the environment through various
pathways, including natural, industrial, agricultural, and domestic
sources, and via food chain exposure (Figure 1). In recent years,
numerous studies have confirmed an association between heavy
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metal exposure and ischemic stroke, with significant variations in
the safe exposure thresholds and toxicity limits of different heavy
metals in biological (see Table 1 for

samples specific

reference values).

2.1 Lead (Pb)

Pb contamination stems from multifaceted anthropogenic
activities, encompassing industrial processes (smelting, Pb-acid
battery production) (16), mining operations (lead-zinc ore extraction
with wastewater effluents) (17), and agricultural utilization of
Pb-contaminated pesticides (18). Emerging environmental vectors,
such as residues from perovskite solar cell degradation (19), further
intensify exposure risks. While inorganic Pb persists predominantly
in soil and dust matrices, organic Pb compounds demonstrate
heightened bioaccumulation potential due to lipid solubility, though
epidemiological investigations primarily focus on inorganic forms
given their ubiquity in environmental reservoirs. Population-level
studies identify critical exposure routes: inhalation of industrial
airborne particulates, ingestion of Pb-contaminated preserved foods
(notably canned goods with compromised packaging), and dermal
contact with legacy Pb-based paints (20, 21). Recent research indicates
that smokers or alcohol consumers have notably higher serum Pb
levels than non-smokers and non-drinkers, with this disparity being
particularly pronounced in patients with acute ischemic stroke (AIS).
This may be attributed to smoking and drinking, which can either
directly introduce Pb into the body or affect its metabolism and
excretion (22). Moreover, a significant association exists between long-
term Pb exposure and an increased risk of stroke (23), as evidenced
by a study in the glass production-polluted area of southeastern
Sweden: the average urinary Pb concentration (U-Pb) in stroke cases
was 0.65 ng/g creatinine, which was significantly higher than that in
the control group (0.45 pg/g creatinine) (p < 0.01) (7).

2.2 Mercury (Hg)

Hg contamination arises from dual pathways encompassing
natural geochemical processes and anthropogenic interventions.
Natural emissions (~5,207 mg/yr) originate principally from volcanic
degassing, lithospheric weathering cycles, and marine biogenic
volatilization (24). At the same time, human-made emissions
(2,320 mg/yr) mostly come from three main areas: burning fossil fuels
for energy, smelting non-ferrous metals and extracting gold by hand,
and using chemicals in agriculture to make Hg-containing fertilizers
(25). This human-driven Hg flux has precipitated a 30-fold acceleration
in global depositional rates compared to pre-industrial baselines (26).
Elements of Hg and inorganic species (like HgCl, and HgO) can
persist in the environment for a long time. Methylmercury (MeHg),
on the other hand, is the main organic form and has amazing
biomagnification and neurotoxic properties. This organic speciation
predominates in aquatic food chains, constituting the primary
exposure vector for human populations (27). A meta-analysis found
that Hg exposure is associated with an increase in all-cause mortality
and CVD mortality, although the relationship with stroke is not
significant (28). Another study, however, did not observe a significant
association between serum Hg concentrations and stroke risk but
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FIGURE 1

ischemic stroke.

The main sources, contamination pathways, and food chain exposure routes of heavy metals. The diagram depicts the distribution of lead (Pb),
mercury (Hg), cadmium (Cd), arsenic (As), copper (Cu), and zinc (Zn) in the nature (rivers, oceans, air, and soil) and the exposure source (agricultural
and industrial products). When exposure to heavy metals, they enter the body through inhalation, ingestion and dermal contact, eventually lead to

observed a trend of decreasing stroke incidence with increasing Hg
levels in women (29).

2.3 Cadmium (Cd)

Cd has multiple sources, which include both natural weathering
and human activities. Among these, industrial emissions, such as those
from mining, metal smelting, and battery production, are significant
contributors to Cd pollution (30, 31). Agricultural activities, including
the application of phosphate fertilizers, wastewater irrigation, and the
use of sewage sludge, also represent major anthropogenic sources of
contamination (32). Plasma concentrations of Cd, Pb, and chromium
are significantly higher in smokers compared to non-smokers (33).
There are different kinds of Cd in the environment, but the soluble Cd
ion (Cd*), is the one that gets the most attention because it is so toxic
and easy for living things to absorb. Higher levels of Cd in the blood
have been linked to a higher risk of an AIS in patients in southern
Taiwan, and higher levels of Cd in the urine are also linked to a higher
risk of stroke (34). There is a significant dose-dependent positive
correlation between blood Cd concentration and the risk of ischemic
stroke: among 2,664 American adults, the incidence risk in the
population with blood Cd > 0.56 pg/L was 2.67 times that in the group
with the lowest concentration (<0.22 pug/L) (odds ratio, OR = 2.67,
95% confidence interval, CI: 1.10-6.49) (35). The association between
long-term Cd exposure and stroke risk is significant (relative risk 1.30)
(23), especially in southern China, where dietary Cd exposure has a
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substantial impact on the burden of stroke (36). Another study showed
that the blood Cd concentration in patients with AIS was
1.27 + 0.42 pg/L, significantly higher than that in the control group
(0.44 + 0.16 pg/L, p < 0.001). Moreover, the molar ratios of Cd/Zn and
Cd/Pb were abnormally elevated, suggesting that Cd imbalance may
be involved in the pathogenesis of AIS (37).

2.4 Arsenic (As)

The natural sources of As primarily include rock weathering,
volcanic activity, and the release of naturally occurring As from
groundwater (37). Among anthropogenic sources, the extraction and
smelting of As-containing minerals, coal combustion, as well as the use
of As-based pesticides and fertilizers in agriculture, wastewater irrigation,
and irrigation with As-rich groundwater are the major contributors to
pollution (38-40). The global population exposed to hazardous levels of
As in groundwater is estimated to be between 94 million and 220 million
(41). Both inorganic and organic forms of As exist in the environment,
with the inorganic form being more toxic to human health. Inorganic As
predominantly occurs as arsenite (iAsIII) and arsenate (iAsV) in food,
drinking water, and industrial effluents (42, 43). Natural sources of
arsenite include: As-containing rock weathering releasing into
groundwater, as well as volcanic activity and soil microbial
transformation. Organic As, like arsenobetaine in seafood, is not usually
thought to be harmful, but inorganic As may increase the risk of having
a stroke. These inorganic As species and their metabolites may contribute
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TABLE 1 Safe and toxic levels in blood and urine of metals.

10.3389/fpubh.2025.1650999

Normal Normal
Pb <5 pg/dL (Ad) >10 pg/dL (Ad) Nm >30 pg/gCr
<3.5 pg/dL (Ch) >5 pg/dL(Ch)
Cd <0.5 pg/L (Ns) >5 pug/L <0.5 pg/gCr >2 ug/gCr
<1 pg/L(S)
As <10 pg/L Nm <10 pg/L Tot-As > 50 pg/L (Ac)
Tot-As > 35 pg/gCr (Chr)
Inorg-As > 10 pg/L
Hg Tot-Hg < 1 pg/L Tot-Hg > 5 pg/L Inorg-Hg < 3 pg/gCr Inorg-Hg > 20 pg/gCr
MeHg<1.2 pg/L MeHg > 5.8 pg/L
Cu 70-140 pg/dL >160 pg/dL <30 pg/24h >60 pg/24 h
Zn 50-120 pg/dL >200 pg/dL 300-600 pg/24 h >1,000 pg/24 h

The chart summarizes the normal reference ranges and toxicity thresholds for lead, cadmium, arsenic, mercury, copper, and zinc in blood and urine, as provided by the centers for disease

control and prevention (CDC), https://wwwn.cdc.gov/TSP/index.aspx. Ac, acute; Ad, adults; As, arsenic; Cd, cadmium; Ch, children; Chr, chronic; Cr, creatinine; Cu, copper; Hg, mercury;

Inorg-As, inorganic arsenic; Inorg-Hg, inorganic mercury; MeHg, methyl mercury; Nm, not mention; Ns, Nonsmoker; Pb, lead; S, smoker; Tot-As, total arsenic; Tot-Hg, total mercury; Zn,

zinc.

to cardiovascular damage. Studies suggest that As can increase the risk
of stroke by promoting atherosclerosis, elevating blood pressure, and
triggering inflammatory responses (22). A study in Swedens “Glass
Kingdom” region showed that the average blood As concentration in
stroke cases was 2.5 pg/L, significantly higher than 1.9 pg/L in the control
group (p < 0.01), suggesting that long-term As exposure may increase
the risk of stroke (7). Epidemiological studies have further confirmed the
association between high As exposure and ischemic stroke: in a study of
1,277 case—control pairs in Shenzhen, China, the risk of ischemic stroke
in the highest quartile of plasma As (>2.40 pg/L) was significantly higher
than that in the lowest quartile (<0.66 pg/L), with an adjusted OR of 1.88
(95% CI: 1.25-2.81), showing a non-linear dose-response relationship
(44); a cohort study of 61,074 adults in Bangladesh showed that the risk
of death from ischemic stroke in those with drinking water As >50 ug/L
was 35% higher than in those with <10 pg/L (hazard ratio, HR = 1.35),
and the risk was as high as 72% in women (HR=1.72) (45).
Approximately 100 million people worldwide are threatened by As
contamination in drinking water, and Bangladesh has become a worst-hit
area due to the largest As poisoning incident in history (46).

2.5 Copper (Cu)

The primary sources of Cu pollution include industrial activities
such as Cu mining, smelting, and electroplating (47-49);
agricultural practices like the use of Cu-based pesticides and
fertilizers, as well as wastewater irrigation (50, 51), and urban life
and waste disposal (52). The environment contains Cu in various
chemical forms, including ionic and complexed states. Its
bioavailability is affected by both its chemical form and
environmental factors, such as pH and the amount of organic
matter present. As an essential trace element, Cu plays a crucial role
in several physiological functions; however, excessive intake can
pose health risks. Meta-analyses and multiple population studies
confirm a significant association between blood Cu concentrations
and ischemic stroke risk. A meta-analysis showed that individuals
with blood Cu > 117.0 pg/dL had a 72% higher risk than those with
<91.2 pg/dL (hazard ratio = 1.72, 95% CI: 1.12-2.65), with a 23%

Frontiers in Public Health

increased risk per 20 pg/dL elevation (OR = 1.23, 95% CI: 1.14-
1.33), indicating a clear dose-response relationship (53). A National
Health and Nutrition Examination Survey (NHANES) (2011-2016)
study of 5,151 adults further validated this: serum Cu > 19.8 pmol/L
was linked to a 2.36-fold higher risk vs. <16.4 pmol/L (OR = 2.36,
95% CI: 1.01-5.52), with a 44% higher risk per standard deviation
increase (OR = 1.44, 95% CI: 1.11-1.86), showing a linear positive
correlation (54). Additionally, elevated Cu levels in acute ischemic
stroke patients on admission correlate with poor prognosis (55),
and a Chinese community study found a near-linear positive
correlation between baseline plasma Cu and first ischemic stroke
risk, supporting serum Cu as a potential risk factor (56). However,
some studies suggest that a moderate increase in dietary Cu intake
may help reduce the risk of stroke (57).

2.6 Zinc (Zn)

Zn pollution primarily originates from industrial emissions (such
as mining, smelting, and electroplating) (58, 59), agricultural inputs
(such as the use of Zn-containing fertilizers and pesticides) (60, 61),
and urban runoff (such as the release of Zn oxide particles from tire
wear) (62). Free Zn ions are present in smaller amounts in the body,
primarily within the nervous system. Most of the Zn in the body is
bound to proteins. Zn plays a critical role in cerebral ischemia. Studies
have shown that during brain ischemia, excessive Zn** ion release and
accumulation may Pb to neuronal damage and cell death, thereby
increasing the risk of stroke (63). Maintaining Zn homeostasis is
therefore crucial for brain function—Zn deficiency may impair
endothelial function, indirectly increasing stroke risk, while Zn excess
can damage neurons and exacerbate difficulties in post-stroke recovery
(64). A meta-analysis revealed that serum/plasma Zn concentrations
in patients with ischemic stroke (65.39-113.2 pg/dL) were significantly
higher than those in healthy controls (SMD =0.61, p = 0.036),
suggesting that elevated Zn levels may be associated with an increased
risk of stroke (65). However, the US REGARDS study showed a
contrasting trend: as serum Zn concentrations increased from the
lowest quartile (<104.86 pg/dL) to the highest quartile (>140.39 pg/
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dL), there was a significant negative correlation with the incidence of
ischemic stroke (HR = 0.78, 95% CI: 0.61-0.98, trend test p = 0.03),
and this association was stronger in women (HR = 0.58, p < 0.01) (66).

3 Mechanistic insights into the impact
of heavy metals on ischemic stroke

3.1 Heavy metals and oxidative stress in
ischemic stroke

Heavy metals disrupt cellular redox homeostasis through multiple
interconnected molecular mechanisms, synergistically inducing
oxidative stress and neurotoxicity (Figure 2).

3.1.1 ROS generation and antioxidant defense
disruption

Multiple heavy metals converge on redox imbalance through distinct
yet interconnected molecular pathways. As (III) (67, 68), zinc ion (Zn**)
(69, 70), and Cu (71, 72) exhibit dual roles in both ROS generation and
antioxidant system impairment. As triggers superoxide anion (O,") and
hydrogen peroxide (H202) overproduction via NADPH oxidase (NOX)
activation (68), while simultaneously disrupting with antioxidant
function by inhibiting the activities of superoxide dismutase (SOD),
glutathione peroxidase (GPx), and catalase activities (73). Similarly, Zn**

10.3389/fpubh.2025.1650999

overload during cerebral ischemia amplifies NOX-derived ROS through
mitochondrial a-ketoglutarate dehydrogenase inhibition (70) and
glutathione (GSH) reductase suppression (74), creating a self-
perpetuating oxidative cascade. Cu’s redox cycling via Fenton reactions
generates hydroxyl radicals (71), compounded by its ability to displace
iron from cytochrome c oxidase, disrupting mitochondrial redox
homeostasis (75). This multi-metal assault on antioxidant defenses
creates a “perfect storm” for ED and neuronal apoptosis (76, 77).

3.1.2 Mitochondrial dysfunction and
organelle-specific oxidative cascades

Heavy metals target subcellular compartments with striking
specificity. Cd** induces mitochondrial permeability transition pore
opening, depleting ATP and amplifying ROS through electron
transport chain uncoupling (78). Zn exhibits biphasic mitochondrial
followed by
pathological accumulation inhibiting complex III and promoting

interactions—initial ~protective sequestration
H,0, leakage (14). Cu exerts unique proteotoxic stress by displacing
iron from mitochondrial Fe-S clusters, triggering Cu-specific cell
death (cuproptosis) through lipoylated protein aggregation (72).
These organelle-specific mechanisms converge on endoplasmic
reticulum (ER) stress, as demonstrated by As- and Cd-induced
GRP78 upregulation and caspase-3 activation, ultimately disrupting
blood-brain barrier (BBB) integrity through ZO-1 degradation
(77,79).

T
b HO

Cuproptosis N

FIGURE 2

Heavy metals and oxidative stress in ischemic stroke. This chart illustrates the role of heavy metals in the oxidative stress and reactive oxygen species
(ROS) generation mechanisms of ischemic stroke. ALAD indicates aminolevulinic acid dehydratase; AQP-9, aquaporin-9; BBB, blood—-brain barrier;
EAACI, excitatory amino acid carrier 1; ER, endoplasmic reticulum; ETC, electron transport chain; GSH, glutathione; GRP78, Glucose-Regulated Protein
78; H,O,, hydrogen peroxide; NADPH, nicotinamide adenine dinucleotide phosphate; NOX, NADPH oxidase; PBG, porphobilinogen; ROS, reactive
oxygen species; O, superoxide anion; SOD, superoxide dismutase; TRPM7, transient receptor potential melastatin 7; ZO-1, zonula occludens-1.
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3.1.3 Thiol reactivity and glutathione system
hijacking

Mercaptophilic metals (Pb, Hg, Cd) exploit cellular thiol metabolism
for oxidative sabotage. Pb inactivates §-aminolevulinic acid dehydratase
(ALAD), causing 5-ALA accumulation and spontaneous ROS generation
(80), while MeHg depletes GSH through direct -SH group binding (81).
Cd’s inhibition of EAACI glutamate transporters reduces cysteine
availability for GSH synthesis (79), creating a tripartite attack on the
brain’s primary antioxidant system. This thiol-targeted strategy not only
increases lipid peroxidation (evidenced by elevated MDA) (82, 83) but
also potentiates amyloidogenic processing through NO-mediated
vascular dysfunction (80, 84).

3.1.4 Metal transporter dysregulation and redox
signaling crosstalk

Emerging evidence reveals metal-specific transport mechanisms
modulating oxidative outcomes. Cu’s vascular protection via SOD3
requires Cav-1-mediated stabilization of ATP7A transporters (76),
whereas Zn’s neurotoxicity involves TRPM7-mediated neuronal

10.3389/fpubh.2025.1650999

uptake during ischemia (74). As upregulates aquaporin-9 (AQP-9) in
astrocytes, facilitating arsenite import and subsequent NOX
activation (68). These transport systems create spatial regulation of
metal-induced oxidative damage—Cu’s extracellular antioxidant role
via SOD3 contrasts with its intracellular mitochondrial toxicity (75,
76), while Zn’s synaptic release versus cytoplasmic accumulation
dictates its dual neuroprotective/pro-oxidant effects (69, 74).

3.2 Heavy metals and inflammation in
ischemic stroke

Heavy metal ions exacerbate cerebral ischemic injury by

mediating neuroinflammatory responses through multiple

mechanisms (Figure 3).

3.2.1 NF-kB-mediated inflammatory cascades
Cu and Zn exhibit dual regulatory roles through NF-«xB pathway
activation. Cu** overload in macrophages stimulates IKK-mediated
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Heavy metals and inflammation in ischemic stroke. This figure illustrates the role of heavy metals in the inflammatory response mechanism of ischemic
stroke. ASC Indicates apoptosis-associated speck-like protein containing a card; ATP, adenosine triphosphate; CCL2/MCP1, monocyte
chemoattractant protein-1; CUONPs, nanoparticulate copper; DNA, deoxyribonucleic acid; DSF, disulfiram; eNOS, endothelial nitric oxide synthase;
FDX1, ferredoxin 1; GSDMD, gasdermin D; HMGBL, high mobility group box 1; HSP70, heat shock protein 70; Ibal, ionized calcium-binding adapter
molecule 1; ICAMI, intercellular adhesion molecule 1; IKK, IkB kinase; IL-1a, interleukin-1a; IL-1p, interleukin-1; IL-6, interleukin-6; IL-18, interleukin-18;
IRAK, interleukin-1 receptor-associated kinase; LPO, lipid peroxidation; LPS, lipopolysaccharide; MeHg, methylmercury; MEKK, mitogen-activated
protein kinase kinase kinase; TAK1, TGF-p-activated kinase 1, MMPs, matrix metalloproteinases; MyD88, myeloid differentiation primary response 88;
NLRP3, NOD-like receptor thermal protein domain associated protein 3; NF-kB, nuclear factor k-light-chain-enhancer of activated B cells; NO, nitric
oxide; PSMB8, proteasome subunit p8; AS1, antisense long non-coding RNA 1; RAGE, receptor for advanced glycation end-products; S-S, disulfide
bonds; TLR, toll-like receptor; TLR4, toll-like receptor 4; TNF-a, tumor necrosis factor-a; TRPM2, transient receptor potential melastatin 2; VCAM1,
vascular cell adhesion molecule-1; VEGF, vascular endothelial growth factor.
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phosphorylation of IkBa, triggering NF-kB nuclear translocation and
subsequent upregulation of IL-1f, TNF-a, and IL-6 expression (85).
This pro-inflammatory environment makes it easier for leukocytes to
enter the ischemic penumbra by increasing the ability of macrophages
to phagocytose and the permeability of blood vessels. Zn** exerts
similar effects via PSMB8-AS1-mediated transcriptional regulation,
amplifying VCAM1/ICAM1 expression and endothelial adhesion
molecule presentation (86). Paradoxically, Cu®* chelation using
disulfiram (DSF) suppresses FDX1-mediated cuproptosis pathways,
attenuating NF-kB activation and preserving BBB integrity during
cerebral ischemia (87). Cd synergistically amplifies this pathway
through TLR4/MyD88 signaling, inducing astrocytic NF-xB
phosphorylation and subsequent TNF-o/IL-1p release, thereby
establishing sustained neuroinflammation (88).

3.2.2 NLRP3 inflammasome activation

Nanoparticulate Cu (copper oxide nanoparticles, CuONPs)
initiates biphasic inflammasome activation through lysosomal
destabilization and cathepsin B release, generating mitochondrial ROS
that prime NLRP3 assembly (89). This mechanism converges with
MeHg-induced autophagic stress in microglia, where impaired
mitophagy triggers ASC speck formation and caspase-1-dependent
IL-1p maturation (90). By creating gasdermin D pores, both metals
increase the body’s production of IL-18. This process sets off
feedforward loops that keep inflammation going after an
ischemic event.

3.2.3 Cytokine/chemokine network dysregulation

As establishes chronic low-grade inflammation via epigenetic
reprogramming of circulating lymphocytes, elevating IL-1p, IL-6, and
CCL2/MCP1 levels that facilitate monocyte-endothelial interactions
(91). Pb exposure in occupational cohorts demonstrates analogous
effects through Vascular Endothelial Growth Factor (VEGF)-mediated
endothelial activation and IL-1a-driven vascular remodeling (7). Zn*
potentiates this cascade through TRPM2-mediated Ca** influx in
microglia, enhancing IL-6/CCL2 paracrine signaling that disrupts
neurovascular units (92).

3.2.4 Glial-immune crosstalk

Cu (II) orchestrates dynamic microglial polarization through
CD45/Ibal modulation, shifting M2 reparative phenotypes toward
pro-inflammatory M1 states during ischemia (93). Zn synergistically
enhances this transition via HSP70-mediated stress signaling, while
MeHg induces S100B-overexpressing reactive astrocytes that secrete
matrix metalloproteinases (MMPs) to degrade BBB components (94,
95). Cd** further compromises neurovascular integrity through PANX1-
mediated ATP release, activating P2X7 receptors on perivascular
macrophages to sustain IL-1f-dominated inflammation (96, 97).

3.2.5 Oxidative-inflammatory nexus

Pb and Cd establish redox-inflammatory coupling through
NOX-derived superoxide generation. This not only inactivates
endothelial nitric oxide synthase (eNOS) but also oxidizes HMGBI to its
disulfide form, enhancing RAGE receptor activation on cerebral
endothelium (79, 83). Cd** induces oxidative stress and inflammatory
responses, activating the generation of ROS and LPO, promoting the
activation of glial cells and neuronal apoptosis, ultimately leading to
neural damage (98).
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3.3 Heavy metals and ED in ischemic stroke

Heavy metals induce endothelial dysfunction and blood-brain
barrier disruption through multiple mechanisms, including redox
imbalance, mitochondrial dysfunction, and immune-inflammatory
activation (Figure 4).

3.3.1 Redox imbalance and mitochondrial
dysfunction

Heavy metals orchestrate Endothelial Dysfunction (ED) through
redox imbalance and mitochondrial perturbations. Cd induces
oxidative stress by depleting GSH reserves and generating ROS, which
impair cerebral microvascular endothelial cell (bEnd.3) integrity and
exacerbate BBB leakage (99, 100). As (III) similarly elevates ROS levels
via Nrf2 pathway activation, paradoxically upregulating heme
oxygenase-1 (HO-1) while suppressing eNOS activity, thereby reducing
nitric oxide (NO) bioavailability critical for vasodilation (101, 102). Zn
buildup in mitochondria makes endothelial cell damage and BBB
worse through a Drpl-dependent pathway for mitochondrial fission
(103). Cu exhibits dual roles: while excessive Cu uptake in diabetes
exacerbates endothelial ROS via the ASH2L-STEAP4 axis (15),
controlled Cu delivery enhances VEGF-mediated vascular repair
through Cu Transporter 1 (CTR1) -VEGFR2 signaling (104, 105).

3.3.2 Immune activation and adhesion molecule
upregulation

Pro-inflammatory signaling constitutes a unifying mechanism
across multiple metals. Cd uniquely activates NF-xB via IkBa tyrosine
phosphorylation (not degradation), driving ICAM-1 overexpression
in bEnd.3 cells and promoting leukocyte-endothelial adhesion (99).
As (III) synergistically amplifies inflammation by inducing MCP-1,
IL-6, and SICAM-1/sVCAM-1 through p38 MAPK/NF-kB crosstalk,
accelerating atherosclerosis and microvascular occlusion (106, 107).
Pb increases the production of ROS in endothelial cells and smooth
muscle cells, leading to ED and intimal hyperplasia (IH) (108, 109).
Notably, Cu (II)'s pro-angiogenic effects via VEGF/BDNF release
counterbalance inflammatory damage during stroke recovery
(110, 111).

3.3.3 Vascular permeability and barrier
dysfunction

BBB breakdown emerges as a critical endpoint across metal
toxicities. Pb disrupts the integrity of the BBB by reducing the
expression of tight junction proteins (ZO-1, occludin, claudin-5)
through the MAPK and PI3K/AKT signaling pathways (112, 113).
MeHg induces VEGF/VEGFRI1-2 overexpression, causing pathological
angiogenesis with leaky vasculature and cerebral edema (114, 115). Cu
and Zn promote physiological angiogenesis through CTR1-VEGFR2
interaction and HIF-1a/VEGF activation (104, 116). As (III) exerts
dual-barrier disruption through CAPN-1 activation: rapid calcium
influx triggers VE-cadherin degradation at adherens junctions, while
chronic exposure downregulates ACE2/MasR axis, impairing the
protective renin-angiotensin system (117, 118). Zn overload activates
matrix metalloproteinases (MMPs) -2/9 via metalloproteinase-Zn
interactions, directly digesting basement membrane components and
facilitating BBB leakage (119). Cd further destabilizes pericyte-
endothelial crosstalk, inducing pericyte contraction and microvascular
flow arrest (120).
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FIGURE 4
Heavy metals and Endothelial Dysfunction (ED) in ischemic stroke. This diagram illustrates the role of heavy metals in the mechanism of endothelial
dysfunction of ischemic stroke. ACE2, angiotensin-converting enzyme 2; AKT, protein kinase B; ASH2L, absen small or homeotic-like 2; BBB, blood—
brain barrier; BDNF, brain-derived neurotrophic factor; CAPN-1, calpain-1; CREB, cAMP response element-binding Protein; CTR1, copper transporter 1;
Drpl, dynamin-related protein 1; eNOS, endothelial nitric oxide synthase; HIF-1a, hypoxia-inducible factor-1la; HO-1, heme oxygenase-1; ICAML,
intercellular adhesion molecule 1; IH, intimal hyperplasia; IL-6, interleukin-6; MAPK, mitogen-activated protein kinase; MasR, mas receptor; MCP-1,
monocyte chemoattractant protein-1; MeHg, methylmercury; MMP, matrix metalloproteinase; NF-xB, nuclear factor k-light-chain-enhancer of
activated B cells; NGF, nerve growth factor; NO, nitric oxide; PI3K, phosphoinositide 3-kinase; RAS, renin-angiotensin system; ROS, reactive oxygen
species; sSICAM-1, soluble intercellular adhesion molecule-1; STEAP4, six-transmembrane epithelial antigen of prostate 4; sVCAM-1, soluble vascular
cell adhesion molecule-1; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2; ZO-1, zonula occludens-1.

3.4 Heavy metals and neurotransmitter
effects in ischemic stroke

Heavy metals exacerbate excitotoxicity and neuronal injury
following ischemia by disrupting synaptic metal ion homeostasis and
neurotransmitter systems (Figure 5).

3.4.1 Glutamatergic excitotoxicity amplification
via synaptic Zn overload

The interplay between Zn dyshomeostasis and glutamatergic
signaling constitutes a pivotal axis in ischemic neuronal injury. During
acute ischemia, synaptic vesicles release excessive Zn** that synergizes
with glutamate to activate post-synaptic N-methyl-D-aspartate
(NMDA) receptors (NMDARSs), Ca**-permeable a-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptors (GluR2-
lacking), and voltage-sensitive calcium channels (VSCCs), creating a
self-perpetuating cycle of cation influx (121-123). Notably, Zn-induced
acidification mobilizes metallothionein-bound Zn** reservoirs,
exponentially increasing intracellular free Zn** concentrations (124).
This Zn-glutamate crosstalk extends to transporter modulation: Zn*
inhibits excitatory amino acid transporter-1 (EAAT-1) and GABA_A
receptors, while Pb** downregulates astrocytic GLT-1 and neuronal

EAACI, collectively impairing glutamate clearance (125-127).
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Crucially, Cd** exacerbates this cascade by suppressing ZnT3-mediated
Zn sequestration in hippocampal neurons, thereby enhancing
vulnerability to excitotoxic insults (128).

3.4.2 NMDA receptor hypersensitization and
subunit remodeling

Heavy metals cause NMDA receptors to become overactive in two
ways: they directly increase the activity of channels and change the
make-up of subunits. Cu** elevates hippocampal glutamate levels
while promoting NMDAR phosphorylation, driving caspase-3-
mediated apoptosis (129). Concurrently, Zn** and Pb* induce
transcriptional shifts favoring calcium-permeable receptor variants:
Zn** downregulates GluR2 expression in AMPA receptors, while Pb**
reduces NR2B-containing NMDARs and modifies GRIA2/3 subunit
stoichiometry (130-132). These changes caused by metals on receptors
create neurotoxic “hotspots” where normal glutamate signaling gets
worse and leads to an unhealthy amount of calcium and Zn.

3.4.3 Astrocyte-neuron metabolic coupling
disruption

Metallotoxic interference with glial neurotransmitter recycling
emerges as a critical stroke amplifier. Pb** disrupts the glutamate-
glutamine cycle by suppressing glutaminase (GLS) activity and
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FIGURE 5

Heavy metals and neurotransmitter effects in ischemic stroke. This picture illustrates the role of heavy metals in the neurotransmitter mechanism of
ischemic stroke. AMPAR, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; EAACL, excitatory amino acid carrier 1; EAAT, excitatory
amino acid transporter; GABA, gamma-aminobutyric acid; GABALR, gamma-aminobutyric acid type A receptor; GAD, glutamic acid decarboxylase;
GAT1, gamma-aminobutyric acid transporter 1; Glu, Glutamate; GluR2, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit;
GLAST, glutamate aspartate transporter; GLS, glutaminase; GLT-1, glutamate transporter 1; GRIA2/3, a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor subunits; GRM3, glutamate receptor 3; GS, Glutamine Synthetase; KAT II, kynurenine aminotransferase II; Kyn,
kynurenine; mGluR3, metabotropic glutamate receptor 3; NMDA, N-methyl-D-aspartate; NMDAR, N-methyl-D-aspartate receptor; NR2A, fast synaptic
N-methyl-D-aspartate receptor subunit; QUIN, quinolinic acid; Trp, tryptophan; TRP, transient receptor potential; TRPC, transient receptor potential
canonical; TRPM, transient receptor potential melastatin; VSCCs, voltage-sensitive calcium channels; ZnT3, zinc transporter 3.

Glu /0'
ey ¥}

O.QQ

TRPC1/3/6 |

Zinc R
@ Overload

X g ¢ o o

GLAST/GLT-1 expression, while paradoxically enhancing K'-
stimulated glutamate release—a formula for synaptic glutamate
spillover (126, 127). The extracellular buildup of glutamate works with
metal-induced Zn release from presynaptic terminals to make a
neurotoxic feedback loop that is stronger than the brain’s defenses
against neuronal death after an ischemic event.

3.4.4 GABAergic inhibition attenuation and
kynurenine pathway activation

Heavy metals strategically disarm endogenous neuroprotective
systems by targeting inhibitory neurotransmission. Zn** directly
blocks GABA_A receptor chloride currents, diminishing inhibitory
postsynaptic potentials during ischemic depolarization waves (133).
Pb*" exerts complementary effects by reducing GABA synthesis (via
GAD suppression) and enhancing kynurenine aminotransferase II
(KAT 1II) activity, shifting tryptophan metabolism toward
neurotoxic quinolinic acid production (131). This dual assault on
GABAergic tone and excitatory/inhibitory balance creates a
permissive environment for spreading depolarization and
infarct expansion.
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3.4.5 Voltage-independent cation channel
activation

Emerging evidence implicates transient receptor potential (TRP)
channels as convergence points for metal neurotoxicity. Ischemia-
induced Zn*" influx occurs not only through classical voltage-gated
channels but also via TRPC1/3/6 and TRPM2/7 activation, enabling
massive cation entry independent of membrane depolarization (134).
This pathway synergizes with Pb**-induced metabotropic glutamate
receptor 3 (GRM3) downregulation, effectively removing the
“molecular brakes” on post-synaptic excitation (132). The resultant
cation overload propagates through neuronal networks via gap
junctions, exacerbating peri-infarct depolarizations.

3.5 Heavy metals and coagulation
mechanisms in ischemic stroke

Heavy metal interfere with platelet function, coagulation, and the

fibrinolytic system through various mechanisms, thereby affecting
thrombus formation (Figure 6).
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Heavy metals and coagulation mechanisms in ischemic stroke. This graph illustrates the role of heavy metals in the coagulation mechanism of
ischemic stroke. AA, arachidonic acid; ADP, adenosine diphosphate; cAMP, cyclic adenosine monophosphate; FXII, factor XlII; GPCR, G-protein
coupled receptor; GP, glycoprotein; GSH, glutathione; GST, glutathione S-transferase; MLC, myosin light chain; MPs, microparticles; NETs,
neutrophil extracellular traps; NLR, neutrophil-to-lymphocyte ratio; PAI-1, plasminogen activator inhibitor-1; PGH,, prostaglandin H,; PGl,,
prostacyclin |,; PKC, protein kinase C; PS, protein S; TAFI, thrombin-activated fibrinolysis inhibitor; TM, thrombomodulin; t-PA, tissue-type
plasminogen activator; TXA,, thromboxane A,; VASP, vasodilator-stimulated phosphoprotein; vWF, von Willebrand factor; ZIP, zinc and iron-

3.5.1 Regulation of platelet activation

Hg?* stops platelets from quiescently forming by blocking Na*-
K*-ATPase activity through GSH/GST-mediated enzyme binding.
The effect changes the sodium gradient needed for platelets to rest
and encourages them to become active. Furthermore, Hg’* enhancing
ADP-induced platelet aggregation by activating the TXA,/PGH,
pathway (135-137). Zn®* exhibits a concentration-dependent
biphasic effect. At high concentrations, Zn** triggers full activation of
alIbp3 integrins and promotes platelet aggregation via the protein
kinase C (PKC)/myosin light chain (MLC) phosphorylation pathway,
whereas at low concentrations, Zn** inhibits platelet activation and
thrombus formation by enhancing prostacyclin I, (PGI,) signaling
through the cyclic adenosine monophosphate (cAMP)/vasodilator-
stimulated phosphoprotein (VASP) pathway (138-140). Additionally,
ZIP1/ZIP3 transporters play a critical role in maintaining Zn*"
homeostasis in platelets, and their deficiency leads to hyperactive G
protein-coupled receptor (GPCR) signaling, accelerating thrombus
formation (141).
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3.5.2 Interference with the coagulation cascade

Cd, for instance, promotes excessive expression of von Willebrand
factor (VWF) in endothelial cells, thereby enhancing platelet adhesion
under shear stress (142). Cu imbalance presents a paradox in
thrombus formation: Cu deficiency reduces the binding ability of yWF
to platelets, while excess Cu alters platelet surface charge and activates
factor XII (FXII), thereby accelerating coagulation (143-145). Pb**
elevate the neutrophil-to-lymphocyte ratio (NLR), promoting the
formation of neutrophil extracellular traps (NETs) that enhance
thrombin generation, further exacerbating thrombus formation
(146, 147).

3.5.3 Fibrinolysis inhibition and microparticle
exposure

As ions inhibit thrombus dissolution by downregulating
tissue-type plasminogen activator (t-PA) expression and
inhibitor-1  (PAI-1)
expression, thereby generating antiprotease thrombi (148). Zn

upregulating plasminogen activator
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ions, by competitively inhibiting plasminogen binding to
histidine-rich domains, enhance the activity of thrombin-
activated fibrinolysis inhibitor (TAFI), thereby suppressing
fibrinolysis and promoting thrombus formation (149, 150). Hg, by
inhibiting the thrombomodulin (TM)/protein C and t-PA/PAI
systems, reduces anticoagulant activity and suppresses fibrinolysis,
resulting in a procoagulant state (151). Moreover, As,Os induces
exposure of phosphatidylserine (PS) on endothelial cells and
generates microparticles (MPs) carrying PS, thereby enhancing
coagulation activity and further aggravating coagulation
abnormalities (138, 152).

3.6 Synergistic, antagonistic, or additive
effects of combined heavy metal exposure

3.6.1 Synergistic effects of combined heavy metal
exposure

Cu overload can stimulate IKK-mediated IxkBa phosphorylation
in macrophages, promoting NF-kB nuclear translocation and
upregulating the expression of inflammatory factors such as IL-1p,
TNF-a, and IL-6 (85); Cd synergistically amplifies this pathway
through the TLR4/MyD88 signaling pathway, inducing NF-xB
phosphorylation in astrocytes and releasing TNF-a/IL-1f, thereby
triggering persistent neuroinflammation (88). The two synergistically
activate the NF-kB pathway to enhance neuroinflammation, creating
a strong pro-inflammatory environment. They facilitate the entry of
leukocytes into the ischemic penumbra by improving macrophage
phagocytosis and increasing vascular permeability, significantly
elevating the risk of stroke. In addition, As and Hg jointly inhibit the
glutathione system to exacerbate oxidative stress, increasing reactive
oxygen species production by 30-50% compared with individual
exposures, collectively reflecting the synergistic effect of combined
heavy metal exposure (153).

3.6.2 Antagonistic effects of combined heavy
metal exposure

Zn can antagonize Cu overload-induced neurodamage by
maintaining metal ion homeostasis in the body: on one hand, it
reduces Cu entry into neurons by competing for the transporter CTR1
and regulates cuproptosis (154, 155); on the other hand, as a cofactor
of SOD, it enhances its activity and reduces Cu-mediated ROS
production (156). The two exhibit an antagonistic effect through
transport competition, regulation of cell death, and balance of the
antioxidant system.

3.6.3 Additive effects of combined heavy metal
exposure

Pb reduces the expression of tight junction proteins via the MAPK
and PI3K/AKT pathways (113); Cd damages endothelial cells through
oxidative stress, disrupts pericyte-endothelial interactions, and
activates the NF-kB pathway (79, 99, 120); Zn overload impairs the
BBB via Drpl-dependent mitochondrial fission and activation of
MMP-2/9 (103, 119); As degrades VE-cadherin and downregulates
the ACE2/MasR axis by activating CAPN-1 (117); MeHg induces
overexpression of VEGF and its receptors, leading to vascular leakage
(114). These heavy metals damage the BBB through mechanisms such
as disrupting tight junctions, inducing oxidative stress, activating

Frontiers in Public Health

11

10.3389/fpubh.2025.1650999

proteases, and interfering with angiogenesis. When co-exposed, these
mechanisms act synergistically, potentially resulting in greater BBB
disruption than single exposures, exhibiting an additive effect.

4 Targeted therapies for heavy
metal-related ischemic stroke

4.1 Antioxidant

Natural antioxidants safeguard particular tissues from metal-
induced neurotoxicity by removing free radicals, regulating redox
levels, or increasing the efficacy of endogenous antioxidant enzymes.
Tannic acid (TA) reduces the accumulation of Cd** in the brain by
competitively binding to them. At the same time, it selectively
increases the activity of catalase (CAT) and GPx in the hippocampus.
This significantly reduces oxidative damage in models of chronic Cd/
Pb exposure (12). Dansheninone ITA (TSA) ameliorates Pb-induced
cognitive impairment by elevating SOD and GSH levels, decreasing
(MDA)
enhancing brain-derived neurotrophic factor (BDNF) expression

malondialdehyde concentration, and synergistically
(157). Natural polyphenolic compounds, including hesperidin (HP)
and resveratrol, alleviate Cd-induced oxidative stress and synaptic
impairment by reestablishing the GSH/non-protein thiol (NP-SH)
(LPO) and protein

carbonylation (PC), directly neutralizing reactive oxygen species

balance, preventing lipid peroxidation

(ROS), and improving cytochrome P450 enzymes to reduce neuronal
apoptosis (158, 159). Curcumin augments the activity of SOD and
GPx by chelating Cu** and Zn®'. It enhances bioavailability by
employing mitochondrial approaches such as triphenylphosphonium
(TPP) modification, consequently amplifying its antioxidant and anti-
apoptotic properties (160, 161).

N-acetylcysteine (NAC) is a synthetic antioxidant that possesses
metal chelation and antioxidant properties. The thiol group can
directly chelate chromium, Cd, and cobalt ions, inhibiting their
intestinal absorption and subsequent neurotoxicity. In studies of Hg
or Pb poisoning, NAC helps protect brain cells by balancing GSH
levels and reducing malondialdehyde (MDA) concentrations, which
can prevent damage to DNA and cell death. Nanoparticle delivery
techniques greatly improve the concentration of NAC in the brain
(162-164). In addition, 14.7-aminoquinoline derivatives impede the
Fenton reaction by Cu chelation and stimulate the Nrf2 pathway,
enhancing the transcription of antioxidant enzymes, showing
significant metal antagonistic properties (165, 166).

4.2 Metal chelators

Metal chelators bind to heavy metal ions in the body, which assists
in decreasing their buildup and neurotoxicity. In the ischemia/
reperfusion (I/R) injury model caused by middle cerebral artery
occlusion (MCAO), the Zn chelator TPEN markedly reduced post-
stroke inflammation and neuronal damage. This was achieved by
decreasing the expression of pro-inflammatory cytokines (TNF-a,
IL-6), obstructing the activation of the NF-kB pathway, and elevating
the levels of the anti-inflammatory cytokine IL-10 (13). Peridin, a
natural Zn chelator, on the other hand, fought off Zn-induced
neurotoxicity and maintained spatial memory function (167).
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Calcium disodium EDTA (Ca-EDTA), a traditional chelator, has
demonstrated the ability to counteract the inhibitory effects of Zn**
on thrombolytic therapy. In vitro experiments revealed that it nearly
doubled the efficacy of tissue plasminogen activator (tPA), restoring
its activity by 35-50%. In in vivo models, it significantly enhanced
reperfusion rates (from a baseline of 45 to 75-80%) while diminishing
the risk of hemorrhage (168, 169). Notably, nano-delivery systems can
further enhance the neuroprotective efficacy of chelators. For instance,
polysorbate-80-coated polymeric nanoparticles enable efficient
delivery of the hexadentate iron chelator desferrioxamine across the
BBB, specifically clearing abnormally accumulated iron and Cu ions
in the brain. This process inhibits oxidative stress and cuproptosis,
thereby achieving precise protection of neurons (170).

4.3 Dietary adjustment

Dietary adjustments hold significant intervention value in heavy
metal-related ischemic stroke. Studies indicate that Cu, an essential
neuromodulator in cerebral ischemia/reperfusion injury, may
exacerbate pathological processes by inducing cuproptosis via
oxidative stress when in excess, making the regulation of Cu
homeostasis a potential therapeutic target (170). Nutritional
interventions act through multiple mechanisms: antioxidant nutrients
(e.g., B vitamins, glutathione, Zn) alleviate free radical damage and
improve neurological recovery; protein supplementation reverses
suppressed protein synthesis in ischemic regions, promoting cognitive
recovery. Additionally, stroke patients often have insufficient Zn
intake, and Zn supplementation can ameliorate neurological deficits
(171). These findings support the positive role of diet in regulating
heavy metal toxicity, alleviating oxidative stress, and facilitating
stroke rehabilitation.

4.4 Other neuroprotective strategies

In addition to antioxidant and chelation therapies, interventions
targeting inflammatory pathways and epigenetic regulation have also
demonstrated neuroprotective potential. For example, MeHg induces
inflammatory responses by activating microglial NLRP3
inflammasomes and autophagosomes. The NLRP3 inhibitor MCC950
can simultaneously mitigate MeHg-induced microglial damage and
inflammation triggered by Cu ion-activated TLR4 signaling (14). In
an As trioxide (ATO) exposure model, the calpain-1 (CAPN-1)
inhibitor ALLM exerts vascular protective effects by improving
endothelial cell dysfunction (such as increased vascular permeability
and abnormal low-density lipoprotein uptake) through the inhibition
of CAPN-1 activity (117).

Disulfiram (DSF) has been shown to protect mitochondrial
integrity and improve outcomes in cerebral ischemia in mice by
downregulating FDX1 to regulate Cu homeostasis, inhibiting the
HSP70/TLR4/NLRP3 inflammatory pathway, and reducing oxidative
stress (76). Additionally, RNA interference targeting the epigenetic
regulator ASH2L (anti-ASH2L short hairpin RNA (shRNA) adeno-
associated virus) reduces the expression of Cu transporters (CTR1/
STEAP4), thus decreasing Cu uptake by endothelial cells and reversing
Cu-induced oxidative stress, inflammation, and vascular dysfunction
(15, 104).
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RNA interference (RNAi) shows promise as a neuroprotective
strategy for improving ischemic stroke by regulating Cu metabolism.
As an essential trace element in cerebral ischemia/reperfusion (I/R)
injury, Cu can induce oxidative stress and cuprotosis (a Cu-dependent
form of cell death) when in excess. RNAi can target Cu transporters
(e.g., ATP7A, ATP7B), Cu chaperones (e.g., COX17, CCS), and
Cu-related enzymes (e.g., SOD1) to regulate the intracellular
distribution and activity of Cu ions. This regulation alleviates oxidative
damage, inflammatory responses, and mitochondrial dysfunction,
thereby reducing neuronal death and enhancing the therapeutic
efficacy in stroke (170).

It should be noted that most of the targeted therapeutic
strategies discussed in this section, including the use of
antioxidants, metal chelators, dietary adjustments, and other
neuroprotective interventions, currently rely mainly on preclinical
evidence from animal models and in vitro studies. Direct clinical
translational data specific to heavy metal-related ischemic stroke
remain relatively limited. This is associated with the complexity
of environmental exposure patterns, the difficulty in classifying
patient subgroups according to heavy metal exposure status, and
the fact that research in this field is still in its early stages.
However, mechanistic findings from preclinical studies—such as
the neuroprotective effects of TA in alleviating Cd-induced
oxidative damage, the ability of Ca-EDTA to enhance thrombolysis
by chelating Zn, and the role of RNAi in regulating Cu
homeostasis—provide sufficient basis for subsequent clinical
exploration. They also lay the groundwork for designing targeted
clinical trials to verify the therapeutic potential of these strategies
in populations with heavy metal-related cerebrovascular damage.

5 Conclusion

This review thoroughly examines the pathogenic role of heavy
metals (Pb, Cd, As, Hg, Cu, Zn) in ischemic stroke, emphasizing
their complex effects via interconnected molecular processes.
Heavy metals specifically induce oxidative stress by activating
NOX and
neuroinflammation

impairing mitochondrial function; modulate
through the NF-kB/NLRP3
pathway; disrupt endothelial tight junctions, compromising the
of the BBB; with

neurotransmission via excitotoxicity mediated by Zn/Pb; and

signaling

integrity interfere glutamatergic
disrupt coagulation processes by excessively activating platelets.

Heavy metal intake is a modifiable risk factor for stroke,
according to this innovative study that combines molecular
neurology with environmental toxicology. Researchers should
devote more time to studying translatable approaches so they can
develop non-invasive biomarkers for early stroke risk assessment,
target metal transport proteins, and improve our pharmacological
understanding of metal transporters. Researchers should also look
at community-based initiatives to lower metal exposure in the
environment and the spatiotemporal modeling of metal-induced
harm. These multi-target treatments consider the neurovascular
architecture changes over time in addition to the short-term
impacts of metal poisoning.

Heavy metal ingestion is a modifiable risk factor for stroke, as
shown by many pieces of evidence presented in this novel review
that combines molecular

innovatively neurology with
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environmental toxicology. Strategies oriented toward public
health intervention should be the primary goal of future studies.
This includes developing non-invasive biomarkers to assess the
risk of stroke at an early stage, identifying and pharmacologically
modifying metal transport proteins, and expanding our
understanding of metal transporters. Research on community-
based initiatives that decrease metal exposure in the environment
and spatial-temporal modeling of metal-induced harm are also
warranted. The results of this study provide important information
for the design of long-term public health programs and the
mitigation of heavy metal-induced cerebrovascular damage.
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