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Heavy metal pollution and 
ischemic stroke: multimechanistic 
pathogenesis and 
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Heavy metal pollution is a significant environmental risk factor that profoundly 
impacts cerebrovascular health, particularly in the pathophysiology of ischemic 
stroke. This article outlines the relationship between metal exposure and stroke risk, 
highlighting regional differences potentially caused by contaminated food chains 
and industrial processes. We provide an in-depth discussion on the complex roles 
of lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), copper (Cu), and zinc (Zn) 
in the pathophysiology of stroke, with a particular focus on five key mechanisms: 
redox imbalance, neurotransmitter dysregulation, neuroinflammation, endothelial 
dysfunction, and coagulation disorders. Additionally, the review summarizes 
recent targeted therapeutic strategies for heavy metals, including antioxidants, 
metal chelators, inflammasome inhibitors, and epigenetic modifications, which 
show promise in neuroprotection. Research indicates that these strategies offer 
new perspectives for precision medicine in stroke treatment. We emphasize the 
importance of considering environmental factors in stroke prevention and advocate 
for pollution reduction as a means to improve public health. This review integrates 
molecular neuroscience and environmental toxicology, providing new insights 
and potential solutions to address the cerebrovascular diseases associated with 
heavy metals. These findings not only enhance our understanding of stroke’s 
pathophysiological mechanisms but also lay the foundation for future clinical 
treatment and prevention strategies.
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1 Introduction

Heavy metal pollution has emerged as a global environmental and public health crisis, 
driven by anthropogenic activities such as industrial emissions, agricultural practices, and 
improper waste disposal. These activities contribute to widespread contamination of soil, 
water, and air (1), with disparate regional exposure patterns directly shaping population-level 
cerebrovascular health disparities. Recent studies have shown that exposure to heavy metals 
can adversely affect human health by inducing oxidative stress, inflammation, and coagulation 
dysfunction (2–4). Long-lasting contaminants in food pose a subtle but significant threat to 
human health, particularly through their association with cardiovascular diseases (CVDs), 
such as ischemic stroke, which remains the leading cause of death and disability 
worldwide (5, 6).

Ischemic stroke, recognized as a critical component of the CVD continuum, arises from 
thromboembolic cerebrovascular events and shares pathomechanistic foundations with 
hypertension, atherosclerosis, and systemic inflammation through common pathways (7). 
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Emerging epidemiological evidence establishes dose-dependent 
associations between chronic heavy metal exposure (particularly 
blood lead, cadmium, arsenic, and urinary cadmium) and stroke 
incidence, with distinct regional exposure paradigms—including 
southern Taiwan (China) and southern China (8, 9), where industrial 
and occupational pollution as well as dietary exposure contribute to 
increased stroke risk. Notably, in 2021, global stroke deaths 
attributable to Pb exposure reached approximately 556,600, with 
ischemic stroke accounting for the highest age-standardized mortality 
rate (3.21 per 100,000 population) among all stroke subtypes (8). 
Regionally, cadmium (Cd) contamination in rice cultivation in 
southern China has exacerbated the burden of stroke, while in South 
Asia, As contamination in groundwater irrigation and the use of 
Cd-rich phosphate fertilizers have led to sustained exposure of major 
crops to these harmful substances (9, 10). These cases show pollution-
driven food chain amplification turns heavy metals into insidious, 
population-wide threats to cerebrovascular health, highlighting the 
need to reassess environmental-cerebrovascular interplay amid 
industrialized agricultural pollution’s growing global impact.

Although existing studies have established a significant association 
between ischemic stroke and heavy metal pollution, the mechanisms 
underlying this relationship remain inadequately elucidated. Current 
research primarily focuses on oxidative stress and endothelial 
dysfunction induced by heavy metals. However, more research is 
needed to determine the precise roles that these factors play in the 
pathophysiology of ischemic stroke, particularly with regard to 
neurovascular unit responses and post-ischemic molecular 
mechanisms (11). Five major pathogenic mechanisms have been 
identified based on current scientific evidence: (1) redox imbalance, 
(2) inflammatory immune activation, (3) endothelial injury, (4) 
neurotransmitter dysregulation, and (5) abnormalities in platelet 
hyperactivation and coagulation.

To effectively address the pathogenic impact of heavy metals, 
novel therapeutic strategies have been proposed, including multi-
target interventions such as antioxidants (12), metal chelators (13), 
inflammasome inhibitors (14), and epigenetic modifications (15). 
With the aid of modern nanoparticle delivery systems, these strategies 
significantly enhance the efficiency of drugs crossing the blood–brain 
barrier (BBB). Furthermore, the multi-mechanism synergistic 
approach not only improves therapeutic efficacy but also increases the 
flexibility and adaptability of treatment plans.

This review, from the perspectives of molecular neurobiology and 
environmental toxicology, suggests innovative strategies for combating 
pollution-induced cerebrovascular diseases. It advocates for 
integrating the concept of planetary health into stroke prevention, 
offering theoretical support for the management of heavy metal-
related strokes and advancing the field of cerebrovascular 
disease prevention.

2 The association between heavy 
metal exposure and stroke

Heavy metals, due to their persistence and bioaccumulation, 
pose significant risks to health and the environment through various 
pathways, including natural, industrial, agricultural, and domestic 
sources, and via food chain exposure (Figure 1). In recent years, 
numerous studies have confirmed an association between heavy 

metal exposure and ischemic stroke, with significant variations in 
the safe exposure thresholds and toxicity limits of different heavy 
metals in biological samples (see Table  1 for specific 
reference values).

2.1 Lead (Pb)

Pb contamination stems from multifaceted anthropogenic 
activities, encompassing industrial processes (smelting, Pb-acid 
battery production) (16), mining operations (lead-zinc ore extraction 
with wastewater effluents) (17), and agricultural utilization of 
Pb-contaminated pesticides (18). Emerging environmental vectors, 
such as residues from perovskite solar cell degradation (19), further 
intensify exposure risks. While inorganic Pb persists predominantly 
in soil and dust matrices, organic Pb compounds demonstrate 
heightened bioaccumulation potential due to lipid solubility, though 
epidemiological investigations primarily focus on inorganic forms 
given their ubiquity in environmental reservoirs. Population-level 
studies identify critical exposure routes: inhalation of industrial 
airborne particulates, ingestion of Pb-contaminated preserved foods 
(notably canned goods with compromised packaging), and dermal 
contact with legacy Pb-based paints (20, 21). Recent research indicates 
that smokers or alcohol consumers have notably higher serum Pb 
levels than non-smokers and non-drinkers, with this disparity being 
particularly pronounced in patients with acute ischemic stroke (AIS). 
This may be attributed to smoking and drinking, which can either 
directly introduce Pb into the body or affect its metabolism and 
excretion (22). Moreover, a significant association exists between long-
term Pb exposure and an increased risk of stroke (23), as evidenced 
by a study in the glass production-polluted area of southeastern 
Sweden: the average urinary Pb concentration (U–Pb) in stroke cases 
was 0.65 μg/g creatinine, which was significantly higher than that in 
the control group (0.45 μg/g creatinine) (p < 0.01) (7).

2.2 Mercury (Hg)

Hg contamination arises from dual pathways encompassing 
natural geochemical processes and anthropogenic interventions. 
Natural emissions (≈5,207 mg/yr) originate principally from volcanic 
degassing, lithospheric weathering cycles, and marine biogenic 
volatilization (24). At the same time, human-made emissions 
(2,320 mg/yr) mostly come from three main areas: burning fossil fuels 
for energy, smelting non-ferrous metals and extracting gold by hand, 
and using chemicals in agriculture to make Hg-containing fertilizers 
(25). This human-driven Hg flux has precipitated a 30-fold acceleration 
in global depositional rates compared to pre-industrial baselines (26). 
Elements of Hg and inorganic species (like HgCl₂ and HgO) can 
persist in the environment for a long time. Methylmercury (MeHg), 
on the other hand, is the main organic form and has amazing 
biomagnification and neurotoxic properties. This organic speciation 
predominates in aquatic food chains, constituting the primary 
exposure vector for human populations (27). A meta-analysis found 
that Hg exposure is associated with an increase in all-cause mortality 
and CVD mortality, although the relationship with stroke is not 
significant (28). Another study, however, did not observe a significant 
association between serum Hg concentrations and stroke risk but 
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observed a trend of decreasing stroke incidence with increasing Hg 
levels in women (29).

2.3 Cadmium (Cd)

Cd has multiple sources, which include both natural weathering 
and human activities. Among these, industrial emissions, such as those 
from mining, metal smelting, and battery production, are significant 
contributors to Cd pollution (30, 31). Agricultural activities, including 
the application of phosphate fertilizers, wastewater irrigation, and the 
use of sewage sludge, also represent major anthropogenic sources of 
contamination (32). Plasma concentrations of Cd, Pb, and chromium 
are significantly higher in smokers compared to non-smokers (33). 
There are different kinds of Cd in the environment, but the soluble Cd 
ion (Cd2+), is the one that gets the most attention because it is so toxic 
and easy for living things to absorb. Higher levels of Cd in the blood 
have been linked to a higher risk of an AIS in patients in southern 
Taiwan, and higher levels of Cd in the urine are also linked to a higher 
risk of stroke (34). There is a significant dose-dependent positive 
correlation between blood Cd concentration and the risk of ischemic 
stroke: among 2,664 American adults, the incidence risk in the 
population with blood Cd ≥ 0.56 μg/L was 2.67 times that in the group 
with the lowest concentration (<0.22 μg/L) (odds ratio, OR = 2.67, 
95% confidence interval, CI: 1.10–6.49) (35). The association between 
long-term Cd exposure and stroke risk is significant (relative risk 1.30) 
(23), especially in southern China, where dietary Cd exposure has a 

substantial impact on the burden of stroke (36). Another study showed 
that the blood Cd concentration in patients with AIS was 
1.27 ± 0.42 μg/L, significantly higher than that in the control group 
(0.44 ± 0.16 μg/L, p < 0.001). Moreover, the molar ratios of Cd/Zn and 
Cd/Pb were abnormally elevated, suggesting that Cd imbalance may 
be involved in the pathogenesis of AIS (37).

2.4 Arsenic (As)

The natural sources of As primarily include rock weathering, 
volcanic activity, and the release of naturally occurring As from 
groundwater (37). Among anthropogenic sources, the extraction and 
smelting of As-containing minerals, coal combustion, as well as the use 
of As-based pesticides and fertilizers in agriculture, wastewater irrigation, 
and irrigation with As-rich groundwater are the major contributors to 
pollution (38–40). The global population exposed to hazardous levels of 
As in groundwater is estimated to be between 94 million and 220 million 
(41). Both inorganic and organic forms of As exist in the environment, 
with the inorganic form being more toxic to human health. Inorganic As 
predominantly occurs as arsenite (iAsIII) and arsenate (iAsV) in food, 
drinking water, and industrial effluents (42, 43). Natural sources of 
arsenite include: As-containing rock weathering releasing into 
groundwater, as well as volcanic activity and soil microbial 
transformation. Organic As, like arsenobetaine in seafood, is not usually 
thought to be harmful, but inorganic As may increase the risk of having 
a stroke. These inorganic As species and their metabolites may contribute 

FIGURE 1

The main sources, contamination pathways, and food chain exposure routes of heavy metals. The diagram depicts the distribution of lead (Pb), 
mercury (Hg), cadmium (Cd), arsenic (As), copper (Cu), and zinc (Zn) in the nature (rivers, oceans, air, and soil) and the exposure source (agricultural 
and industrial products). When exposure to heavy metals, they enter the body through inhalation, ingestion and dermal contact, eventually lead to 
ischemic stroke.
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to cardiovascular damage. Studies suggest that As can increase the risk 
of stroke by promoting atherosclerosis, elevating blood pressure, and 
triggering inflammatory responses (22). A study in Sweden’s “Glass 
Kingdom” region showed that the average blood As concentration in 
stroke cases was 2.5 μg/L, significantly higher than 1.9 μg/L in the control 
group (p < 0.01), suggesting that long-term As exposure may increase 
the risk of stroke (7). Epidemiological studies have further confirmed the 
association between high As exposure and ischemic stroke: in a study of 
1,277 case–control pairs in Shenzhen, China, the risk of ischemic stroke 
in the highest quartile of plasma As (>2.40 μg/L) was significantly higher 
than that in the lowest quartile (<0.66 μg/L), with an adjusted OR of 1.88 
(95% CI: 1.25–2.81), showing a non-linear dose–response relationship 
(44); a cohort study of 61,074 adults in Bangladesh showed that the risk 
of death from ischemic stroke in those with drinking water As ≥50 μg/L 
was 35% higher than in those with <10 μg/L (hazard ratio, HR = 1.35), 
and the risk was as high as 72% in women (HR = 1.72) (45). 
Approximately 100 million people worldwide are threatened by As 
contamination in drinking water, and Bangladesh has become a worst-hit 
area due to the largest As poisoning incident in history (46).

2.5 Copper (Cu)

The primary sources of Cu pollution include industrial activities 
such as Cu mining, smelting, and electroplating (47–49); 
agricultural practices like the use of Cu-based pesticides and 
fertilizers, as well as wastewater irrigation (50, 51), and urban life 
and waste disposal (52). The environment contains Cu in various 
chemical forms, including ionic and complexed states. Its 
bioavailability is affected by both its chemical form and 
environmental factors, such as pH and the amount of organic 
matter present. As an essential trace element, Cu plays a crucial role 
in several physiological functions; however, excessive intake can 
pose health risks. Meta-analyses and multiple population studies 
confirm a significant association between blood Cu concentrations 
and ischemic stroke risk. A meta-analysis showed that individuals 
with blood Cu > 117.0 μg/dL had a 72% higher risk than those with 
<91.2 μg/dL (hazard ratio = 1.72, 95% CI: 1.12–2.65), with a 23% 

increased risk per 20 μg/dL elevation (OR = 1.23, 95% CI: 1.14–
1.33), indicating a clear dose–response relationship (53). A National 
Health and Nutrition Examination Survey (NHANES) (2011–2016) 
study of 5,151 adults further validated this: serum Cu > 19.8 μmol/L 
was linked to a 2.36-fold higher risk vs. <16.4 μmol/L (OR = 2.36, 
95% CI: 1.01–5.52), with a 44% higher risk per standard deviation 
increase (OR = 1.44, 95% CI: 1.11–1.86), showing a linear positive 
correlation (54). Additionally, elevated Cu levels in acute ischemic 
stroke patients on admission correlate with poor prognosis (55), 
and a Chinese community study found a near-linear positive 
correlation between baseline plasma Cu and first ischemic stroke 
risk, supporting serum Cu as a potential risk factor (56). However, 
some studies suggest that a moderate increase in dietary Cu intake 
may help reduce the risk of stroke (57).

2.6 Zinc (Zn)

Zn pollution primarily originates from industrial emissions (such 
as mining, smelting, and electroplating) (58, 59), agricultural inputs 
(such as the use of Zn-containing fertilizers and pesticides) (60, 61), 
and urban runoff (such as the release of Zn oxide particles from tire 
wear) (62). Free Zn ions are present in smaller amounts in the body, 
primarily within the nervous system. Most of the Zn in the body is 
bound to proteins. Zn plays a critical role in cerebral ischemia. Studies 
have shown that during brain ischemia, excessive Zn2+ ion release and 
accumulation may Pb to neuronal damage and cell death, thereby 
increasing the risk of stroke (63). Maintaining Zn homeostasis is 
therefore crucial for brain function—Zn deficiency may impair 
endothelial function, indirectly increasing stroke risk, while Zn excess 
can damage neurons and exacerbate difficulties in post-stroke recovery 
(64). A meta-analysis revealed that serum/plasma Zn concentrations 
in patients with ischemic stroke (65.39–113.2 μg/dL) were significantly 
higher than those in healthy controls (SMD = 0.61, p = 0.036), 
suggesting that elevated Zn levels may be associated with an increased 
risk of stroke (65). However, the US REGARDS study showed a 
contrasting trend: as serum Zn concentrations increased from the 
lowest quartile (≤104.86 μg/dL) to the highest quartile (≥140.39 μg/

TABLE 1  Safe and toxic levels in blood and urine of metals.

Metal Blood Urine

Normal Toxic Normal Toxic

Pb <5 μg/dL (Ad)

<3.5 μg/dL (Ch)

≥10 μg/dL (Ad)

≥5 μg/dL(Ch)

Nm ≥30 μg/gCr

Cd <0.5 μg/L (Ns)

<1 μg/L (S)

≥5 μg/L <0.5 μg/gCr ≥2 μg/gCr

As <10 μg/L Nm <10 μg/L Tot-As ≥ 50 μg/L (Ac)

Tot-As ≥ 35 μg/gCr (Chr)

Inorg-As ≥ 10 μg/L

Hg Tot-Hg < 1 μg/L

MeHg<1.2 μg/L

Tot-Hg ≥ 5 μg/L

MeHg ≥ 5.8 μg/L

Inorg-Hg < 3 μg/gCr Inorg-Hg ≥ 20 μg/gCr

Cu 70–140 μg/dL ≥160 μg/dL <30 μg/24 h ≥60 μg/24 h

Zn 50–120 μg/dL ≥200 μg/dL 300–600 μg/24 h >1,000 μg/24 h

The chart summarizes the normal reference ranges and toxicity thresholds for lead, cadmium, arsenic, mercury, copper, and zinc in blood and urine, as provided by the centers for disease 
control and prevention (CDC), https://wwwn.cdc.gov/TSP/index.aspx. Ac, acute; Ad, adults; As, arsenic; Cd, cadmium; Ch, children; Chr, chronic; Cr, creatinine; Cu, copper; Hg, mercury; 
Inorg-As, inorganic arsenic; Inorg-Hg, inorganic mercury; MeHg, methyl mercury; Nm, not mention; Ns, Nonsmoker; Pb, lead; S, smoker; Tot-As, total arsenic; Tot-Hg, total mercury; Zn, 
zinc.
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dL), there was a significant negative correlation with the incidence of 
ischemic stroke (HR = 0.78, 95% CI: 0.61–0.98, trend test p = 0.03), 
and this association was stronger in women (HR = 0.58, p < 0.01) (66).

3 Mechanistic insights into the impact 
of heavy metals on ischemic stroke

3.1 Heavy metals and oxidative stress in 
ischemic stroke

Heavy metals disrupt cellular redox homeostasis through multiple 
interconnected molecular mechanisms, synergistically inducing 
oxidative stress and neurotoxicity (Figure 2).

3.1.1 ROS generation and antioxidant defense 
disruption

Multiple heavy metals converge on redox imbalance through distinct 
yet interconnected molecular pathways. As (III) (67, 68), zinc ion (Zn2+) 
(69, 70), and Cu (71, 72) exhibit dual roles in both ROS generation and 
antioxidant system impairment. As triggers superoxide anion (O2

•–) and 
hydrogen peroxide (H2O2) overproduction via NADPH oxidase (NOX) 
activation (68), while simultaneously disrupting with antioxidant 
function by inhibiting the activities of superoxide dismutase (SOD), 
glutathione peroxidase (GPx), and catalase activities (73). Similarly, Zn2+ 

overload during cerebral ischemia amplifies NOX-derived ROS through 
mitochondrial α-ketoglutarate dehydrogenase inhibition (70) and 
glutathione (GSH) reductase suppression (74), creating a self-
perpetuating oxidative cascade. Cu’s redox cycling via Fenton reactions 
generates hydroxyl radicals (71), compounded by its ability to displace 
iron from cytochrome c oxidase, disrupting mitochondrial redox 
homeostasis (75). This multi-metal assault on antioxidant defenses 
creates a “perfect storm” for ED and neuronal apoptosis (76, 77).

3.1.2 Mitochondrial dysfunction and 
organelle-specific oxidative cascades

Heavy metals target subcellular compartments with striking 
specificity. Cd2+ induces mitochondrial permeability transition pore 
opening, depleting ATP and amplifying ROS through electron 
transport chain uncoupling (78). Zn exhibits biphasic mitochondrial 
interactions—initial protective sequestration followed by 
pathological accumulation inhibiting complex III and promoting 
H2O2 leakage (14). Cu exerts unique proteotoxic stress by displacing 
iron from mitochondrial Fe-S clusters, triggering Cu-specific cell 
death (cuproptosis) through lipoylated protein aggregation (72). 
These organelle-specific mechanisms converge on endoplasmic 
reticulum (ER) stress, as demonstrated by As- and Cd-induced 
GRP78 upregulation and caspase-3 activation, ultimately disrupting 
blood–brain barrier (BBB) integrity through ZO-1 degradation 
(77, 79).

FIGURE 2

Heavy metals and oxidative stress in ischemic stroke. This chart illustrates the role of heavy metals in the oxidative stress and reactive oxygen species 
(ROS) generation mechanisms of ischemic stroke. ALAD indicates aminolevulinic acid dehydratase; AQP-9, aquaporin-9; BBB, blood–brain barrier; 
EAAC1, excitatory amino acid carrier 1; ER, endoplasmic reticulum; ETC, electron transport chain; GSH, glutathione; GRP78, Glucose-Regulated Protein 
78; H2O2, hydrogen peroxide; NADPH, nicotinamide adenine dinucleotide phosphate; NOX, NADPH oxidase; PBG, porphobilinogen; ROS, reactive 
oxygen species; O2

•−, superoxide anion; SOD, superoxide dismutase; TRPM7, transient receptor potential melastatin 7; ZO-1, zonula occludens-1.
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3.1.3 Thiol reactivity and glutathione system 
hijacking

Mercaptophilic metals (Pb, Hg, Cd) exploit cellular thiol metabolism 
for oxidative sabotage. Pb inactivates δ-aminolevulinic acid dehydratase 
(ALAD), causing δ-ALA accumulation and spontaneous ROS generation 
(80), while MeHg depletes GSH through direct -SH group binding (81). 
Cd’s inhibition of EAAC1 glutamate transporters reduces cysteine 
availability for GSH synthesis (79), creating a tripartite attack on the 
brain’s primary antioxidant system. This thiol-targeted strategy not only 
increases lipid peroxidation (evidenced by elevated MDA) (82, 83) but 
also potentiates amyloidogenic processing through NO-mediated 
vascular dysfunction (80, 84).

3.1.4 Metal transporter dysregulation and redox 
signaling crosstalk

Emerging evidence reveals metal-specific transport mechanisms 
modulating oxidative outcomes. Cu’s vascular protection via SOD3 
requires Cav-1-mediated stabilization of ATP7A transporters (76), 
whereas Zn’s neurotoxicity involves TRPM7-mediated neuronal 

uptake during ischemia (74). As upregulates aquaporin-9 (AQP-9) in 
astrocytes, facilitating arsenite import and subsequent NOX 
activation (68). These transport systems create spatial regulation of 
metal-induced oxidative damage—Cu’s extracellular antioxidant role 
via SOD3 contrasts with its intracellular mitochondrial toxicity (75, 
76), while Zn’s synaptic release versus cytoplasmic accumulation 
dictates its dual neuroprotective/pro-oxidant effects (69, 74).

3.2 Heavy metals and inflammation in 
ischemic stroke

Heavy metal ions exacerbate cerebral ischemic injury by 
mediating neuroinflammatory responses through multiple 
mechanisms (Figure 3).

3.2.1 NF-κB-mediated inflammatory cascades
Cu and Zn exhibit dual regulatory roles through NF-κB pathway 

activation. Cu2+ overload in macrophages stimulates IKK-mediated 

FIGURE 3

Heavy metals and inflammation in ischemic stroke. This figure illustrates the role of heavy metals in the inflammatory response mechanism of ischemic 
stroke. ASC Indicates apoptosis-associated speck-like protein containing a card; ATP, adenosine triphosphate; CCL2/MCP1, monocyte 
chemoattractant protein-1; CuONPs, nanoparticulate copper; DNA, deoxyribonucleic acid; DSF, disulfiram; eNOS, endothelial nitric oxide synthase; 
FDX1, ferredoxin 1; GSDMD, gasdermin D; HMGB1, high mobility group box 1; HSP70, heat shock protein 70; Iba1, ionized calcium-binding adapter 
molecule 1; ICAM1, intercellular adhesion molecule 1; IKK, IκB kinase; IL-1α, interleukin-1α; IL-1β, interleukin-1β; IL-6, interleukin-6; IL-18, interleukin-18; 
IRAK, interleukin-1 receptor-associated kinase; LPO, lipid peroxidation; LPS, lipopolysaccharide; MeHg, methylmercury; MEKK, mitogen-activated 
protein kinase kinase kinase; TAK1, TGF-β-activated kinase 1; MMPs, matrix metalloproteinases; MyD88, myeloid differentiation primary response 88; 
NLRP3, NOD-like receptor thermal protein domain associated protein 3; NF-κB, nuclear factor κ-light-chain-enhancer of activated B cells; NO, nitric 
oxide; PSMB8, proteasome subunit β8; AS1, antisense long non-coding RNA 1; RAGE, receptor for advanced glycation end-products; S-S, disulfide 
bonds; TLR, toll-like receptor; TLR4, toll-like receptor 4; TNF-α, tumor necrosis factor-α; TRPM2, transient receptor potential melastatin 2; VCAM1, 
vascular cell adhesion molecule-1; VEGF, vascular endothelial growth factor.
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phosphorylation of IκBα, triggering NF-κB nuclear translocation and 
subsequent upregulation of IL-1β, TNF-α, and IL-6 expression (85). 
This pro-inflammatory environment makes it easier for leukocytes to 
enter the ischemic penumbra by increasing the ability of macrophages 
to phagocytose and the permeability of blood vessels. Zn2+ exerts 
similar effects via PSMB8-AS1-mediated transcriptional regulation, 
amplifying VCAM1/ICAM1 expression and endothelial adhesion 
molecule presentation (86). Paradoxically, Cu2+ chelation using 
disulfiram (DSF) suppresses FDX1-mediated cuproptosis pathways, 
attenuating NF-κB activation and preserving BBB integrity during 
cerebral ischemia (87). Cd synergistically amplifies this pathway 
through TLR4/MyD88 signaling, inducing astrocytic NF-κB 
phosphorylation and subsequent TNF-α/IL-1β release, thereby 
establishing sustained neuroinflammation (88).

3.2.2 NLRP3 inflammasome activation
Nanoparticulate Cu (copper oxide nanoparticles, CuONPs) 

initiates biphasic inflammasome activation through lysosomal 
destabilization and cathepsin B release, generating mitochondrial ROS 
that prime NLRP3 assembly (89). This mechanism converges with 
MeHg-induced autophagic stress in microglia, where impaired 
mitophagy triggers ASC speck formation and caspase-1-dependent 
IL-1β maturation (90). By creating gasdermin D pores, both metals 
increase the body’s production of IL-18. This process sets off 
feedforward loops that keep inflammation going after an 
ischemic event.

3.2.3 Cytokine/chemokine network dysregulation
As establishes chronic low-grade inflammation via epigenetic 

reprogramming of circulating lymphocytes, elevating IL-1β, IL-6, and 
CCL2/MCP1 levels that facilitate monocyte-endothelial interactions 
(91). Pb exposure in occupational cohorts demonstrates analogous 
effects through Vascular Endothelial Growth Factor (VEGF)-mediated 
endothelial activation and IL-1α-driven vascular remodeling (7). Zn2+ 
potentiates this cascade through TRPM2-mediated Ca2+ influx in 
microglia, enhancing IL-6/CCL2 paracrine signaling that disrupts 
neurovascular units (92).

3.2.4 Glial-immune crosstalk
Cu (II) orchestrates dynamic microglial polarization through 

CD45/Iba1 modulation, shifting M2 reparative phenotypes toward 
pro-inflammatory M1 states during ischemia (93). Zn synergistically 
enhances this transition via HSP70-mediated stress signaling, while 
MeHg induces S100B-overexpressing reactive astrocytes that secrete 
matrix metalloproteinases (MMPs) to degrade BBB components (94, 
95). Cd2+ further compromises neurovascular integrity through PANX1-
mediated ATP release, activating P2X7 receptors on perivascular 
macrophages to sustain IL-1β-dominated inflammation (96, 97).

3.2.5 Oxidative-inflammatory nexus
Pb and Cd establish redox-inflammatory coupling through 

NOX-derived superoxide generation. This not only inactivates 
endothelial nitric oxide synthase (eNOS) but also oxidizes HMGB1 to its 
disulfide form, enhancing RAGE receptor activation on cerebral 
endothelium (79, 83). Cd2+ induces oxidative stress and inflammatory 
responses, activating the generation of ROS and LPO, promoting the 
activation of glial cells and neuronal apoptosis, ultimately leading to 
neural damage (98).

3.3 Heavy metals and ED in ischemic stroke

Heavy metals induce endothelial dysfunction and blood-brain 
barrier disruption through multiple mechanisms, including redox 
imbalance, mitochondrial dysfunction, and immune-inflammatory 
activation (Figure 4).

3.3.1 Redox imbalance and mitochondrial 
dysfunction

Heavy metals orchestrate Endothelial Dysfunction (ED) through 
redox imbalance and mitochondrial perturbations. Cd induces 
oxidative stress by depleting GSH reserves and generating ROS, which 
impair cerebral microvascular endothelial cell (bEnd.3) integrity and 
exacerbate BBB leakage (99, 100). As (III) similarly elevates ROS levels 
via Nrf2 pathway activation, paradoxically upregulating heme 
oxygenase-1 (HO-1) while suppressing eNOS activity, thereby reducing 
nitric oxide (NO) bioavailability critical for vasodilation (101, 102). Zn 
buildup in mitochondria makes endothelial cell damage and BBB 
worse through a Drp1-dependent pathway for mitochondrial fission 
(103). Cu exhibits dual roles: while excessive Cu uptake in diabetes 
exacerbates endothelial ROS via the ASH2L-STEAP4 axis (15), 
controlled Cu delivery enhances VEGF-mediated vascular repair 
through Cu Transporter 1 (CTR1) -VEGFR2 signaling (104, 105).

3.3.2 Immune activation and adhesion molecule 
upregulation

Pro-inflammatory signaling constitutes a unifying mechanism 
across multiple metals. Cd uniquely activates NF-κB via IkBα tyrosine 
phosphorylation (not degradation), driving ICAM-1 overexpression 
in bEnd.3 cells and promoting leukocyte-endothelial adhesion (99). 
As (III) synergistically amplifies inflammation by inducing MCP-1, 
IL-6, and sICAM-1/sVCAM-1 through p38 MAPK/NF-κB crosstalk, 
accelerating atherosclerosis and microvascular occlusion (106, 107). 
Pb increases the production of ROS in endothelial cells and smooth 
muscle cells, leading to ED and intimal hyperplasia (IH) (108, 109). 
Notably, Cu (II)'s pro-angiogenic effects via VEGF/BDNF release 
counterbalance inflammatory damage during stroke recovery 
(110, 111).

3.3.3 Vascular permeability and barrier 
dysfunction

BBB breakdown emerges as a critical endpoint across metal 
toxicities. Pb disrupts the integrity of the BBB by reducing the 
expression of tight junction proteins (ZO-1, occludin, claudin-5) 
through the MAPK and PI3K/AKT signaling pathways (112, 113). 
MeHg induces VEGF/VEGFR1-2 overexpression, causing pathological 
angiogenesis with leaky vasculature and cerebral edema (114, 115). Cu 
and Zn promote physiological angiogenesis through CTR1-VEGFR2 
interaction and HIF-1α/VEGF activation (104, 116). As (III) exerts 
dual-barrier disruption through CAPN-1 activation: rapid calcium 
influx triggers VE-cadherin degradation at adherens junctions, while 
chronic exposure downregulates ACE2/MasR axis, impairing the 
protective renin-angiotensin system (117, 118). Zn overload activates 
matrix metalloproteinases (MMPs) -2/9 via metalloproteinase-Zn 
interactions, directly digesting basement membrane components and 
facilitating BBB leakage (119). Cd further destabilizes pericyte-
endothelial crosstalk, inducing pericyte contraction and microvascular 
flow arrest (120).
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3.4 Heavy metals and neurotransmitter 
effects in ischemic stroke

Heavy metals exacerbate excitotoxicity and neuronal injury 
following ischemia by disrupting synaptic metal ion homeostasis and 
neurotransmitter systems (Figure 5).

3.4.1 Glutamatergic excitotoxicity amplification 
via synaptic Zn overload

The interplay between Zn dyshomeostasis and glutamatergic 
signaling constitutes a pivotal axis in ischemic neuronal injury. During 
acute ischemia, synaptic vesicles release excessive Zn2+ that synergizes 
with glutamate to activate post-synaptic N-methyl-D-aspartate 
(NMDA) receptors (NMDARs), Ca2+-permeable α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptors (GluR2-
lacking), and voltage-sensitive calcium channels (VSCCs), creating a 
self-perpetuating cycle of cation influx (121–123). Notably, Zn-induced 
acidification mobilizes metallothionein-bound Zn2+ reservoirs, 
exponentially increasing intracellular free Zn2+ concentrations (124). 
This Zn-glutamate crosstalk extends to transporter modulation: Zn2+ 
inhibits excitatory amino acid transporter-1 (EAAT-1) and GABA_A 
receptors, while Pb2+ downregulates astrocytic GLT-1 and neuronal 
EAAC1, collectively impairing glutamate clearance (125–127). 

Crucially, Cd2+ exacerbates this cascade by suppressing ZnT3-mediated 
Zn sequestration in hippocampal neurons, thereby enhancing 
vulnerability to excitotoxic insults (128).

3.4.2 NMDA receptor hypersensitization and 
subunit remodeling

Heavy metals cause NMDA receptors to become overactive in two 
ways: they directly increase the activity of channels and change the 
make-up of subunits. Cu2+ elevates hippocampal glutamate levels 
while promoting NMDAR phosphorylation, driving caspase-3-
mediated apoptosis (129). Concurrently, Zn2+ and Pb2+ induce 
transcriptional shifts favoring calcium-permeable receptor variants: 
Zn2+ downregulates GluR2 expression in AMPA receptors, while Pb2+ 
reduces NR2B-containing NMDARs and modifies GRIA2/3 subunit 
stoichiometry (130–132). These changes caused by metals on receptors 
create neurotoxic “hotspots” where normal glutamate signaling gets 
worse and leads to an unhealthy amount of calcium and Zn.

3.4.3 Astrocyte-neuron metabolic coupling 
disruption

Metallotoxic interference with glial neurotransmitter recycling 
emerges as a critical stroke amplifier. Pb2+ disrupts the glutamate-
glutamine cycle by suppressing glutaminase (GLS) activity and 

FIGURE 4

Heavy metals and Endothelial Dysfunction (ED) in ischemic stroke. This diagram illustrates the role of heavy metals in the mechanism of endothelial 
dysfunction of ischemic stroke. ACE2, angiotensin-converting enzyme 2; AKT, protein kinase B; ASH2L, absen small or homeotic-like 2; BBB, blood–
brain barrier; BDNF, brain-derived neurotrophic factor; CAPN-1, calpain-1; CREB, cAMP response element-binding Protein; CTR1, copper transporter 1; 
Drp1, dynamin-related protein 1; eNOS, endothelial nitric oxide synthase; HIF-1α, hypoxia-inducible factor-1α; HO-1, heme oxygenase-1; ICAM1, 
intercellular adhesion molecule 1; IH, intimal hyperplasia; IL-6, interleukin-6; MAPK, mitogen-activated protein kinase; MasR, mas receptor; MCP-1, 
monocyte chemoattractant protein-1; MeHg, methylmercury; MMP, matrix metalloproteinase; NF-κB, nuclear factor κ-light-chain-enhancer of 
activated B cells; NGF, nerve growth factor; NO, nitric oxide; PI3K, phosphoinositide 3-kinase; RAS, renin-angiotensin system; ROS, reactive oxygen 
species; sICAM-1, soluble intercellular adhesion molecule-1; STEAP4, six-transmembrane epithelial antigen of prostate 4; sVCAM-1, soluble vascular 
cell adhesion molecule-1; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2; ZO-1, zonula occludens-1.
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GLAST/GLT-1 expression, while paradoxically enhancing K+-
stimulated glutamate release—a formula for synaptic glutamate 
spillover (126, 127). The extracellular buildup of glutamate works with 
metal-induced Zn release from presynaptic terminals to make a 
neurotoxic feedback loop that is stronger than the brain’s defenses 
against neuronal death after an ischemic event.

3.4.4 GABAergic inhibition attenuation and 
kynurenine pathway activation

Heavy metals strategically disarm endogenous neuroprotective 
systems by targeting inhibitory neurotransmission. Zn2+ directly 
blocks GABA_A receptor chloride currents, diminishing inhibitory 
postsynaptic potentials during ischemic depolarization waves (133). 
Pb2+ exerts complementary effects by reducing GABA synthesis (via 
GAD suppression) and enhancing kynurenine aminotransferase II 
(KAT II) activity, shifting tryptophan metabolism toward 
neurotoxic quinolinic acid production (131). This dual assault on 
GABAergic tone and excitatory/inhibitory balance creates a 
permissive environment for spreading depolarization and 
infarct expansion.

3.4.5 Voltage-independent cation channel 
activation

Emerging evidence implicates transient receptor potential (TRP) 
channels as convergence points for metal neurotoxicity. Ischemia-
induced Zn2+ influx occurs not only through classical voltage-gated 
channels but also via TRPC1/3/6 and TRPM2/7 activation, enabling 
massive cation entry independent of membrane depolarization (134). 
This pathway synergizes with Pb2+-induced metabotropic glutamate 
receptor 3 (GRM3) downregulation, effectively removing the 
“molecular brakes” on post-synaptic excitation (132). The resultant 
cation overload propagates through neuronal networks via gap 
junctions, exacerbating peri-infarct depolarizations.

3.5 Heavy metals and coagulation 
mechanisms in ischemic stroke

Heavy metal interfere with platelet function, coagulation, and the 
fibrinolytic system through various mechanisms, thereby affecting 
thrombus formation (Figure 6).

FIGURE 5

Heavy metals and neurotransmitter effects in ischemic stroke. This picture illustrates the role of heavy metals in the neurotransmitter mechanism of 
ischemic stroke. AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; EAAC1, excitatory amino acid carrier 1; EAAT, excitatory 
amino acid transporter; GABA, gamma-aminobutyric acid; GABAAR, gamma-aminobutyric acid type A receptor; GAD, glutamic acid decarboxylase; 
GAT1, gamma-aminobutyric acid transporter 1; Glu, Glutamate; GluR2, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit; 
GLAST, glutamate aspartate transporter; GLS, glutaminase; GLT-1, glutamate transporter 1; GRIA2/3, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor subunits; GRM3, glutamate receptor 3; GS, Glutamine Synthetase; KAT II, kynurenine aminotransferase II; Kyn, 
kynurenine; mGluR3, metabotropic glutamate receptor 3; NMDA, N-methyl-D-aspartate; NMDAR, N-methyl-D-aspartate receptor; NR2A, fast synaptic 
N-methyl-D-aspartate receptor subunit; QUIN, quinolinic acid; Trp, tryptophan; TRP, transient receptor potential; TRPC, transient receptor potential 
canonical; TRPM, transient receptor potential melastatin; VSCCs, voltage-sensitive calcium channels; ZnT3, zinc transporter 3.
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3.5.1 Regulation of platelet activation
Hg2+ stops platelets from quiescently forming by blocking Na+-

K+-ATPase activity through GSH/GST-mediated enzyme binding. 
The effect changes the sodium gradient needed for platelets to rest 
and encourages them to become active. Furthermore, Hg2+ enhancing 
ADP-induced platelet aggregation by activating the TXA₂/PGH₂ 
pathway (135–137). Zn2+ exhibits a concentration-dependent 
biphasic effect. At high concentrations, Zn2+ triggers full activation of 
αIIbβ3 integrins and promotes platelet aggregation via the protein 
kinase C (PKC)/myosin light chain (MLC) phosphorylation pathway, 
whereas at low concentrations, Zn2+ inhibits platelet activation and 
thrombus formation by enhancing prostacyclin I₂ (PGI₂) signaling 
through the cyclic adenosine monophosphate (cAMP)/vasodilator-
stimulated phosphoprotein (VASP) pathway (138–140). Additionally, 
ZIP1/ZIP3 transporters play a critical role in maintaining Zn2+ 
homeostasis in platelets, and their deficiency leads to hyperactive G 
protein-coupled receptor (GPCR) signaling, accelerating thrombus 
formation (141).

3.5.2 Interference with the coagulation cascade
Cd, for instance, promotes excessive expression of von Willebrand 

factor (vWF) in endothelial cells, thereby enhancing platelet adhesion 
under shear stress (142). Cu imbalance presents a paradox in 
thrombus formation: Cu deficiency reduces the binding ability of vWF 
to platelets, while excess Cu alters platelet surface charge and activates 
factor XII (FXII), thereby accelerating coagulation (143–145). Pb2+ 
elevate the neutrophil-to-lymphocyte ratio (NLR), promoting the 
formation of neutrophil extracellular traps (NETs) that enhance 
thrombin generation, further exacerbating thrombus formation 
(146, 147).

3.5.3 Fibrinolysis inhibition and microparticle 
exposure

As ions inhibit thrombus dissolution by downregulating 
tissue-type plasminogen activator (t-PA) expression and 
upregulating plasminogen activator inhibitor-1 (PAI-1) 
expression, thereby generating antiprotease thrombi (148). Zn 

FIGURE 6

Heavy metals and coagulation mechanisms in ischemic stroke. This graph illustrates the role of heavy metals in the coagulation mechanism of 
ischemic stroke. AA, arachidonic acid; ADP, adenosine diphosphate; cAMP, cyclic adenosine monophosphate; FXII, factor XII; GPCR, G-protein 
coupled receptor; GP, glycoprotein; GSH, glutathione; GST, glutathione S-transferase; MLC, myosin light chain; MPs, microparticles; NETs, 
neutrophil extracellular traps; NLR, neutrophil-to-lymphocyte ratio; PAI-1, plasminogen activator inhibitor-1; PGH₂, prostaglandin H₂; PGI₂, 
prostacyclin I₂; PKC, protein kinase C; PS, protein S; TAFI, thrombin-activated fibrinolysis inhibitor; TM, thrombomodulin; t-PA, tissue-type 
plasminogen activator; TXA₂, thromboxane A₂; VASP, vasodilator-stimulated phosphoprotein; vWF, von Willebrand factor; ZIP, zinc and iron-
regulated transmembrane proteins.
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ions, by competitively inhibiting plasminogen binding to 
histidine-rich domains, enhance the activity of thrombin-
activated fibrinolysis inhibitor (TAFI), thereby suppressing 
fibrinolysis and promoting thrombus formation (149, 150). Hg, by 
inhibiting the thrombomodulin (TM)/protein C and t-PA/PAI 
systems, reduces anticoagulant activity and suppresses fibrinolysis, 
resulting in a procoagulant state (151). Moreover, As₂O₃ induces 
exposure of phosphatidylserine (PS) on endothelial cells and 
generates microparticles (MPs) carrying PS, thereby enhancing 
coagulation activity and further aggravating coagulation 
abnormalities (138, 152).

3.6 Synergistic, antagonistic, or additive 
effects of combined heavy metal exposure

3.6.1 Synergistic effects of combined heavy metal 
exposure

Cu overload can stimulate IKK-mediated IκBα phosphorylation 
in macrophages, promoting NF-κB nuclear translocation and 
upregulating the expression of inflammatory factors such as IL-1β, 
TNF-α, and IL-6 (85); Cd synergistically amplifies this pathway 
through the TLR4/MyD88 signaling pathway, inducing NF-κB 
phosphorylation in astrocytes and releasing TNF-α/IL-1β, thereby 
triggering persistent neuroinflammation (88). The two synergistically 
activate the NF-κB pathway to enhance neuroinflammation, creating 
a strong pro-inflammatory environment. They facilitate the entry of 
leukocytes into the ischemic penumbra by improving macrophage 
phagocytosis and increasing vascular permeability, significantly 
elevating the risk of stroke. In addition, As and Hg jointly inhibit the 
glutathione system to exacerbate oxidative stress, increasing reactive 
oxygen species production by 30–50% compared with individual 
exposures, collectively reflecting the synergistic effect of combined 
heavy metal exposure (153).

3.6.2 Antagonistic effects of combined heavy 
metal exposure

Zn can antagonize Cu overload-induced neurodamage by 
maintaining metal ion homeostasis in the body: on one hand, it 
reduces Cu entry into neurons by competing for the transporter CTR1 
and regulates cuproptosis (154, 155); on the other hand, as a cofactor 
of SOD, it enhances its activity and reduces Cu-mediated ROS 
production (156). The two exhibit an antagonistic effect through 
transport competition, regulation of cell death, and balance of the 
antioxidant system.

3.6.3 Additive effects of combined heavy metal 
exposure

Pb reduces the expression of tight junction proteins via the MAPK 
and PI3K/AKT pathways (113); Cd damages endothelial cells through 
oxidative stress, disrupts pericyte-endothelial interactions, and 
activates the NF-κB pathway (79, 99, 120); Zn overload impairs the 
BBB via Drp1-dependent mitochondrial fission and activation of 
MMP-2/9 (103, 119); As degrades VE-cadherin and downregulates 
the ACE2/MasR axis by activating CAPN-1 (117); MeHg induces 
overexpression of VEGF and its receptors, leading to vascular leakage 
(114). These heavy metals damage the BBB through mechanisms such 
as disrupting tight junctions, inducing oxidative stress, activating 

proteases, and interfering with angiogenesis. When co-exposed, these 
mechanisms act synergistically, potentially resulting in greater BBB 
disruption than single exposures, exhibiting an additive effect.

4 Targeted therapies for heavy 
metal-related ischemic stroke

4.1 Antioxidant

Natural antioxidants safeguard particular tissues from metal-
induced neurotoxicity by removing free radicals, regulating redox 
levels, or increasing the efficacy of endogenous antioxidant enzymes. 
Tannic acid (TA) reduces the accumulation of Cd2+ in the brain by 
competitively binding to them. At the same time, it selectively 
increases the activity of catalase (CAT) and GPx in the hippocampus. 
This significantly reduces oxidative damage in models of chronic Cd/
Pb exposure (12). Dansheninone IIA (TSA) ameliorates Pb-induced 
cognitive impairment by elevating SOD and GSH levels, decreasing 
malondialdehyde (MDA) concentration, and synergistically 
enhancing brain-derived neurotrophic factor (BDNF) expression 
(157). Natural polyphenolic compounds, including hesperidin (HP) 
and resveratrol, alleviate Cd-induced oxidative stress and synaptic 
impairment by reestablishing the GSH/non-protein thiol (NP-SH) 
balance, preventing lipid peroxidation (LPO) and protein 
carbonylation (PC), directly neutralizing reactive oxygen species 
(ROS), and improving cytochrome P450 enzymes to reduce neuronal 
apoptosis (158, 159). Curcumin augments the activity of SOD and 
GPx by chelating Cu2+ and Zn2+. It enhances bioavailability by 
employing mitochondrial approaches such as triphenylphosphonium 
(TPP) modification, consequently amplifying its antioxidant and anti-
apoptotic properties (160, 161).

N-acetylcysteine (NAC) is a synthetic antioxidant that possesses 
metal chelation and antioxidant properties. The thiol group can 
directly chelate chromium, Cd, and cobalt ions, inhibiting their 
intestinal absorption and subsequent neurotoxicity. In studies of Hg 
or Pb poisoning, NAC helps protect brain cells by balancing GSH 
levels and reducing malondialdehyde (MDA) concentrations, which 
can prevent damage to DNA and cell death. Nanoparticle delivery 
techniques greatly improve the concentration of NAC in the brain 
(162–164). In addition, 14.7-aminoquinoline derivatives impede the 
Fenton reaction by Cu chelation and stimulate the Nrf2 pathway, 
enhancing the transcription of antioxidant enzymes, showing 
significant metal antagonistic properties (165, 166).

4.2 Metal chelators

Metal chelators bind to heavy metal ions in the body, which assists 
in decreasing their buildup and neurotoxicity. In the ischemia/
reperfusion (I/R) injury model caused by middle cerebral artery 
occlusion (MCAO), the Zn chelator TPEN markedly reduced post-
stroke inflammation and neuronal damage. This was achieved by 
decreasing the expression of pro-inflammatory cytokines (TNF-α, 
IL-6), obstructing the activation of the NF-κB pathway, and elevating 
the levels of the anti-inflammatory cytokine IL-10 (13). Peridin, a 
natural Zn chelator, on the other hand, fought off Zn-induced 
neurotoxicity and maintained spatial memory function (167). 
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Calcium disodium EDTA (Ca-EDTA), a traditional chelator, has 
demonstrated the ability to counteract the inhibitory effects of Zn2+ 
on thrombolytic therapy. In vitro experiments revealed that it nearly 
doubled the efficacy of tissue plasminogen activator (tPA), restoring 
its activity by 35–50%. In in vivo models, it significantly enhanced 
reperfusion rates (from a baseline of 45 to 75–80%) while diminishing 
the risk of hemorrhage (168, 169). Notably, nano-delivery systems can 
further enhance the neuroprotective efficacy of chelators. For instance, 
polysorbate-80-coated polymeric nanoparticles enable efficient 
delivery of the hexadentate iron chelator desferrioxamine across the 
BBB, specifically clearing abnormally accumulated iron and Cu ions 
in the brain. This process inhibits oxidative stress and cuproptosis, 
thereby achieving precise protection of neurons (170).

4.3 Dietary adjustment

Dietary adjustments hold significant intervention value in heavy 
metal-related ischemic stroke. Studies indicate that Cu, an essential 
neuromodulator in cerebral ischemia/reperfusion injury, may 
exacerbate pathological processes by inducing cuproptosis via 
oxidative stress when in excess, making the regulation of Cu 
homeostasis a potential therapeutic target (170). Nutritional 
interventions act through multiple mechanisms: antioxidant nutrients 
(e.g., B vitamins, glutathione, Zn) alleviate free radical damage and 
improve neurological recovery; protein supplementation reverses 
suppressed protein synthesis in ischemic regions, promoting cognitive 
recovery. Additionally, stroke patients often have insufficient Zn 
intake, and Zn supplementation can ameliorate neurological deficits 
(171). These findings support the positive role of diet in regulating 
heavy metal toxicity, alleviating oxidative stress, and facilitating 
stroke rehabilitation.

4.4 Other neuroprotective strategies

In addition to antioxidant and chelation therapies, interventions 
targeting inflammatory pathways and epigenetic regulation have also 
demonstrated neuroprotective potential. For example, MeHg induces 
inflammatory responses by activating microglial NLRP3 
inflammasomes and autophagosomes. The NLRP3 inhibitor MCC950 
can simultaneously mitigate MeHg-induced microglial damage and 
inflammation triggered by Cu ion-activated TLR4 signaling (14). In 
an As trioxide (ATO) exposure model, the calpain-1 (CAPN-1) 
inhibitor ALLM exerts vascular protective effects by improving 
endothelial cell dysfunction (such as increased vascular permeability 
and abnormal low-density lipoprotein uptake) through the inhibition 
of CAPN-1 activity (117).

Disulfiram (DSF) has been shown to protect mitochondrial 
integrity and improve outcomes in cerebral ischemia in mice by 
downregulating FDX1 to regulate Cu homeostasis, inhibiting the 
HSP70/TLR4/NLRP3 inflammatory pathway, and reducing oxidative 
stress (76). Additionally, RNA interference targeting the epigenetic 
regulator ASH2L (anti-ASH2L short hairpin RNA (shRNA) adeno-
associated virus) reduces the expression of Cu transporters (CTR1/
STEAP4), thus decreasing Cu uptake by endothelial cells and reversing 
Cu-induced oxidative stress, inflammation, and vascular dysfunction 
(15, 104).

RNA interference (RNAi) shows promise as a neuroprotective 
strategy for improving ischemic stroke by regulating Cu metabolism. 
As an essential trace element in cerebral ischemia/reperfusion (I/R) 
injury, Cu can induce oxidative stress and cuprotosis (a Cu-dependent 
form of cell death) when in excess. RNAi can target Cu transporters 
(e.g., ATP7A, ATP7B), Cu chaperones (e.g., COX17, CCS), and 
Cu-related enzymes (e.g., SOD1) to regulate the intracellular 
distribution and activity of Cu ions. This regulation alleviates oxidative 
damage, inflammatory responses, and mitochondrial dysfunction, 
thereby reducing neuronal death and enhancing the therapeutic 
efficacy in stroke (170).

It should be  noted that most of the targeted therapeutic 
strategies discussed in this section, including the use of 
antioxidants, metal chelators, dietary adjustments, and other 
neuroprotective interventions, currently rely mainly on preclinical 
evidence from animal models and in vitro studies. Direct clinical 
translational data specific to heavy metal-related ischemic stroke 
remain relatively limited. This is associated with the complexity 
of environmental exposure patterns, the difficulty in classifying 
patient subgroups according to heavy metal exposure status, and 
the fact that research in this field is still in its early stages. 
However, mechanistic findings from preclinical studies—such as 
the neuroprotective effects of TA in alleviating Cd-induced 
oxidative damage, the ability of Ca-EDTA to enhance thrombolysis 
by chelating Zn, and the role of RNAi in regulating Cu 
homeostasis—provide sufficient basis for subsequent clinical 
exploration. They also lay the groundwork for designing targeted 
clinical trials to verify the therapeutic potential of these strategies 
in populations with heavy metal-related cerebrovascular damage.

5 Conclusion

This review thoroughly examines the pathogenic role of heavy 
metals (Pb, Cd, As, Hg, Cu, Zn) in ischemic stroke, emphasizing 
their complex effects via interconnected molecular processes. 
Heavy metals specifically induce oxidative stress by activating 
NOX and impairing mitochondrial function; modulate 
neuroinflammation through the NF-κB/NLRP3 signaling 
pathway; disrupt endothelial tight junctions, compromising the 
integrity of the BBB; interfere with glutamatergic 
neurotransmission via excitotoxicity mediated by Zn/Pb; and 
disrupt coagulation processes by excessively activating platelets.

Heavy metal intake is a modifiable risk factor for stroke, 
according to this innovative study that combines molecular 
neurology with environmental toxicology. Researchers should 
devote more time to studying translatable approaches so they can 
develop non-invasive biomarkers for early stroke risk assessment, 
target metal transport proteins, and improve our pharmacological 
understanding of metal transporters. Researchers should also look 
at community-based initiatives to lower metal exposure in the 
environment and the spatiotemporal modeling of metal-induced 
harm. These multi-target treatments consider the neurovascular 
architecture changes over time in addition to the short-term 
impacts of metal poisoning.

Heavy metal ingestion is a modifiable risk factor for stroke, as 
shown by many pieces of evidence presented in this novel review 
that innovatively combines molecular neurology with 
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environmental toxicology. Strategies oriented toward public 
health intervention should be the primary goal of future studies. 
This includes developing non-invasive biomarkers to assess the 
risk of stroke at an early stage, identifying and pharmacologically 
modifying metal transport proteins, and expanding our 
understanding of metal transporters. Research on community-
based initiatives that decrease metal exposure in the environment 
and spatial–temporal modeling of metal-induced harm are also 
warranted. The results of this study provide important information 
for the design of long-term public health programs and the 
mitigation of heavy metal-induced cerebrovascular damage.
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