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Objective: To investigate the association between occupational heat exposure
and hyperuricemia among petrochemical workers.

Methods: We retrospectively analyzed the association between workplace
heat exposure and hyperuricemia by using 10 years of occupational health
examination records from 2,312 petrochemical workers in Fujian Province,
China. Generalized linear models (GLMs) were employed to estimate the effects
of individual exposures. Weighted quantile sum (WQS) regression model was
used to evaluate the combined effects of multiple occupational exposures and
to identify the relative contribution of each exposure factor. A hyperuricemia
risk prediction model was developed using the LightGBM machine-learning
algorithm, with feature importance assessed using SHAP (SHapley Additive
exPlanations) values.

Results: Occupational heat exposure was significantly associated with an
increased risk of hyperuricemia (OR =1.68, 95% Cl: 1.28-2.20). In the GLM
analysis, co-exposure to heat with benzene (OR =193, 95% Cl| 1.05-3.55),
H,S (OR = 3.38, 95% Cl 1.94-5.88), gasoline (OR = 2.58, 95% Cl| 149-448),
acid anhydride (OR =2.21, 95% Cl 1.09-4.48) and CO (OR =2.14, 95% CI
1.16-3.97) further increased the risk (all p < 0.05), suggesting synergistic effects.
The WQS analysis indicated that in the mixed occupational hazards exposure,
heat exposure (49.2%) contributing nearly half the effect to the overall effect.
The LightGBM machine learning model identified length of service, age, BMI,
gender, and heat exposure as the main predictors of hyperuricemia. The SHAP
analysis confirmed heat exposure as a key independent contributor alongside
length of service.

Conclusion: Occupational heat exposurein petrochemicalsettingsis significantly
associated with hyperuricemia, suggesting potential early renal dysfunction risk.
Integrating machine learning—based predictive models into workplace health
surveillance may facilitate the early identification and management of high-risk
workers. However, causal inference remains limited by the retrospective design
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GRAPHICAL ABSTRACT

and potential residual confounding, underscoring the need for prospective
studies to validate and extend these findings.

KEYWORDS

occupational heat exposure, hyperuricemia, petrochemical workers, machine
learning, renal dysfunction

1 Introduction

The petrochemical industry involves the processing and
transformation of petroleum-derived chemical raw materials, where
high temperatures are essential for operations like catalytic cracking
and hydrocracking (1, 2). Thus, occupational heat exposure represents
a significant workplace hazard. In recent years, climate change-
induced extreme heat events have further exacerbated the burden of
workplace heat exposure (3), which may significantly increase health
risks among petrochemical workers (4, 5). The kidneys, which play a
vital role in maintaining fluid and electrolyte homeostasis and in
excreting metabolic waste products, are particularly vulnerable to heat
stress (6). Under heat stress, peripheral vasodilation and sweating lead
to substantial fluid loss, resulting in dehydration and reduced urinary
excretion, which in turn elevates serum uric acid levels. Moreover,
heat stress induces systemic oxidative stress and inflammatory
responses that further impair renal function (7), thereby contributing
to the development of both acute kidney injury (AKI) and chronic
kidney disease (CKD) (8).

An increasing body of evidence has linked occupational heat
exposure to renal dysfunction (9-11). Archived case reports from the
US Occupational Safety and Health Administration (OSHA) indicate
that heat-related acute kidney injury (HR-AKI) occurs across diverse
occupational settings, both indoors and outdoors (12). However,
research focusing on the renal health effects of heat exposure among
petrochemical workers remains limited. Our preliminary analysis
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identified hyperuricemia as the most common abnormality related to
impaired kidney function among petrochemical workers. As the end
product of purine metabolism, uric acid contributes to intracellular
endothelial
glomerulosclerosis (13, 14). Furthermore, hyperuricemia is an

oxidation, dysfunction, renal fibrosis, and
established independent risk factor for the development of incident
CKD and rapid renal function decline, as well as a biomarker for early-
stage renal dysfunction (15, 16), being closely associated with declining
eGFR, albuminuria, and kidney failure (17). Evidence also suggests
that treating hyperuricemia in its early stage may delay or even prevent
the onset of CKD (18). Therefore, hyperuricemia was selected as the
primary indicator of early renal dysfunction in this study. Existing
epidemiological studies have reported a higher prevalence of chronic
kidney disease (17.9%) among residents near refineries compared to
the general population (12.3%) (19), along with elevated uric acid
levels in oilfield workers and local wildlife (20, 21). These findings
highlight the need to investigate the association between occupational
heat exposure and hyperuricemia among petrochemical workers to
better inform targeted heat-related health protection strategies.
Occupational exposures in the petrochemical industry often involve
co-exposure to multiple hazards, such as benzene, H,S and other
chemicals, which may interact synergistically and amplify health risks.
Existing evidence suggests that the combination of thermal and
chemical exposures in petrochemical operations contributes to
increased vulnerability to a range of diseases (22, 23). Traditional single-
exposure statistical models are often inadequate for capturing the
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complex interactions of multiple exposures. By contrast, WQS
regression can generate exposure indices that identify the most
influential risk factors while accounting for interaction effects among
exposures (24). Furthermore, the integration of machine learning with
SHAP values offers robust methodologies for investigating nonlinear
and high-dimensional relationships inherent in chemical and
environmental mixtures (25, 26). Therefore, by combining multiple
statistical models and machine learning algorithms, this study may yield
valuable insights for developing prevention strategies and promoting the
occupational health of petrochemical workers. In this study, we analyzed
the association between occupational heat exposure and hyperuricemia
among petrochemical workers using multiple statistical models and
machine learning methodologies, with aims to provide evidence-based
guidance for occupational health management and mitigate the burden
of heat-related renal impairment in high-risk industrial settings.

2 Materials and methods
2.1 Study design and participants

This retrospective study was conducted using occupational health
examination records collected between January 2013 and December
2022 from the Quangang Petrochemical Industrial Park (QPIP),
Quanzhou, Fujian Province, China. Established in 2005, QPIP covers
an area of about 30 square kilometers and has a population of around
360,000. Its industrial chain mainly involves ethylene, propylene,
carbon tetrachloride, benzene and paraxylene (27).

Under the Law on the Prevention and Control of Occupational
Diseases, employers are required to provide regular health
examinations for workers exposed to occupational hazards, typically
conducted from March to August each year. This uniform schedule
reduces seasonal variability between individuals. According to the
examination protocol, all workers were instructed to fast overnight
before the examination and to remain fasting on the morning of the
test day. In this study, historical occupational health records were
obtained from the Minnan Branch of the First Affiliated Hospital of
Fujian Medical University. It is the sole government-designated
hospital authorized to conduct occupational health examinations in
the region. All data were de-identified before delivery. All raw data
underwent standardized processing, including variable recoding,
value assignment, labeling, and logical consistency check. To ensure
accuracy and completeness, the processed dataset was further
validated through consultations with occupational health experts and
enterprise management personnel.

The extracted data includes the following information: (1)
Demographic characteristics, such as gender, age, and lifestyle factors
(including smoking/drinking frequency); (2) General physical
examination, such as height, weight, and body mass index (BMI); (3)
Pre-existing chronic conditions (e.g., hyperglycemia, hypertension);
and (4) Occupational exposure profile, such as length of service, types
of occupational hazards (e.g., heat, benzene, methanol, gasoline, acid
anhydrides, carbon monoxide (CO), hydrogen sulfide (H,S), ammonia
(NH,), and noise). Routine monitoring of these occupational hazard
factors was conducted by Fujian Center for Prevention and Control of
Occupational Disease and Chemical Poisoning, which classified and
reported exposures according to the National Occupational Hazard
Detection Criteria. These records were incorporated into workers’
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occupational health files. The study was approved by the Medical
Ethics Committee of Fujian Medical University (Approval No.: Fuyi
Medical Ethics Review No. 111).

Workers were included in the analysis if they met the following
criteria: (1) Aged 18-65 years with >1 year of continuous frontline
work in petrochemical production; and (2) With complete
occupational exposure documentation. The following workers were
excluded from data analysis: (1) Pre-existing diagnosis of CKD; (2)
Missing key occupational exposure and outcome data in health
records; (3) Temporary or short-term rotational work of < 1 year; (4)
Comorbid thyroid disorders, hepatic dysfunction, or pre-existing
renal impairment; and (5) History of severe cardiovascular diseases or
malignant tumors. Among the occupational health examination
records obtained from 2013 to 2022, not all workers participated in
every examination, and to avoid within-person correlation,
we structured the dataset such that each worker contributed only one
observation: the first record with hyperuricemia or, if none, the most
recent record without hyperuricemia. Thus, the dataset did not
include repeated observations from the same individual. Finally, 2,312
petrochemical workers were included in the analysis.

2.2 Definitions of exposure variables and
health outcomes

In this study, heat exposure is a categorical hazard (variable)
documented in the occupational health examination records. This
classification was based on occupational monitoring data collected
annually by the Fujian Center for Prevention and Control of
Occupational Disease and Chemical Poisoning. The classification
thresholds were defined in accordance with GBZ 2.2-2007:
Measurement of physical factors in the workplace Part 7. High-
temperature work is defined as an operation in which the average
WBGT index at the worksite is >25 °C during production activities
(28, 29).

Body mass index (BMI): According to cut-off points for Chinese
adults, overweight and obesity were defined as 24 < BMI < 28 and
BMI > 28 kg/m?, respectively (30).

Frequency of drinking was divided into three conditions: (1)
Never drinking was defined as not consuming any alcohol or alcoholic
beverages for at least 6 months prior to the survey; (2) Often drinking
was defined as consuming alcohol at least twice a week, with an intake
greater than 50 g per occasion, for more than half a year; and (3)
Occasionally drinking was between often drinking and never drinking.

Smoking frequency was divided into three conditions: (1) Never
smoking was defined as not smoking for at least 6 months; (2) Often
smoking was defined as smoking >1 cigarette per day or >7 cigarettes
per week for at least half a year within the past year; and (3) Occasional
smoking is between often smoking and never smoking.

Hyperuricemia was defined as serum uric acid > 420 pmol/L
(7.0 mg/dL) in males and serum uric acid > 360 pmol/L (6.0 mg/dL)
in females (31).

Hypertension: According to The Chinese Guidelines for
Prevention and Treatment of Hypertension (2024 Revision) (32), it is
defined as systolic blood pressure (SBP) > 140 mmHg and/or diastolic
blood pressure (DBP) > 90 mmHg without any antihypertensive
drugs, or those who have a previous history of hypertension and are
currently taking antihypertensive drugs.
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Hyperglycemia: According to The Chinese Guidelines for the
Prevention and Treatment of Type 2 Diabetes criteria (33), fasting
blood glucose>7.0 mmol/L; glycosylated hemoglobin level>6.5%, or
self-reported formal institutional diagnosis of diabetes, or currently
receiving hypoglycemic drugs.

2.3 Statistical analysis

Descriptive analysis was conducted to examine the
characteristics of occupational hazards exposure and the main
occupational health issues among petrochemical workers.
Continuous variables were presented as mean * standard deviation
(X+SD), and comparisons between groups were conducted using
independent sample t-tests. Categorical data are presented as
frequencies and percentages (N, %), with group comparisons
conducted using the chi-square test.

Three-stage stepwise adjusted GLM models were established to
investigate the associations between each occupational hazard and
hyperuricemia. Model 1 (unadjusted) included the single occupational
hazard factor without adjusting for any covariates. Model 2 (basic
adjustment) was adjusted for gender, age, and BMI. Model 3 (fully
adjusted) was further adjusted for additional confounders, including
length of service, hyperglycemia, hypertension, smoking, and alcohol.
Covariate selection was guided by a DAG developed from prior
literature and study variables. In addition, we explored potential
unmeasured confounders between occupational hazards and
hyperuricemia by calculating E-value. Additional stratified analyses
were conducted by gender, age, BMI, and length of service to explore
potential effect modification.

To evaluate the joint effects of combined exposure to heat and
other occupational exposures, GLMs were performed to estimate the
multiplicative interactions. Additive interactions were assessed using
the relative excess risk of interaction (RERI), the attributable
proportion of interaction (AP), and the synergy index (SI). The
estimated interaction effects and their 95% confidence intervals (95%
CI) were visualized using forest plots.

To investigate the combined effects of mixed occupational hazards
on hyperuricemia and assess the effect contributions of individual
factors, a WQS regression model was constructed incorporating 9
occupational hazards (34). Given the primary variables were
categorical, WQS regression is well-suited for the analysis of
categorical or ordinal exposure indicators. The number of quantiles
was set to null. The dataset was randomly split into training (60%) and
validation (40%) subsets (random seed = 1800). Each exposure
variable was assigned a weight using 200 bootstrap samplings to
screen factors that contribute significantly to the outcome,
constraining the overall effect direction to be positive (> 0). Weight
distributions were visualized using kernel density plots. To further test
the robustness of the results, we conducted negative-direction analysis
of WQS model and varied the train/validation split and random seed
in the WQS model.

In the initial model comparison step, nine machine learning
algorithms were evaluated to identify the optimal classifier. The
dataset was randomly partitioned into training (70%) and
validation (30%) subsets to assess the predictive performance of
each model. To prevent data leakage, all preprocessing steps,
including missing data imputation, feature scaling, and feature
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selection (collinearity diagnosis and LASSO regression) were
performed strictly within each training fold during 10-fold cross-
validation, random seeds:1000. Key predictors identified by
LASSO were then used to train nine machine learning models:
Logistic Regression (LR), XGBoost Classifier (XGB), LightGBM
Classifier (LGBM), Random Forest Classifier (RF), AdaBoost
Classifier (AdaBoost), Gaussian Naive Bayes (GaussianNB),
Complement Naive Bayes (ComplementNB), Multilayer
Perceptron Classifier (MLP), Support Vector Classifier (SVC).
Model performance was evaluated using receiver operating
characteristic (ROC), area under the curve (AUC), negative
predictive value, precision, recall, sensitivity, F1 score, and decision
curve analysis (DCA). In further developing a hyperuricemia
prediction model using the LightGBM classifier, the dataset was
randomly divided into training (70%) and test (30%) subsets, and
the validation set was generated from the training subset through
a 10-fold cross-validation procedure. Model interpretability was
enhanced using SHAP values to quantify the contribution of
each predictor.

All analyses were performed using R (version 4.2.3), python
(version 3.11.4), and SAS (version 9.4). Statistical tests were conducted
tests, and a p <005 was considered

using  two-sided

statistically significant.

3 Results

3.1 Comparison of characteristics
between hyperuricemia and control
groups

In this study, among the 2,312 workers, 1,390 (60.1%) had
hyperuricemia. Compared to those without hyperuricemia, affected
workers had significantly higher BMI (24.23 vs. 22.98 kg/m?) and a
higher proportion of males (83.96% vs. 51.84%). As shown in Table 1,
workers with hyperuricemia were more likely exposed to occupational
hazards, including heat, NH;, benzene, methanol, acid anhydrides,
CO, and noise (all p < 0.05).

3.2 Association between occupational
hazards and hyperuricemia

A three-stage stepwise GLM was used to analyze each hazard’s
association with hyperuricemia. As shown in Figure 1, in
unadjusted analyses, exposure to heat (OR = 2.73, 95% CI: 2.17-
3.45), NH, (OR = 2.91, 95% CI: 2.16-3.91), benzene (OR = 1.88,
95% CI: 1.50-2.37), methanol (OR = 1.99, 95% CI: 1.55-2.56), acid
anhydrides (OR = 2.06, 95% CI: 1.59-2.66), CO (OR = 1.87, 95%
CI: 1.49-2.34) and noise (OR =1.27, 95% CI: 1.07-1.51) was
associated with a higher risk of hyperuricemia (p < 0.05). After
adjustment for age, gender, and BMI, exposure to heat (OR = 1.58,
95% CI: 1.21-2.06) remained statistically significant. In the fully
adjusted model, occupational heat exposure remained a significant
predictor of hyperuricemia (OR = 1.68, 95% CI: 1.28-2.20), while
exposure to gasoline (OR =0.60, 95% CI: 0.48-0.75) and H,S
(OR =0.72, 95% CI: 0.58-0.89) were associated with lower odds
of hyperuricemia.
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TABLE 1 Characteristics of petrochemical workers between groups with or without hyperuricemia, n (%).

Variable Total (n = 2,312) Control (n = 922) Hyperuricemia
(n =1,390)
BMI (kg/m?) 23.73£3.12 2298 £2.92 2423 +£3.15 9.58 <0.001
Age (years) 40.74 £ 11.21 44.42 = 11.15 38.31 £10.57 13.31 <0.001
Length of service (years) 20.05 + 12.04 23.20 +12.25 17.96 + 11.44 10.48 <0.001
Gender
Female 667 (28.85) 444 (48.16) 223 (16.04) 278.49 <0.001
Male 1,645 (71.15) 478 (51.84) 1,167 (83.96)
Smoking
Never 1,602 (69.29) 714 (77.44) 888 (63.89) 60.11 <0.001
Occasionally 263 (11.38) 55 (5.97) 208 (14.96)
Often 447 (19.33) 153 (16.59) 294 (21.15)
Drinking
Never 1,226 (53.03) 574 (62.26) 652 (46.91) 71.11 <0.001
Occasionally 889 (38.45) 258 (27.98) 631 (45.39)
Often 197 (8.52) 90 (9.76) 107 (7.70)
Heat
No 1834 (79.33) 814 (88.29) 1,020 (73.38) 75.09 <0.001
Yes 478 (20.67) 108 (11.71) 370 (26.62)
NH;
No 2018 (87.28) 862 (93.49) 1,156 (83.17) 53.26 <0.001
Yes 294 (12.72) 60 (6.51) 234 (16.83)
Benzene
No 1880 (81.31) 800 (86.77) 1,080 (77.70) 30.01 <0.001
Yes 432 (18.69) 122 (13.23) 310 (22.30)
Methanol
No 1958 (84.69) 827 (89.70) 1,131 (81.37) 29.66 <0.001
Yes 354 (15.31) 95 (10.30) 259 (18.63)
H,S
No 1,519 (65.70) 625 (67.79) 894 (64.32) 2.96 0.085
Yes 793 (34.30) 297 (32.21) 496 (35.68)
Gasoline
No 1,616 (69.90) 643 (69.74) 973 (70.00) 0.02 0.894
Yes 696 (30.10) 279 (30.26) 417 (30.00)
Acid anhydrides
No 1969 (85.16) 832 (90.24) 1,137 (81.80) 31.25 <0.001
Yes 343 (14.84) 90 (9.76) 253 (18.20)
Cco
No 1872 (80.97) 797 (86.44) 1,075 (77.34) 29.82 <0.001
Yes 440 (19.03) 125 (13.56) 315 (22.66)
Noise
No 1,351 (58.43) 571 (61.93) 780 (56.12) 7.72 0.005
Yes 961 (41.57) 351 (38.07) 610 (43.88)
Hyperglycemia
No 2,284 (98.79) 908 (98.48) 1,376 (98.99) 1.21 0.271

(Continued)
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TABLE 1 (Continued)

Variable Total (n = 2,312) Control (n = 922) Hyperuricemia
(n =1,390)
Yes 28 (1.21) 14 (1.52) 14 (1.01)
Hypertension
No 2077 (89.84) 824 (89.37) 1,253 (90.14) 036 0.547
Yes 235 (10.16) 98 (10.63) 137 (9.86)

Bold cells mean statistically significant.

@+ Model 1 OR (95% CI)
*@+  Model 2 OR (95% CI)

FIGURE 1

Variable Model 1 OR (95% CI) Model 2 OR (95% CI)  Model 3 OR (95% CI )| ** Model 3 OR (95% CI)
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Odds ratios for hyperuricemia associated with occupational hazards. Model 1 (unadjusted); Model 2 (adjusted for gender, age, and BMI); and Model 3
(adjusted for gender, age, and BMI, length of service, hyperglycemia, hypertension, smoking, and alcohol consumption). *p < 0.05.

-~ —>
Low Risk High Risk

3.3 The contribution proportions of various
occupational exposures to hyperuricemia

Figure 2 presents the weights of each hazard in the WQS model.
Occupational heat exposure had the highest weight (49.2%),
indicating it was the dominant contributor to the combined risk.
Methanol and NH; were the next largest contributors (22.1 and 11.8%,
respectively).

3.4 Joint effects of combined exposure to
heat and other occupational hazards on
hyperuricemia

In this study, we further examined the joint effects of heat and other
occupational exposures on hyperuricemia. In the fully adjusted Model
3, results of multiplicative interaction analyses showed that heat
combined with benzene (OR=1.93, 95% CI 1.05-3.55), H,S
(OR =3.38, 95% CI 1.94-5.88), gasoline (OR =2.58, 95% CI 1.49-
4.48), acid anhydride (OR=2.21, 95% CI 1.09-4.48) and CO
(OR =2.14, 95% CI 1.16-3.97) significantly increased the risk of
hyperuricemia (all p <0.05), as shown in Figure 3, while additive
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interaction analyses showed that these joint exposures did not exhibit
significant positive additive effects (Supplementary Figure S3;
Supplementary Table S3).

3.5 Development of hyperuricemia risk
prediction model using machine learning
algorithms

3.5.1 Dataset split

To develop the hyperuricemia risk prediction model using
machine learning algorithms, the dataset was split into a training set
(n =1,618) and a validation set (n = 694) in a 7:3 ratio. With the
exception of noise exposure, no significant differences were observed
in key demographic or baseline characteristics between the two
datasets (p >0.05), indicating good comparability. Detailed
information is provided in Supplementary Table S4.

3.5.2 Feature selection using LASSO regression
Variables showing significant differences in the training set were

entered into a LASSO regression to identify the most influential

predictors of hyperuricemia. The optimal A value corresponding to
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FIGURE 2
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the minimum standard error distance was 0. 009, yielding 17
non-zero coefficient variables (Supplementary Table S6). The
selected variables by LASSO regression include BMI, age, gender,
smoking, alcohol drinking, length of service, benzene, noise,
gasoline, and heat, used for model prediction and model
construction. The results of the LASSO feature selection are shown
in Figure 4.

3.5.3 Model performance comparison

The results revealed that the Random Forest model achieved the
highest AUC in the training set, while the LightGBM model
performed best in the validation set. However, discrepancies
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between training and validation results suggested potential
overfitting in the Random Forest model, whereas LightGBM
exhibited superior generalizability and stability. Based on these
findings, the LightGBM model was selected for subsequent SHAP-
based interpretability analysis. Detailed results are provided in
Supplementary Tables S7-S9 and Supplementary Figures $19,S20.

3.5.4 LightGBM model training and evaluation

The ROC curve illustrates that Light GBM model achieved AUC
value of 0.99 + 0.01 for the training set, 0.86 + 0.026 for the validation
set, and 0.86 for the test set. The AUC difference between the
validation and test sets was less than 10%, indicating good model
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FIGURE 4
Feature selection of LASSO regression. (A) Shows the coefficient changes of LASSO regression; and (B) shows the fitting effect of LASSO regression.

generalization. The calibration curve showed good agreement between
predicted probabilities and observed outcomes, with minor deviations
at lower and midrange probability levels. Decision curve analysis
(DCA) revealed that, across a wide range of threshold probabilities
(0.1-0.7), the LightGBM model yielded a greater net benefit than both
the “treat-all” and “treat-none” strategies. The confusion matrix
indicated minimal risk of overfitting in the training set but a slightly
elevated false-positive rate in the validation set. In addition, the KS
statistics confirmed excellent
generalizability (KS = 0.60),
performance observed at a threshold of 0.65. Detailed results are

discriminatory capacity and

with the optimal classification
shown in Figure 5.

3.5.5 Quantifying the contribution of predictive
features using SHAP values

The results showed that the SHAP values for BMI and heat were
positively associated with hyperuricemia, suggesting an increased risk
of hyperuricemia with higher levels of these variables, whereas length
of service and age showed a negative association. The bar chart
represents the relative importance of each feature in the LightGBM
model, with the top five most important features were length of
service, age, BMI, gender, and heat exposure. Heat exposure was
strongly occupational hazards associated with an increased risk of
hyperuricemia. The detailed SHAP analysis results are shown in
Figure 6.

4 Discussion

This study examined the association between occupational heat
exposure and hyperuricemia among petrochemical workers. Our
findings suggested that workplace heat exposure was associated with
an increased risk of hyperuricemia. Using WQS regressions,
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we identified heat exposure as the most influential occupational
hazard contributing to hyperuricemia risk. Additionally, a machine
learning-based prediction model demonstrated high accuracy in
forecasting hyperuricemia risk, with SHAP analysis confirmed the
strong contribution of heat exposure.

Exposure to high temperatures has emerged as a significant public
health and occupational health concern, particularly due to its
association with renal impairment. Prolonged exposure to process-
generated heat exacerbates thermal strain and predisposes workers to
dehydration and kidney injury (35). Heat stress is a potential
contributing factor to chronic kidney disease of unknown etiology
(CKDu) in agricultural communities, which is increasingly recognized
as a major cause of chronic kidney disease (36). This CKDu, also
observed in Central America, often referred to as Mesoamerican
nephropathy, has been epidemiologically and experimentally linked
to recurrent dehydration and chronic heat exposure (37). Mounting
evidence suggests that this condition may represent a distinct form of
heat stress nephropathy (HSN), potentially exacerbated by global
warming (38, 39). Furthermore, a myriad of chronic kidney disease
cases has surfaced among agricultural workers and other individuals
engaged in manual labor across various regions of the world (40). The
disease is strongly correlated with the conditions of working and living
in hot environments (41). Therefore, focusing on early indicators of
renal impairment, such as hyperuricemia, may provide a valuable
approach for early detection and prevention of heat-related
kidney injury.

Petrochemical workers were routinely exposed to multiple
occupational hazards such as heat, noise, and chemical toxins during
the production and processing stages. Those occupational hazards
may impact workers health (42). Salem et al. has reported elevated
levels of urea, creatinine, and uric acid among Libyan petrochemical
workers, suggesting subclinical or overt kidney dysfunction (43).
Consistent with these findings, our results also revealed a high
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prevalence of hyperuricemia among petrochemical workers, which
were significantly associated with heat exposure. Several factors may
contribute to this high hyperuricemia prevalence. First, the study
population consists of frontline occupational workers (male-
dominated), who may inherently represent a higher-risk group and
generally have higher uric acid levels. Second, the petrochemical
industrial park is located in a coastal region, where dietary patterns
often involve high consumption of seafoods (e.g., fish, shrimp, crab,
and shellfish), leading to increased purine intake and elevated serum
uric acid levels. Uric acid, the final product of purine metabolism in
the body, is primarily excreted by the kidneys. Under normal
physiological conditions, serum uric acid levels are maintained within
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a certain range. However, heat exposure may disrupt this balance
through dehydration, reduced renal perfusion, and impaired excretory
function (44), thereby increasing the risk of hyperuricemia. In
workplaces that strictly follow occupational production norms and
supervision of safety departments, the likelihood of petrochemical
workers experiencing rapid and severe renal impairment is relatively
low, while hyperuricemia is one of the early manifestations of renal
dysfunction (45). Accordingly, attention to changes in uric acid levels
and the onset of hyperuricemia may hold greater practical significance
for safeguarding kidney health within this occupational population.
In this study, results of multistage GLM regression suggested a
significant association between heat exposure and hyperuricemia,
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consistent with findings from salt pan workers, sugarcane field
workers, and construction workers (46, 47). Despite differences in
climate and work processes, heat exposure consistently elevates uric
acid levels through biological mechanisms involving inflammation,
oxidative stress, altered metabolism, and cytokine activation (48-50).
Experimental evidence also supports this link, as animal studies have
demonstrated that chronic heat exposure induces elevated serum uric
acid (51). Interestingly, workers with hyperuricemia in our study
tended to be younger and had shorter lengths of service. This
unexpected finding may be attributed to a healthy worker survivor
bias, whereby individuals unable to adapt to hazard exposures often
leave high-exposure jobs earlier, and hiring restrictions might create
a workforce with inherently higher health baseline levels (52, 53).
Additionally, younger workers are frequently assigned to frontline
positions, leading to higher exposure intensity despite shorter tenures
(54), and longer-tenured workers may possess greater self-protective
awareness due to extended training and job rotations, potentially
reducing their risk of hyperuricemia.

In assessing joint effects of combined exposure to heat and other
occupational hazards on hyperuricemia, significant multiplicative
interaction effects were observed. Interestingly, the combined exposure
to heat and gasoline or H,S, which both associated with higher
hyperuricemia risk, despite their opposing individual effects. However,
positive additive interactions were not observed, this finding consistent
with Chen Y et al. (29), their research show that a multiplicative
interaction rather than additive interaction between heat exposure and
dust exposure in the development of hyperuricemia in steelworkers. A
possible explanation of our study may lie in interaction mechanisms that
modify physiological stress responses. While gasoline exposure alone
may appear inversely associated with hyperuricemia, potentially due to
residual confounding by work location, better ventilation, or health-
based job selection, its co-occurrence with heat exposure may intensify
oxidative and metabolic stress. Heat exposure promotes dehydration,
reduced renal perfusion, and accumulation of reactive oxygen species
(ROS) (55), which can impair uric acid excretion. Combined exposure
to gasoline, containing volatile organic compounds (VOCs), may further
exacerbate oxidative damage and inflammatory pathways, thereby
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amplifying renal tubular dysfunction (56, 57). This synergistic effect
could result in a multiplicative increase in hyperuricemia risk, even when
gasoline alone appears protective. Additionally, workers in high-
temperature units often handle multiple chemical processes
simultaneously, leading to greater overall exposure intensity and
cumulative metabolic burden, which may also contribute to this
combined effect. Krishnamurthy et al. found the potential synergistic
effect between oil exposure and heat (58). The similar joint effect was
observed for the combined exposure to heat and H,S. This apparent
paradox may reflect complex biological interactions and workplace
exposure patterns. At low concentrations, H,S can exert transient
antioxidant effects by reduce the production of ROS (59). However,
under conditions of heat stress, dehydration, and hypoxia, H,S
metabolism may shift toward pro-oxidative and cytotoxic pathways,
enhancing oxidative stress and renal tubular injury (60). Furthermore,
workers exposed to both heat and H,S are typically engaged in frontline
production units with higher overall exposure intensity and workload,
which could amplify metabolic strain and renal burden (61). Therefore,
combined exposure to heat and additional occupational hazards may
further increase hyperuricemia risks among workers.

Traditional single-variable regression approaches often fall short in
capturing the combined effects of multifactorial exposures. In contrast,
the WQS model allows for estimation of cumulative effects while
weighing each exposure’s relative contribution (62). Previous studies
have used the WQS model to analyze the effects of mixed factors on
hyperuricemia and to identify the most influential contributing factors
(63). In this study, our WQS analysis identified heat and methanol
exposure as the dominant contributors to hyperuricemia risk. The WQS
model provides a better understanding of the relative impact of
individual hazards on health outcomes and offers more precise strategies
for pollutant control and management. Given the complexity of
occupational exposures in petrochemical environments, predictive
modeling plays an increasingly important role in occupational health
surveillance. Machine learning models, particularly those that capture
non-linear relationships and interactions, offer substantial advantages
over traditional statistical approaches (64-66). Anttila et al. has already
explored the risk prediction modeling in petrochemical workers, with
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findings indicating that exposure to hydrocarbons in crude oil may
increase the risk of kidney cancer by up to threefold (67). In this study,
we comparison nine supervised learning models to predict
hyperuricemia risk. After cross-validation and performance evaluation,
the LightGBM model was selected for its superior balance of accuracy
and generalizability.

The LightGBM model
performance, but the AUC results suggest potential overfitting. In

demonstrated strong predictive
practical terms, this predictive model may be incorporated into
occupational health surveillance systems to support dynamic risk
stratification and provide early indications of workers at higher risk of
hyperuricemia. Such integration could help inform timely preventive
measures. Nevertheless, further external validation and real-world
implementation studies are warranted before real-world application.
While machine learning algorithms offer strong predictive
performance, they are often criticized for their lack of transparency
(68). To address this, we incorporated SHAP analysis, which has been
widely adopted for interpreting machine learning models. By
calculating the marginal contribution of each feature to the prediction
outcome, SHAP effectively quantified the impact of individual
variables (69). SHAP results confirmed that BMI and heat exposure
are dominant risk factors, offering actionable insights for workplace
surveillance and intervention prioritization.

Although this study identified an association between
occupational heat exposure and hyperuricemia among petrochemical
workers, several limitations should be acknowledged. First, this
research was derived from retrospective health examination records,
and we adopted a complete-case analysis approach for all main
exposure and outcome variables, which may reduce sample size. The
inability to infer causality is also inherently limited. Second, our study
did not capture information on dietary habits, hydration patterns,
genetic predisposition, medication use, metabolic factors, use of
personal protective equipment, medication use, and acclimatization,
which may influence the assessment of heat-hyperuricemia
association. Third, heat exposure in this study primarily refers to
process-generated heat from petrochemical production. Workers’
occupational health examinations were conducted during the warmer
months (March to August) each year, which may potentially
the
hyperuricemia. Nevertheless, the uniform health examination period

overestimate association between heat exposure and
across all workers helps to minimize between-individual seasonal
variability and thus strengthens internal comparability. However, it
should be noted that the lack of year-round health examination data
may limit our ability to fully characterize seasonal variations in the
heat-hyperuricemia relationship. Fourth, during the additive
interaction analysis in this study, some Synergy Index (SI) values
appeared as NaN, likely because the odds ratio (OR) for a single
exposure equaled 1, resulting in a zero denominator in the SI formula.
To obtain valid estimates, we followed the software recommendation
and set recode = TRUE to reverse-code the exposures. This adjustment
ensured computational validity but may have altered the directionality
of the additive interaction estimates (negative). Therefore, the opposite
directions observed between additive and multiplicative interactions
in this study should be interpreted with caution, as they may partly
reflect a computational artifact rather than a genuine antagonistic
interaction on the additive scale. Finally, the absence of creatinine/
eGFR, albuminuria, temperature monitoring during the production
process as well as relevant information regarding the workers’
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production departments, has precluded a more refined assessment of
the association between heat exposure (in terms of intensity and
duration) and additional biomarkers of early renal dysfunction.

To address these limitations, our ongoing prospective cohort
study has been designed to incorporate structured occupational and
dietary questionnaires to systematically collect data on exposure
histories and lifestyle factors, as well as surveying nearby residents as
a control group to better evaluate the health effects of occupational
exposures. Furthermore, we are also actively collaborating with
government monitoring agencies to obtain accurate measurements of
exposure levels and duration for various occupational hazards, and
model dose-response relationships using methods such as restricted
cubic splines. These efforts aim to enhance the robustness of future
analyses and to inform evidence-based strategies for protecting the
health of petrochemical workers.

5 Conclusion

Occupational heat exposure is a prevalent hazard in the
petrochemical industry and is significantly associated with
hyperuricemia. By integrating epidemiological and machine learning
methods, this study quantified both the independent and combined
effects of heat and other hazards on kidney health and identified key
predictors of hyperuricemia risk. Findings of this study highlight the
need for targeted preventive measures, including heat stress reduction
and proactive monitoring high-risk workers. Future research should
explore the biological mechanisms underlying these associations and
externally validate predictive models in diverse occupational settings
to better prevent heat-related early renal dysfunction.
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