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Objective: To investigate the association between occupational heat exposure 
and hyperuricemia among petrochemical workers.
Methods: We retrospectively analyzed the association between workplace 
heat exposure and hyperuricemia by using 10 years of occupational health 
examination records from 2,312 petrochemical workers in Fujian Province, 
China. Generalized linear models (GLMs) were employed to estimate the effects 
of individual exposures. Weighted quantile sum (WQS) regression model was 
used to evaluate the combined effects of multiple occupational exposures and 
to identify the relative contribution of each exposure factor. A hyperuricemia 
risk prediction model was developed using the LightGBM machine-learning 
algorithm, with feature importance assessed using SHAP (SHapley Additive 
exPlanations) values.
Results: Occupational heat exposure was significantly associated with an 
increased risk of hyperuricemia (OR = 1.68, 95% CI: 1.28–2.20). In the GLM 
analysis, co-exposure to heat with benzene (OR = 1.93, 95% CI 1.05–3.55), 
H2S (OR = 3.38, 95% CI 1.94–5.88), gasoline (OR = 2.58, 95% CI 1.49–4.48), 
acid anhydride (OR = 2.21, 95% CI 1.09–4.48) and CO (OR = 2.14, 95% CI 
1.16–3.97) further increased the risk (all p < 0.05), suggesting synergistic effects. 
The WQS analysis indicated that in the mixed occupational hazards exposure, 
heat exposure (49.2%) contributing nearly half the effect to the overall effect. 
The LightGBM machine learning model identified length of service, age, BMI, 
gender, and heat exposure as the main predictors of hyperuricemia. The SHAP 
analysis confirmed heat exposure as a key independent contributor alongside 
length of service.
Conclusion: Occupational heat exposure in petrochemical settings is significantly 
associated with hyperuricemia, suggesting potential early renal dysfunction risk. 
Integrating machine learning–based predictive models into workplace health 
surveillance may facilitate the early identification and management of high-risk 
workers. However, causal inference remains limited by the retrospective design 
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and potential residual confounding, underscoring the need for prospective 
studies to validate and extend these findings.

KEYWORDS

occupational heat exposure, hyperuricemia, petrochemical workers, machine 
learning, renal dysfunction

1 Introduction

The petrochemical industry involves the processing and 
transformation of petroleum-derived chemical raw materials, where 
high temperatures are essential for operations like catalytic cracking 
and hydrocracking (1, 2). Thus, occupational heat exposure represents 
a significant workplace hazard. In recent years, climate change-
induced extreme heat events have further exacerbated the burden of 
workplace heat exposure (3), which may significantly increase health 
risks among petrochemical workers (4, 5). The kidneys, which play a 
vital role in maintaining fluid and electrolyte homeostasis and in 
excreting metabolic waste products, are particularly vulnerable to heat 
stress (6). Under heat stress, peripheral vasodilation and sweating lead 
to substantial fluid loss, resulting in dehydration and reduced urinary 
excretion, which in turn elevates serum uric acid levels. Moreover, 
heat stress induces systemic oxidative stress and inflammatory 
responses that further impair renal function (7), thereby contributing 
to the development of both acute kidney injury (AKI) and chronic 
kidney disease (CKD) (8).

An increasing body of evidence has linked occupational heat 
exposure to renal dysfunction (9–11). Archived case reports from the 
US Occupational Safety and Health Administration (OSHA) indicate 
that heat-related acute kidney injury (HR-AKI) occurs across diverse 
occupational settings, both indoors and outdoors (12). However, 
research focusing on the renal health effects of heat exposure among 
petrochemical workers remains limited. Our preliminary analysis 

identified hyperuricemia as the most common abnormality related to 
impaired kidney function among petrochemical workers. As the end 
product of purine metabolism, uric acid contributes to intracellular 
oxidation, endothelial dysfunction, renal fibrosis, and 
glomerulosclerosis (13, 14). Furthermore, hyperuricemia is an 
established independent risk factor for the development of incident 
CKD and rapid renal function decline, as well as a biomarker for early-
stage renal dysfunction (15, 16), being closely associated with declining 
eGFR, albuminuria, and kidney failure (17). Evidence also suggests 
that treating hyperuricemia in its early stage may delay or even prevent 
the onset of CKD (18). Therefore, hyperuricemia was selected as the 
primary indicator of early renal dysfunction in this study. Existing 
epidemiological studies have reported a higher prevalence of chronic 
kidney disease (17.9%) among residents near refineries compared to 
the general population (12.3%) (19), along with elevated uric acid 
levels in oilfield workers and local wildlife (20, 21). These findings 
highlight the need to investigate the association between occupational 
heat exposure and hyperuricemia among petrochemical workers to 
better inform targeted heat-related health protection strategies.

Occupational exposures in the petrochemical industry often involve 
co-exposure to multiple hazards, such as benzene, H2S and other 
chemicals, which may interact synergistically and amplify health risks. 
Existing evidence suggests that the combination of thermal and 
chemical exposures in petrochemical operations contributes to 
increased vulnerability to a range of diseases (22, 23). Traditional single-
exposure statistical models are often inadequate for capturing the 
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complex interactions of multiple exposures. By contrast, WQS 
regression can generate exposure indices that identify the most 
influential risk factors while accounting for interaction effects among 
exposures (24). Furthermore, the integration of machine learning with 
SHAP values offers robust methodologies for investigating nonlinear 
and high-dimensional relationships inherent in chemical and 
environmental mixtures (25, 26). Therefore, by combining multiple 
statistical models and machine learning algorithms, this study may yield 
valuable insights for developing prevention strategies and promoting the 
occupational health of petrochemical workers. In this study, we analyzed 
the association between occupational heat exposure and hyperuricemia 
among petrochemical workers using multiple statistical models and 
machine learning methodologies, with aims to provide evidence-based 
guidance for occupational health management and mitigate the burden 
of heat-related renal impairment in high-risk industrial settings.

2 Materials and methods

2.1 Study design and participants

This retrospective study was conducted using occupational health 
examination records collected between January 2013 and December 
2022 from the Quangang Petrochemical Industrial Park (QPIP), 
Quanzhou, Fujian Province, China. Established in 2005, QPIP covers 
an area of about 30 square kilometers and has a population of around 
360,000. Its industrial chain mainly involves ethylene, propylene, 
carbon tetrachloride, benzene and paraxylene (27).

Under the Law on the Prevention and Control of Occupational 
Diseases, employers are required to provide regular health 
examinations for workers exposed to occupational hazards, typically 
conducted from March to August each year. This uniform schedule 
reduces seasonal variability between individuals. According to the 
examination protocol, all workers were instructed to fast overnight 
before the examination and to remain fasting on the morning of the 
test day. In this study, historical occupational health records were 
obtained from the Minnan Branch of the First Affiliated Hospital of 
Fujian Medical University. It is the sole government-designated 
hospital authorized to conduct occupational health examinations in 
the region. All data were de-identified before delivery. All raw data 
underwent standardized processing, including variable recoding, 
value assignment, labeling, and logical consistency check. To ensure 
accuracy and completeness, the processed dataset was further 
validated through consultations with occupational health experts and 
enterprise management personnel.

The extracted data includes the following information: (1) 
Demographic characteristics, such as gender, age, and lifestyle factors 
(including smoking/drinking frequency); (2) General physical 
examination, such as height, weight, and body mass index (BMI); (3) 
Pre-existing chronic conditions (e.g., hyperglycemia, hypertension); 
and (4) Occupational exposure profile, such as length of service, types 
of occupational hazards (e.g., heat, benzene, methanol, gasoline, acid 
anhydrides, carbon monoxide (CO), hydrogen sulfide (H2S), ammonia 
(NH3), and noise). Routine monitoring of these occupational hazard 
factors was conducted by Fujian Center for Prevention and Control of 
Occupational Disease and Chemical Poisoning, which classified and 
reported exposures according to the National Occupational Hazard 
Detection Criteria. These records were incorporated into workers’ 

occupational health files. The study was approved by the Medical 
Ethics Committee of Fujian Medical University (Approval No.: Fuyi 
Medical Ethics Review No. 111).

Workers were included in the analysis if they met the following 
criteria: (1) Aged 18–65 years with ≥1 year of continuous frontline 
work in petrochemical production; and (2) With complete 
occupational exposure documentation. The following workers were 
excluded from data analysis: (1) Pre-existing diagnosis of CKD; (2) 
Missing key occupational exposure and outcome data in health 
records; (3) Temporary or short-term rotational work of < 1 year; (4) 
Comorbid thyroid disorders, hepatic dysfunction, or pre-existing 
renal impairment; and (5) History of severe cardiovascular diseases or 
malignant tumors. Among the occupational health examination 
records obtained from 2013 to 2022, not all workers participated in 
every examination, and to avoid within-person correlation, 
we structured the dataset such that each worker contributed only one 
observation: the first record with hyperuricemia or, if none, the most 
recent record without hyperuricemia. Thus, the dataset did not 
include repeated observations from the same individual. Finally, 2,312 
petrochemical workers were included in the analysis.

2.2 Definitions of exposure variables and 
health outcomes

In this study, heat exposure is a categorical hazard (variable) 
documented in the occupational health examination records. This 
classification was based on occupational monitoring data collected 
annually by the Fujian Center for Prevention and Control of 
Occupational Disease and Chemical Poisoning. The classification 
thresholds were defined in accordance with GBZ 2.2–2007: 
Measurement of physical factors in the workplace Part 7. High-
temperature work is defined as an operation in which the average 
WBGT index at the worksite is ≥25 °C during production activities 
(28, 29).

Body mass index (BMI): According to cut-off points for Chinese 
adults, overweight and obesity were defined as 24 ≤ BMI < 28 and 
BMI ≥ 28 kg/m2, respectively (30).

Frequency of drinking was divided into three conditions: (1) 
Never drinking was defined as not consuming any alcohol or alcoholic 
beverages for at least 6 months prior to the survey; (2) Often drinking 
was defined as consuming alcohol at least twice a week, with an intake 
greater than 50 g per occasion, for more than half a year; and (3) 
Occasionally drinking was between often drinking and never drinking.

Smoking frequency was divided into three conditions: (1) Never 
smoking was defined as not smoking for at least 6 months; (2) Often 
smoking was defined as smoking ≥1 cigarette per day or ≥7 cigarettes 
per week for at least half a year within the past year; and (3) Occasional 
smoking is between often smoking and never smoking.

Hyperuricemia was defined as serum uric acid ≥ 420 μmol/L 
(7.0 mg/dL) in males and serum uric acid ≥ 360 μmol/L (6.0 mg/dL) 
in females (31).

Hypertension: According to The Chinese Guidelines for 
Prevention and Treatment of Hypertension (2024 Revision) (32), it is 
defined as systolic blood pressure (SBP) ≥ 140 mmHg and/or diastolic 
blood pressure (DBP) ≥ 90 mmHg without any antihypertensive 
drugs, or those who have a previous history of hypertension and are 
currently taking antihypertensive drugs.
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Hyperglycemia: According to The Chinese Guidelines for the 
Prevention and Treatment of Type 2 Diabetes criteria (33), fasting 
blood glucose>7.0 mmol/L; glycosylated hemoglobin level>6.5%, or 
self-reported formal institutional diagnosis of diabetes, or currently 
receiving hypoglycemic drugs.

2.3 Statistical analysis

Descriptive analysis was conducted to examine the 
characteristics of occupational hazards exposure and the main 
occupational health issues among petrochemical workers. 
Continuous variables were presented as mean ± standard deviation 
(X ̅±SD), and comparisons between groups were conducted using 
independent sample t-tests. Categorical data are presented as 
frequencies and percentages (N, %), with group comparisons 
conducted using the chi-square test.

Three-stage stepwise adjusted GLM models were established to 
investigate the associations between each occupational hazard and 
hyperuricemia. Model 1 (unadjusted) included the single occupational 
hazard factor without adjusting for any covariates. Model 2 (basic 
adjustment) was adjusted for gender, age, and BMI. Model 3 (fully 
adjusted) was further adjusted for additional confounders, including 
length of service, hyperglycemia, hypertension, smoking, and alcohol. 
Covariate selection was guided by a DAG developed from prior 
literature and study variables. In addition, we  explored potential 
unmeasured confounders between occupational hazards and 
hyperuricemia by calculating E-value. Additional stratified analyses 
were conducted by gender, age, BMI, and length of service to explore 
potential effect modification.

To evaluate the joint effects of combined exposure to heat and 
other occupational exposures, GLMs were performed to estimate the 
multiplicative interactions. Additive interactions were assessed using 
the relative excess risk of interaction (RERI), the attributable 
proportion of interaction (AP), and the synergy index (SI). The 
estimated interaction effects and their 95% confidence intervals (95% 
CI) were visualized using forest plots.

To investigate the combined effects of mixed occupational hazards 
on hyperuricemia and assess the effect contributions of individual 
factors, a WQS regression model was constructed incorporating 9 
occupational hazards (34). Given the primary variables were 
categorical, WQS regression is well-suited for the analysis of 
categorical or ordinal exposure indicators. The number of quantiles 
was set to null. The dataset was randomly split into training (60%) and 
validation (40%) subsets (random seed = 1800). Each exposure 
variable was assigned a weight using 200 bootstrap samplings to 
screen factors that contribute significantly to the outcome, 
constraining the overall effect direction to be positive (β > 0). Weight 
distributions were visualized using kernel density plots. To further test 
the robustness of the results, we conducted negative-direction analysis 
of WQS model and varied the train/validation split and random seed 
in the WQS model.

In the initial model comparison step, nine machine learning 
algorithms were evaluated to identify the optimal classifier. The 
dataset was randomly partitioned into training (70%) and 
validation (30%) subsets to assess the predictive performance of 
each model. To prevent data leakage, all preprocessing steps, 
including missing data imputation, feature scaling, and feature 

selection (collinearity diagnosis and LASSO regression) were 
performed strictly within each training fold during 10-fold cross-
validation, random seeds:1000. Key predictors identified by 
LASSO were then used to train nine machine learning models: 
Logistic Regression (LR), XGBoost Classifier (XGB), LightGBM 
Classifier (LGBM), Random Forest Classifier (RF), AdaBoost 
Classifier (AdaBoost), Gaussian Naive Bayes (GaussianNB), 
Complement Naive Bayes (ComplementNB), Multilayer 
Perceptron Classifier (MLP), Support Vector Classifier (SVC). 
Model performance was evaluated using receiver operating 
characteristic (ROC), area under the curve (AUC), negative 
predictive value, precision, recall, sensitivity, F1 score, and decision 
curve analysis (DCA). In further developing a hyperuricemia 
prediction model using the LightGBM classifier, the dataset was 
randomly divided into training (70%) and test (30%) subsets, and 
the validation set was generated from the training subset through 
a 10-fold cross-validation procedure. Model interpretability was 
enhanced using SHAP values to quantify the contribution of 
each predictor.

All analyses were performed using R (version 4.2.3), python 
(version 3.11.4), and SAS (version 9.4). Statistical tests were conducted 
using two-sided tests, and a p  < 0.05 was considered 
statistically significant.

3 Results

3.1 Comparison of characteristics 
between hyperuricemia and control 
groups

In this study, among the 2,312 workers, 1,390 (60.1%) had 
hyperuricemia. Compared to those without hyperuricemia, affected 
workers had significantly higher BMI (24.23 vs. 22.98 kg/m2) and a 
higher proportion of males (83.96% vs. 51.84%). As shown in Table 1, 
workers with hyperuricemia were more likely exposed to occupational 
hazards, including heat, NH3, benzene, methanol, acid anhydrides, 
CO, and noise (all p < 0.05).

3.2 Association between occupational 
hazards and hyperuricemia

A three-stage stepwise GLM was used to analyze each hazard’s 
association with hyperuricemia. As shown in Figure  1, in 
unadjusted analyses, exposure to heat (OR = 2.73, 95% CI: 2.17–
3.45), NH3 (OR = 2.91, 95% CI: 2.16–3.91), benzene (OR = 1.88, 
95% CI: 1.50–2.37), methanol (OR = 1.99, 95% CI: 1.55–2.56), acid 
anhydrides (OR = 2.06, 95% CI: 1.59–2.66), CO (OR = 1.87, 95% 
CI: 1.49–2.34) and noise (OR = 1.27, 95% CI: 1.07–1.51) was 
associated with a higher risk of hyperuricemia (p < 0.05). After 
adjustment for age, gender, and BMI, exposure to heat (OR = 1.58, 
95% CI: 1.21–2.06) remained statistically significant. In the fully 
adjusted model, occupational heat exposure remained a significant 
predictor of hyperuricemia (OR = 1.68, 95% CI: 1.28–2.20), while 
exposure to gasoline (OR = 0.60, 95% CI: 0.48–0.75) and H2S 
(OR = 0.72, 95% CI: 0.58–0.89) were associated with lower odds 
of hyperuricemia.
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TABLE 1  Characteristics of petrochemical workers between groups with or without hyperuricemia, n (%).

Variable Total (n = 2,312) Control (n = 922) Hyperuricemia 
(n = 1,390)

χ2/ t p-value

BMI (kg/m2) 23.73 ± 3.12 22.98 ± 2.92 24.23 ± 3.15 9.58 <0.001

Age (years) 40.74 ± 11.21 44.42 ± 11.15 38.31 ± 10.57 13.31 <0.001

Length of service (years) 20.05 ± 12.04 23.20 ± 12.25 17.96 ± 11.44 10.48 <0.001

Gender

 � Female 667 (28.85) 444 (48.16) 223 (16.04) 278.49 <0.001

 � Male 1,645 (71.15) 478 (51.84) 1,167 (83.96)

Smoking

 � Never 1,602 (69.29) 714 (77.44) 888 (63.89) 60.11 <0.001

 � Occasionally 263 (11.38) 55 (5.97) 208 (14.96)

 � Often 447 (19.33) 153 (16.59) 294 (21.15)

Drinking

 � Never 1,226 (53.03) 574 (62.26) 652 (46.91) 71.11 <0.001

 � Occasionally 889 (38.45) 258 (27.98) 631 (45.39)

 � Often 197 (8.52) 90 (9.76) 107 (7.70)

Heat

 � No 1834 (79.33) 814 (88.29) 1,020 (73.38) 75.09 <0.001

 � Yes 478 (20.67) 108 (11.71) 370 (26.62)

NH3

 � No 2018 (87.28) 862 (93.49) 1,156 (83.17) 53.26 <0.001

 � Yes 294 (12.72) 60 (6.51) 234 (16.83)

Benzene

 � No 1880 (81.31) 800 (86.77) 1,080 (77.70) 30.01 <0.001

 � Yes 432 (18.69) 122 (13.23) 310 (22.30)

Methanol

 � No 1958 (84.69) 827 (89.70) 1,131 (81.37) 29.66 <0.001

 � Yes 354 (15.31) 95 (10.30) 259 (18.63)

H2S

 � No 1,519 (65.70) 625 (67.79) 894 (64.32) 2.96 0.085

 � Yes 793 (34.30) 297 (32.21) 496 (35.68)

Gasoline

 � No 1,616 (69.90) 643 (69.74) 973 (70.00) 0.02 0.894

 � Yes 696 (30.10) 279 (30.26) 417 (30.00)

Acid anhydrides

 � No 1969 (85.16) 832 (90.24) 1,137 (81.80) 31.25 <0.001

 � Yes 343 (14.84) 90 (9.76) 253 (18.20)

CO

 � No 1872 (80.97) 797 (86.44) 1,075 (77.34) 29.82 <0.001

 � Yes 440 (19.03) 125 (13.56) 315 (22.66)

Noise

 � No 1,351 (58.43) 571 (61.93) 780 (56.12) 7.72 0.005

 � Yes 961 (41.57) 351 (38.07) 610 (43.88)

Hyperglycemia

 � No 2,284 (98.79) 908 (98.48) 1,376 (98.99) 1.21 0.271

(Continued)
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3.3 The contribution proportions of various 
occupational exposures to hyperuricemia

Figure 2 presents the weights of each hazard in the WQS model. 
Occupational heat exposure had the highest weight (49.2%), 
indicating it was the dominant contributor to the combined risk. 
Methanol and NH3 were the next largest contributors (22.1 and 11.8%, 
respectively).

3.4 Joint effects of combined exposure to 
heat and other occupational hazards on 
hyperuricemia

In this study, we further examined the joint effects of heat and other 
occupational exposures on hyperuricemia. In the fully adjusted Model 
3, results of multiplicative interaction analyses showed that heat 
combined with benzene (OR = 1.93, 95% CI 1.05–3.55), H2S 
(OR = 3.38, 95% CI 1.94–5.88), gasoline (OR = 2.58, 95% CI 1.49–
4.48), acid anhydride (OR = 2.21, 95% CI 1.09–4.48) and CO 
(OR = 2.14, 95% CI 1.16–3.97) significantly increased the risk of 
hyperuricemia (all p  < 0.05), as shown in Figure  3, while additive 

interaction analyses showed that these joint exposures did not exhibit 
significant positive additive effects (Supplementary Figure S3; 
Supplementary Table S3).

3.5 Development of hyperuricemia risk 
prediction model using machine learning 
algorithms

3.5.1 Dataset split
To develop the hyperuricemia risk prediction model using 

machine learning algorithms, the dataset was split into a training set 
(n = 1,618) and a validation set (n = 694) in a 7:3 ratio. With the 
exception of noise exposure, no significant differences were observed 
in key demographic or baseline characteristics between the two 
datasets (p > 0.05), indicating good comparability. Detailed 
information is provided in Supplementary Table S4.

3.5.2 Feature selection using LASSO regression
Variables showing significant differences in the training set were 

entered into a LASSO regression to identify the most influential 
predictors of hyperuricemia. The optimal λ value corresponding to 

TABLE 1  (Continued)

Variable Total (n = 2,312) Control (n = 922) Hyperuricemia 
(n = 1,390)

χ2/ t p-value

 � Yes 28 (1.21) 14 (1.52) 14 (1.01)

Hypertension

 � No 2077 (89.84) 824 (89.37) 1,253 (90.14) 0.36 0.547

 � Yes 235 (10.16) 98 (10.63) 137 (9.86)

Bold cells mean statistically significant.

FIGURE 1

Odds ratios for hyperuricemia associated with occupational hazards. Model 1 (unadjusted); Model 2 (adjusted for gender, age, and BMI); and Model 3 
(adjusted for gender, age, and BMI, length of service, hyperglycemia, hypertension, smoking, and alcohol consumption). *p < 0.05.
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the minimum standard error distance was 0. 009, yielding 17 
non-zero coefficient variables (Supplementary Table S6). The 
selected variables by LASSO regression include BMI, age, gender, 
smoking, alcohol drinking, length of service, benzene, noise, 
gasoline, and heat, used for model prediction and model 
construction. The results of the LASSO feature selection are shown 
in Figure 4.

3.5.3 Model performance comparison
The results revealed that the Random Forest model achieved the 

highest AUC in the training set, while the LightGBM model 
performed best in the validation set. However, discrepancies 

between training and validation results suggested potential 
overfitting in the Random Forest model, whereas LightGBM 
exhibited superior generalizability and stability. Based on these 
findings, the LightGBM model was selected for subsequent SHAP-
based interpretability analysis. Detailed results are provided in 
Supplementary Tables S7–S9 and Supplementary Figures S19,S20.

3.5.4 LightGBM model training and evaluation
The ROC curve illustrates that LightGBM model achieved AUC 

value of 0.99 ± 0.01 for the training set, 0.86 ± 0.026 for the validation 
set, and 0.86 for the test set. The AUC difference between the 
validation and test sets was less than 10%, indicating good model 

FIGURE 2

WQS regression weights for each occupational exposure. Covariates were adjusted for gender, age, length of service, smoking, alcohol consumption, 
and BMI. The bar heights indicate each hazard’s contribution to the hyperuricemia risk index.

FIGURE 3

Joint effects of combined exposure to heat and other occupational hazards on hyperuricemia. Model 1 (unadjusted); Model 2 (adjusted for gender, 
age, and BMI); and Model 3 (adjusted for gender, age, and BMI, length of service, hyperglycemia, hypertension, smoking, and alcohol consumption). 
*p < 0.05.

https://doi.org/10.3389/fpubh.2025.1648619
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al.� 10.3389/fpubh.2025.1648619

Frontiers in Public Health 08 frontiersin.org

generalization. The calibration curve showed good agreement between 
predicted probabilities and observed outcomes, with minor deviations 
at lower and midrange probability levels. Decision curve analysis 
(DCA) revealed that, across a wide range of threshold probabilities 
(0.1–0.7), the LightGBM model yielded a greater net benefit than both 
the “treat-all” and “treat-none” strategies. The confusion matrix 
indicated minimal risk of overfitting in the training set but a slightly 
elevated false-positive rate in the validation set. In addition, the KS 
statistics confirmed excellent discriminatory capacity and 
generalizability (KS = 0.60), with the optimal classification 
performance observed at a threshold of 0.65. Detailed results are 
shown in Figure 5.

3.5.5 Quantifying the contribution of predictive 
features using SHAP values

The results showed that the SHAP values for BMI and heat were 
positively associated with hyperuricemia, suggesting an increased risk 
of hyperuricemia with higher levels of these variables, whereas length 
of service and age showed a negative association. The bar chart 
represents the relative importance of each feature in the LightGBM 
model, with the top five most important features were length of 
service, age, BMI, gender, and heat exposure. Heat exposure was 
strongly occupational hazards associated with an increased risk of 
hyperuricemia. The detailed SHAP analysis results are shown in 
Figure 6.

4 Discussion

This study examined the association between occupational heat 
exposure and hyperuricemia among petrochemical workers. Our 
findings suggested that workplace heat exposure was associated with 
an increased risk of hyperuricemia. Using WQS regressions, 

we  identified heat exposure as the most influential occupational 
hazard contributing to hyperuricemia risk. Additionally, a machine 
learning-based prediction model demonstrated high accuracy in 
forecasting hyperuricemia risk, with SHAP analysis confirmed the 
strong contribution of heat exposure.

Exposure to high temperatures has emerged as a significant public 
health and occupational health concern, particularly due to its 
association with renal impairment. Prolonged exposure to process-
generated heat exacerbates thermal strain and predisposes workers to 
dehydration and kidney injury (35). Heat stress is a potential 
contributing factor to chronic kidney disease of unknown etiology 
(CKDu) in agricultural communities, which is increasingly recognized 
as a major cause of chronic kidney disease (36). This CKDu, also 
observed in Central America, often referred to as Mesoamerican 
nephropathy, has been epidemiologically and experimentally linked 
to recurrent dehydration and chronic heat exposure (37). Mounting 
evidence suggests that this condition may represent a distinct form of 
heat stress nephropathy (HSN), potentially exacerbated by global 
warming (38, 39). Furthermore, a myriad of chronic kidney disease 
cases has surfaced among agricultural workers and other individuals 
engaged in manual labor across various regions of the world (40). The 
disease is strongly correlated with the conditions of working and living 
in hot environments (41). Therefore, focusing on early indicators of 
renal impairment, such as hyperuricemia, may provide a valuable 
approach for early detection and prevention of heat-related 
kidney injury.

Petrochemical workers were routinely exposed to multiple 
occupational hazards such as heat, noise, and chemical toxins during 
the production and processing stages. Those occupational hazards 
may impact workers’ health (42). Salem et al. has reported elevated 
levels of urea, creatinine, and uric acid among Libyan petrochemical 
workers, suggesting subclinical or overt kidney dysfunction (43). 
Consistent with these findings, our results also revealed a high 

FIGURE 4

Feature selection of LASSO regression. (A) Shows the coefficient changes of LASSO regression; and (B) shows the fitting effect of LASSO regression.
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prevalence of hyperuricemia among petrochemical workers, which 
were significantly associated with heat exposure. Several factors may 
contribute to this high hyperuricemia prevalence. First, the study 
population consists of frontline occupational workers (male-
dominated), who may inherently represent a higher-risk group and 
generally have higher uric acid levels. Second, the petrochemical 
industrial park is located in a coastal region, where dietary patterns 
often involve high consumption of seafoods (e.g., fish, shrimp, crab, 
and shellfish), leading to increased purine intake and elevated serum 
uric acid levels. Uric acid, the final product of purine metabolism in 
the body, is primarily excreted by the kidneys. Under normal 
physiological conditions, serum uric acid levels are maintained within 

a certain range. However, heat exposure may disrupt this balance 
through dehydration, reduced renal perfusion, and impaired excretory 
function (44), thereby increasing the risk of hyperuricemia. In 
workplaces that strictly follow occupational production norms and 
supervision of safety departments, the likelihood of petrochemical 
workers experiencing rapid and severe renal impairment is relatively 
low, while hyperuricemia is one of the early manifestations of renal 
dysfunction (45). Accordingly, attention to changes in uric acid levels 
and the onset of hyperuricemia may hold greater practical significance 
for safeguarding kidney health within this occupational population.

In this study, results of multistage GLM regression suggested a 
significant association between heat exposure and hyperuricemia, 

FIGURE 5

Consolidated performance evaluation of nine machine learning models. (A) Is ROC curve (Training set); (B) is ROC curve (Validation set); (C) is ROC 
curve (Test set); (D) is learning curve; (E) is calibration plots; (F) is test decision curve; (G) is confusion matrix of training set; (H) is confusion matrix of 
test set; and (I) is KS statistical diagram.
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consistent with findings from salt pan workers, sugarcane field 
workers, and construction workers (46, 47). Despite differences in 
climate and work processes, heat exposure consistently elevates uric 
acid levels through biological mechanisms involving inflammation, 
oxidative stress, altered metabolism, and cytokine activation (48–50). 
Experimental evidence also supports this link, as animal studies have 
demonstrated that chronic heat exposure induces elevated serum uric 
acid (51). Interestingly, workers with hyperuricemia in our study 
tended to be  younger and had shorter lengths of service. This 
unexpected finding may be attributed to a healthy worker survivor 
bias, whereby individuals unable to adapt to hazard exposures often 
leave high-exposure jobs earlier, and hiring restrictions might create 
a workforce with inherently higher health baseline levels (52, 53). 
Additionally, younger workers are frequently assigned to frontline 
positions, leading to higher exposure intensity despite shorter tenures 
(54), and longer-tenured workers may possess greater self-protective 
awareness due to extended training and job rotations, potentially 
reducing their risk of hyperuricemia.

In assessing joint effects of combined exposure to heat and other 
occupational hazards on hyperuricemia, significant multiplicative 
interaction effects were observed. Interestingly, the combined exposure 
to heat and gasoline or H2S, which both associated with higher 
hyperuricemia risk, despite their opposing individual effects. However, 
positive additive interactions were not observed, this finding consistent 
with Chen Y et  al. (29), their research show that a multiplicative 
interaction rather than additive interaction between heat exposure and 
dust exposure in the development of hyperuricemia in steelworkers. A 
possible explanation of our study may lie in interaction mechanisms that 
modify physiological stress responses. While gasoline exposure alone 
may appear inversely associated with hyperuricemia, potentially due to 
residual confounding by work location, better ventilation, or health-
based job selection, its co-occurrence with heat exposure may intensify 
oxidative and metabolic stress. Heat exposure promotes dehydration, 
reduced renal perfusion, and accumulation of reactive oxygen species 
(ROS) (55), which can impair uric acid excretion. Combined exposure 
to gasoline, containing volatile organic compounds (VOCs), may further 
exacerbate oxidative damage and inflammatory pathways, thereby 

amplifying renal tubular dysfunction (56, 57). This synergistic effect 
could result in a multiplicative increase in hyperuricemia risk, even when 
gasoline alone appears protective. Additionally, workers in high-
temperature units often handle multiple chemical processes 
simultaneously, leading to greater overall exposure intensity and 
cumulative metabolic burden, which may also contribute to this 
combined effect. Krishnamurthy et al. found the potential synergistic 
effect between oil exposure and heat (58). The similar joint effect was 
observed for the combined exposure to heat and H₂S. This apparent 
paradox may reflect complex biological interactions and workplace 
exposure patterns. At low concentrations, H₂S can exert transient 
antioxidant effects by reduce the production of ROS (59). However, 
under conditions of heat stress, dehydration, and hypoxia, H₂S 
metabolism may shift toward pro-oxidative and cytotoxic pathways, 
enhancing oxidative stress and renal tubular injury (60). Furthermore, 
workers exposed to both heat and H₂S are typically engaged in frontline 
production units with higher overall exposure intensity and workload, 
which could amplify metabolic strain and renal burden (61). Therefore, 
combined exposure to heat and additional occupational hazards may 
further increase hyperuricemia risks among workers.

Traditional single-variable regression approaches often fall short in 
capturing the combined effects of multifactorial exposures. In contrast, 
the WQS model allows for estimation of cumulative effects while 
weighing each exposure’s relative contribution (62). Previous studies 
have used the WQS model to analyze the effects of mixed factors on 
hyperuricemia and to identify the most influential contributing factors 
(63). In this study, our WQS analysis identified heat and methanol 
exposure as the dominant contributors to hyperuricemia risk. The WQS 
model provides a better understanding of the relative impact of 
individual hazards on health outcomes and offers more precise strategies 
for pollutant control and management. Given the complexity of 
occupational exposures in petrochemical environments, predictive 
modeling plays an increasingly important role in occupational health 
surveillance. Machine learning models, particularly those that capture 
non-linear relationships and interactions, offer substantial advantages 
over traditional statistical approaches (64–66). Anttila et al. has already 
explored the risk prediction modeling in petrochemical workers, with 

FIGURE 6

SHAP values quantify the contribution of predicted features. (A) The summary of SHAP values for variables in the LightGBM model. The horizontal axis 
represents the contribution of each feature to the model, while the vertical axis ranks the features based on the total sum of their SHAP values. The 
color indicates the feature value, with red corresponding to high values and blue corresponding to low values; and (B) is the histogram of feature 
importance for the LightGBM Model.
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findings indicating that exposure to hydrocarbons in crude oil may 
increase the risk of kidney cancer by up to threefold (67). In this study, 
we  comparison nine supervised learning models to predict 
hyperuricemia risk. After cross-validation and performance evaluation, 
the LightGBM model was selected for its superior balance of accuracy 
and generalizability.

The LightGBM model demonstrated strong predictive 
performance, but the AUC results suggest potential overfitting. In 
practical terms, this predictive model may be  incorporated into 
occupational health surveillance systems to support dynamic risk 
stratification and provide early indications of workers at higher risk of 
hyperuricemia. Such integration could help inform timely preventive 
measures. Nevertheless, further external validation and real-world 
implementation studies are warranted before real-world application. 
While machine learning algorithms offer strong predictive 
performance, they are often criticized for their lack of transparency 
(68). To address this, we incorporated SHAP analysis, which has been 
widely adopted for interpreting machine learning models. By 
calculating the marginal contribution of each feature to the prediction 
outcome, SHAP effectively quantified the impact of individual 
variables (69). SHAP results confirmed that BMI and heat exposure 
are dominant risk factors, offering actionable insights for workplace 
surveillance and intervention prioritization.

Although this study identified an association between 
occupational heat exposure and hyperuricemia among petrochemical 
workers, several limitations should be  acknowledged. First, this 
research was derived from retrospective health examination records, 
and we  adopted a complete-case analysis approach for all main 
exposure and outcome variables, which may reduce sample size. The 
inability to infer causality is also inherently limited. Second, our study 
did not capture information on dietary habits, hydration patterns, 
genetic predisposition, medication use, metabolic factors, use of 
personal protective equipment, medication use, and acclimatization, 
which may influence the assessment of heat-hyperuricemia 
association. Third, heat exposure in this study primarily refers to 
process-generated heat from petrochemical production. Workers’ 
occupational health examinations were conducted during the warmer 
months (March to August) each year, which may potentially 
overestimate the association between heat exposure and 
hyperuricemia. Nevertheless, the uniform health examination period 
across all workers helps to minimize between-individual seasonal 
variability and thus strengthens internal comparability. However, it 
should be noted that the lack of year-round health examination data 
may limit our ability to fully characterize seasonal variations in the 
heat–hyperuricemia relationship. Fourth, during the additive 
interaction analysis in this study, some Synergy Index (SI) values 
appeared as NaN, likely because the odds ratio (OR) for a single 
exposure equaled 1, resulting in a zero denominator in the SI formula. 
To obtain valid estimates, we followed the software recommendation 
and set recode = TRUE to reverse-code the exposures. This adjustment 
ensured computational validity but may have altered the directionality 
of the additive interaction estimates (negative). Therefore, the opposite 
directions observed between additive and multiplicative interactions 
in this study should be interpreted with caution, as they may partly 
reflect a computational artifact rather than a genuine antagonistic 
interaction on the additive scale. Finally, the absence of creatinine/
eGFR, albuminuria, temperature monitoring during the production 
process as well as relevant information regarding the workers’ 

production departments, has precluded a more refined assessment of 
the association between heat exposure (in terms of intensity and 
duration) and additional biomarkers of early renal dysfunction.

To address these limitations, our ongoing prospective cohort 
study has been designed to incorporate structured occupational and 
dietary questionnaires to systematically collect data on exposure 
histories and lifestyle factors, as well as surveying nearby residents as 
a control group to better evaluate the health effects of occupational 
exposures. Furthermore, we  are also actively collaborating with 
government monitoring agencies to obtain accurate measurements of 
exposure levels and duration for various occupational hazards, and 
model dose–response relationships using methods such as restricted 
cubic splines. These efforts aim to enhance the robustness of future 
analyses and to inform evidence-based strategies for protecting the 
health of petrochemical workers.

5 Conclusion

Occupational heat exposure is a prevalent hazard in the 
petrochemical industry and is significantly associated with 
hyperuricemia. By integrating epidemiological and machine learning 
methods, this study quantified both the independent and combined 
effects of heat and other hazards on kidney health and identified key 
predictors of hyperuricemia risk. Findings of this study highlight the 
need for targeted preventive measures, including heat stress reduction 
and proactive monitoring high-risk workers. Future research should 
explore the biological mechanisms underlying these associations and 
externally validate predictive models in diverse occupational settings 
to better prevent heat-related early renal dysfunction.
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