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Background: Acute hemorrhagic conjunctivitis (AHC) is a highly infectious eye
disease. It poses a significant threat to public health given its propensity for
rapid transmission in densely populated areas. Recent epidemiological data
have demonstrated a distinct seasonal outbreak pattern in Chongqging. However,
conventional single prediction models exhibit limitations in accurately capturing
the complex spatiotemporal transmission characteristics of AHC. This study
endeavors to compare the performance of different mathematical models in
forecasting AHC incidence in Chongqging. Through the investigation of optimal
predictive methodologies, this study establishes a theoretical foundation for
relevant department to formulate policies for preventing AHC.

Methods: The monthly incidence data of AHC in Chongging from March 2019
to October 2024 were collected from the official website of the Chongqing
Municipal Health Commission. Five predictive models (SARIMA, KNN, Prophet
model as well as SARIMA-KNN and SARIMA-Prophet model) were employed
to fit the incidence data. The data from March 2019 to December 2023 was
designated as the training set, while the data from January 2024 to October
2024 served as the test set. Model performance was evaluated through multiple
metrics, including MSE, RMSE, MAE, and MAPE. Subsequently, the Diebold-
Mariano test was implemented to statistically assess the significance of predictive
performance differences among the five models.

Results: During the period from March 2023 to October 2024, the incidence rate
of AHC in Chongqing showed a pronounced seasonal fluctuation pattern, with
the peak period consistently occurring between June and September annually.
The comparative analysis of model performance revealed that the SARIMA-
KNN hybrid model demonstrated optimal performance metrics in terms of MSE,
MAE, RMSE, and MAPE. Furthermore, the predicted curve of the SARIMA-KNN
model demonstrated superior fitting accuracy compared to the actual curve.
The Diebold-Mariano statistical test confirmed that the SARIMA-KNN model's
performance was significantly superior to other models.

Conclusion: In comparison with the other four models, the SARIMA-KNN hybrid
model effectively integrates the temporal characteristics of AHC incidence. It
offers the technical support for the development of early warning systems
and the formulation of prevention and control strategies in Chongqing. This
approach holds substantial practical significance in the field of public health.
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1 Introduction

Acute hemorrhagic conjunctivitis (AHC) is a highly contagious
viral conjunctivitis primarily caused by enterovirus 70 (EV70)
or coxsackievirus A24 (CVA24) infection (1). Its typical clinical
symptoms include conjunctival hyperemia, photophobia, epiphora,
and foreign body sensation (2). Owing to its short incubation
period and high infectivity, AHC is prone to rapid outbreaks and
epidemics (3). Since its initial identification in Ghana in 1969
(4), AHC has shown periodic epidemic patterns globally, with
significant prevalence observed in Asia, Africa, and Latin America
(5). In China, the first outbreak of AHC was reported in Hong
Kong in 1971 (6). As one of the most prevalent ocular infectious
diseases in China, AHC has been reported in numerous cities.
From 2005 to 2012, Chongqing consistently ranked among the
top five regions nationwide in terms of AHC incidence rates (5).
Recent monitoring shows that Chongqing persists as one of China’s
high-incidence regions for AHC. According to monitoring reports
from the China CDC Information System (CIDCIS), the national
incidence rate of AHC showed periodic fluctuations from 2013 to
2020, with 2014 and 2019 being the peak years of reporting. A
notable trend is that after 2020, due to the high-intensity COVID-
19 prevention and control measures, the reported incidence rate
decreased significantly (7). However, with the full resumption of
societal activities, epidemic intensity has manifested a rising trend.
This phenomenon highlights the urgency of strengthening local
prevention and control and prediction research on AHC after
the epidemic.

The transmission of AHC depends on multiple factors,
humidity) (8),
population mobility patterns, and sanitation infrastructure

including climatic conditions (temperature,
(9, 10). Within Chongqing’s subtropical monsoon climate, the
virus transmission is potentially exacerbated by the hot and
rainy summer conditions coupled with cold and humid winter
environments (11). In addition, as a large-scale city in the
central-southern region, the substantial population mobility
significantly increases the risk of disease transmission. Recent
epidemiological studies have demonstrated that the incidence of
AHC in Chongqing has shown a cyclical fluctuation and sudden
growth trend (12). The current infectious disease early warning and
monitoring platforms mainly rely on traditional statistical models.
These models demonstrate limited sensitivity in forecasting
diseases with sudden and non-linear transmission characteristics.
Meanwhile, existing platforms struggle to dynamically integrate
heterogeneous data such as climate and population mobility (13).
The accurate detection and early warning of AHC mixed infections
remain challenges.

In recent years, advances in infectious disease prediction
models have shifted from single statistical methodologies to multi-
model integration and data-driven approaches. This transition
aims to address the complex characteristics of medical data by
leveraging the strengths of diverse algorithms (14). Notably, hybrid
models that combine classical statistical methods with machine
learning techniques have exhibited remarkable advantages in
forecasting various infectious diseases, including tuberculosis (15),
hepatitis B (16), and hand-foot-mouth disease (17). Yet research on
AHC remains scarce, especially in the context of Chongqing, a city
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with a complex climate and a dense population, where systematic
exploration has yet to be conducted.

The Seasonal Autoregressive Integrated Moving Average Model
(SARIMA), an extension of the ARIMA framework, has gained
widespread recognition in time series forecasting applications (18).
The fundamental principle of SARIMA involves eliminating non-
stationarity within the sequence through difference operations
while incorporating seasonal parameters (P, D, Q, S) to effectively
capture periodic patterns. This model demonstrates superior
performance in forecasting periodic data. The K-Nearest Neighbors
(KNN) algorithm is generally used for basic classification and
regression analysis. In regression methods, this algorithm relies on
the k nearest dependent variable values to predict a given data (19).
The distance between two data points can be determined using a
distance function (20). It is often used to capture local non-linear
fluctuations and short-term trends. In most cases, as linear models
cannot produce sufficient results, non-linear structures are adopted
in time series analysis (21). We also introduce Prophet, a time
series forecasting method based on an additive model developed by
Facebook. Its core is to perform curve fitting within the Bayesian
inference framework to achieve smoothing and prediction of time
series data (22). This model shows robust performance in handling
missing values and accommodating trend changes, while effectively
fit complex multiple seasonal patterns.

SARIMA model excels in handling seasonality and trends
within time series (23). KNN model demonstrates flexibility in
generating accurate predictions based on local data characteristics
(24). Concurrently, the Prophet model demonstrates superior
performance in managing complex seasonality, trend variations,
and outlier detection. To enhance the handling of intricate time
series data and improve predictive accuracy, this study proposes the
SARIMA-KNN hybrid model for the first time, and also introduces
the SARIMA-Prophet hybrid model based on the SARIMA and
Prophet models. In the predictive process, SARIMA is initially
employed to extract linear components from the time series,
followed by the application of KNN and Prophet models to
model the residual sequences from SARIMA, thereby capturing
non-linear features in the data. This multi-model integration
strategy enables the simultaneous utilization of diverse algorithmic
advantages, offering a more comprehensive representation of
complex time series characteristics.

In conclusion, this study conducted a systematic comparison
of the predictive performance among three single models and
two hybrid models for forecasting the incidence of AHC in
Chonggqing. The research aims to identify the most effective
predictive methodology and establish a theoretical foundation for
early warning systems and resource allocation strategies pertaining
to AHC in Chonggqing.

2 Material and methods

2.1 Data
This study utilized the AHC data published by the Chonggqing

Municipal Health Commission (https://wsjkw.cq.gov.cn/) from
March 2019 to October 2024. The Chongqing Municipal Health
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Commission is the official municipal health authority, and the data
has been strictly reviewed, ensuring its authority and reliability.
In terms of data quality control, all case diagnoses were made in
accordance with the national unified “Diagnosis Criteria for Acute
Hemorrhagic Conjunctivitis”, ensuring consistency in diagnostic
standards. Additionally, the Chinese government attaches great
importance to the monitoring of legally notifiable infectious
diseases and implements a system of “local management and
hierarchical responsibility”. AHC data is reported by grassroots
medical institutions within 24 h of diagnosis and is successively
reviewed and monitored by disease prevention and control
institutions at the district (county), municipal, provincial, and
national levels before being released by the Health Commission.
This ensures the timeliness and accuracy of the data. The data does
not involve personal information, so no professional ethical review
is required.

This study employed the SARIMA model, KNN model, Prophet
model, and two combined models to fit the monthly incidence rate
of AHC. The incidence rate from March 2019 to December 2023
was used as the training set. The incidence rate from January 2024
to October 2024 was used as the test set to validate the predictive
performance of the five models. The technical route diagram is
shown in Figure 1.

2.2 Data analysis software

Data preprocessing and descriptive statistics were conducted
using SPSS 25.0. Model fitting procedures for SARIMA, KNN,
Prophet models, along with SARIMA-KNN and SARIMA-
Prophet models were implemented in R 4.3.0. Throughout the
study, statistical significance was determined at the conventional
threshold of P < 0.05.

2.3 SARIMA model

The SARIMA model, as an extension of the ARIMA model,
is specifically designed to handle time series data with seasonal
components (25). The structure of a complete SARIMA model is
expressed as:

SARIMA(p,d,q) x (P,D,Q)m (1)

where p, d, and q represent the autoregressive order, the
differencing order, and the moving average order of the non-
seasonal part, respectively; P, D, and Q are the corresponding orders
of the seasonal part; and m indicates the length of the seasonal
cycle (for example, m = 12 for monthly data) (26). The general
mathematical representation of the SARIMA model is as follows:

D
@, (B™) ¢p (B) (1 — B™)” (1 — B)dyy = 6 (B™) 6 (B) o (2)
B is the backward shift operator, y; is a non-stationary time

series, w; is a Gaussian white noise process. D is the seasonal
difference term, and D = 1 is sufficient to enforce data stationarity.
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@p (B) is the non-seasonal autoregressive polynomial, 6,(B) is the
non-seasonal moving average polynomial, ®,, (B™) is the seasonal
autoregressive polynomial, and ®q (B™) is the seasonal moving
average polynomial. The expression of the four-term polynomial
is as follows:

¢p (B) = 1= B—,B% — ... — ¢, BP 3)
0q (B) = 140, B+0,B” + - - - + 4B )
®p (B™) = 1- BB — ... ... — OpBP™ (5)
0q (B™) = 14O B™"+@,B™™ + ... ... + 6B (6)

The construction of a SARIMA model mainly involves three
steps: stationarity test, model selection, and parameter verification.

Firstly, conduct a stationarity test on the original sequence. Use
the Augmented Dickey-Fuller (ADF) unit root test; if p < 0.05,
the sequence is considered stationary. If not, perform difference:
typically, start with seasonal differencing, and if it remains non-
stationary, proceed with non-seasonal difference. Additionally,
identify the presence of seasonality and the value of the cycle m
by plotting the sequence graph, seasonal decomposition graph, and
calculating the periodic autocorrelation.

Secondly, for the stationary sequence, plot its autocorrelation
function (ACF) and partial autocorrelation function (PACF)
graphs. The ACF quantifies the correlation between a time series
and its lagged values, while the PACF measures the correlation
between the time series and its lagged values at a specific time
interval, excluding the influence of intermediate lags (27). The ACF
of a time series can be expressed as:

Covariance (yt, thk)

)

ACF (yo yt-k) =
(ve Ye—x) Variance (y)

K is the lag period, defined as the difference between y; and

Vi— k-
The PACF between two observations can be expressed
as follows:

Covariance (Yt» Vi—2lye— 1)

(8)
\/ Variance (yt [Yi—1 ) \/ Variance (yt,z [yi— 1)

PACF (Yt» Yt—z) =

Based on the truncation and drag tail characteristics observed
in the ACF/PACF plots, the preliminary estimation of the
parameters p, g, P, and Q can be established as follows:

The order of the non-seasonal AR term p: PACF truncates after

lag p.
The order of the non-seasonal MA term q: ACF truncates after

lag q.
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The actual monthly incidence of AHC in Chongqing
Municipality from March 2019 to December 2023
Build models
v v v
SARIMA model KNN model Prophet model
I l »| Build models
The combined model of The combined model of
SARIMA and KMM model| [SARIMA and Prophet model
I l l »  Forecast
v
The predicted monthly incidence of AHC in Chongqing
Municipality from January 2024 to October 2024
»| Comparison
A4
The actual monthly incidence of AHC IN Chongqing
Municipality from January 2024 to October 2024
MSE RMSE MAE MAPE
| I | | »Effect evaluation
Choose the best model
FIGURE 1

Technical route diagram of the development, prediction, and evaluation process for the AHC incidence prediction model in Chongqing.

The order of the seasonal AR term P: PACF truncates at seasonal
lags (such as m, 2m, ...).

The order of the seasonal MA term Q: ACF truncates at
seasonal lags.

After the initial determination of the order, the model
parameters are fitted using the maximum likelihood estimation
(MLE) or conditional least squares estimation method. Multiple
candidate models are compared using information criteria such
as AIC, AICc, and BIC, and the model with the smallest value
is preferred.

AIC = —2logL (6) 12K ©)
. 2K (K + 1)
AICc = —2logL (8) 42K + ——~ "2 10
‘ ogL (8) +2K + T (10)
BIC = —2logL () +KlogN (11)
Frontiers in Public Health
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LogL (é) represents the likelihood function, K indicates the
total number of model parameters, and N is the quantity of
observed data.

Third, parameter testing: The Ljung-Box Q test is used to test
the white noise residuals. If P > 0.05, it indicates a white noise
sequence, confirming that the model effectively captures the data
information and its validity is statistically significant. Conduct ¢-
statistic tests on the model parameters. P < 0.05 indicates statistical
significance, suggesting that we consider the established model to
be appropriate.

2.4 KNN model

The principle of KNN for time series prediction is based on “K
nearest similarity.” The core methodology involves identifying the
most similar historical segments to the current time window and
use the subsequent values of these similar segments for prediction
(28). The steps are as follows:

First, the original data is transformed into a structured
representation  suitable for supervised learning through
preprocessing. In this study, the sliding window method is

used to reconstruct the continuous time series, dividing the
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original sequence X = (x1, X2,..., x7) of length T into several
fixed-length observation windows with n = 12. For each time
point ¢, its feature vector is defined as S; = (Xr—n+1> Xt—nt2>e-X¢)>
with the corresponding target output being the future h = 1
step sequence segment Y_t = (x_(t+1), x_(t4+2), ..., x_(t + h)).
To further enhance the feature representation ability, sliding
statistics can be introduced as auxiliary features to construct a
multi-dimensional feature space.

Next, calculate the distance between the target sample and each
individual instance within the training data. Common distance
measurement methods include FEuclidean distance, Manhattan
distance, Minkowski distance (29, 30).

The Minkowski distance used in this study is a generalization
of the Fuclidean distance and the Manhattan distance, with
the formula: :

d = (3L, |x1i — %2ilP)? (When p = 2, it is the Euclidean
distance; when p = 1, it is the Manhattan distance.)

Then, based on the calculated distances, select the K sample
points in the training set that are closest to the test sample, and vote
or average the values of these points to obtain the prediction result.

Finally, make adjustments and optimizations, using 5-
fold cross-validation and grid search for model training and
parameter tuning.

2.5 Prophet model

The Prophet model, developed by Facebook, is an advanced
time series data, this model employs a Bayesian-based curve fitting
methodology to both smooth and predict time series data, thereby
facilitating the rapid acquisition of desired forecasting outcomes.
The Prophet model comprises three principal components: trend,
seasonality, and holidays (22). Its fundamental equation is
formulated as follows:

y(t) = g(t) + s(t) + h(t) + & (12)

Here, g(t) denotes the trend function characterizing the
non-periodic variations in the time series, s(t) represents the
seasonal component, h(t) signifies the influence of holidays or
specific events on the time series, and €(t) constitutes the error
term (31).

Regarding the trend modeling approach, it encompasses the
fitting of piecewise linear curves or non-linear saturation growth
models. The growth pattern is conventionally modeled through
the logistic growth model, whose fundamental formulation is
as follows:

C
80 = T exp(k(t = m)) (13)

In this context, C denotes the carrying capacity, k signifies the
growth rate, and m indicates the offset parameter. Notably, both the
carrying capacity and the growth rate are non-constant variables.
Through parameter rate adjustment, the model’s flexibility can be
effectively modulated.
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2.6 SARIMA-KNN model

The SARIMA-KNN model integrates the advantages of the
SARIMA algorithm and the KNN algorithm through a two-
stage modeling strategy. Firstly, a SARIMA (p, d, q)(B D,
Q)s model is constructed. The non-stationarity of the sequence
is eliminated through difference operations (d, D), and the
deterministic structural features of the time series are extracted
using autoregressive (p, P), moving average (q, Q), and seasonal
(s) components. Then, the standardized residual sequence derived
from the SARIMA model is utilized as input for the KNN model.
This residual term contains the non-linear features and random
components in the original sequence that were not explained
by the linear model. By optimizing the length L of the local
modeling window through an adaptive sliding window mechanism,
combining a density-sensitive K value selection strategy, and using
k-fold cross-validation, the optimal hyperparameter combination
is determined through network optimization methods to effectively
capture the non-linear dynamic features in the residual sequence.

2.7 SARIMA-Prophet model

The SARIMA-Prophet model shares a similar modeling
framework with the SARIMA-KNN hybrid model described in
Section 2.6, as both employ a phased modeling approach. In
the initial phase, both models utilize the SARIMA model for
time series fitting and forecasting, obtaining the initial prediction
results and the residual sequence. The difference is that this
model inputs the standardized residual sequence into the Prophet
model. The Prophet model automatically decomposes and fits the
complex seasonal patterns and non-linear trend changes in the
residuals through an additive model structure. The final prediction
is obtained by integrating the forecast outputs from both the
SARIMA model and the Prophet model’s residual predictions.

2.8 Model evaluation

We used root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), and mean square
error (MSE) to evaluate the prediction efficiency of the SARIMA,
KNN, and SARIMA-KNN models (32). These indicators measure
prediction accuracy from different perspectives:

1) RMSE: sensitive to outliers, with units consistent with the
original data, suitable for scenarios where high bias needs to
be controlled.

2) MAE: reflects the mean of absolute errors, with strong
robustness and not affected by extreme values.

3) MAPE: measures relative error in percentage form, but
requires non-zero actual values.

4) MSE: A commonly used objective function for model
optimization, but should be combined with RMSE for
auxiliary interpretation.
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TABLE 1 The incidence distribution of acute hemorrhagic conjunctivitis in Chongging from March 2019 to October 2024.

Month (Incidence/Hundred Thousand)

5 6 7 8
2019 139 143 237 294 309 196 178 149 218 207
(4.36) (4.49) (7.43) (9.22) (9.69) (6.15) (5.58) (4.67) (6.84) (6.49)
2020 227 95(2.96) | 73(227) | 77(2.40) 125 140 127 105 121 114 127 148
(7.07) (3.90) (4.36) (3.96) (3.27) (3.77) (3.55) (3.96) (4.61)
2021 138 89 (2.77) 140 170 174 134 143 15 (0.47) 109 82(2.55) | 93(2.90) 100
(4.30) (4.36) (5.29) (5.42) (4.17) (4.45) (3.39) (3.11)
2022 70 (2.18) | 57(1.77) | 95(2.96) | 94(2.93) 156 223 145 116 68(2.12) | 63(1.96) | 38(1.18) | 27(0.84)
(4.85) (6.94) (4.51) (3.61)
2023 17(0.53) | 32(1.00) | 55(1.72) | 34(1.07) | 42(1.32) | 53(1.66) | 90(2.82) | 82(2.57) 183 104 105 58 (1.82)
(5.73) (3,26) (3.29)
2024 37(116) | 34(1.07) | 49(1.54) | 45(1.41) | 57(1.79) | 45(141) | 60(1.88) | 88(2.76) | 66(2.07) | 26(0.81)

According to previous studies, when the RMSE, MAE, MAPE,
and MSE of a model are smaller, the model’s goodness of fit is better. 100
The following are the calculation methods:

n AV
RMSE — 2o i — ) (14) 75
V n

S
8
]
S
18 3 50
J—— L1 c
MAE= -3 Iy =i s | §
i=1 <
] n ( A) 25
MAPE = — 31222 5 100% (16)
n “ fl
i=1
N Jan Feb Mar Apr MayJu\? Jul Aug Sep Oct Nov Dec
1 N ear
MSE = — Z(yi —5)? (17)
i=1 FIGURE 2

Seasonal distribution of AHC in Chongqging Municipality. The vertical
axis represents incidence rate (per 100,000 population), and the

Furthermore, to further evaluate whether the differences in ! o ; ;
horizontal axis indicates months. Lines of different colors

the prediCtiVC performance of the five models are StatiStiC&HY correspond to each year, showing distinct seasonal fluctuations

signiﬁcant, we conducted the Diebold-Mariano test, comparing with an annual peak between June and September. The magnitude
. f variation diffi .

SARIMA-KNN with each of the other four models one by one, o vanation Giers across years

to clarify the statistical differences in the predictive accuracy of
different models.

3.2 Performance of SARIMA model

3 Results
From the time series plot in Figure 3A, it can be observed
3.1 Descriptive statistical results that the sequence has a clear downward trend, suggesting that it
is a non-stationary time series. The ADF test yields P = 0.1485
Table 1 shows the monthly incidence rate of acute hemorrhagic > 0.05. As shown in the seasonal component in Figure 4, the
conjunctivitis in Chonggqing from March 2019 to October 2024. The  sequence has a distinct seasonal feature with each year as a cycle.
highest incidence month was July 2019, with a rate of 9.69, while  Since the data is monthly, the cycle length is 12. After performing
the lowest incidence month was January 2023, with a rate of 0.53.  first-order differencing and first-order seasonal differencing on the
Figure 2 indicates that the incidence rate of AHC in Chongqing is  original sequence, the random fluctuations of the sequence become
relatively high from June to September each year. relatively stable, as depicted in Figure 3B. The ADF test results in
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FIGURE 3

Time series analysis of acute hemorrhagic conjunctivitis incidence. (A) Time series plot of the incidence rate of acute hemorrhagic conjunctivitis. (B)
Time series plot of the sequence after first-order difference and seasonal difference.
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T T
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(B)

P =0.01 < 0.05, thus SARIMA (p, 1, @) x (P, 1, Q)12 is initially
selected. Through stepwise parameter estimation of the SARIMA
model, SARIMA(0, 1, 3) x (P, 1, Q,)12 is ultimately determined as
the best prediction model. The Ljung-Box test yields P = 0.1292 >
0.05, accepting the null hypothesis, indicating that the fitted model
is significantly effective.

3.3 Performance of KNN Model

The performance of the KNN model was evaluated using 5-
fold cross-validation and grid optimization for model training and
parameter tuning. RMSE was used as the criterion for selecting the
best model. Through systematic analysis, it was determined that the
minimal RMSE value of ~1.610 was achieved when the parameter
k was set to 8. Consequently, this specific parameter configuration
(k = 8) was identified as the optimal setting for the KNN model,
demonstrating its capability to deliver superior predictive accuracy
and robust fitting performance for the AHC dataset.

3.4 Performance of Prophet model

The Prophet model was employed to automatically fit the
incidence rate of AHC in Chongqing from March 2019 to
December 2023, subsequently projecting the incidence rate from
January to October 2024. The predictive outcomes are presented
in Table 3, while the fitting and prediction curves are illustrated in
Figure 5. The findings demonstrate that the monthly incidence rate
of AHC in Chonggqing exhibits a distinct seasonal pattern.

3.5 Performance of the SARIMA-KNN
Hybrid Model

We extracted the deterministic structural features of the
sequence using the SARIMA model, and then input the residual
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FIGURE 4

Decomposition of the incidence sequence of acute hemorrhagic
conjunctivitis, revealing the underlying trend, seasonality, and
random variations in incidence dynamics.

sequence of the SARIMA model into the KNN model. We
determined the optimal parameters of the hybrid model using
the same steps as when modeling separately. Table 2 presents the
performance evaluation metrics of the SARIMA-KNN model.

3.6 Performance of the SARIMA-Prophet
Hybrid Model

The hybrid model first captures the linear trend and seasonal
components in the time series through SARIMA, and then
inputs the obtained residual sequence into the Prophet model for
further fitting of the implicit non-linear features. The performance
indicators of the model are shown in Table 2.
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TABLE 2 Evaluation indicators of the three models.

10.3389/fpubh.2025.1644729

Evaluation indicators SARIMA KNN SARIMA-KNN Prophet SARIMA-Prophet
MSE 0.71 1.17 0.62 1.27 1.93
MAE 0.66 0.77 0.63 0.93 1.16
RMSE 0.84 1.08 0.79 113 1.39
MAPE 46.28 63.56 43.77 59.88 85.56

MSE, means square error; MAE, mean absolute error; RMSE, root means square error; MAPE, mean absolute percentage error; SARIMA, seasonal autoregressive integrated moving average;

KNN, K-nearest neighbors; Prophet, Facebook Prophet, an additive regression model developed by Meta for time series forecasting.

3.7 Performance Comparison

The performance metrics of all models are presented in Table 2.
It is not difficult to see that the SARIMA-KNN model demonstrates
lower values in MSE, MAE, RMSE, and MAPE compared to the
other four models. The residual error accumulation observed in the
SARIMA-Prophet combination further substantiates the rationale
for employing KNN to correct non-linear residuals. Furthermore,
statistical analysis of predictive performance differences through
the Diebold-Mariano test reveals that the SARIMA-KNN combined
model exhibits significantly superior prediction accuracy at a
statistical level (P < 0.05) compared to the remaining models.
Consequently, we conclude that the SARIMA-KNN model
demonstrates superior accuracy and applicability in predicting the
incidence of AHC in Chongging Municipality.

The prediction results of the SARIMA (0,1,3) x (1, 1, 0)12
model, the KNN model, and the SARIMA-KNN model for
January 2024 to October 2024 are shown in Table 3. (The negative
value range indicates that individual point predictions should be
interpreted with caution, but the overall performance of the model
still meets the requirements for early warning) Empirical analysis
reveals that the SARIMA-KNN model demonstrates superior
predictive accuracy, exhibiting lower prediction errors compared to
the other two models across the majority of the predicted months.
Furthermore, the comparative fitting performance of these three
models is comprehensively illustrated in Figure 5.

4 Discussion

Our findings demonstrate that the incidence of AHC
in Chongging manifests pronounced seasonal variations, with
the peak prevalence consistently observed between June and
September annually. This epidemiological phenomenon is strongly
associated with the region’s distinctive summer climatic conditions.
Specifically, the average temperature in Chongqing during this
period ranges from 25°C to 30°C, accompanied by relative
humidity levels exceeding 70%. Such environmental parameters
create optimal conditions for the survival and proliferation of
conjunctivitis viruses, consistent with the established biological
characteristic that these pathogens thrive in warm and humid
environments (8). In addition, under high temperature and
humidity conditions during summer, the sebum secreted by the
meibomian glands of the eyes increases, creating a more suitable
environment for viral propagation. The period from June to
September aligns with school summer vacations, during which
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students engage in various group activities including training
programs and summer camps. As a major tourist destination,
Chonggqing experiences substantial population concentration and
high mobility rates. The emergence of even a single case
significantly elevates the risk of rapid disease transmission within
the community.

The SARIMA-KNN hybrid model developed in this study
successfully identified the incidence pattern of AHC in Chonggqing.
The RMSE of the hybrid model was reduced by 5.9% compared to
the single SARIMA model. To further validate the efficacy of hybrid
models, we incorporated the Prophet model and its hybrid version
with SARIMA as benchmark comparisons. While the Prophet
model demonstrates automatic handling of seasonality and holiday
effects, its RMSE of 1.39 in this study remains higher than that
of the SARIMA-KNN combined model. This finding suggests that
although Prophet effectively captures prominent periodic patterns,
the KNN’s instance-based learning with local adaptability proves
more advantageous in processing the complex non-linear residuals
in AHC incidence rates. This outcome aligns closely with the
core concept of recent monkeypox virus prediction research (33).
By constructing structurally appropriate combined models that
effectively integrate the strengths of different algorithms, we can
overcome the limitations of individual models in characterization
capabilities, thereby enabling more comprehensive and precise
capture of the complex epidemiological characteristics of infectious
diseases. In traditional time series forecasting, the SARIMA model,
compared to the ARIMA model, incorporates seasonal effects
and has been widely applied in predicting infectious diseases
such as influenza and hand-foot-and-mouth disease due to its
capability to effectively capture seasonal and periodic patterns
(17, 34). However, the SARIMA model demonstrates limited
adaptability to sudden events and requires differencing to stabilize
non-stationary series, which may result in information loss and
reduced prediction accuracy. This limitation has been previously
noted in influenza virus prediction studies (35). Conversely, the
KNN algorithm has demonstrated remarkable flexibility in non-
linear pattern recognition, as evidenced by its applications in air
quality prediction and emergency department volume forecasting
(36), but it is difficult to handle cyclical patterns when used
alone (37). In this investigation, the synergistic integration of both
methodologies enabled the SARIMA module to analyze the long-
term downward trend and linear patterns of AHC’s summer cyclical
peak, while the KNN module identified non-linear anomalous
fluctuations potentially induced by environmental variations and
social behaviors through localized similarity searches, thereby
further minimizing prediction errors.
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TABLE 3 Comparison of prediction results of five models.

Month Incidence SARIMA forecast KNN forecast SARIMA-KNN forecast Prophet forecast SARIMA-Prophet forecast
Forecast Forecast Forecast Forecast Forecast Forecast Forecast Forecast Forecast Forecast
(95% ClI) error (%) (95% Cl) error (%) (95% ClI) error (%) (95% ClI) error (%) (95% ClI) error (%)

2024/1/1 1.16 1.40 (—0.33, 20.74% 3.31(0.93, 185.39% 1.28 (—0.43, 10.69% 1.81 (—0.73, 56.10% 1.97 (0.00, 69.90%
3.13) 5.69) 2.99) 4.35) 3.94)

2024/2/1 1.07 0.86 (—0.87, —19.14% 1.55 (—0.83, 45.19% 0.78 (—0.92, —26.42% —0.42 (—2.96, —139.51% 1.97 (0.01, 85.22%
2.60) 3.93) 2.49) 2.12) 3.94)

2024/3/1 1.54 1.44 (—0.29, —6.06% 1.37 (—=1.01, —10.76% 1.36 (—0.34, —11.11% 0.05 (—2.48, —96.59% 2.87 (0.91, 87.15%
3.18) 3.75) 3.07) 2.59) 4.84)

2024/4/1 1.41 1.07 (—0.67, —24.20% 1.37 (—1.01, —2.83% 1.00 (—0.70, —28.77% 0.88 (—1.66, —37.65% 1.80 (—0.17, 27.42%
2.80) 3.75) 2.71) 3.42) 3.76)

2024/5/1 1.79 2.08 (0.35, 16.53% 1.55 (—0.83, —13.40% 2.00 (0.30, 12.18% 2.26 (—0.28, 26.55% 1.56 (—0.41, —12.70%
3.82) 3.93) 3.71) 4.80) 3.53)

2024/6/1 1.41 3.22(1.48, 128.05% 1.55 (—0.83, 9.70% 3.10 (1.39, 119.79% 255 (0.01, 80.78% 3.14 (118, 122.94%
4.95) 3.93) 4.81) 5.09) 5.11)

2024/7/1 1.88 2.75 (1.01, 46.14% 1.55 (—0.83, —17.73% 2.67 (0.96, 42.01% 2.13 (—0.40, 13.40% 2.82(0.85, 49.80%
4.48) 3.93) 4.38) 4.67) 4.78)

2024/8/1 276 2.20 (0.47, —20.18% 1.80 (—0.58, —34.67% 2.12 (041, —22.99% 0.41 (—2.13, —85.20% 3.28(1.32, 19.10%
3.94) 4.18) 3.83) 2.94) 5.25)

2024/9/1 2.07 3.25 (1.52, 57.25% 3.07 (0.69, 48.42% 3.17 (1.47, 53.50% 1.42 (—1.11, —31.25% 4.83 (2.86, 133.66%
4.99) 5.45) 4.88) 3.96) 6.80)

2024/10/1 0.81 1.83 (0.09, 124.53% 2,99 (0.61, 267.47% 1.71 (0.00, 110.22% 1.07 (—1.46, 31.72% 2.83 (0.86, 247.76%
3.56) 5.37) 3.42) 3.61) 4.80)

SARIMA, seasonal autoregressive integrated moving average; KNN, K-nearest neighbors; Prophet, Facebook Prophet, an additive regression model developed by Meta for time series forecasting; CI, confidence interval.
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FIGURE 5

The fitting situation of the actual incidence rate of acute
hemorrhagic conjunctivitis from March 2019 to December 2023 and
the predicted incidence rate from January 2024 to October 2024.
The SARIMA-KNN predicted curve closely aligns with the actual
incidence, demonstrating the model's accuracy.

Furthermore, while numerous studies have integrated machine
learning with traditional time series models (38, 39), the innovation
of our approach resides in the recognition that SARIMA prediction
residuals contain spatio-temporal heterogeneity information
beyond its linear assumptions. The KNN algorithm performs
spatial interpolation on these residuals by incorporating distance
weights, thereby achieving geographical refinement of prediction
outcomes. In comparison to the widely adopted hybrid models
such as SARIMA-LSTM and SARIMA-XGBoost in recent studies
(40, 41), the SARIMA-KNN hybrid model proposed in this
research demonstrates superior performance in multiple aspects.
Not only does it maintain comparable prediction accuracy, but
it also exhibits enhanced computational efficiency and improved
interpretability. While LSTM models are capable of capturing
complex sequential dependencies, they necessitate substantial
training data and intricate hyperparameter optimization. Similarly,
despite its robust predictive capabilities, XGBoost presents
interpretability challenges regarding epidemiological mechanisms
due to its inherent “black box” characteristics. Conversely, KNN
offers distinct advantages, including an intuitive algorithmic
principle, minimal parameter requirements, and superior
adaptability to medium and small-scale datasets. These attributes
render it particularly valuable for infectious diseases with limited
data availability, such as AHC, or in resource-constrained regions.
Furthermore, given the abrupt onset and rapid transmission
patterns characteristic of AHC outbreaks, which demand swift
public health responses, the SARIMA-KNN hybrid models
prediction outputs can be seamlessly integrated with existing
infectious disease surveillance network reporting systems. This
integration facilitates the development of a dynamic early warning
system (42). Through comparative analysis of short-term predicted
values against historical baseline levels and the establishment
of multi-tiered risk-level warning thresholds, the system can
automatically generate alerts to disease control authorities when
predicted values surpass predefined thresholds. This automated
mechanism enables prompt enhancement of pathogen monitoring
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and preparation of epidemic prevention materials, thereby
optimizing prevention and control efficiency.

Although the SARIMA-KNN hybrid model in this study was
developed for predicting the incidence of acute hemorrhagic
conjunctivitis, its methodology can be extended to disease
prediction and emergency response scenarios. Similar to the
ANN-CVD study (43) that utilized artificial neural networks to
predict cardiovascular disease mortality in Pakistan, this model,
by combining SARIMA and KNN, is also suitable for health
data that requires consideration of both long-term trends and
short-term fluctuations. Moreover, the response to public health
emergencies such as COVID-19 needs to take into account policy
dynamics and time sensitivity (44). The hybrid framework of
SARIMA-KNN model can be enhanced by integrating external
covariates and optimizing the sliding window, providing a
time-sensitive predictive tool for emergency decision-making.
This direction is highly consistent with the goal of building
a multi-disciplinary intelligent early warning system. Future
research should introduce feature importance assessment methods
(45) to clarify the contribution of external variables such as
meteorology and population mobility to the prediction results, and
focus on constructing a multi-disciplinary integrated intelligent
prediction system. It is recommended to develop adaptive hybrid
models (such as SARIMA-Transformer-XGBoost) to enhance the
response capability to public health emergencies. At the same
time, a spatio-temporal dynamic early warning platform can be
established to achieve county-level risk classification and optimal
resource allocation (46). Relevant institutions should enhance
the medical data sharing mechanism and privacy protection
standards, promote the inclusion of prediction models in local
infectious disease prevention and control guidelines. Ultimately,
a closed-loop management system encompassing “data-driven—
should be established to
provide intelligent solutions for the scientific prevention and

model prediction—decision support”

control of climate-sensitive infectious diseases, such as acute
hemorrhagic conjunctivitis.

5 Limitation

Although the SARIMA-KNN hybrid model proposed in this
study demonstrated high accuracy in predicting AHC, several
limitations still exist. Firstly, the relatively short time span of the
data used in this study restricted the model’s ability to capture
longer-term epidemic trends or multi-year cyclical patterns.
Secondly, the model’s generalization ability may be limited by
regional characteristics, and its predictive performance may vary
in other provinces, cities, or regions. Additionally, the reliability
of long-term predictions is constrained by the assumption of
stability in environmental and social factors. If extreme climates
or policy adjustments occur in the future, the prediction results
may deviate. These limitations suggest that it is necessary to
continuously accumulate longer time series of monitoring data
and integrate multi-source data to optimize the model structure,
thereby enhancing the applicability of the prediction. Future
research should also focus on collecting incidence data of AHC in
other geographical areas and conducting external validation of this
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model to comprehensively evaluate its robustness and applicability
across regions.

6 Conclusion

This study pioneers the introduction and validation of a
SARIMA-KNN hybrid model, employing a residual correction
strategy for the prediction of AHC in Chongging. Comparative
analyses with SARIMA, KNN, Prophet models, and the SARIMA-
Prophet hybrid model demonstrate the superior performance of
the SARIMA-KNN hybrid model across multiple error metrics
(MSE, MAE, RMSE, and MAPE), achieving significant reductions
in prediction error. The research not only identifies the seasonal
characteristic that the period from June to September constitutes
the peak incidence of AHC but also offers a practical tool for
public health decision-making, thereby enhancing the accuracy
and real-time performance of existing infectious disease early
warning and monitoring platforms. Future research directions may
focus on enhancing the model performance through integrating
multi-source data and optimizing the deep learning architecture.
Furthermore, it is reccommended to connect the model output with
the regional prevention and control resource scheduling system to
achieve precise early intervention for infectious diseases.
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