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Exploring meaning in life from
social network content in the
sleep scenario
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!Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for
Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing
Normal University, Beijing, China, ?School of Information Management, Wuhan University, Wuhan,
China, ®Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom, *School of
Economics and Management, Beijing Jiaotong University, Beijing, China

Introduction: The exploration of life's meaning has been a key topic across
disciplines, and artificial intelligence is now beginning to investigate it.
Methods: This study leveraged social media to assess meaning in life (MIL) and its
associated factors at individual and group levels. We compiled a diverse dataset
consisting of microblog posts (N =7588,597) and responses from user surveys
(N = 448), annotated using a combination of self-assessment, expert opinions, and
ChatGPT-generated insights. Our methodology examined MIL in three ways: (1)
developing deep learning models to assess MIL components, (2) applying semantic
dependency graph algorithms to identify MIL associated factors, and (3) constructing
eight subnetworks to analyze factors, their interrelations, and MIL differences.
Results: We validated these methods and bridged two foundational MIL theories,
highlighting their interconnections.

Discussion: By identifying psychological risk factors, our work may provide
clues to mental health issues and inform possible intervention.
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1 Introduction

Meaning in life (MIL) has long been recognized as the sense that on€’s life has purpose,
coherence, and significance (1). Building on this view, later research typically distinguishes the
Presence of Meaning in Life (POM) and the Search for Meaning in Life (SFM) (2). From a
Self-Determination Theory perspective, MIL has been linked to autonomy, competence, and
relatedness needs (3). Higher MIL was related to greater life satisfaction (4, 5) and better health
indicators (2). It was found to protect against psychological distress (6), depression (7-9),
anxiety (67), and loneliness (10). It also related to mortality-related concerns, including death
anxiety and suicide risk (10-12). Beyond mental health, MIL was linked to better sleep quality
(13), lower risk of eating disorders (14), and enhanced coping among individuals with chronic
conditions such as cancer and HIV (15, 16).

Building on the importance of MIL, our research question concerns how MIL can
be assessed. Existing assessments have relied on validated questionnaires developed from
diverse theoretical perspectives. These included the Purpose in Life questionnaire (17), the
Meaning in Life Questionnaire with Presence and Search subscales (2), and the Meaningful
Life Measure (18). Subsequently, the Multidimensional Existential Meaning Scale
conceptualized comprehension, purpose, and mattering (19). Most recently, the Three-
Dimensional Model of Meaning conceptualized coherence, purpose, and significance (20).
Although these tools have advanced our understanding of MILs structure and correlates, two
research gaps remain. First, because MIL is abstract and multifaceted, there is no universally

01 frontiersin.org


https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2025.1642085&domain=pdf&date_stamp=2025-11-11
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1642085/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1642085/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1642085/full
mailto:caolei@bnu.edu.cn
https://doi.org/10.3389/fpubh.2025.1642085
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2025.1642085

Lietal.

accepted structured definition, and the relations between competing
frameworks such as two-dimensional and three-dimensional models
require further clarification. Second, while questionnaires capture
subjective perceptions well, they are limited in scalability, timeliness,
and adaptability for large-scale assessment in naturalistic settings.

This study introduces a novel approach to automatically assess an
individual’s MIL from social media expressions and examines differences
in linguistic patterns across POM and SFM levels. Three lines of evidence
support the feasibility of this approach. First, MIL could emerge from
everyday experiences such as establishing daily routines (21, 22), and
online interactions often mirrored real-world social dynamics (23, 24).
Second, social media content provided a window into existential reflection
(25, 26). Moreover, social media engagement was closely associated with
processes of meaning making (23). More active engagement such as
posting photos was related to a stronger sense of purpose in life (25, 27),
whereas passive browsing without interaction mediated the relation
between meaning and self-esteem in stressful contexts (28). Third, on the
technical side, prior studies inferred implicit psychological variables from
user-generated content (29), including anxiety (30), insomnia (31, 32),
stress (33-35) and stressors (36), and suicide risk (37).

Building on these foundations, we moved from usage patterns to
language-based, large-scale assessment of MIL in social media text.
We then examined how levels of POM and SEM relate to associated
factors at the group level. This study aims to address two central
research questions:

RQI: The relationship between POM and SFM is complex and
sometimes inconsistent. How can we model these two components
from real-world social media data?

RQ2: The associated factors that shape MIL are varied and often
interrelated (e.g., achievements, security, spirituality, health,

10.3389/fpubh.2025.1642085

family life). How can we accurately extract these factors from
large-scale textual data and characterize their interconnections?

Specifically, this study assessed MIL within the sleep context for
three reasons. First, on theoretical grounds, prior work showed that
rumination and self-evaluation occurred more often at night (38).
Moreover, rumination was closely associated with MIL (39). Ge (31)
further showed that POM significantly predicted sleep quality via
mediators such as depression. These studies supported sleep as a
theoretically dense window on MIL. Second, from a methodological
perspective, constraining the analysis of textual expressions of MIL to
the sleep context reduced noninformative noise in open social media
data. It increased the density and retrievability of MIL-relevant signals,
which made the linguistic features easier to capture and model. Third,
from a reproducibility perspective, using sleep as a contextual starting
point facilitated replication across platforms. The methods could
be reapplied with matched time windows in follow-up studies.

Focusing on the sleep context, we collected over 7,500,000
microblogs, of which 189,213 contained MIL-related keywords.
We conducted manual annotation and data augmentation on
sampled posts, constructing a labeled dataset comprising 3,000
MIL-relevance labels, 1,600 POM (High vs. Low) labels, and 1,600
SEM (High vs. Low) labels. The three-part framework is shown in
Figure 1. In Study 1, we developed three binary deep learning
models to assess MIL relatedness, POM level, and SFM level.
We then applied these models to segment the large-scale microblog
dataset into eight subgroups reflecting different MIL states. Study
2 employed semantic dependency graphs to extract associated
factors and their semantic relations. In Study 3, we constructed
eight subnetworks to support downstream analyses of associated-
their on MIL, their
interconnections, and differences across subnetworks.

factor patterns, including effects

Understanding Meaning in Life Through Microblog Content: A Three-Part Framework
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FIGURE 1
Three-part framework for exploring MIL from microblog content.
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This study makes contributions both methodologically and
theoretically. Methodologically, we introduce a framework for
automated, timely assessment of MIL and its associated factors.
Beyond scalable analysis of social media content, the framework has
practical implications. It supports early detection of mental health
risks. For example, it can monitor loss of meaning as a precursor to
depression or insomnia. It also helps tailor interventions in
educational or occupational settings and informs the design of digital
platforms that enhance social support and well-being. Theoretically,
we classify the associated factors into five areas: factor frequency,
influential factors, factor relationships, significant factor differences,
and clustering trends, and explore their implications for the
two-component model of MIL, offering new insights into the
complexities of meaning.

2 Methods
2.1 Dataset

To address the absence of publicly available datasets for MIL,
we started by constructing a reliable corpus comprising two parts: a

10.3389/fpubh.2025.1642085

large-scale Weibo dataset and an empirical dataset collected through
participant recruitment (see Figure 2).

2.1.1 Microblogs

We executed a Python program on Sina Weibo, a leading social
media platform in China, between December 2021 and January 2022.
It collected 7,588,597 sleep-related microblogs posted from January
15 to July 15, 2021 (see Figure 2). All collected posts were originally
written in Chinese. The sleep-related seed keywords/expressions were
chosen based on two criteria: (1) terms related to sleep derived from
the Pittsburgh Sleep Quality Index (40) and (2) synonyms of these
terms identified in the microblog corpus. The seed list of sleep-related
keywords/expressions included insomnia, staying up late, having
many dreams, nightmare, waking up startled, sleepy, early morning,
having a dream, unable to fall asleep, sleep, easy to wake up, and
dreaming about. The criteria for selecting seed keywords/expressions
related to MIL were as follows: (1) identifying terms associated with
MIL from the Meaning in Life Questionnaire (16); and (2) selecting
synonyms of these keywords/expressions found in the microblog text.
The MIL seed list included meaning, purpose, value, faith, ideal,
aspiration, future, pursuit, quest, seek, establish, presence,
and exploration.

If related to MIL;
level of POM and SFM

<—— Cross labeling

Data Enhancement

Microblog Dataset

Search for Weibo 7,588,597 Posts Data Cleaning 3,410,469 Posts
15 keywords —> 15 Janto —>Delete advertising posts—>
associated with sleep 15 Jul 2021
2,000 Labeled Posts Data Annotation 189,213 Posts Data Filter

3,000 Labeled Posts
If related to MIL

<—19 keywords associated
with MIL (Steger)

e

Random deletion,
synonym replacement

448 users (the MIL

—“+> 1,600 Labeled Posts

Level of POM

Q_W—

Sampled User Survey

questionnaire; user D)

Appl
> 1,600 Labeled Posts | Apply |

Level of SFM

67,852 Posts Filtering 30,763 Posts
-» Jan2020to May -» Liedetectionquestionsand-»  289users
2022,409 users adherence checks (questionnaires)

FIGURE 2

Dataset construction process: microblog dataset and user survey.
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In this study, posts were retained in their original Chinese form
throughout the entire processing pipeline, including preprocessing
(data cleaning and augmentation), word embeddings, and modeling,
without intermediate translation that might introduce semantic
distortion. An initial review revealed substantial noise, such as
advertisements and http links. We employed a stop-word list
containing 469 entries to filter out noisy posts. Examples were
provided in Supplementary Table A1. The complete list is available at
the “Dataset and Code” link (see Data Availability). This list comprised
common Chinese function words, punctuation marks, and high-
frequency non-informative terms identified in the corpus [e.g., terms
related to advertising and fan-engagement super-topic hashtags (#)].
In addition, we removed duplicate texts longer than 10 Chinese
characters. After cleaning, the dataset comprised 3,410,469 posts.

This dataset was then screened using the MIL seed keywords/
expressions, yielding 189,213 posts that constituted the high-density
MIL dataset. From this subset, we randomly selected 2,000 posts,
divided them into 10 files, and conducted cross-annotation with the
assistance of 10 psychology undergraduates. For each post, the
annotator performed three binary classification tasks: (1) determine
if the post is “Related” or “Not Related” to MIL or “Unable to Judge”;
(2) for MIL-related posts, assess as “High POM” or “Low POM” or
“Unable to Judge”; and (3) for MIL-related posts, assess as “High SFM”
or “Low SEM” or “Unable to Judge” Detailed examples and annotation
guidelines are provided in Supplementary Tables B1, B2. Specifically,
for MIL we excluded 532 posts in total (184 with inconsistent labels
and 348 labeled as Unable to Judge), leaving 1,468 consistently labeled
posts (68.8% Related, 31.2% Not Related). Within the 1,010
MIL-related posts, we excluded 176 with inconsistent SEM labels and
154 labeled as Unable to Judge, leaving 680 posts for SEM (63.4%
High, 36.6% Low). For POM, we excluded 207 with inconsistent labels
and 181 labeled as Unable to Judge, leaving 622 posts for POM (49.4%
High, 50.6% Low). Cohen’s kappa was 0.84 for MIL, 0.71 for SFM, and
0.68 for POM (all p < 0.01).

Data augmentation was then applied to the consistently labeled
dataset (excluding Unable to Judge cases) using two strategies: random
deletion and random synonym replacement. Random deletion
involved removing one or two noncritical words (for example, adverbs
or intensifiers) without altering the central meaning. Random
synonym replacement substituted words with semantically close
synonyms (cosine similarity >0.80 using Sentence-BERT embeddings).
To ensure semantic validity, a random 10% of the augmented posts
was manually checked by two annotators, and items with altered
meaning were discarded. After augmentation, the dataset was
expanded to 3,000 posts for Model 1 (MIL), and 1,600 posts each for
Model 2 (SFM) and Model 3 (POM).

2.1.2 Participants

We recruited Sina Weibo users through two channels: the
AiShiyan Participant Recruitment Platform and the Weibo Super
Topic “#Questionnaire#” This resulted in 222 users and 701 users
signing up, respectively, for a total of 923 participants. Informed
consent was obtained from all participants. They were asked to
complete the Meaning in Life Questionnaire (2) and to provide their
user ID. Among them, 448 individuals completed the questionnaire.
We then defined active users as those who posted more than 10
original microblogs between January 1, 2020, and May 4, 2022.
We filtered out these active users and also removed prominent
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marketing accounts, which were characterized by exceptionally high
numbers of comments, likes, and shares per post. After these
exclusions, the dataset included 409 users and 67,852 posts.
We excluded participants who failed the lie-detection item. The
instruction was: “Please select ‘Strongly Agree’ for this question.”
We also excluded patterned responses (i.e., selecting the same option
for all items). This
55,476 microblogs.
Finally, we applied the cleaning rules described in section 2.1.1.

yielded 315 wvalid participants and

Specifically, we filtered posts containing advertisements, http links, or
items from the customized stop-word list, and we removed duplicate
posts longer than 10 Chinese characters. After cleaning, we retained
289 active users and 30,743 posts, averaging 106.38 posts per user and
44.25 characters per post. Detailed demographics were listed in
Supplementary Table E3. The overall process is illustrated in Figure 2.

2.2 Study 1: a three-stage process for
structurally assessing MIL from social
media text

This study implemented a three-stage pipeline to assess MIL from
microblog text. Model 1 detected whether a post was related to
MIL. Model 2 classified posts into high or low levels of SEFM. Model 3
classified posts into high or low levels of POM. In each stage,
we adopted Bidirectional Encoder Representations from Transformers
(BERT) (41) as the primary encoder to convert tokenized text into
contextual representations. After encoding, a Text Convolutional
Neural Network (TextCNN) (42) applied multiple convolution filters
to capture the significance of keywords and enhance the models’
ability to identify key semantic cues. The input for all three models
was raw post text, and the output was class probabilities and a
predicted label.

The three models shared a five-layer architecture, as illustrated in
Figure 3. The first layer was the BERT encoder with 12 transformer
blocks. Shallow blocks captured lower-level semantics and deeper
blocks encode higher-level semantics. For each input, the classification
token vector (CLS; i.e., the representation of the special [CLS] token
used by BERT) from each block was extracted and stacked to form a
matrix that served as the input to the convolutional module. The
second layer was the convolutional layer. Three sets of convolution
filters with window sizes of 3 x d, 4 x d, and 5 x d were applied, where
d denoted the dimensionality of the BERT embeddings (typically 768)
and m was the number of filters for each window size. These filters slid
over the stacked [CLS] matrix to extract local features and generate
one-dimensional feature maps. The third layer was the pooling layer,
which applied max pooling to reduce dimensionality and retain the
most informative signals. The fourth layer was the fusion layer, which
concatenated the pooled outputs from the three window sizes into a
single vector. The fifth layer was the output layer, where a fully
connected layer followed by the softmax function predicted task-
specific class probabilities.

The annotated microblog dataset was randomly divided into
training, validation, and test sets in an 8:1:1 ratio. Each microblog was
tokenized and mapped to subword units with special tokens added,
and sequences were truncated or padded to a length of 164. Training
used a batch size of 32 and a learning rate of 2x 10_5, and was
performed using a 10-fold cross-validation approach to ensure robust
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FIGURE 3

Structures of the three MIL assessment models. Model 1 determines whether a post is MIL-related (Yes/No). If a post is MIL-related, Model 2 evaluates
the SFM level (High/Low) and Model 3 evaluates the POM level (High/Low). Detailed symbol definitions are provided in section 2.2.

Detailed Structure of Model 1

model evaluation and prevent overfitting. During training, prediction
errors were calculated, and the parameters were iteratively adjusted
using the Adam optimizer (43). Early stopping was applied when
validation performance did not improve for 1,000 update steps. Class
imbalance was handled with class weights in the loss function. The
validation set was used to tune model hyperparameters, and the test
set was used for the final evaluation of model effectiveness. Using
identical architecture and training settings across the three tasks
ensured comparability of results.

2.3 Study 2: identifying associated factors
of MIL through semantic dependency
graph algorithms

We used the Language Technology Platform (LTP) Python
package (44) to construct semantic dependency graphs. These graphs
were intended to collect elements associated with MIL and to illustrate
potential co-occurrence and directional tendencies among them, not
causal pathways. We began from such associations to identify semantic
cues that explained why something happened, which was relevant to
MIL. We then mapped the extracted elements to Linguistic Inquiry
and Word Count (LIWC) categories to enable standardized
comparisons across groups.

As input to the LTP package, each post was segmented into
linguistic units (i.e., sentences ending with a period, exclamation
mark, or question mark), and the output was a set of dependency
relations labeled with semantic roles. LTP provided a neural pipeline
for Chinese that performed sentence segmentation, part-of-speech
tagging, dependency parsing with a graph-based parser, and semantic
role labeling. We focused on nine key semantic dependency roles:
reason (REAS, i.e., the cause or motivation behind an action), agent
(AGT, i.e., the entity performing the action), experiencer (EXP, i.e., the
entity that perceives or experiences an event), object (PAT, i.e., the
entity that is affected by the action), content (CONT, i.e., the subject
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matter or information conveyed), dative (DATY, i.e., the recipient of
something in a transaction), link (LINK, i.e., a relationship or
connection between entities), temporal (TIME, i.e., the time at which
an action occurs), and locative (LOG, i.e., the place where an action
occurs). Each dependency role was represented as a three-tuple
<(wordA, wordB), Role>.

As shown in Figure 4, the outputs of LTP were iteratively expanded
from the REAS role (Layer 0) to subsequent layers (Layers 1-3),
thereby constructing the semantic dependency graph and identifying
relationships between semantic roles. Nodes in the graph were lexical
items normalized to surface forms after tokenization. Edges were
added when two nodes were linked by any of the nine roles within a
sentence. Edge weights were the corpus counts of such links
aggregated across sentences and posts, and self-links were removed.
For readability and robustness, we filtered stop words and punctuation
and pruned edges with very low frequency. This graph served as the
foundation for detecting associated factors and mapping them to
LIWC categories. A high-level pseudocode of this process was
provided in Supplementary Table C1.

Next, we reviewed the LIWC Chinese Dictionary, and extracted
keywords (associated components) from the semantic dependency
graphs that were indicative of MIL, thereby mapping the associated
factors to their corresponding LIWC categories. The step-by-step
pseudocode and the definitions of variables and symbols were
provided in Supplementary Tables C2, C3. We adopted 52 LIWC
categories and consolidated them into nine broader groups (see
Supplementary Table D1).

2.4 Study 3: multi-level network analysis of
associated factors triggering MIL
To examine the associated factors identified in Study 2 at a higher

level of community detection, we conducted network analysis based
on 295,777 posts containing MIL-related associated factors. All posts
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FIGURE 4
Examples of semantic dependency graphs of microblog texts. The color transition from dark to light indicated the relationship between the current
role and REAS role, moving from closer to more distant connections. The nine semantic roles are reason (REAS), agent (AGT), experiencer (EXP), object
(PAT), content (CONT), dative (DATV), link (LINK), temporal (TIME), and locative (LOC). ROOT represents the virtual root node that anchors the
sentence'’s semantic head (main predicate).

were divided into eight sub-datasets based on POM (High/Low) and
SEM (High/Low) levels, corresponding to eight subnetworks. Four
sub-networks captured single-dimensional variations (High SFM,
Low SFM, High POM, Low POM), while the other four reflected the
joint distribution of both dimensions (High POM and High SFM,
High POM and Low SFM, Low POM and High SFM, Low POM and
Low SFM). This design allowed us to analyze how different levels of
SEM and POV, individually and jointly, shaped the manifestation of
MIL in social media.

In each subnetwork, nodes represented associated factors
extracted from semantic dependency graphs in Study 2, while edges
represented correlations between these factors. Edge strength was
measured using Pearson correlations, and the extended Bayesian
information criterion was applied to identify connections and prevent
overfitting (45). Centrality index, particularly expected influence, was
used to quantify the relative importance of each node by accounting
for both the magnitude and direction of connections (46). The bootnet
package in R (Version 1.5.0) (46) was used to estimate the network
structure, and the qgraph package (Version 1.9.2) (47) was used to
visualize the networks and calculate centrality.

Furthermore, we applied the Louvain method (48) to cluster
factors within each subnetwork across different SFM and POM levels.
In the Louvain method, a community referred to a group of nodes
(factors) that were more densely connected within the group than
with nodes outside. Density was defined as the ratio of the number of
observed edges (E) to the maximum possible number of edges among
N nodes, i.e.,

2E

N(N-1)

Density =

Modularity quantitatively measured the quality of a partition by
comparing the density of within-community connections to the

Frontiers in Public Health

density expected under a random graph that preserved node degrees.
Its standard definition is:

1 kik;
Q=g T A= o)

where Ajis the adjacency matrix, k; and k; are the degrees of
nodesiand j, m is the total number of edges, and & (ci C j) is 1 if nodes
iand j are in the same community and 0 otherwise.

The procedure comprised three steps: (1) measured link density
within communities, (2) clustered nodes to maximize modularity, and
(3) merged communities and repeated the process until modularity
no longer improved, thereby optimizing the partition of the
MIL network.

3 Results

3.1 Performance and applications of MIL
assessment models

3.1.1 Performance of MIL assessment models

We integrated BERT with TextCNN and fine-tuned three binary
classifiers for the three-stage MIL assessment. Model 1 detected
whether a post was related to MIL. Model 2 classified posts into high
or low levels of SFM, and Model 3 classified posts into high or low
levels of POM. Results (Table 1) indicated that the three models
performed well, with consistently high validation and test accuracies
(all above 88%). Model 1 achieved a validation accuracy of 93.67% and
a test accuracy of 93.67%, demonstrating robust performance in the
binary classification of MIL-related content. Model 2 reached a
validation accuracy of 88.75% and a test accuracy of 90.62%, reflecting
its effectiveness in capturing individuals’ varying levels of SEM. Model
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TABLE 1 Performance of three MIL assessment models in microblogs.

Model 1 [evaluating if the post is related to MIL (yes/no)]

Training and testing (N = 3,000)

10.3389/fpubh.2025.1642085

Applying in large scale microblog datasets

(N = 3,134,657)

Train loss Train acc. Val loss Val acc. Test loss Test acc. Posts (related) Posts (unrelated) Acc.(human- Acc.(ChatGPT)
labeled)
0.05 96.88% 0.24 89.33% 0.2 93.67% 295,777(9.44%) 2,838,880(90.56%) 90.40% 64.10%

Model 2 [judging the level of SFM (high/low)]
Training and testing (N = 1,600)

Applying in large scale microblog datasets
(N = 3,134,657)

Train loss Train acc. Val loss Val acc. Test loss Test acc. Posts (high SFM) Posts (low SEM) Acc.(human- Acc.(ChatGPT)
labeled)
0.21 96.88% 0.33 88.75% 0.24 90.62% 158,804(53.69%) 136,972(46.31%) 74.90% 41.00%

Model 3 [judging the level of POM (high/low)]

Training and testing (N = 1,600)

Applying in large scale microblog datasets
(N = 3,134,657)

Train loss Train acc. Val Loss Val acc. Test loss Test acc. Posts (high SFM) Posts (low POM) Acc.(human- Acc.(ChatGPT)
labeled)
0.11 96.88% 0.19 95.00% 0.18 93.12% 138,453(46.81%) 157,324(53.19%) 75.00% 47.50% ‘

3 also achieved strong results, with a validation accuracy of 95.00%
and a test accuracy of 93.12%, confirming its reliability in
distinguishing between high and low levels of POM. Taken together,
these findings support the feasibility of our modeling approach for
assessing MIL and its two core components from social media texts.
This performance is conditional on the constructed dataset. We will
then evaluate the approach on larger-scale datasets.

We further compared the model performance with two commonly
used deep learning models for natural language classification tasks: (1)
Long Short-Term Memory (LSTM) and (2) Enhanced Representation
through Knowledge Integration (ERNIE). Taking Model 1 as an
example, as shown in Table 2, the “BERT + TextCNN” model achieved
a precision of 0.92, recall of 0.89, and an F1 score of 0.90,
outperforming other models on the same dataset. For instance,
standalone BERT had a lower F1 score of 0.85, and “BERT + LSTM”
and ERNIE achieved F1 scores of 0.60 and 0.72, respectively.

3.1.2 Applications to a large-scale microblog
dataset

We then applied the MIL assessment models to a large corpus of
3,410,469 microblog posts. We constructed a stratified random
sampling frame to validate the models using human cross-validation
and ChatGPT-based validation (Table 1). First, Model 1 identified
295,777 MIL-related posts (8.67%) from the full corpus; Models 2 and
3 then assessed MIL levels (High vs. Low) for SFM and POM. Posts
were categorized into four groups: High SFM and High POM, High
SEM and Low POM, Low SFM and High POM, and Low SFM and
Low POM. These groups were used for associated factor extraction
and MIL network analysis. Second, for these 295,777 MIL-related
posts, we built semantic dependency graphs (section 2.3, Study 2) and
obtained 43,338 posts (14.65%) with identified associated factors and
LIWC categories (Table 3). Third, from this 43,338-post frame,
we drew a stratified sample of approximately 1% (n = 462) with at least
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TABLE 2 Performance of the MIL assessment model (model 1) compared
with baseline deep learning methods.

Model Precision Recall F1-score
BERT 0.95 0.76 0.85
BERT+LSTM 0.70 0.52 0.60
ERNIE 0.77 0.68 0.72
BERT + TextCNN 0.92 0.89 0.90

Bold values indicate the highest performance among models.

100 items per SFM x POM quadrant. This size follows common
practice for large-corpus quality checks, yielding an overall 95% CI
with a half-width of approximately 5 percentage points and, per
quadrant, approximately 9 to 10 percentage points, balancing coverage
and annotation cost. The realized composition was High SFM and
High POM: 102 (0.88%), High SFM and Low POM: 111 (1.22%), Low
SFM and High POM: 134 (2.22%), and Low SFM and Low POM: 115
(0.69%). In the validation sample, the marginal distributions were
SEM (High 46.1%, Low 53.9%) and POM (High 51.1%, Low 48.9%),
indicating how the two components were represented.

Building on the sampling procedure described above, we then
used the random subset of 462 posts from the 43,338 posts with
identified associated factors to conduct a manual validation by four
psychology students and a ChatGPT-based validation. Specifically,
we implemented a Python program that accessed the gpt-3.5-turbo
model via the OpenAl API. The detailed prompt was provided in
Supplementary Table E1. This prompt used a one-shot prompting
strategy. An example post was presented first to instruct the model on
the task. Each new post in the out-of-sample subset was then evaluated
with the same prompt. Both the manual labels and the assessment
results of our models (Models 1, 2, and 3) were blinded to
ChatGPT. We reported joint-label accuracy in Table 1, which requires
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TABLE 3 Associated factor extraction for MIL: algorithm performance.

10.3389/fpubh.2025.1642085

Category (top 1) Category (top 3) Examples of factor extraction
Acc. Cohen’'s  Acc. Acc. Cohen’s = Acc. Semantic dependency Categories
Dimensions (model) kappa (GPT) (model) kappa (GPT) (top 3)
Now, during sleepless nights often
caused by anxiety, a sense of inner loss
frequently leaves me feeling a lack of
Low SFM and
belonging. (anxiety — sleepless, REAS), = Biology, present
low POM 0.6 0.337 0.581 0.85 0.494 0.640
(belonging — feeling, CONT), (now — | tense, negative
(N =16,620)
leaves, TIME), (loss — leaves, EXP),
(nights — leaves, TIME), (me —
feeling, AGT)
My unremarkable life was also the
Low SEFM and happiest, marking the most beautiful Compare,
high POM 0.703 0.314 0.489 0.766 0.536 0.596 memories. (memories — making, consciousness,
(N = 6,043) LINK), (my — happiest, EXP), positive
(unremarkable — happiest, REAS)
I have my own life plans and aspi_
x0002_rations, but often lose
High SFM and motivation because of family
Drive, achieve,
low POM 0.586 0.589 0.564 0.859 0.662 0.663 entanglements. (family — il
social
(N=9,133) entanglements, EXP), (motivation —
loss, LINK), (entanglements — loss,
REAS), (plans — have, LINK)
I feel very proud winning the prize, and
High SFM and no longer confused about the future.
Achieve, positive,
high POM 0.351 0.408 0.441 0.846 0.571 0.577 (feel — winning the prize, REAS), (feel
compare
(N=11,542) — I, AGT), (feel » proud, CONT), P
(confused — about the future, TIME)
Total 0.56 0.412 0.519 0.83 0.566 0.619 - -

“Top 1” denotes the highest-ranked factor per post; “top 3” denotes the set of the three highest-ranked factors per post. “Category” refers to the LIWC category mapped from keywords

identified in the semantic dependency graph.

the SFM and POM labels to be correct simultaneously. In manual
validation, Model 1 achieved 90.40% accuracy, Model 2 achieved
74.90%, and Model 3 achieved 75.00%. In the ChatGPT-based
validation, accuracies were 64.10, 41.00, and 47.50% for Models 1, 2,
and 3, respectively.

In addition, the user-survey validation showed a significant
correlation between MIL scores and the proportion of MIL-related
posts (p = 0.006), further supporting the effectiveness of Model 1 (see
Supplementary Table E2). This analysis was conducted among
participants who had posted MIL-related content, as identified by
Model 1.

3.2 Results of semantic dependency graphs
and associated factors in MIL

3.2.1 Performance of the associated-factor
extraction algorithm

For the 295,777 MIL-related posts identified by Model 1,
we built semantic dependency graphs and extracted 43,338 instances
with identified associated factors and corresponding LIWC
categories. Each post could contain multiple associated factors
across LIWC categories. LIWC categories were ranked by frequency
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(descending). The highest-ranked was labeled Top 1, and the top
three were labeled Top 3. Posts were categorized into four groups
based on SFM and POM, with examples shown in Table 3. Manual
cross-validation was conducted on the sampled dataset described in
section 3.1.2 (n = 462) by four psychology students. Their evaluation
assessed whether the Top 1 category matched the MIL associated
factor (Cohen’s kappa = 0.412) and whether the Top 3 categories
covered the factor (Cohen’s kappa = 0.566). With manual cross-
validation, our algorithms achieved Top-1 and Top-3 accuracies of
0.560 and 0.830. With ChatGPT-prompt validation, the
corresponding accuracies were 0.519 and 0.619 (Table 3).

3.2.2 Proportions of associated factors across
eight MIL groups

We examined the distribution of 52 LIWC Chinese Dictionary
categories across the eight groups defined by levels of POM and SFM
(Figure 5). Several patterns emerged. First, groups with higher POM
and lower SFM showed higher proportions of everyday activity
categories. For example, terms related to daily routines (e.g., “ingest”
and “eat”). Second, groups with lower POM and lower SFM showed
higher proportions of second-person address, reflected in the frequent
use of “you” Third, the Interrogation category was most frequent in
SEFM High posts, including terms such as “when” and “what”” Finally,
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death-related content appeared more often in groups with higher
POM. Among the eight groups, High SFM and High POM and High
POM showed the highest rates for the LIWC Death category at 15.08
and 14.33%, respectively.

3.3 Multi-level network analysis of
associated factors in MIL

After dividing MIL-related posts into eight sub-datasets by POM
(High/Low) and SFM (High/Low) levels, we first presented a centrality
analysis to identify influential factors (section 3.3.1). We then showed
pairwise relationships highlighting the strongest co-occurrences
between factors (section 3.3.2). Finally, we compared structural
patterns across subnetworks (section 3.3.3), focusing on clustering
differences and network-wide contrasts.

3.3.1 Centrality analysis of nodes influencing MIL
This section aimed to identify which factors function as key nodes
within each subnetwork and to highlight differences in node centrality
across subnetworks. The 52 associated factors were further grouped
into nine higher-level categories to reveal more concentrated and
interpretable regularities (see Figure 6). Node centrality indices in the
High SFM and Low POM subnetwork were shown as an example in
Figure 7. The “Attitude” category exhibiting the highest node centrality

10.3389/fpubh.2025.1642085

indices (indicating the greatest influence), followed by “Emotion” and
“Inner Thoughts” This suggested that these categories contained
numerous factors that served as key bridges in MIL expressions (e.g.,
Detailed factors
Supplementary Table D1. Within the “Topic” category, “Bio” emerged

“assent” and “compare”). were listed in
as the most influential, underscoring the critical role of physical state
in shaping MIL.

The complete results for the 52 factors across the eight
subnetworks were presented in Supplementary Table F1. Key findings

included. (1) Across all subnetworks, the nodes with higher centrality

» « » «

were “bio,” “perception,” “drive;” “negative emotion,” and “social” (2)

“Shehe” ranked higher in the High SFM and Low POM subnetwork
(node centrality index = 1.13). (3) “Social” and “work” showed their
highest centrality in Low SFM and High POM (node centrality
index = 1.37). (4) “Positive emotion” and “religion” rank highest in
High SFM and High POM (node centrality indices = 1.20 and 0.41,
respectively). (5) “Achieve” was highest in High SFM contexts (node
centrality index = 0.82). (6) “Compare” showed higher centrality in
Low POM subnetworks than in the other subnetworks (node
centrality index = 0.96).

3.3.2 Latent relationships among associated
factors in MIL

We highlight the strongest pairwise co-occurrences among
MIL-associated factors and illustrate how these relationships differ
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across subnetworks. The top 15 correlations for each subnetwork
were listed in Supplementary Tables F2, F3, with the strongest pairs
shown in boldface. The full 52 x 52 matrices were available at the
“Dataset and Code” link (see Data Availability). Highlighted
structures all
Supplementary Figures F1, F2. Each node represented a LIWC

for subnetworks ~ were  shown in
category. Thicker edges and shorter inter-node distances indicated
stronger correlations between categories. Key observations included.
(1) Across all conditions, “space” and “time” were strongly correlated
with the “relative” theme in MIL discussions. (2) In the High POM
panel of Supplementary Figure F2, the “body” and “bio” nodes were
close and connected by a thick edge. Consistent values were observed,
with 7 = 0.779 for Low SFM and High POM and r = 0.810 for High
SEM and High POM (both p < 0.001) (Supplementary Tables F2, F3).
(3) In the Low POM panel of Supplementary Figure F2, the “power”
and “drive” nodes were close with a thick edge. Corresponding values
were observed, with r = 0.783 for Low SFM and Low POM and
r =0.790 for High SFM and Low POM (both p <0.001)

(Supplementary Tables F2, F3).

3.3.3 Structural comparison of MIL subnetworks
We contrasted network-wide structures across the eight
subnetworks, emphasizing clustering differences as well as global
strength and weight invariance. The structural comparisons were
presented in Supplementary Figure F3. The results indicated the
following. (1) Across MIL levels, “space” and “time” appeared in
different clusters: in SFM High and POM Low, “space” and “time”
clustered with “focus past,” “focus present,” and “focus future”; in SEM
Low and POM Low, they clustered only with “focus past” and “focus

10.3389/fpubh.2025.1642085

present” (2) In SFM High and POM High, career-related factors

» <«

«
(“power;

»

money, “achieve”) clustered with “risk,” as well as with
“positive emotion.”

Additionally, we applied the network comparison test to
among the eight MIL subnetworks.
We summarized each network’s overall edge strength and node

evaluate differences

proximity using global strength and network weight, and
we compared these two indices pairwise across subnetworks. As
shown in Figure 8, the largest differences occurred between the SFM
Low and POM Low and SFM High and POM High subnetworks,
whereas the smallest differences occurred between the SFM Low
and POM Low and SFM High and POM Low subnetworks. These
patterns suggested that POM exerted a stronger organizing
influence on the MIL-related factor structure than SFM. When
POM was low, changing SFM produced minimal structural change,
while networks diverged most when both POM and SFM shifted
from low to high.

4 Discussion

This study constructed three-stage deep learning MIL assessment
models and extracted associated factors from MIL-related microblogs.
The results aligned with Steger’s three-dimensional model (20), which
included coherence, purpose, and significance. Coherence referred to
making sense of ones life and integrating experiences over time and
context. Purpose referred to having valued goals and a sense of
direction. Significance referred to perceiving one’s life as worthwhile
and important. (1) Our findings on temporal and spatial components
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expressions in this state.
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reflected the coherence dimension. Under Low POM, “space” and
“time” clustered with “focus future” only in the High SFM and Low
POM condition, not in Low SFM and Low POM (see
Supplementary Figure F3). This pattern was consistent with the
perspective that individuals high in search but lower in presence tend
to look ahead and evaluate meaning using future-oriented criteria
(49). (2) Results on purpose-related factors were evidenced in two
ways. We operationalized purpose-related factors as including “work,”
“social,” “achieve,” “power;” “money; and “risk;” based on the LIWC/
associated-factor mapping (Supplementary Table D1). This set was
indicative rather than exhaustive, and other categories might also
reflect purpose depending on context. First, for both “social” and
“work,” centrality was highest in Low SFM and High POM
(Supplementary Table F1). Second, career-related factors (“power;’
“money,” “achieve”) clustered with risk in the High SFM and High
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POM subnetwork (Supplementary Figure F3). (3) For the significance

» «

dimension, “positive emotion,” “religion,” and “achieve” jointly served
as indicative cues of perceived significance. Supplementary Table F1
showed that “positive emotion” and “religion” exhibited the highest
centrality in High SFM and High POM, and “achieve” was highest in
High SFM contexts. The preliminary convergence between the
two-dimensional and three-dimensional MIL frameworks was
exploratory rather than confirmatory. Further investigation was
needed to provide definitive evidence.

According to the results reported in section 3.2.2 and Figure 5,
corpus-level tendencies could be read through Self-Determination
Theory (3). Language emphasizing everyday activities in higher POM
and lower SFM groups might have indicated a greater focus on
autonomy-related routines, whereas the higher use of second person

forms in lower POM and lower SFM groups may have reflected a
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P1, high POM.

b. Network Weight Invariance
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Global strength invariance and network weight invariance across subnetworks. Colors indicate the degree of invariance between pairs of subnetworks.
Darker shades denote higher invariance. (a) Invariance in global edge strength. (b) Invariance in edge weights. SO, low SFM; S1, high SFM; PO, low POM;

stronger orientation to social-relatedness in this context. The
prominence of interrogation terms in High SEM posts was consistent
with work connecting exploratory tendencies with active information
seeking (50). In addition, prior research reported a negative
association between POM and death anxiety (11). While LIWC
“Death” reflected factor frequency rather than anxiety, the higher rates
of death-related factors in High POM groups might be compatible
with an interpretation that individuals with greater POM could
approach mortality themes with less anxiety (i.e., more open,
approach-oriented processing), though this remains speculative.
These interpretations should be treated as tendencies within this
corpus and might depend on platform and cultural conventions rather
than stable person-level traits.

The centrality patterns reported in section 3.3.1 offered a coherent
of how different MIL (see

» <

Supplementary Table F1). The prominence of “attitude,” “emotion,”

picture factors may shape
and “inner thoughts” at the category level suggested that evaluative
stance, affective tone, and reflective cognition were central to meaning
construction. The high centrality of “biology” was consistent with
accounts linking physical condition to MIL, including associations
with lower pain, anxiety, and depression, better illness acceptance, and
improved quality of life [e.g., (51-53)]. Likewise, the relatively high
values for “social,” “work,” and “leisure” aligned with evidence that
social roles and support are positively related to MIL (54). In addition,
subnetwork-specific patterns reported were consistent with prior
theorizing. Positive emotion showed a lower rank under Low POM. By
contrast, it showed a higher rank under High POM and High
SEM. This pattern was consistent with the view that diminished POM
was accompanied by attempts to reduce negative affect. Meanwhile,
higher MIL was associated with cultivating positive affective states (7).
The greater centrality of “compare” in Low POM subnetworks echoed
research on social comparison as a means of status appraisal under
uncertainty (55). The higher centrality of “shehe” in Low POM and
High SEM might reflect an outward orientation toward models or
referents when search was high but presence was limited (56).
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Building on the correlation patterns reported in section 3.3.2
(Supplementary Figures F1, F2; Supplementary Tables F2, F3),
we interpreted three descriptive regularities. First, pairs involving
“space”/“time” with “relative” recurred among the higher
correlations across contexts. This was consistent with the idea
that appraisals of change and continuity drew on temporal and
spatial comparisons (22). Second, within High POM, the
association between “body” and “bio” was among the higher
pairs. This aligned with the view that connected bodily states and
recovery experiences were linked to meaning. Prior work linked
meaning to pain experiences and related higher POM to lower
health anxiety (57, 58). Third, within Low POM, the association
between “power” and “drive” was also among the higher pairs.
This fit perspectives that lower POM could co-occur with
compensatory striving (59). These interpretations were intended
to contextualize the observed correlations and remained
descriptive rather than inferential. No causal claims
were intended.

Building on the structural patterns reported in section 3.3.3
(Supplementary Figure F3), we offered two descriptive
interpretations. First, under High POM and High SFM, the
alignment of risk with career-related factors and positive emotion
fit perspectives that more satisfied individuals pursued new
achievements even in the face of risk (60). Second, “we” clustered
with “temporal” “spatial” and “comparative” factors in Low SFM
and Low POM, but with “social” factors in High POM and Low
SFM. This pattern was compatible with the view that higher
presence related to finding meaning in social roles and positive
interactions (61). These interpretations were descriptive rather
than inferential.

This study adopted a dual data collection strategy, combining a
large-scale corpus of over 3 million publicly available microblogs
with a smaller participant dataset that integrated both self-report
questionnaires and personal microblogs. The large-scale dataset

enabled population-level analysis of MIL, while the participant
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dataset provided validated ground truth by linking subjective
These
complementary datasets allowed model validation from three

measures to corresponding online expressions.
perspectives: human cross-annotation, ChatGPT-based labeling,
and user self-report surveys. Each method carried distinct strengths
and limitations. Human annotation, often considered the gold
standard, offered nuanced interpretations but was resource-
intensive and subject to inter-annotator variability. ChatGPT-based
labeling was used as a supplemental convergent check of human
annotation, as it provided scalability and efficiency (62). However,
the outputs of ChatGPT were sensitive to prompts and sometimes
prone to hallucination (63). In addition, ChatGPT models
pretrained on general corpora had difficulty in accurately
identifying and evaluating the construct ambiguity of MIL, as the
boundaries between POM and SFM were sometimes overlapping.
Therefore, although the judgments of ChatGPT-based validation
were largely consistent in direction with human annotations, the
overall accuracy was lower. User surveys grounded predictions in
participants’ self-reports and enhanced ecological validity, though
they remained vulnerable to recall bias, social desirability, and
limited sample size. Taken together, the convergences and
divergences across these approaches underscored the value of
triangulation: manual coding secured high-quality benchmarks,
GPT-assisted annotation enabled efficient large-scale analysis, and
user self-report anchored computational predictions to
psychological ground truth. Future work may benefit from hybrid
strategies that combine LLM-assisted pre-annotation with human
oversight, alongside triangulation using self-reported measures (64).

The performance of our proposed MIL assessment models on the
large-scale dataset varied substantially. Model 1 identified whether a
post was related to MIL, while Models 2 and 3 classified the two
dimensions of MIL, namely POM and SEM. As dimensions of MIL,
POM and SFM were conceptually more complex and theoretically
debated. For instance, previous debates have concerned whether the
two dimensions overlap or should be separated, as proposed in three-
dimensional models (19, 20). This conceptual ambiguity increased
task difficulty. Moreover, both dimensions represented latent
psychological constructs that were expressed more implicitly in social
media text, making them more challenging for both human
annotation and model classification. During training data
construction, the inter-annotator agreement (Cohen’s kappa = 0.84 for
MIL, 0.71 for SEM, and 0.68 for POM,; all p < 0.01; see section 2.1.1)
reflected this trend. Therefore, the pattern in which Model 1 (%90%)
outperformed Models 2 and 3 (x75%) was consistent with human
annotation reliability. As these estimates were based on a sampled
subset, they should be interpreted as exploratory references rather
than definitive conclusions.

This study had limitations. First, we did not differentiate by
demographics. Because MIL could arise from different sources at
different life stages, categorizing participants could facilitate
understanding of associated factors within groups. Second, our MIL
assessment models focused on the post level rather than on users’
posts over time. Assessing MIL at the user level could address the
sparsity of microblog data and add temporal cues, potentially
improving model performance. Third, in the multi-level network

analysis of MIL-associated factors, no inferential statistics were
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performed. All statements were descriptive rather than inferential and
were not presented as evidence of statistical significance or causality.
Future studies will test these differences with formal inferential
methods. Fourth, the representativeness and cultural generalizability
of our findings were limited. Our text corpus consisted of posts
written in Chinese and posted at night on the Sina Weibo platform.
Because culture and platform norms may have shaped language use,
expressions of MIL associated factors might differ on other social
media platforms and in other countries. In addition, the participants
in the empirical study were demographically specific (see
Supplementary Table E3). For example, 69.9% were under 24 years old
and 72.3% were undergraduates, master’s, or PhD students.
Socioeconomic status was not collected. Therefore, replication across
platforms, languages, cultures, and demographics was needed before
broader generalization. In addition, future work could assess MIL in
non-sleep contexts to enable comparative analyses and further
examine generalization.

Three future research directions were envisioned. First, we will
examine the relationship between perceived social support in
social networks and users’ MIL. Interpersonal relationships are
expected to be a significant source of meaning and a predictor of
MIL (65). Clues related to “social” and “friend” were identified in
this study, indicating that the category “we” clustered with social
categories only under the condition of High SFM and High
POM. Second, images in social networks, which contain rich visual
information reflecting users’ interests, values, and emotional states
(66), will be investigated to determine whether visual information
can improve the precision of MIL assessment. Third, this study
provided a preliminary exploration of using prompts based on a
pretrained large language model to label components and levels of
MIL, but the performance was limited. Future studies may attempt
fine-tuning large language models on manually annotated MIL
corpora to further improve both efliciency and accuracy of
automatic MIL assessment.

5 Conclusion

Using social media text, we proposed a structured three-part
framework for assessing MIL along SFM and POM and validated the
models with multiple approaches. Through graph-based semantic
analysis, we identified associated factors from MIL expressions.
We then explored their large-scale patterns across groups. These
findings outline context-dependent topic and network differences
associated with MIL levels and provided a data-driven lens for
monitoring MIL-related signals in online populations. While
exploratory and descriptive, this work may help prioritize factors for
follow-up assessment and inform the design of supportive, evidence-
guided interventions.
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