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Introduction: In the research and practice of disaster prevention/mitigation
and urban resilience development, although existing studies have conducted
multidimensional assessments of urban vulnerability to hazards and infectious
disease risks, limitations persist—such as the lack of bidirectional coupling
mechanism analysis and a disconnection from planning implementation. These
constraints hinder the systematic governance of public health risks and the
advancement of resilient city development.

Method: This study selects 18 prefecture-level cities in Sichuan Province as
case studies. By employing the entropy method and coupling coordination
degree (CCD) model, we construct a “hazard-vulnerability” risk coupling model
to systematically analyze the coupling coordination mechanisms, identify key
influencing factors, and propose optimization pathways.

Results: (1) The coupling coordination degree (CCD) between infectious
disease hazards and urban vulnerability in Sichuan Province remains at a
relatively low level overall (mean = 0.384). Specifically, Chengdu demonstrates
a “low vulnerability-high hazard” characteristic (0.031), while Guangyuan and
Panzhihua exhibit optimal coordination states (0.655 and 0.649 respectively).
(2) The region generally follows the distribution pattern where lower CCD
corresponds to higher risk levels. The coordinated development types show
dispersed spatial distribution, whereas recession-maladjusted types are
predominantly concentrated in the Chengdu Plain and southern Sichuan regions.
(3) Among CCD subtypes, the "hazard-deficit” type emerges as the dominant
pattern. (4) Economic-spatial-social-environmental factors demonstrate not
only significant interaction effects but also pronounced spatial heterogeneity
characteristics.

Conclusion: Based on spatial coupling theory, this study innovatively constructs
a "hazard-vulnerability” risk coupling model, which expands traditional risk
assessment and urban vulnerability evaluation theories, providing a novel
research perspective for urban risk management and regional sustainable
development. The research results offer important quantitative evidence for
formulating regionally differentiated public health strategies.
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1 Introduction

Public health emergencies, as global crises, have seen their impact
mechanisms and spatial distribution characteristics become a cutting-
edge research topic in interdisciplinary studies. From a historical
perspective, from the Plague of Justinian to the COVID-19 pandemic,
such events have not only caused significant casualties and economic
losses (1, 2), but have also reshaped urban development trajectories
through complex spatial interaction mechanisms (3). In contemporary
urbanization processes, the concentration of factors and flow networks
have simultaneously improved the efficiency of medical resource
allocation while significantly increasing pathogen transmission risks
(4). Therefore, it is essential to establish a scientific risk assessment
framework to effectively implement urban planning strategies, public
health policies, and emergency management measures.

In the field of infectious disease transmission mechanisms,
significant academic progress has been achieved. Dai et al.
systematically demonstrated the potential risks of respiratory disease
transmission via aerosols in high-density urban environments (5),
while Ruiz-Herrera et al. mathematically quantified the critical role of
population mobility in epidemic spread (6). Notably, however, these
studies primarily focus on the transmission dynamics of pathogens
themselves, failing to adequately account for the regulatory effects of
urban complex systems on transmission processes.

Meanwhile, urban vulnerability studies have thoroughly examined
the impact of socioeconomic factors on public health emergency
response capabilities (7), explicitly identifying spatial elements as key
variables influencing disease transmission. These studies reveal how
urban-rural spatial organization patterns critically determine
epidemic prevention efficacy (8). Particularly noteworthy is Rahayu
et al’s research demonstrating how disparities in urbanization levels
health
vulnerabilities, leading to spatial mismatches between public health

and regional development imbalances exacerbate
service provision and disease burdens (9). However, these studies
generally overlook pathogen-specific transmission routes and
pathogenic mechanisms. Such disciplinary fragmentation has resulted
in significant theoretical limitations and practical blind spots in
existing risk assessment frameworks.

Existing studies have also revealed that the impact of urbanization
on infectious disease transmission exhibits significant regional
heterogeneity (10). This spatial variation manifests not only in the
geographical disparities of transmission risks, but also triggers multi-
level cascading effects within urban systems through the shockwaves
of public health emergencies. Specifically, public health crises have
both intensified the polarization of pre-existing patterns in disease
transmission and socioeconomic spatial differentiation (11), while
simultaneously giving rise to new vulnerability dimensions such as
disparities in spatial accessibility, environmental justice imbalances,
and inequitable health resource allocation (12). The spatial coupling
and synergistic effects of these multidimensional inequities not only
exacerbate the degree of risk heterogeneity in urban systems, but also
pose systemic challenges to conventional public health risk
management paradigms.
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Building upon these research findings, scholars have begun to
re-examine the adaptability of traditional urbanization models and
advocate for establishing systematic, multi-tiered, and dynamically
evolving urban resilience frameworks (13). Grounded in urban
political ecology theory, Gandy developed the “Zoonotic City”
analytical framework, emphasizing that urbanization processes must
be integrated with epidemiological characteristics to fully capture the
complex interactions between health threats and environmental
changes (14). Furthermore, Yang et al’s empirical study in Hubei
Province proposed that post-pandemic urban development should
transcend mere economic agglomeration and scale expansion, shifting
toward a new model prioritizing public service enhancement and
amenity optimization (15). Additionally, Pacheco et al’s systematic
review demonstrated that increasing accessible public spaces and
optimizing their adaptive use during health crises are emerging as
critical innovations in urban design (16). These research advances
provide vital theoretical foundations and practical pathways for
constructing more resilient urban systems.

Through an in-depth analysis of current research advancements,
three critical theoretical gaps remain to be addressed in the study of
interactions between infectious diseases and urban systems. First,
existing research paradigms are predominantly limited to
unidirectional linear analyses, focusing either on the mechanisms of
disease transmission and the impact of epidemics on urban systems,
or examining the influence of urban factors on disease spread in
isolation (17). This fragmented research perspective has led to
insufficient understanding of the complex interaction mechanisms
between hazards and vulnerabilities. Second, at the methodological
level, current risk assessment frameworks lack adequate capacity to
analyze the formation mechanisms of micro-scale risk heterogeneity
within cities, making it difficult to effectively identify key drivers of
risk differentiation across different regions (18). More crucially,
despite substantial evidence demonstrating significant correlations
between spatial organization patterns and epidemic control
effectiveness, there remains a lack of integrated frameworks to
effectively translate risk assessment results into urban planning
intervention measures (19). These theoretical and methodological
limitations urgently call for establishing systematic, multidimensional,
and dynamic infectious disease risk assessment systems, and
implementing precise interventions through scientific risk
management approaches (20).

In summary, this study systematically conducted public health
emergency risk assessment research using 18 prefecture-level cities in
Sichuan Province as case studies. Methodologically, we first constructed
comprehensive evaluation index systems for both hazard and urban
vulnerability, employing the entropy method to determine indicator
weights, subsequently measuring their index levels and analyzing spatial
distribution characteristics. Building upon this foundation, the integrated
risk assessment model quantified disaster risk levels and generated risk
maps, verifying the effectiveness of the index system as an informative
indicator for actual cumulative infection data (as the level of risk alone
can be an informative indicator for all such issues). Furthermore, the
CCD model was applied to analyze the spatial coupling relationship
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TABLE 1 Classification of city size levels in various economic regions of Sichuan Province.

Hierarchical
scale

Economic
zones

City names

Current situation

Chengdu Plain Megacity Chengdu The Chengdu Plain Economic Zone concentrates over 50% of the province’s permanent population,
Type Il large city Mianyang representing the most developed, densely populated, and industrially concentrated region in Sichuan. It
. . . . ranks among the most urbanized and economically agglomerated areas in Western China.
Medium-sized city Deyang, Suining,
Leshan, and
Meishan
Type I small city Ziyang and Yaan
Northeastern Type II large city Nanchong The Northeastern Sichuan Economic Zone exhibits relatively underdeveloped economic conditions. Urban
Sichuan Medium-sized city | Dazhou settlements across all hierarchical scales remain undersized, with regional centers Nanchong and Dazhou
. demonstrating limited radiating capacity. Certain towns and county seats face population outflow risks. The
Type I small city Guangyuan,
X urbanization process lags behind provincial averages, constrained by infrastructure deficits and public
Guangan, and
service inadequacies.
Bazhong
Southern Type II large city Yibin The Southern Sichuan Economic Zone ranks second in provincial economic output. However, its core cities
Sichuan Medium-sized city | Zigong, Luzhou, suffer from insufficient scale and weak agglomeration capacity, coupled with notable population outflow. The
and Neijiang region also faces overlapping redundancies in core industries and public service provision.
Panxi Medium-sized city | Panzhihua The Panxi Economic Zone is currently the only state-approved experimental zone with the theme of
comprehensive resource development and utilization. In terms of both resident population and regional
GDP, it ranks fourth among the five major economic zones in Sichuan Province, indicating a relatively
lagging overall development level.

between hazards and vulnerability, not only classifying coupling
coordination types but also identifying key risk drivers for each category.
Ultimately, empirical analysis based on pandemic infection growth data
validated the reliability of the coupled risk assessment results. By
developing the “hazard-vulnerability” risk coupling model, this study
expands traditional risk assessment theory and provides scientific
support for formulating effective risk management measures and urban
planning strategies (21). The research holds significant theoretical and
practical value for integrated disaster prevention and mitigation system
planning, resilient city construction, and sustainable development.

2 Materials and methods
2.1 Study area and data sources

2.1.1 Study area

Sichuan Province, located in southwestern China, plays a pivotal
role in major national strategies such as the Western Development
Program, poverty alleviation initiatives, and the Chengdu-Chongqing
Economic Circle development. Despite its well-developed transportation
network that facilitates efficient population mobility and material flows,
the urban system remains incomplete. Expect Chengdu, the province
lacks other megacities and Type I large cities, and has only three Type II
large cities, resulting in population shrinkage among small-medium
cities and excessive con-centration in central urban areas. Although
Sichuan ranks fifth nationally in regional GDP, its economic
development shows significant spatial disparities. The overall
development level remains relatively lagging, with pronounced urban—
rural gaps, uneven resource allocation, and low spatial safety resilience.
Historically prone to earth-quakes and epidemics, the province’s health
risks have been further exposed during recent major pandemic outbreaks.
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This study examines 18 prefecture-level and higher cities within
four major economic zones of Sichuan (Table 1; Figure 1). The
provincial capital Chengdu, with an urban population of 13.34
million, ranks as China’s 6th megacity. Its rapid economic development
has created significant population siphon effects, with its massive
urban population far exceeding other cities in the province. The
province’s urban system comprises three Type II large cities
(Mianyang, Nanchong, and Yibin), nine medium-sized cities (Luzhou,
Dazhou, Zigong, Suining, Leshan, Meishan, Panzhihua, Deyang, and
Neijiang), and five Type I small cities (Guangyuan, Bazhong, Ziyang,
Guangan, and Yaan), collectively constituting a hierarchical urban
network beneath Chengdu’s megacity dominance.

2.1.2 Data sources

This study uses both statistical data and web-based data. The
statistical data used in this study were primarily sourced from the
Sichuan Statistical Yearbook 2023 (SSYB), Sichuan Transportation
Yearbook 2023 (STYB), municipal statistical yearbooks of individual
cities (MSYB), and human resources and social security bulletins
published by prefecture-level cities (MHRB). Data on licensed (assistant)
physicians and hospital beds were mainly obtained from the Sichuan
Health Statistical Yearbook 2023 (SHSYB), while demographic indicators
such as the proportion of population aged 65 and above (2020 data) were
collected from the Sichuan Population Census Yearbook 2020 (SPCY).

The infectious disease data pertains to the COVID-19 epidemic
and was sourced from the official website of the Sichuan Provincial
Health Commission.' The dataset includes confirmed cases reported
at the prefecture-level city scale, covering the period from January 1,
2020, to December 10, 2022.

1 https://wsjkw.sc.gov.cn/
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FIGURE 1
The location of Sichuan Province.

TABLE 2 Data sources.

Data type Resolution Time range Data sources

Statistical yearbook data Year 2022 https://tjj.sc.gov.cn/scstjj/c112132/pic_list.shtml
Point of Interest (POI) data Year 2022 https://Ibs.amap.com

Epidemic statistics data Daily January 1, 2020 - December 10, 2022 https://wsjkw.sc.gov.cn/

Administrative division boundary data https://www.tianditu.gov.cn/

The network data consists of Point of Interest (POI) data for
prefecture-level cities in Sichuan Province in 2022, obtained from
Amap (Amap POI)* (22). This dataset includes the quantities of daily
service facilities such as convenience stores, supermarkets, shopping
malls, and restaurants, which are used to measure the density of living
service venues. Additionally, the administrative boundary vector maps
for each city were acquired from the National Platform for Common
Geospatial Information Services.” Table 2 summarizes the relevant
data information, including data types, temporal resolution, time
range, and data sources.

2.2 Infectious disease disasters
comprehensive risk assessment index
system

To comprehensively understand integrated disaster risk,
international organizations such as the United Nations Office for
Disaster Risk Reduction (UNDRR) and the United Nations
Development Programme (UNDP) have incorporated disaster risk
reduction measures into national planning and decision-making
processes based on metric frameworks (23). The discourse on Disaster
Risk Reduction (DRR) is undergoing a paradigm shift toward
vulnerability-oriented approaches, with vulnerability emerging as a
common evaluative characteristic in numerous risk assessments,

2 https://lbs.amap.com

3 https://www.tianditu.gov.cn/
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providing practical information for accurate disaster prevention and
mitigation (24).

Scholars have conducted in-depth research on integrated risks of
infectious disease disasters. For instance: Mete et al. employed three
risk factors from the INFORM COVID-19 Risk Index—hazard and
exposure, lack of coping capacity, and vulnerability—to reassess
national disaster risks in two phases (25); Pang et al. developed a
disaster loss index model based on vector vulnerability, disaster-prone
environmental instability, hazard intensity, disaster prevention
capacity, and emergency response capability to study pandemic
transmission’s environmental risks and socioeconomic impacts (26);
Pluchino et al. established a risk index framework incorporating
disease hazard (H), regional exposure (E), and population
vulnerability (V) to assess epidemiological risks across geographical
areas and identify high-risk zones (27); Kanga et al. created an
integrated risk assessment framework combining hazard and
vulnerability, defining infectious disease risk as C=H x V, followed by
risk assessment and mapping (28). In summary, risk index evaluations
primarily focus on disease risk, hazards, and vulnerability. By
comprehensively considering multiple risk factors and their impacts,
more effective risk assessment and management can be achieved.
When constructing the comprehensive risk assessment index system
for infectious disease disasters in this study, it becomes necessary to
redefine these two subsystems—hazard and vulnerability.

The transmission intensity of infectious diseases determines both
the likelihood of disease occurrence and the extent of its spread,
necessitating the selection of indicators that can characterize disease
transmission patterns as hazard factors. Analysis of viral
epidemiological characteristics (29, 30) reveals that transmission
routes primarily include aerosol transmission, airborne transmission,

04 frontiersin.org
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and direct contact transmission, with influencing factors being
highly complex (31). The emergence and spread of infectious
diseases are associated with several determinants, encompassing
both anthropogenic factors (e.g., population density, travel and trade
patterns, susceptibility across different demographic groups) and
ecological factors (32). Therefore, this study extracts hazard-related
influencing factors from the following dimensions: population
characteristics (33), population aggregation (34), demographic
dynamics (35), and environmental factors (36). These elements
collectively form the framework for constructing the
indicator system.

Epidemic disasters differ from natural disasters in that they
primarily affect human health through interpersonal transmission and
lead to lasting socioeconomic consequences. As a result, pandemic
risk assessment studies tend to focus more on the vulnerability of
populations and socioeconomic systems while often neglecting spatial
considerations. However, many drivers of pandemic vulnerability are
inherently linked to global connectivity and urbanization levels,
arising from the complex interplay of spatial structural imbalances,
uneven economic development, and insufficient governance capacity.
Any deterioration in these factors may increase a city’s vulnerability
and risk (37). In this study, we define vulnerability as the sensitivity of
urban systems to external disturbances and their lack of coping
capacity, which makes their structure and function prone to change.

To construct an urban vulnerability indicator system for public
health emergencies, we conducted a comprehensive review of relevant
literature, including the Population Vulnerability Index widely used
in public health and medical fields (38), the Social Vulnerability Index
(SVI) (39), urban vulnerability assessments (UVA) that incorporate
both social and physical factors in local planning (40), and the
Pandemic Vulnerability Index (PVI) (41). We extracted key
influencing factors on urban vulnerability from socioeconomic (42),
spatial-environmental (43), and infrastructural dimensions (44) to
build our indicator system.

The establishment of a risk coupling assessment model for
infectious disease hazards and urban vulnerability can effectively
measure the threat level of infectious diseases and the degree of urban
vulnerability, identify risk-influencing factors, and subsequently
formulate targeted epidemic prevention and urban planning strategies.
This provides crucial scientific support for disaster prevention and
mitigation as well as resilient city development. To explore potential
variables influencing infectious disease hazards and urban
vulnerability, this study referenced variables included in previous
research. Based on principles of data relevance, availability, and
reliability, we screened and categorized key indicators to construct a
comprehensive integrated risk assessment framework (Table 3).

2.3 Data standardization

In a multi-indicator evaluation system, different indicators may
have varying units of measurement. Therefore, data standardization is
required during the evaluation process. There are two types of
evaluation indicators: positive and negative. For positive indicators,
higher values indicate greater risk and vulnerability; for negative
indicators, higher values indicate lower risk and vulnerability.
Consequently, this study employs the extremum method to conduct
positive transformation of all original indicators (Equations 1-2).
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Positive indicators:

Xt — X
Xj=—1—""(i=12..,mj=12...,n) (1)
Xmax ~Xmin
Negative indicators:
Xmax — Xjj
Xj=——(i=12..,mj=12...,n) )

Xmax ~ Xmin

Where x;; is the original data of the evaluation index; X, and X,
are the maximum and minimum values of the evaluation index; X;; is
the indicator value after standardised processing. Here, i refers to the
prefecture-level and above cities in the study, totaling m = 18. j
represents the various indicators.

2.4 Entropy method

The entropy method objectively determines indicator weights by
measuring information entropy to quantify data variability, effectively
eliminating biases inherent in subjective weighting approaches (45).
In information theory, entropy serves as a metric for system disorder
and the amount of useful information contained within datasets.
When evaluation objects demonstrate significant disparities in specific
indicators, lower entropy values indicate greater informational utility,
warranting higher weight assignments (46). The methodological
procedure involves: standardizing raw data, calculating information
entropy for each indicator, and deriving weight coefficients based on
entropy values (47). This process rigorously accounts for relative
importance among indicators, ensuring scientifically robust weight
allocation. For public health risk assessment, the entropy method
proves particularly effective in handling multi-source heterogeneous
data, precisely capturing each risk factor’s actual contribution to
support comprehensive evaluations (Equations 3-7).

The feature proportion of the i-th city under the j-th indicator can
be defined as follows:

Pyj=—— 3)

> X

Where m represents the total number of prefecture-level and
above cities (here, m = 18), and the calculation constant k is given by:

)
The Information entropy of the j-th indicator can be defined
as follows:

m

eJ = _kzPlJ ll’l(PIJ) (5)

-1
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TABLE 3 Comprehensive risk assessment indicator system for urban infectious disease disasters.

Target

Comprehensive

risk

Sub system Dimension Indicator Definition Source Direction Weight
Infectious disease Population characteristics Proportion of population aged 65 Percentage of permanent residents aged >65 years in the region (%) SPCY 2020 + 0.046
hazard and over (X1)
Population living in poverty (X2) Percentage of population receiving minimum living allowance (%) MSYB2023 + 0.093
Population agglomeration Population Density (X3) Permanent residents per unit land area (persons/km?) SSYB 2023 + 0.135
Employment Density (X4) Total employed persons per built-up area (10,000 persons/km?) MSYB2023 + 0.062
Demographic dynamics Domestic tourist arrivals (X5) Annual domestic tourist arrivals (10,000 persons) SSYB 2023 + 0.251
Public transport vehicles per 10,000 | Number of operational public buses/trolleys (urban districts) per 10,000 | SSYB 2023 + 0.144
population (X6) permanent residents (units/10,000 persons)
Highway passenger traffic volume Annual highway passenger transport volume (10,000 persons) STYB 2023 + 0.120
(X7)
Environmental factors PMS,.5 concentration (X8) Annual mean Air Quality Index (pug/m?) SEEB2023 + 0.075
Relative humidity (X9) Annual mean relative humidity (%) SSYB 2023 + 0.029
Mean air temperature (X10) Annual mean air temperature (°C) SSYB 2023 - 0.044
Urban vulnerability | Spatial vulnerability Residential density (X11) Per capita housing floor area (m?/person) SSYB 2023 - 0.123
Amenity density (X12) Number of convenience stores/supermarkets/shopping malls per km? Amap POI + 0.072
(based on POI data)
Transport facility density (X13) Number of bus stops per km? (based on POI data) Amap POI + 0.169
Green coverage rate (X14) Percentage of green space in built-up area (%) SSYB 2023 - 0.054
Open space density (X15) Number of parks/public squares per km® SSYB 2023 - 0.093
Economic vulnerability Unemployment rate (X16) Registered urban unemployment rate (%) MSYB2023 + 0.052
Income per capita (X17) Annual per capita disposable income of residents (10,000 CNY) SSYB 2023 - 0.052
Health expenditure as percentage of | Government health expenditure as percentage of GDP (%) SHSYB 2023 - 0.046
GDP (X18)
Annual per capita household Per capita savings deposits of urban/rural residents (10,000 CNY) SSYB 2023 - 0.049
savings deposit balance (X19)
Emergency supplies reserve Government emergency reserves expenditure as percentage of GDP (%) SSYB 2023 - 0.047
expenditure as a percentage of GDP
(X20)
Social vulnerability Physicians per 10,000 people (X21) | Licensed (assistant) physicians per 10,000 permanent residents SHSYB 2023 - 0.090
Hospital beds per 10,000 Number of hospital beds per 10,000 permanent residents SHSYB 2023 - 0.086
inhabitants (X22)
Coverage rate of basic social Coverage rate of basic pension insurance (%) MHRB2023 - 0.068
security schemes (X23)

ey N
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Calculate the divergence coefficient gj for the j-th indicator:

g=1-¢ ©)

Calculate the weight of the j-th indicator:

7)

2.5 Measure the disaster hazard index and
urban vulnerability index

This study calculates the disaster hazard index by combining
standardized indicator values with their respective weights, reflecting
both the hazard intensity levels and spatial distribution patterns across
the study areas. The computational formula is expressed as follows
(Equation 8):

n
Hi = ZW] X Xl] (8)
j=1

Where H; denotes the disaster hazard index for the i-th city, while
higher values indicate greater hazard intensity; Wj represents the
weight of the j-th indicator derived from the entropy method, Xj
corresponds to the standardized value of the indicator.

To quantify regional vulnerability, the same methodology was
employed to calculate the urban vulnerability index, thereby enabling
quantitative analysis of both the magnitude and spatial distribution of
vulnerability across the study areas (Equation 9).

n
Vi=2 Wjx X ©)
j=1

Where V; denotes the urban vulnerability index for the i-th city,
while higher values indicate greater vulnerability degree; Wjrepresents
the weight of the j-th indicator derived from the entropy method, Xj;
corresponds to the standardized value of the indicator.

2.6 Calculation of composite risk index

Risk analysis should concurrently consider both infectious
disease hazard and urban vulnerability, as risk is a function of
hazard and vulnerability. The computational formula can
be expressed as (48, 49) (Equation 10).

Ri:HiXVi (10)

The above calculation demonstrates that regional disaster risk
escalates with increasing hazard intensity and vulnerability levels.
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2.7 Coupling coordination degree model
(CCDM)

The Coupling Coordination Degree Model (CCDM), based on
coupling theory, effectively evaluates interaction effects and coordinated
development levels between different systems. It has been widely
applied to examine relationships among social, economic, and
ecological systems (50, 51), including: production-living-ecological
spaces (52, 53), economy-ecology interplay (54, 55), Urbanization-
(56), Cultural
conservation vs. socioeconomic development (57). Recently, CCDM

ecological environment dynamics landscape
has transitioned from social-economic-ecological studies to disaster
risk research, enabling in-depth analyses of: spatial coupling
relationship between multidimensional poverty and the risk of
geological disaster (58), the coupling relationship between flood risk
and population vulnerability (59), integrated effects and
multidimensional impacts of “Hazard-Exposure-Vulnerability” on
urban flood risks (60). These studies demonstrate applicability of
CCDM in disaster risk assessment frameworks. However, existing
research lacks spatial coupling perspectives to unravel interaction
mechanisms between acute public health hazards and
urban vulnerability.

“Coupling” refers to the process of interaction and mutual
influence between two or more elements (61). This study employs
CCDM to analysis the interdependent or mutually constraining
relationships between disaster hazards and urban vulnerability.

Within CCDM research, most scholars adopt the conventional model

structure, calculated as follows (Equations 11-13):
C=ax [HXVi (11)
(Hi+Vi)
T=aH; +BV; (12)
D=CxT (13)

Given the dimensional differences between disaster hazards and
urban vulnerability, normalized ordinal values were employed to
calculate their synchronization and overall coordination degree
(Equations 14-16). Based on the final coupling coordination degree
(D) values, and referencing the classification framework from Xiang
et al’s study (58), the coordinated development status between disaster
hazards and urban vulnerability was categorized into 4 major classes.
These were further subdivided into 6 subtypes according to the
proportional relationship between the two systems (Table 4).

co f(x)k xg(x)k (14)
(af (x)+Bg(x))

T= af(x)xﬂg(x) (15)

D=+/CxT (16)
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TABLE 4 Classification of coupling coordination types between disaster hazard and urban vulnerability.

Coupling Coupling Classification = Relation discrimination feature Coupling coordination
coordination coordination | rule subtype
type degree
Coordinated 06<D<1 0<|H—V|<0.1 Synchronized coordinated development Synchronization development
development H—V>0.1 Coordinated development with urban vulnerability lag Coordinated-urban vulnerability lagging
V—H>0.1 Coordinated development with disaster hazard lag Coordinated-disaster hazards lagging
Barely coordinated = 0.5 < D<0.6 0<|H—V|<0.1 Synchronised barely coordinative development Synchronization development
development H—V>o0.1 Barely coordinated development with urban Coordinated-urban vulnerability lagging
vulnerability lag
V—H>0.1 Barely coordinated development with disaster hazards Coordinated-disaster hazards lagging
lag
On the verge of 0.4 <D<0.5 0<|H—V|<0.1 Synchronised on the verge of disorder Disorder of both hazards and
disorder vulnerability
H—V>0.1 On the verge of disorder development with urban Disorder-urban vulnerability lag
vulnerability lag
V—H>0.1 On the verge of disorder development with disaster Disorder-disaster hazards lag
hazards lag
Disorder and 0<D<0.4 0<|H—V|<0.1 Synchronised disorder and recession development Disorder of both hazards and
recession vulnerability
H—V>0.1 Disorder and recession Disorder-urban vulnerability lag
Development with urban vulnerability lag
V—H>0.1 Disorder and recession Disorder-disaster hazards lag
Development with disaster hazards lag

Where C is the coupling degree, T is the coordination index
between disaster hazards and urban vulnerability, D is the coupling
coordination degree. f(x) is the normalised value of disaster hazards
ranking; g(x) is the normalised value of urban vulnerability
ranking. k is an adjustment coefficient (typically 2 <k <5). To
enhance discriminative capacity, this study sets k = 3 following Su
et al. (62). Considering that f(x) is as important as g(x) (i.e.,
a + B =1, with @ = p = 0.5). The higher the value of D is, the better
the coordination degree between disaster hazards and urban
vulnerability is.

3 Results

3.1 Integrated measurement and spatial
distribution of infectious disease hazard
and urban vulnerability

The standardized indicators were objectively weighted using the
entropy method, yielding the respective indicator weights for
infectious disease hazards and urban vulnerability (Figures 2, 3) as
well as dimensional indices (Table 3). This enabled quantitative
measurement of infectious disease hazards, urban vulnerability,
comprehensive risk, and coupling coordination degree, with regional
distribution patterns visualized through spatial mapping techniques.
Furthermore, the study conducted qualitative analysis by
incorporating regional development characteristics specific to
Sichuan Province.

Frontiers in Public Health

3.1.1 Comprehensive measurements and spatial
distribution of the infectious disease hazard

Through a comprehensive evaluation of population characteristics,
population aggregation, population mobility, and environmental
exposure, this study reveals the infectious disease risk levels and
spatial distribution patterns across cities in Sichuan Province. The
quantitative risk scores ranged from 0.149 to 0.761. Chengdu exhibited
the highest risk index at 0.761, while all other cities scored below 0.5,
indicating generally low-to-moderate risk levels. These findings
demonstrate the significant effectiveness of Sichuans regional
epidemic prevention policies in risk management.

Furthermore, Table 5 and Figure 4 show that population mobility
constitutes the most influential factor for infectious disease risk. The
key contributing elements include domestic tourist numbers, public
transportation vehicles per 10,000 people, population density, and
highway passenger volume.

Using the Natural Breaks method in ArcGIS (63, 64), the hazard
index was classified into five risk levels: extremely high, high, moderate,
low, and very low (Figure 5). Spatially, the disaster risk across Sichuan
Province exhibits distinct regional differentiation, closely correlated
with urban scale, geo-economic factors, and natural environment.

The extremely high-risk zone is represented by the megacity
Chengdu, where elevated risk likely stems from dense population,
economic activities, and urban expansion-induced environmental
disturbances. Medium-to-high risk zones include large and medium-
sized cities such as Yibin, Luzhou, Leshan, Meishan, and Zigong. In
contrast, low and very low-risk areas are primarily distributed across
smaller peripheral cities like Panzhihua, Guangyuan, and Dazhou,
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FIGURE 3
Weight of urban vulnerability indicators.
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where abundant environmental resources and lower development
intensity may contribute to risk mitigation.

Overall, this spatial risk pattern reflects both the constraints of
natural geographical conditions and the impacts of regional
development disparities.

3.1.2 Comprehensive measurements and spatial
distribution of the urban vulnerability

The urban vulnerability index reflects a city system’s sensitivity to
internal and external disturbances and its lack of coping capacity—
attributes that make its structure and function prone to change. Through
a comprehensive evaluation of spatial layout, economic development,

Frontiers in Public Health

and social systems, this study reveals the vulnerability levels and spatial
distribution characteristics across cities in Sichuan Province.

Quantitative vulnerability scores ranged from 0.383 to 0.720.
Chengdu showed the lowest vulnerability index (0.383), followed by
Nanchong (0.402), while most other cities scored above 0.5,
indicating medium-to-high vulnerability levels. Meishan exhibited
the highest vulnerability index at 0.720. These results demonstrate the
inherent vulnerability of urban systems in Sichuan when responding
to public health emergencies.

As shown in Table 5 and Figure 6, spatial vulnerability
demonstrated the most significant average influence. Key contributing
factors included transportation facility density, residential density,
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TABLE 5 Integrated risk assessment: subsystem components and dimensional indexation.

Cities Population Population = Demographic Environmental Infectious Spatial Economic Social Urban Comprehensive
characteristics aggregation dynamics factors disease Vulnerability =~ Vulnerability = Vulnerability = Vulnerability risk
hazard
od 0.001 0.145 0.495 0.121 0.761 0.233 0.091 0.059 0.383 0.291
28 0.089 0.054 0.105 0.084 0331 0.161 0.193 0.061 0.415 0.138
pzh 0.023 0.007 0.109 0.010 0.149 0.204 0.180 0.079 0.464 0.069
Iz 0.056 0.044 0.142 0.105 0.348 0.187 0.163 0.119 0.469 0.163
dy 0.051 0.097 0.072 0.103 0.322 0314 0.146 0.120 0.580 0.187
my 0.043 0.040 0.207 0.080 0.369 0.253 0.160 0.120 0.533 0.197
gy 0.111 0.040 0.028 0.061 0.240 0.185 0.160 0.073 0.419 0.101
sn 0.064 0.076 0.038 0.063 0.240 0.177 0.199 0.145 0.521 0.125
nj 0.057 0.081 0.225 0.078 0.441 0.288 0.195 0.102 0.585 0.258
Is 0.059 0.066 0.119 0.105 0351 0.292 0.183 0.114 0.590 0.207
nc 0.125 0.072 0.080 0.091 0.369 0.076 0.188 0.138 0.402 0.148
ms 0.056 0.073 0.098 0.100 0327 0.401 0.163 0.156 0.720 0.235
yb 0.035 0.045 0.205 0.129 0.414 0219 0.191 0.156 0.566 0.234
ga 0.091 0.103 0.049 0.085 0.327 0.286 0.172 0.200 0.659 0.216
dz 0.081 0.065 0.069 0.057 0.273 0.148 0.181 0.180 0.508 0.139
ya 0.037 0.034 0.049 0.080 0.201 0.285 0.187 0.041 0.513 0.103
bz 0.124 0.067 0.056 0.073 0.320 0.247 0.136 0.135 0.518 0.166
7y 0.088 0.086 0.102 0.074 0.350 0336 0.185 0.087 0.608 0.213
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Dimensional Indices of Infectious Disease Risk Assessment
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FIGURE 4
Dimensional indices of infectious disease hazard.

Liangshan

The Disaster risk index
I Extremely Low Risk (0.149 - 0.201)

[T LowRisk (0.201-0273)

‘ || Moderate Risk (0.273-0.369)
- E— —
0 30 60 120 180 zzglles [ High Risk (0.369 - 0.441)

I cxtremely High Risk (0.441-0.761)

FIGURE 5
Classification results of the disaster hazard index.

road network density, open space density, number of doctors, and Using the Natural Breaks classification method in ArcGIS (63,
hospital bed capacity. This reflects the close relationship between  64), the vulnerability index was categorized into five levels: extremely
regional development levels and the balance of spatial configurations. ~ high, high, moderate, low, and extremely low vulnerability zones
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(Figure 7). Spatially, urban vulnerability across Sichuan Province
exhibits distinct regional differentiation.

The extremely low vulnerability zone is represented by the
megacity Chengdu, whose resilience stems from advanced economic
development and a comprehensive public service system. Cities like
Nanchong and Zigong also demonstrate relatively low vulnerability
due to their sound economic conditions, while Guangyuan benefits
from stable geological environmental conditions.

Panzhihua and Luzhou fall into the low vulnerability category,
with Mianyang and Suining classified as moderately vulnerable. High
vulnerability areas such as Leshan, Yibin, and Guangan may
be influenced by multiple factors including geological disaster risks,
industrial environmental pressures, and imbalanced public services.

Overall, this spatial pattern of urban vulnerability reflects both
variations in natural geographical conditions and disparities in
regional development levels.

3.2 Comparative analysis of composite risk
mapping versus observed epidemic risk
patterns

Based on the aforementioned assessment results of infectious
disease hazards and urban vulnerability, we calculated the
comprehensive risk index. Sichuan Province generally exhibits a low
overall risk level. The provincial capital Chengdu showed the highest
risk index (0.291), while Guangyuan and Panzhihua demonstrated the
lowest values.

Using the Natural Breaks classification method in ArcGIS (63,
64), the study area was divided into five risk levels: low, relatively
low, moderate, relatively high, and high risk zones, as illustrated in
Figure 8. Spatially, the risk distribution across Sichuan follows a
“high in central regions, low in peripheral areas” pattern. The

10.3389/fpubh.2025.1639263

Chengdu Plain and southern Sichuan regions show significantly
higher risk levels compared to Panxi and northeastern
Sichuan areas.

The Chengdu Plain and southern Sichuan concentrate most of the
province’s large and medium-sized cities. While these urban areas
benefit from advanced economic development and well-established
infrastructure, they simultaneously face challenges of high population
density and strong mobility, leading to elevated infectious disease
transmission risks. Notably, Chengdu presents a characteristic “low
vulnerability-high risk” profile. In contrast, Panxi and northeastern
Sichuan primarily consist of smaller cities or remote areas (e.g.,
Panzhihua, Guangyuan, and Yaan), featuring lower population
density, reduced human activity intensity, and higher natural
environmental carrying capacity, resulting in comparatively lower
comprehensive risk indices.

We conducted correlation analysis between the comprehensive
risk index and actual cumulative infection cases to evaluate whether
this risk indicator system could effectively reflect infection patterns
(65). Spearman’s rank correlation analysis (Table 6) revealed a
statistically significant positive correlation between the two variables
(rs = 0.680, p =0.002) at the 0.01 significance level. These results
demonstrate that: increased comprehensive risk index significantly
correlates with higher cumulative infection numbers; and the
geographical distribution characteristics of the risk index effectively
mirror the spatial distribution patterns of actual case numbers.

3.3 Measurement results and spatial
characteristics of CCD

This study calculated the Coupling Coordination Degree (CCD)
index to examine the interaction and coordination between infectious
disease hazards and urban vulnerability. The overall CCD level across
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FIGURE 6
Dimensional indices of urban vulnerability.
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FIGURE 7
Classification results of the urban vulnerability index.
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Classification results of the composite risk index.

the study area was relatively low (mean = 0.384). Guangyuan and  megacity, Chengdu exhibited extremely low urban vulnerability but
Panzhihua showed the highest CCD values (0.655 and 0.649,  exceptionally high infectious disease risk, resulting in severe coupling
respectively), while Chengdu had the lowest CCD (0.031). As a  coordination imbalance.
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TABLE 6 Spearman’s rank correlation analysis.

10.3389/fpubh.2025.1639263

Correlation

Actual cumulative

The composite risk

Spearman’s rho

index case counts
The composite risk index Correlation coefficient 1.000 0.680%*
Significance (two-tailed) 0.002
N 18 18
Actual cumulative case counts Correlation coefficient 0.680** 1.000
Significance (two-tailed) 0.002
N 18 18

#* The correlation is statistically significant at the 0.01 level (two-tailed).
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FIGURE 9
Contrast diagram between risk index and coupling coordination degree.
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Based on the CCD model established in Section 2.7, we classified
the study area into four coordination types using the following
thresholds: coordinated development (0.6 <D <1), marginal
coordination (0.5 <D < 0.6), near imbalance (0.4 <D <0.5), and
declined imbalance (0 < D < 0.4). Figure 9 reveals a spatial pattern
where “lower CCD corresponds to higher risk” Coordinated
development cities were spatially dispersed, whereas declined
imbalance cities were predominantly concentrated in the Chengdu
Plain and southern Sichuan regions (Figure 10).

In-depth analysis reveals that the “hazard-dominant lagging”
pattern predominates in the coupling coordination types across
Sichuan Province. Cities achieving coordinated or marginally
coordinated development, such as Panzhihua, Zigong, and
Guangyuan, have made preliminary progress in aligning risk
governance with spatial planning. Within the disordered and declined
coordination categories, the regional risk patterns exhibit significant
spatial heterogeneity: Chengdu demonstrates a characteristic
“imbalanced-vulnerability lagging” type, while other cities
predominantly follow an “imbalanced-hazard lagging” pattern.
Empirical evidence confirms a notable positive feedback effect
between urban vulnerability levels and infectious disease hazards,
where heightened vulnerability not only exacerbates epidemic
transmission risks by weakening systemic resilience but also
perpetuates coupling system imbalances.

Frontiers in Public Health

The aforementioned research reveals that the core mechanism

influencing coupled coordinated development stems from

multidimensional ~interactions among economic-spatial-social-
environmental systems. This manifests in two distinct patterns: In rapidly
developing regions (e.g., Chengdu, Mianyang), economic growth leads
to excessive factor concentration, forming a “high investment-high
density-high risk” transmission chain; whereas in underdeveloped areas
(e.g., Guangan), insufficient development momentum creates a vicious
cycle of “low output-low protection-high vulnerability” These findings
align with the “economic foundation-spatial structure-governance
capacity” synergistic mechanism proposed in Shekhar et al. (37),
unveiling the coupled pathways of regional system complexity:

First, the economic-spatial coupling in the Chengdu Plain region
demonstrates a significant positive feedback effect. Taking Chengdu and
Mianyang as examples, the agglomeration of high-tech industries has
driven population concentration and mobility (66), while simultaneously
triggering land-use pattern restructuring. However, excessive intensive
development has led to a decline in per capita public service resources
(34). This “high-density, high-pressure” coupling model resulted in
infection risks in core urban areas far exceeding surrounding regions
during the pandemic, confirming the risk accumulation effects brought
about by economically-driven spatial restructuring.

Second, the economic-social coupling in northeastern Sichuan

manifests as a bidirectional inhibitory effect. A representative case
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Distribution characteristics of the coupling coordination degree between disaster risk and urban vulnerability.
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was the “May 09” outbreak in Guang’an, where monthly infections
surged to 1,299 cases. This episode revealed that the region’s per
capita medical expenditure lagged behind the provincial average,
with medical facility shortages directly accelerating epidemic
spread. The event not only demonstrated how infrastructure
vulnerability amplifies risk transmission, but more importantly
exposed the underlying mechanism: sluggish economic
development severely constrains public service investment (67),
while inadequate social protection simultaneously restricts human
capital development and suppresses economic growth by weakening
consumption capacity.

Third, the economic-environmental coupling demonstrates
distinct stress effects in industrial cities, particularly evident in
Nanchong, Yibin, and Meishan. The expansion of traditional
industries (e.g., liquor manufacturing in Yibin, textile and chemical
production in Nanchong) has driven increased PM2.5 concentrations
and water quality deterioration. Insufficient environmental protection
investment further exacerbates health risks, empirically validating
how the tension between development intensity and ecological
carrying capacity translates into public health threats.

Fourth, the coupling coordination between spatial and economic
systems is particularly prominent in Panzhihua. Through measures
including intensive mining area redevelopment, functional
diversification in central urban zones, and strict ecological
conservation management, the city has achieved optimal alignment
between spatial resource allocation and economic development
needs. This spatial optimization strategy has established Panzhihua
as a core city in China’s national comprehensive resource utilization
pilot zone. Such a coordinated development pathway provides
replicable practical solutions for peer cities to construct more resilient
industry-space-ecological systems.

Frontiers in Public Health

Fifth, the synergistic effects of space-society-environment systems
are prominently demonstrated in Guangyuan City. As Sichuan
Province’s highest CCD-scoring city (CCD = 0.655), Guangyuan has
achieved virtuous interaction between social systems and
environmental governance through its “low-density, high-investment”
development model. Leveraging its mountainous topography to create
a polycentric spatial configuration, the city maintains relatively low
population density while compensating for economic development
limitations through extraordinary healthcare resource allocation and
robust social security systems. This governance approach—integrating
decentralized spatial structures, premium ecological endowments,
and targeted social investments—has not only significantly reduced
epidemic transmission risks but also established a distinctive resilient
development paradigm for mountainous cities. It provides valuable
reference for coordinating socioeconomic development with
ecological conservation in underdeveloped western regions.

These coupling mechanisms not only deconstruct the generative
logic of risk heterogeneity, but also empirically validate through
typical cases a transmission chain of: industrial agglomeration
(economic) — land-use compactness (spatial) — service coverage
(social) — ecological sensitivity (environmental). This provides a
differentiated theoretical framework for regional resilience planning.

4 Discussion and research
contributions
4.1 Discussion

The coordinated development between infectious disease
hazards and urban vulnerability constitutes a critical component
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of urban public health risk governance (68). These two systems
interact through factor flows and feedback mechanisms,
collectively determining regional comprehensive risk levels. This
study has measured infectious disease hazards, urban vulnerability,
comprehensive risks, and coupling coordination, with regional
distribution visualized through

patterns spatial

mapping techniques.

4.1.1 Validation of the CCD model

This study validated the coupling coordination degree (CCD)
assessment results using cumulative infection case data from
prefecture-level cities in Sichuan Province between January 1, 2020
and December 31, 2021. The case growth increment (AC = Cyy, —
Cao20.2021) Was employed for verification, generating AC and CCDI
zonal statistics maps for each city (Figure 11—the Y-axis values of
CCD were magnified for detail display, while case increment data were
compressed to a 3,000-range display, though Chengdu’s values
remained the provincial maximum).

The results show that Chengdu exhibited the highest case growth
increment (16,341 cases) in the province, far exceeding other cities,
which corresponds with its lowest CCDI (0.031) in Sichuan. In
striking contrast, Panzhihua recorded the lowest case growth
increment (71 cases), demonstrating an inverse relationship with its
high CCD index (0.649).

The research findings demonstrate a significant negative
correlation between epidemic development and coupling coordination
degree (CCD) across Sichuan Province’s cities during the Omicron
variant outbreak. Cities with higher CCD values (e.g., Panzhihua)
exhibited stronger epidemic resistance capabilities, maintaining
relatively low case growth increments. Conversely, cities with lower
CCD values (e.g., Chengdu) faced substantially greater epidemic
prevention and control pressures. These results indicate that the CCD
model can effectively predict case number trends across cities,
validating the model’s accuracy and applicability in assessing regional
epidemic prevention efficacy (69). The findings provide scientific
for and

evidence formulating  differentiated  prevention

control strategies.

10.3389/fpubh.2025.1639263

4.1.2 Comparative analysis with conventional risk
models

The comparative analysis between the CCD model and traditional
risk assessment models (Table 7) demonstrates that the CCD
framework transcends the linear paradigms of conventional
approaches (e.g., weighted summation or multiplicative models). Its
fundamental innovation lies in capturing dynamic feedback
mechanisms while quantitatively characterizing the synergistic
interactions between hazards and vulnerability through coupling
degree (C) and coordination degree (T), enabling the identification of
vicious cycles such as accelerated disease transmission resulting from
medical resource depletion (70). By leveraging the spatial
heterogeneity characteristics of coupling coordination degree (D), the
model overcomes the coarse-scale limitations inherent in regional
averaging methods, thereby facilitating differentiated interventions
across cities (71). Moreover, the analysis of coordination lag types
(hazard-dominant versus vulnerability-dominant) facilitates the
mapping of priority measures, effectively circumventing the resource
misallocation associated with traditional homogeneous high-score
interventions (72). Consequently, the coupling coordination degree
model has emerged as a robust analytical tool for evaluating balanced
regional development.

4.2 The main contributions of this study

This study developed a “hazard-vulnerability” risk coupling model
based on the entropy method and Coupling Coordination Degree
(CCD) model, systematically analyzing coupling coordination
mechanisms and key influencing factors. The results reveal that the
regional risk coupling system exhibits a distinct “high in central areas,
low in peripheral regions” spatial differentiation pattern, where
economic vulnerability, spatial vulnerability, and social vulnerability
demonstrate complex nonlinear interactions.

To verify the reliability of research conclusions, this study
conducted systematic validation through a triple-verification
approach: First, correlation analysis between cumulative confirmed
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FIGURE 11

Comparison diagram of coupling coordination degree and case growth volume.
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TABLE 7 Comparative analysis of CCD model vs. traditional models.

Dimension

Traditional models (INFORM,
PVI)

CCD model

10.3389/fpubh.2025.1639263

Comparative framework

Risk composition Linear additivity: Nonlinear coupling: Captures synergistic interactions between
n on -y hazard and vulnerability (Synergistic
Ri =) Wi x X sex 7 Interaction)
= 2 (Hi+vi)?
=1
T=aHj+ pVi
D=+CxT
Rj = HjxVj o fOfxa(0f
- 2k
(af (x)+ Bg(x))
T = Jaf (x)x Bg(x)
D=+CxT
Mechanism Unidirectional Causality (e.g., Vulnerability — Bidirectional Feedback Loops (e.g., Medical Deciphers dynamic systemic risk circuits
Risk) surge — Transmission acceleration — (Dynamic feedback mechanisms)
1Vulnerability)
Output Static risk scores Coordination typology + Lag direction (e.g., Identifies priority domains for risk governance
Hazard-lagged/Vulnerability-lagged) (Spatial heterogeneity)
Policy Homogeneous Intervention via Static Zoning: Heterogeneous Leverage Regulation via Transforms passive response to proactive risk
recommendations | Administrative unit classification — Dynamic Feedback: Feedback diagnosis — shaping, enabling context-sensitive strategies
Standardized policy deploymen Targeted governance (Contextual factors)

cases and the comprehensive risk assessment system across
prefecture-level cities in Sichuan Province confirmed the predictive
validity of the evaluation framework. Second, cross-validation
between the risk model and coupling model revealed a significant
negative correlation, demonstrating that improved coupling
coordination degree effectively reduces systemic risks. Finally,
verification analysis between regional case growth increments and
coupling coordination degree further ensured the robustness of
research findings. These validation results provide a solid empirical
foundation for subsequent policy recommendations.

Building upon these research findings, this study proposes
differentiated governance strategies:

1) Optimization strategies for the Chengdu Plain region

Given Chengdu’s distinctive “low vulnerability-high risk” profile,
systemic optimization strategies should be implemented. First, within
the Chengdu-Chongqing Economic Circle framework, priority should
be given to developing regional growth poles such as Mianyang
Science City and the Yibin-Luzhou industrial corridor. This can
be achieved through industrial policy guidance and infrastructure
interconnectivity to promote polycentric network development,
thereby effectively alleviating single-core agglomeration pressures.

Second, urban spatial expansion should incorporate enhanced
ecological resilience planning. This includes reserving ecological
buffer zones along the outer ring expressway and connecting them
through greenway systems to form emergency evacuation networks.
Simultaneously, new urban developments should mandatorily reserve
convertible emergency land parcels with pre-installed medical
equipment interfaces.

Furthermore, structural adjustments to medical resources should
be implemented via a “branch hospital system + tiered diagnosis and
treatment” model.
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These measures will ultimately establish a multidimensional
prevention system encompassing “spatial decentralization—ecological
buffering—emergency preparedness—medical resource balancing,”
systematically mitigating public health risks in high-density
urban areas.

2) Balanced development pathway for northeastern sichuan region

To address the concentration of impoverished populations and
inadequate infrastructure in northeastern Sichuan, a systematic
development strategy should be adopted.

First, priority should be given to cultivating competitive local
industries such as specialty agriculture and green processing
manufacturing, which can be achieved by establishing return-to-
hometown entrepreneurship subsidies and industrial development
funds to reverse outmigration trends and boost local employment.

Second, the returning population should be leveraged to drive
local fiscal revenue growth, with newly increased public finances
being preferentially allocated to upgrading medical facilities and
improving transportation infrastructure to enhance public
service delivery.

Ultimately, this integrated approach will establish a virtuous
development cycle of “industrial revitalization — population
agglomeration — fiscal expansion — service improvement,’
fundamentally strengthening regional resilience. This cyclical model
not only addresses current infrastructure deficiencies but also achieves
sustainable development through endogenous growth drivers.

3) Transformation strategies for environmentally stressed cities
For environmentally stressed cities like Yibin and Nanchong, a

development path coordinating industrial transformation with
environmental governance should be adopted.
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First, ecological transformation of key industries should
be implemented to reduce pollution intensity through industrial
structure optimization.
should
be significantly increased through creating ecological compensation

Second, environmental protection  investments
mechanisms, designating health protection buffer zones around major
industrial parks, and building a tiered environmental risk
prevention system.

Additionally, supporting environmental health monitoring
networks should be constructed to enable real-time warnings of
pollution sources and health risks.

Through this triple-intervention approach of “industrial upgrading
— environmental governance — health protection,” environmentally

high-risk cities can transition toward green development models.
4) Optimization and upgrading directions for Panzhihua

As a successfully transitioned resource-based city, Panzhihua has
demonstrated outstanding performance in industrial-spatial-
ecological coordination, yet requires targeted enhancements in
healthcare and social security systems.

First, healthcare system improvements should be prioritized by
increasing medical expenditure ratios and optimizing resource allocation.

Second, the current emergency supplies reserves are insufficient,
necessitating the establishment of a three-tier allocation system
encompassing municipal, county, and mining district levels.

Third, social insurance coverage expansion should be accelerated,
particularly for vulnerable groups like miners, through customized
insurance schemes and awareness campaigns.

Through this integrated approach of “medical investment —
emergency preparedness — insurance coverage, the city will
systematically address existing gaps while reinforcing its sustainable
development advantages.

5) Sustainable development pathway for Guangyuan City

As a exemplary model of resilient mountain city development,
Guangyuan has achieved remarkable success in spatial-social-
environmental coordination, yet requires focused improvements in
economic development levels.

First, economic scale expansion should be prioritized by addressing
the below-average per capita GDP through targeted growth initiatives.

Second, industrial support strengthening should be implemented
by cultivating regionally influential leading industries to address the
current lack of driving industries.

Third, fiscal capacity building should be enhanced by improving
financial self-sufficiency rates and accelerating infrastructure
development to overcome current limitations.

Through this integrated approach of “specialty industry cultivation
— fiscal mechanism innovation — infrastructure improvement,” the
city will effectively enhance endogenous growth drivers and
sustainable development capacity.

5 Conclusion

This study innovatively constructs a “hazard-vulnerability” risk
coupling model, introducing spatial coupling theory into the field of
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public health risk management. By employing the entropy method
and coupling coordination degree model, it reveals significant spatial
heterogeneity characteristics and dynamic interaction mechanisms
between infectious disease transmission risks and urban systems,
overcoming the limitations of traditional linear risk assessment
approaches. Furthermore, the study identifies key factors across
different coupling coordination types, providing scientific evidence
for formulating differentiated risk prevention strategies and urban
resilience solutions.

The results indicate that the coupling coordination degree (CCD)
between infectious disease hazards and urban vulnerability in Sichuan
Province remains at a relatively low level overall (mean = 0.384).
Panzhihua and Guangyuan demonstrate optimal coordination states
(with CCD values of 0.649 and 0.655 respectively), while Chengdu
exhibits a characteristic “low vulnerability-high hazard” pattern
(CCD = 0.031). The region displays a distinct core-periphery spatial
differentiation pattern, where cities with imbalanced development are
predominantly concentrated in the Chengdu Plain and southern
Sichuan regions—a distribution showing significant correlation with
the socioeconomic gradients of Sichuan’s four major economic zones.
Notably, further typological analysis reveals a prevalent “hazard-
dominant lagging” coupling coordination characteristic across the
province, which has been corroborated by vulnerability assessments
of urban public health systems in relevant planning documents.

Further analysis reveals dual characteristics in the mechanisms
influencing urban coupling coordination degree (CCD): on one hand,
there exist significant interactions among economic-spatial-social-
environmental factors; on the other, these coupling relationships
demonstrate pronounced spatial heterogeneity. The study demonstrates
that regional coordinated development requires differentiated governance
strategies: the Chengdu Plain region should focus on constructing a
multidimensional ~ prevention system encompassing  “spatial
decentralization—ecological buffering—emergency preparedness—
medical resource balancing”; northeastern Sichuan needs to establish a
virtuous cycle of “industrial revitalization—population agglomeration—
fiscal expansion—service improvement”; environmentally stressed cities
should prioritize coordinated transformation through “industrial
upgrading—environmental governance—health protection’; transition
cities like Panzhihua must perfect their social security networks via
“medical investment—emergency preparedness—insurance coverage’;
while resilient mountainous cities such as Guangyuan should strengthen
their development pathway through “specialty industry cultivation—fiscal
mechanism innovation—infrastructure improvement.”

This study establishes an analytical framework that provides
crucial decision-making support for regional development planning
and public health emergency system construction in Sichuan
Province. Specifically, the differentiated intervention strategies
proposed for regions with distinct characteristics can guide the
optimization of public health resource allocation and the
implementation of urban resilience-building projects. The research
outcomes not only offer valuable references for infectious disease
prevention and control in rapidly urbanizing areas, but also provide
theoretical foundations for achieving healthy city initiatives and
sustainable development goals.

It should be noted that this study still has several aspects requiring
further development: First, the factor analysis in urban vulnerability
assessment needs strengthening, and future research could introduce
more comprehensive spatial variables and governance effect variables
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to improve the evaluation system. Second, while the entropy method
can objectively reflect data characteristics, its results may be influenced
by data distribution—subsequent studies could incorporate other
weighting determination methods like the Analytic Hierarchy Process
for verification. Finally, the applicability of research conclusions
drawn from western provinces to eastern developed regions requires
validation. Future studies should expand the research scope and
conduct comparative analyses of regional characteristics at different
development stages to enhance the generalizability of findings.
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