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Introduction: In the research and practice of disaster prevention/mitigation 
and urban resilience development, although existing studies have conducted 
multidimensional assessments of urban vulnerability to hazards and infectious 
disease risks, limitations persist—such as the lack of bidirectional coupling 
mechanism analysis and a disconnection from planning implementation. These 
constraints hinder the systematic governance of public health risks and the 
advancement of resilient city development.
Method: This study selects 18 prefecture-level cities in Sichuan Province as 
case studies. By employing the entropy method and coupling coordination 
degree (CCD) model, we construct a “hazard-vulnerability” risk coupling model 
to systematically analyze the coupling coordination mechanisms, identify key 
influencing factors, and propose optimization pathways.
Results: (1) The coupling coordination degree (CCD) between infectious 
disease hazards and urban vulnerability in Sichuan Province remains at a 
relatively low level overall (mean = 0.384). Specifically, Chengdu demonstrates 
a “low vulnerability-high hazard” characteristic (0.031), while Guangyuan and 
Panzhihua exhibit optimal coordination states (0.655 and 0.649 respectively). 
(2) The region generally follows the distribution pattern where lower CCD 
corresponds to higher risk levels. The coordinated development types show 
dispersed spatial distribution, whereas recession-maladjusted types are 
predominantly concentrated in the Chengdu Plain and southern Sichuan regions. 
(3) Among CCD subtypes, the “hazard-deficit” type emerges as the dominant 
pattern. (4) Economic-spatial-social-environmental factors demonstrate not 
only significant interaction effects but also pronounced spatial heterogeneity 
characteristics.
Conclusion: Based on spatial coupling theory, this study innovatively constructs 
a “hazard-vulnerability” risk coupling model, which expands traditional risk 
assessment and urban vulnerability evaluation theories, providing a novel 
research perspective for urban risk management and regional sustainable 
development. The research results offer important quantitative evidence for 
formulating regionally differentiated public health strategies.
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1 Introduction

Public health emergencies, as global crises, have seen their impact 
mechanisms and spatial distribution characteristics become a cutting-
edge research topic in interdisciplinary studies. From a historical 
perspective, from the Plague of Justinian to the COVID-19 pandemic, 
such events have not only caused significant casualties and economic 
losses (1, 2), but have also reshaped urban development trajectories 
through complex spatial interaction mechanisms (3). In contemporary 
urbanization processes, the concentration of factors and flow networks 
have simultaneously improved the efficiency of medical resource 
allocation while significantly increasing pathogen transmission risks 
(4). Therefore, it is essential to establish a scientific risk assessment 
framework to effectively implement urban planning strategies, public 
health policies, and emergency management measures.

In the field of infectious disease transmission mechanisms, 
significant academic progress has been achieved. Dai et  al. 
systematically demonstrated the potential risks of respiratory disease 
transmission via aerosols in high-density urban environments (5), 
while Ruiz-Herrera et al. mathematically quantified the critical role of 
population mobility in epidemic spread (6). Notably, however, these 
studies primarily focus on the transmission dynamics of pathogens 
themselves, failing to adequately account for the regulatory effects of 
urban complex systems on transmission processes.

Meanwhile, urban vulnerability studies have thoroughly examined 
the impact of socioeconomic factors on public health emergency 
response capabilities (7), explicitly identifying spatial elements as key 
variables influencing disease transmission. These studies reveal how 
urban–rural spatial organization patterns critically determine 
epidemic prevention efficacy (8). Particularly noteworthy is Rahayu 
et al.’s research demonstrating how disparities in urbanization levels 
and regional development imbalances exacerbate health 
vulnerabilities, leading to spatial mismatches between public health 
service provision and disease burdens (9). However, these studies 
generally overlook pathogen-specific transmission routes and 
pathogenic mechanisms. Such disciplinary fragmentation has resulted 
in significant theoretical limitations and practical blind spots in 
existing risk assessment frameworks.

Existing studies have also revealed that the impact of urbanization 
on infectious disease transmission exhibits significant regional 
heterogeneity (10). This spatial variation manifests not only in the 
geographical disparities of transmission risks, but also triggers multi-
level cascading effects within urban systems through the shockwaves 
of public health emergencies. Specifically, public health crises have 
both intensified the polarization of pre-existing patterns in disease 
transmission and socioeconomic spatial differentiation (11), while 
simultaneously giving rise to new vulnerability dimensions such as 
disparities in spatial accessibility, environmental justice imbalances, 
and inequitable health resource allocation (12). The spatial coupling 
and synergistic effects of these multidimensional inequities not only 
exacerbate the degree of risk heterogeneity in urban systems, but also 
pose systemic challenges to conventional public health risk 
management paradigms.

Building upon these research findings, scholars have begun to 
re-examine the adaptability of traditional urbanization models and 
advocate for establishing systematic, multi-tiered, and dynamically 
evolving urban resilience frameworks (13). Grounded in urban 
political ecology theory, Gandy developed the “Zoonotic City” 
analytical framework, emphasizing that urbanization processes must 
be integrated with epidemiological characteristics to fully capture the 
complex interactions between health threats and environmental 
changes (14). Furthermore, Yang et  al.’s empirical study in Hubei 
Province proposed that post-pandemic urban development should 
transcend mere economic agglomeration and scale expansion, shifting 
toward a new model prioritizing public service enhancement and 
amenity optimization (15). Additionally, Pacheco et al.’s systematic 
review demonstrated that increasing accessible public spaces and 
optimizing their adaptive use during health crises are emerging as 
critical innovations in urban design (16). These research advances 
provide vital theoretical foundations and practical pathways for 
constructing more resilient urban systems.

Through an in-depth analysis of current research advancements, 
three critical theoretical gaps remain to be addressed in the study of 
interactions between infectious diseases and urban systems. First, 
existing research paradigms are predominantly limited to 
unidirectional linear analyses, focusing either on the mechanisms of 
disease transmission and the impact of epidemics on urban systems, 
or examining the influence of urban factors on disease spread in 
isolation (17). This fragmented research perspective has led to 
insufficient understanding of the complex interaction mechanisms 
between hazards and vulnerabilities. Second, at the methodological 
level, current risk assessment frameworks lack adequate capacity to 
analyze the formation mechanisms of micro-scale risk heterogeneity 
within cities, making it difficult to effectively identify key drivers of 
risk differentiation across different regions (18). More crucially, 
despite substantial evidence demonstrating significant correlations 
between spatial organization patterns and epidemic control 
effectiveness, there remains a lack of integrated frameworks to 
effectively translate risk assessment results into urban planning 
intervention measures (19). These theoretical and methodological 
limitations urgently call for establishing systematic, multidimensional, 
and dynamic infectious disease risk assessment systems, and 
implementing precise interventions through scientific risk 
management approaches (20).

In summary, this study systematically conducted public health 
emergency risk assessment research using 18 prefecture-level cities in 
Sichuan Province as case studies. Methodologically, we first constructed 
comprehensive evaluation index systems for both hazard and urban 
vulnerability, employing the entropy method to determine indicator 
weights, subsequently measuring their index levels and analyzing spatial 
distribution characteristics. Building upon this foundation, the integrated 
risk assessment model quantified disaster risk levels and generated risk 
maps, verifying the effectiveness of the index system as an informative 
indicator for actual cumulative infection data (as the level of risk alone 
can be an informative indicator for all such issues). Furthermore, the 
CCD model was applied to analyze the spatial coupling relationship 
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between hazards and vulnerability, not only classifying coupling 
coordination types but also identifying key risk drivers for each category. 
Ultimately, empirical analysis based on pandemic infection growth data 
validated the reliability of the coupled risk assessment results. By 
developing the “hazard-vulnerability” risk coupling model, this study 
expands traditional risk assessment theory and provides scientific 
support for formulating effective risk management measures and urban 
planning strategies (21). The research holds significant theoretical and 
practical value for integrated disaster prevention and mitigation system 
planning, resilient city construction, and sustainable development.

2 Materials and methods

2.1 Study area and data sources

2.1.1 Study area
Sichuan Province, located in southwestern China, plays a pivotal 

role in major national strategies such as the Western Development 
Program, poverty alleviation initiatives, and the Chengdu-Chongqing 
Economic Circle development. Despite its well-developed transportation 
network that facilitates efficient population mobility and material flows, 
the urban system remains incomplete. Expect Chengdu, the province 
lacks other megacities and Type I large cities, and has only three Type II 
large cities, resulting in population shrinkage among small-medium 
cities and excessive con-centration in central urban areas. Although 
Sichuan ranks fifth nationally in regional GDP, its economic 
development shows significant spatial disparities. The overall 
development level remains relatively lagging, with pronounced urban–
rural gaps, uneven resource allocation, and low spatial safety resilience. 
Historically prone to earth-quakes and epidemics, the province’s health 
risks have been further exposed during recent major pandemic outbreaks.

This study examines 18 prefecture-level and higher cities within 
four major economic zones of Sichuan (Table  1; Figure  1). The 
provincial capital Chengdu, with an urban population of 13.34 
million, ranks as China’s 6th megacity. Its rapid economic development 
has created significant population siphon effects, with its massive 
urban population far exceeding other cities in the province. The 
province’s urban system comprises three Type II large cities 
(Mianyang, Nanchong, and Yibin), nine medium-sized cities (Luzhou, 
Dazhou, Zigong, Suining, Leshan, Meishan, Panzhihua, Deyang, and 
Neijiang), and five Type I small cities (Guangyuan, Bazhong, Ziyang, 
Guang’an, and Ya’an), collectively constituting a hierarchical urban 
network beneath Chengdu’s megacity dominance.

2.1.2 Data sources
This study uses both statistical data and web-based data. The 

statistical data used in this study were primarily sourced from the 
Sichuan Statistical Yearbook 2023 (SSYB), Sichuan Transportation 
Yearbook 2023 (STYB), municipal statistical yearbooks of individual 
cities (MSYB), and human resources and social security bulletins 
published by prefecture-level cities (MHRB). Data on licensed (assistant) 
physicians and hospital beds were mainly obtained from the Sichuan 
Health Statistical Yearbook 2023 (SHSYB), while demographic indicators 
such as the proportion of population aged 65 and above (2020 data) were 
collected from the Sichuan Population Census Yearbook 2020 (SPCY).

The infectious disease data pertains to the COVID-19 epidemic 
and was sourced from the official website of the Sichuan Provincial 
Health Commission.1 The dataset includes confirmed cases reported 
at the prefecture-level city scale, covering the period from January 1, 
2020, to December 10, 2022.

1  https://wsjkw.sc.gov.cn/

TABLE 1  Classification of city size levels in various economic regions of Sichuan Province.

Economic 
zones

Hierarchical 
scale

City names Current situation

Chengdu Plain Megacity Chengdu The Chengdu Plain Economic Zone concentrates over 50% of the province’s permanent population, 

representing the most developed, densely populated, and industrially concentrated region in Sichuan. It 

ranks among the most urbanized and economically agglomerated areas in Western China.
Type II large city Mianyang

Medium-sized city Deyang, Suining, 

Leshan, and 

Meishan

Type I small city Ziyang and Ya’an

Northeastern 

Sichuan

Type II large city Nanchong The Northeastern Sichuan Economic Zone exhibits relatively underdeveloped economic conditions. Urban 

settlements across all hierarchical scales remain undersized, with regional centers Nanchong and Dazhou 

demonstrating limited radiating capacity. Certain towns and county seats face population outflow risks. The 

urbanization process lags behind provincial averages, constrained by infrastructure deficits and public 

service inadequacies.

Medium-sized city Dazhou

Type I small city Guangyuan, 

Guang’an, and 

Bazhong

Southern 

Sichuan

Type II large city Yibin The Southern Sichuan Economic Zone ranks second in provincial economic output. However, its core cities 

suffer from insufficient scale and weak agglomeration capacity, coupled with notable population outflow. The 

region also faces overlapping redundancies in core industries and public service provision.
Medium-sized city Zigong, Luzhou, 

and Neijiang

Panxi Medium-sized city Panzhihua The Panxi Economic Zone is currently the only state-approved experimental zone with the theme of 

comprehensive resource development and utilization. In terms of both resident population and regional 

GDP, it ranks fourth among the five major economic zones in Sichuan Province, indicating a relatively 

lagging overall development level.
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The network data consists of Point of Interest (POI) data for 
prefecture-level cities in Sichuan Province in 2022, obtained from 
Amap (Amap POI)2 (22). This dataset includes the quantities of daily 
service facilities such as convenience stores, supermarkets, shopping 
malls, and restaurants, which are used to measure the density of living 
service venues. Additionally, the administrative boundary vector maps 
for each city were acquired from the National Platform for Common 
Geospatial Information Services.3 Table 2 summarizes the relevant 
data information, including data types, temporal resolution, time 
range, and data sources.

2.2 Infectious disease disasters 
comprehensive risk assessment index 
system

To comprehensively understand integrated disaster risk, 
international organizations such as the United Nations Office for 
Disaster Risk Reduction (UNDRR) and the United Nations 
Development Programme (UNDP) have incorporated disaster risk 
reduction measures into national planning and decision-making 
processes based on metric frameworks (23). The discourse on Disaster 
Risk Reduction (DRR) is undergoing a paradigm shift toward 
vulnerability-oriented approaches, with vulnerability emerging as a 
common evaluative characteristic in numerous risk assessments, 

2  https://lbs.amap.com

3  https://www.tianditu.gov.cn/

providing practical information for accurate disaster prevention and 
mitigation (24).

Scholars have conducted in-depth research on integrated risks of 
infectious disease disasters. For instance: Mete et al. employed three 
risk factors from the INFORM COVID-19 Risk Index—hazard and 
exposure, lack of coping capacity, and vulnerability—to reassess 
national disaster risks in two phases (25); Pang et al. developed a 
disaster loss index model based on vector vulnerability, disaster-prone 
environmental instability, hazard intensity, disaster prevention 
capacity, and emergency response capability to study pandemic 
transmission’s environmental risks and socioeconomic impacts (26); 
Pluchino et  al. established a risk index framework incorporating 
disease hazard (H), regional exposure (E), and population 
vulnerability (V) to assess epidemiological risks across geographical 
areas and identify high-risk zones (27); Kanga et  al. created an 
integrated risk assessment framework combining hazard and 
vulnerability, defining infectious disease risk as C=H × V, followed by 
risk assessment and mapping (28). In summary, risk index evaluations 
primarily focus on disease risk, hazards, and vulnerability. By 
comprehensively considering multiple risk factors and their impacts, 
more effective risk assessment and management can be  achieved. 
When constructing the comprehensive risk assessment index system 
for infectious disease disasters in this study, it becomes necessary to 
redefine these two subsystems—hazard and vulnerability.

The transmission intensity of infectious diseases determines both 
the likelihood of disease occurrence and the extent of its spread, 
necessitating the selection of indicators that can characterize disease 
transmission patterns as hazard factors. Analysis of viral 
epidemiological characteristics (29, 30) reveals that transmission 
routes primarily include aerosol transmission, airborne transmission, 

FIGURE 1

The location of Sichuan Province.

TABLE 2  Data sources.

Data type Resolution Time range Data sources

Statistical yearbook data Year 2022 https://tjj.sc.gov.cn/scstjj/c112132/pic_list.shtml

Point of Interest (POI) data Year 2022 https://lbs.amap.com

Epidemic statistics data Daily January 1, 2020 – December 10, 2022 https://wsjkw.sc.gov.cn/

Administrative division boundary data https://www.tianditu.gov.cn/
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and direct contact transmission, with influencing factors being 
highly complex (31). The emergence and spread of infectious 
diseases are associated with several determinants, encompassing 
both anthropogenic factors (e.g., population density, travel and trade 
patterns, susceptibility across different demographic groups) and 
ecological factors (32). Therefore, this study extracts hazard-related 
influencing factors from the following dimensions: population 
characteristics (33), population aggregation (34), demographic 
dynamics (35), and environmental factors (36). These elements 
collectively form the framework for constructing the 
indicator system.

Epidemic disasters differ from natural disasters in that they 
primarily affect human health through interpersonal transmission and 
lead to lasting socioeconomic consequences. As a result, pandemic 
risk assessment studies tend to focus more on the vulnerability of 
populations and socioeconomic systems while often neglecting spatial 
considerations. However, many drivers of pandemic vulnerability are 
inherently linked to global connectivity and urbanization levels, 
arising from the complex interplay of spatial structural imbalances, 
uneven economic development, and insufficient governance capacity. 
Any deterioration in these factors may increase a city’s vulnerability 
and risk (37). In this study, we define vulnerability as the sensitivity of 
urban systems to external disturbances and their lack of coping 
capacity, which makes their structure and function prone to change.

To construct an urban vulnerability indicator system for public 
health emergencies, we conducted a comprehensive review of relevant 
literature, including the Population Vulnerability Index widely used 
in public health and medical fields (38), the Social Vulnerability Index 
(SVI) (39), urban vulnerability assessments (UVA) that incorporate 
both social and physical factors in  local planning (40), and the 
Pandemic Vulnerability Index (PVI) (41). We  extracted key 
influencing factors on urban vulnerability from socioeconomic (42), 
spatial-environmental (43), and infrastructural dimensions (44) to 
build our indicator system.

The establishment of a risk coupling assessment model for 
infectious disease hazards and urban vulnerability can effectively 
measure the threat level of infectious diseases and the degree of urban 
vulnerability, identify risk-influencing factors, and subsequently 
formulate targeted epidemic prevention and urban planning strategies. 
This provides crucial scientific support for disaster prevention and 
mitigation as well as resilient city development. To explore potential 
variables influencing infectious disease hazards and urban 
vulnerability, this study referenced variables included in previous 
research. Based on principles of data relevance, availability, and 
reliability, we screened and categorized key indicators to construct a 
comprehensive integrated risk assessment framework (Table 3).

2.3 Data standardization

In a multi-indicator evaluation system, different indicators may 
have varying units of measurement. Therefore, data standardization is 
required during the evaluation process. There are two types of 
evaluation indicators: positive and negative. For positive indicators, 
higher values indicate greater risk and vulnerability; for negative 
indicators, higher values indicate lower risk and vulnerability. 
Consequently, this study employs the extremum method to conduct 
positive transformation of all original indicators (Equations 1–2).

Positive indicators:

	
( )

−
= = … = …

−
ij min

ij
max min

x x
X i 1,2 , m; j 1,2 , n

x x 	
(1)

Negative indicators:

	
( )

−
= = … = …

−
max ij

ij
max min

x x
X i 1,2 , m; j 1,2 , n

x x 	
(2)

Where xij is the original data of the evaluation index; xmax and xmin 
are the maximum and minimum values of the evaluation index; Xij is 
the indicator value after standardised processing. Here, i refers to the 
prefecture-level and above cities in the study, totaling m = 18. j 
represents the various indicators.

2.4 Entropy method

The entropy method objectively determines indicator weights by 
measuring information entropy to quantify data variability, effectively 
eliminating biases inherent in subjective weighting approaches (45). 
In information theory, entropy serves as a metric for system disorder 
and the amount of useful information contained within datasets. 
When evaluation objects demonstrate significant disparities in specific 
indicators, lower entropy values indicate greater informational utility, 
warranting higher weight assignments (46). The methodological 
procedure involves: standardizing raw data, calculating information 
entropy for each indicator, and deriving weight coefficients based on 
entropy values (47). This process rigorously accounts for relative 
importance among indicators, ensuring scientifically robust weight 
allocation. For public health risk assessment, the entropy method 
proves particularly effective in handling multi-source heterogeneous 
data, precisely capturing each risk factor’s actual contribution to 
support comprehensive evaluations (Equations 3–7).

The feature proportion of the i-th city under the j-th indicator can 
be defined as follows:

	 =

=
∑

ij
ij m

iji 1

X
P

X 	

(3)

Where m represents the total number of prefecture-level and 
above cities (here, m = 18), and the calculation constant k is given by:

	 ( )
=

1k
ln m 	

(4)

The Information entropy of the j-th indicator can be  defined 
as follows:

	
( )

=
= − ∑

m

j ij ij
i 1

e k P ln P
	

(5)
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TABLE 3  Comprehensive risk assessment indicator system for urban infectious disease disasters.

Target Sub system Dimension Indicator Definition Source Direction Weight

Comprehensive 

risk

Infectious disease 

hazard

Population characteristics Proportion of population aged 65 

and over (X1)

Percentage of permanent residents aged ≥65 years in the region (%) SPCY 2020 + 0.046

Population living in poverty (X2) Percentage of population receiving minimum living allowance (%) MSYB2023 + 0.093

Population agglomeration Population Density (X3) Permanent residents per unit land area (persons/km2) SSYB 2023 + 0.135

Employment Density (X4) Total employed persons per built-up area (10,000 persons/km2) MSYB2023 + 0.062

Demographic dynamics Domestic tourist arrivals (X5) Annual domestic tourist arrivals (10,000 persons) SSYB 2023 + 0.251

Public transport vehicles per 10,000 

population (X6)

Number of operational public buses/trolleys (urban districts) per 10,000 

permanent residents (units/10,000 persons)

SSYB 2023 + 0.144

Highway passenger traffic volume 

(X7)

Annual highway passenger transport volume (10,000 persons) STYB 2023 + 0.120

Environmental factors PM₂.₅ concentration (X8) Annual mean Air Quality Index (μg/m3) SEEB2023 + 0.075

Relative humidity (X9) Annual mean relative humidity (%) SSYB 2023 + 0.029

Mean air temperature (X10) Annual mean air temperature (°C) SSYB 2023 − 0.044

Urban vulnerability Spatial vulnerability Residential density (X11) Per capita housing floor area (m2/person) SSYB 2023 − 0.123

Amenity density (X12) Number of convenience stores/supermarkets/shopping malls per km2 

(based on POI data)

Amap POI + 0.072

Transport facility density (X13) Number of bus stops per km2 (based on POI data) Amap POI + 0.169

Green coverage rate (X14) Percentage of green space in built-up area (%) SSYB 2023 − 0.054

Open space density (X15) Number of parks/public squares per km2 SSYB 2023 − 0.093

Economic vulnerability Unemployment rate (X16) Registered urban unemployment rate (%) MSYB2023 + 0.052

Income per capita (X17) Annual per capita disposable income of residents (10,000 CNY) SSYB 2023 − 0.052

Health expenditure as percentage of 

GDP (X18)

Government health expenditure as percentage of GDP (%) SHSYB 2023 − 0.046

Annual per capita household 

savings deposit balance (X19)

Per capita savings deposits of urban/rural residents (10,000 CNY) SSYB 2023 − 0.049

Emergency supplies reserve 

expenditure as a percentage of GDP 

(X20)

Government emergency reserves expenditure as percentage of GDP (%) SSYB 2023 − 0.047

Social vulnerability Physicians per 10,000 people (X21) Licensed (assistant) physicians per 10,000 permanent residents SHSYB 2023 − 0.090

Hospital beds per 10,000 

inhabitants (X22)

Number of hospital beds per 10,000 permanent residents SHSYB 2023 − 0.086

Coverage rate of basic social 

security schemes (X23)

Coverage rate of basic pension insurance (%) MHRB2023 − 0.068
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Calculate the divergence coefficient gj for the j-th indicator:

	 = −j jg 1 e 	 (6)

Calculate the weight of the j-th indicator:

	 =

=
∑

j
j n

jj 1

g
w

g
	

(7)

2.5 Measure the disaster hazard index and 
urban vulnerability index

This study calculates the disaster hazard index by combining 
standardized indicator values with their respective weights, reflecting 
both the hazard intensity levels and spatial distribution patterns across 
the study areas. The computational formula is expressed as follows 
(Equation 8):

	 =
= ×∑

1

n

i j ij
j

H W X
	

(8)

Where Hᵢ denotes the disaster hazard index for the i-th city, while 
higher values indicate greater hazard intensity; Wⱼ represents the 
weight of the j-th indicator derived from the entropy method, Xᵢⱼ 
corresponds to the standardized value of the indicator.

To quantify regional vulnerability, the same methodology was 
employed to calculate the urban vulnerability index, thereby enabling 
quantitative analysis of both the magnitude and spatial distribution of 
vulnerability across the study areas (Equation 9).

	 =
= ×∑

1

n

i j ij
j

V W X
	

(9)

Where Vᵢ denotes the urban vulnerability index for the i-th city, 
while higher values indicate greater vulnerability degree; Wⱼ represents 
the weight of the j-th indicator derived from the entropy method, Xᵢⱼ 
corresponds to the standardized value of the indicator.

2.6 Calculation of composite risk index

Risk analysis should concurrently consider both infectious 
disease hazard and urban vulnerability, as risk is a function of 
hazard and vulnerability. The computational formula can 
be expressed as (48, 49) (Equation 10).

	 = ×i i iR H V 	 (10)

The above calculation demonstrates that regional disaster risk 
escalates with increasing hazard intensity and vulnerability levels.

2.7 Coupling coordination degree model 
(CCDM)

The Coupling Coordination Degree Model (CCDM), based on 
coupling theory, effectively evaluates interaction effects and coordinated 
development levels between different systems. It has been widely 
applied to examine relationships among social, economic, and 
ecological systems (50, 51), including: production-living-ecological 
spaces (52, 53), economy-ecology interplay (54, 55), Urbanization-
ecological environment dynamics (56), Cultural landscape 
conservation vs. socioeconomic development (57). Recently, CCDM 
has transitioned from social-economic-ecological studies to disaster 
risk research, enabling in-depth analyses of: spatial coupling 
relationship between multidimensional poverty and the risk of 
geological disaster (58), the coupling relationship between flood risk 
and population vulnerability (59), integrated effects and 
multidimensional impacts of “Hazard-Exposure-Vulnerability” on 
urban flood risks (60). These studies demonstrate applicability of 
CCDM in disaster risk assessment frameworks. However, existing 
research lacks spatial coupling perspectives to unravel interaction 
mechanisms between acute public health hazards and 
urban vulnerability.

“Coupling” refers to the process of interaction and mutual 
influence between two or more elements (61). This study employs 
CCDM to analysis the interdependent or mutually constraining 
relationships between disaster hazards and urban vulnerability. 
Within CCDM research, most scholars adopt the conventional model 
structure, calculated as follows (Equations 11–13):

	 ( )
×

= ×
+
i i

2
i i

H VC 2
H V 	

(11)

	 = α +βi iT H V 	 (12)

	 = ×D C T 	 (13)

Given the dimensional differences between disaster hazards and 
urban vulnerability, normalized ordinal values were employed to 
calculate their synchronization and overall coordination degree 
(Equations 14–16). Based on the final coupling coordination degree 
(D) values, and referencing the classification framework from Xiang 
et al.’s study (58), the coordinated development status between disaster 
hazards and urban vulnerability was categorized into 4 major classes. 
These were further subdivided into 6 subtypes according to the 
proportional relationship between the two systems (Table 4).

	

( ) ( )
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+
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Where C is the coupling degree, T is the coordination index 
between disaster hazards and urban vulnerability, D is the coupling 
coordination degree. f(x) is the normalised value of disaster hazards 
ranking; g(x) is the normalised value of urban vulnerability 
ranking. k is an adjustment coefficient (typically 2 ≤ k ≤ 5). To 
enhance discriminative capacity, this study sets k = 3 following Su 
et  al. (62). Considering that f(x) is as important as g(x) (i.e., 
α + β = 1, with α = β = 0.5). The higher the value of D is, the better 
the coordination degree between disaster hazards and urban 
vulnerability is.

3 Results

3.1 Integrated measurement and spatial 
distribution of infectious disease hazard 
and urban vulnerability

The standardized indicators were objectively weighted using the 
entropy method, yielding the respective indicator weights for 
infectious disease hazards and urban vulnerability (Figures 2, 3) as 
well as dimensional indices (Table  3). This enabled quantitative 
measurement of infectious disease hazards, urban vulnerability, 
comprehensive risk, and coupling coordination degree, with regional 
distribution patterns visualized through spatial mapping techniques. 
Furthermore, the study conducted qualitative analysis by 
incorporating regional development characteristics specific to 
Sichuan Province.

3.1.1 Comprehensive measurements and spatial 
distribution of the infectious disease hazard

Through a comprehensive evaluation of population characteristics, 
population aggregation, population mobility, and environmental 
exposure, this study reveals the infectious disease risk levels and 
spatial distribution patterns across cities in Sichuan Province. The 
quantitative risk scores ranged from 0.149 to 0.761. Chengdu exhibited 
the highest risk index at 0.761, while all other cities scored below 0.5, 
indicating generally low-to-moderate risk levels. These findings 
demonstrate the significant effectiveness of Sichuan’s regional 
epidemic prevention policies in risk management.

Furthermore, Table 5 and Figure 4 show that population mobility 
constitutes the most influential factor for infectious disease risk. The 
key contributing elements include domestic tourist numbers, public 
transportation vehicles per 10,000 people, population density, and 
highway passenger volume.

Using the Natural Breaks method in ArcGIS (63, 64), the hazard 
index was classified into five risk levels: extremely high, high, moderate, 
low, and very low (Figure 5). Spatially, the disaster risk across Sichuan 
Province exhibits distinct regional differentiation, closely correlated 
with urban scale, geo-economic factors, and natural environment.

The extremely high-risk zone is represented by the megacity 
Chengdu, where elevated risk likely stems from dense population, 
economic activities, and urban expansion-induced environmental 
disturbances. Medium-to-high risk zones include large and medium-
sized cities such as Yibin, Luzhou, Leshan, Meishan, and Zigong. In 
contrast, low and very low-risk areas are primarily distributed across 
smaller peripheral cities like Panzhihua, Guangyuan, and Dazhou, 

TABLE 4  Classification of coupling coordination types between disaster hazard and urban vulnerability.

Coupling 
coordination 
type

Coupling 
coordination 
degree

Classification 
rule

Relation discrimination feature Coupling coordination 
subtype

Coordinated 

development

0.6 ≤ D ≤ 1 0 ≤ |H—V| ≤ 0.1 Synchronized coordinated development Synchronization development

H—V > 0.1 Coordinated development with urban vulnerability lag Coordinated-urban vulnerability lagging

V—H > 0.1 Coordinated development with disaster hazard lag Coordinated-disaster hazards lagging

Barely coordinated 

development

0.5 ≤ D<0.6 0 ≤ |H—V| ≤ 0.1 Synchronised barely coordinative development Synchronization development

H—V > 0.1 Barely coordinated development with urban 

vulnerability lag

Coordinated-urban vulnerability lagging

V—H > 0.1 Barely coordinated development with disaster hazards 

lag

Coordinated-disaster hazards lagging

On the verge of 

disorder

0.4 ≤ D<0.5 0 ≤ |H—V| ≤ 0.1 Synchronised on the verge of disorder Disorder of both hazards and 

vulnerability

H—V > 0.1 On the verge of disorder development with urban 

vulnerability lag

Disorder-urban vulnerability lag

V—H > 0.1 On the verge of disorder development with disaster 

hazards lag

Disorder-disaster hazards lag

Disorder and 

recession

0 ≤ D<0.4 0 ≤ |H—V| ≤ 0.1 Synchronised disorder and recession development Disorder of both hazards and 

vulnerability

H—V > 0.1 Disorder and recession

Development with urban vulnerability lag

Disorder-urban vulnerability lag

V—H > 0.1 Disorder and recession

Development with disaster hazards lag

Disorder-disaster hazards lag
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where abundant environmental resources and lower development 
intensity may contribute to risk mitigation.

Overall, this spatial risk pattern reflects both the constraints of 
natural geographical conditions and the impacts of regional 
development disparities.

3.1.2 Comprehensive measurements and spatial 
distribution of the urban vulnerability

The urban vulnerability index reflects a city system’s sensitivity to 
internal and external disturbances and its lack of coping capacity—
attributes that make its structure and function prone to change. Through 
a comprehensive evaluation of spatial layout, economic development, 

and social systems, this study reveals the vulnerability levels and spatial 
distribution characteristics across cities in Sichuan Province.

Quantitative vulnerability scores ranged from 0.383 to 0.720. 
Chengdu showed the lowest vulnerability index (0.383), followed by 
Nanchong (0.402), while most other cities scored above 0.5, 
indicating medium-to-high vulnerability levels. Meishan exhibited 
the highest vulnerability index at 0.720. These results demonstrate the 
inherent vulnerability of urban systems in Sichuan when responding 
to public health emergencies.

As shown in Table  5 and Figure  6, spatial vulnerability 
demonstrated the most significant average influence. Key contributing 
factors included transportation facility density, residential density, 

FIGURE 2

Weight of infectious disease hazard indicators.

FIGURE 3

Weight of urban vulnerability indicators.
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TABLE 5  Integrated risk assessment: subsystem components and dimensional indexation.

Cities Population 
characteristics

Population 
aggregation

Demographic 
dynamics

Environmental 
factors

Infectious 
disease 
hazard

Spatial 
Vulnerability

Economic 
Vulnerability

Social 
Vulnerability

Urban 
Vulnerability

Comprehensive 
risk

cd 0.001 0.145 0.495 0.121 0.761 0.233 0.091 0.059 0.383 0.291

zg 0.089 0.054 0.105 0.084 0.331 0.161 0.193 0.061 0.415 0.138

pzh 0.023 0.007 0.109 0.010 0.149 0.204 0.180 0.079 0.464 0.069

lz 0.056 0.044 0.142 0.105 0.348 0.187 0.163 0.119 0.469 0.163

dy 0.051 0.097 0.072 0.103 0.322 0.314 0.146 0.120 0.580 0.187

my 0.043 0.040 0.207 0.080 0.369 0.253 0.160 0.120 0.533 0.197

gy 0.111 0.040 0.028 0.061 0.240 0.185 0.160 0.073 0.419 0.101

sn 0.064 0.076 0.038 0.063 0.240 0.177 0.199 0.145 0.521 0.125

nj 0.057 0.081 0.225 0.078 0.441 0.288 0.195 0.102 0.585 0.258

ls 0.059 0.066 0.119 0.105 0.351 0.292 0.183 0.114 0.590 0.207

nc 0.125 0.072 0.080 0.091 0.369 0.076 0.188 0.138 0.402 0.148

ms 0.056 0.073 0.098 0.100 0.327 0.401 0.163 0.156 0.720 0.235

yb 0.035 0.045 0.205 0.129 0.414 0.219 0.191 0.156 0.566 0.234

ga 0.091 0.103 0.049 0.085 0.327 0.286 0.172 0.200 0.659 0.216

dz 0.081 0.065 0.069 0.057 0.273 0.148 0.181 0.180 0.508 0.139

ya 0.037 0.034 0.049 0.080 0.201 0.285 0.187 0.041 0.513 0.103

bz 0.124 0.067 0.056 0.073 0.320 0.247 0.136 0.135 0.518 0.166

zy 0.088 0.086 0.102 0.074 0.350 0.336 0.185 0.087 0.608 0.213
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road network density, open space density, number of doctors, and 
hospital bed capacity. This reflects the close relationship between 
regional development levels and the balance of spatial configurations.

Using the Natural Breaks classification method in ArcGIS (63, 
64), the vulnerability index was categorized into five levels: extremely 
high, high, moderate, low, and extremely low vulnerability zones 

FIGURE 4

Dimensional indices of infectious disease hazard.

FIGURE 5

Classification results of the disaster hazard index.
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(Figure 7). Spatially, urban vulnerability across Sichuan Province 
exhibits distinct regional differentiation.

The extremely low vulnerability zone is represented by the 
megacity Chengdu, whose resilience stems from advanced economic 
development and a comprehensive public service system. Cities like 
Nanchong and Zigong also demonstrate relatively low vulnerability 
due to their sound economic conditions, while Guangyuan benefits 
from stable geological environmental conditions.

Panzhihua and Luzhou fall into the low vulnerability category, 
with Mianyang and Suining classified as moderately vulnerable. High 
vulnerability areas such as Leshan, Yibin, and Guang’an may 
be influenced by multiple factors including geological disaster risks, 
industrial environmental pressures, and imbalanced public services.

Overall, this spatial pattern of urban vulnerability reflects both 
variations in natural geographical conditions and disparities in 
regional development levels.

3.2 Comparative analysis of composite risk 
mapping versus observed epidemic risk 
patterns

Based on the aforementioned assessment results of infectious 
disease hazards and urban vulnerability, we  calculated the 
comprehensive risk index. Sichuan Province generally exhibits a low 
overall risk level. The provincial capital Chengdu showed the highest 
risk index (0.291), while Guangyuan and Panzhihua demonstrated the 
lowest values.

Using the Natural Breaks classification method in ArcGIS (63, 
64), the study area was divided into five risk levels: low, relatively 
low, moderate, relatively high, and high risk zones, as illustrated in 
Figure 8. Spatially, the risk distribution across Sichuan follows a 
“high in central regions, low in peripheral areas” pattern. The 

Chengdu Plain and southern Sichuan regions show significantly 
higher risk levels compared to Panxi and northeastern 
Sichuan areas.

The Chengdu Plain and southern Sichuan concentrate most of the 
province’s large and medium-sized cities. While these urban areas 
benefit from advanced economic development and well-established 
infrastructure, they simultaneously face challenges of high population 
density and strong mobility, leading to elevated infectious disease 
transmission risks. Notably, Chengdu presents a characteristic “low 
vulnerability-high risk” profile. In contrast, Panxi and northeastern 
Sichuan primarily consist of smaller cities or remote areas (e.g., 
Panzhihua, Guangyuan, and Ya’an), featuring lower population 
density, reduced human activity intensity, and higher natural 
environmental carrying capacity, resulting in comparatively lower 
comprehensive risk indices.

We conducted correlation analysis between the comprehensive 
risk index and actual cumulative infection cases to evaluate whether 
this risk indicator system could effectively reflect infection patterns 
(65). Spearman’s rank correlation analysis (Table  6) revealed a 
statistically significant positive correlation between the two variables 
(rs = 0.680, p = 0.002) at the 0.01 significance level. These results 
demonstrate that: increased comprehensive risk index significantly 
correlates with higher cumulative infection numbers; and the 
geographical distribution characteristics of the risk index effectively 
mirror the spatial distribution patterns of actual case numbers.

3.3 Measurement results and spatial 
characteristics of CCD

This study calculated the Coupling Coordination Degree (CCD) 
index to examine the interaction and coordination between infectious 
disease hazards and urban vulnerability. The overall CCD level across 

FIGURE 6

Dimensional indices of urban vulnerability.
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the study area was relatively low (mean = 0.384). Guangyuan and 
Panzhihua showed the highest CCD values (0.655 and 0.649, 
respectively), while Chengdu had the lowest CCD (0.031). As a 

megacity, Chengdu exhibited extremely low urban vulnerability but 
exceptionally high infectious disease risk, resulting in severe coupling 
coordination imbalance.

FIGURE 7

Classification results of the urban vulnerability index.

FIGURE 8

Classification results of the composite risk index.
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Based on the CCD model established in Section 2.7, we classified 
the study area into four coordination types using the following 
thresholds: coordinated development (0.6 ≤ D ≤ 1), marginal 
coordination (0.5 ≤ D < 0.6), near imbalance (0.4 ≤ D < 0.5), and 
declined imbalance (0 ≤ D < 0.4). Figure 9 reveals a spatial pattern 
where “lower CCD corresponds to higher risk.” Coordinated 
development cities were spatially dispersed, whereas declined 
imbalance cities were predominantly concentrated in the Chengdu 
Plain and southern Sichuan regions (Figure 10).

In-depth analysis reveals that the “hazard-dominant lagging” 
pattern predominates in the coupling coordination types across 
Sichuan Province. Cities achieving coordinated or marginally 
coordinated development, such as Panzhihua, Zigong, and 
Guangyuan, have made preliminary progress in aligning risk 
governance with spatial planning. Within the disordered and declined 
coordination categories, the regional risk patterns exhibit significant 
spatial heterogeneity: Chengdu demonstrates a characteristic 
“imbalanced-vulnerability lagging” type, while other cities 
predominantly follow an “imbalanced-hazard lagging” pattern. 
Empirical evidence confirms a notable positive feedback effect 
between urban vulnerability levels and infectious disease hazards, 
where heightened vulnerability not only exacerbates epidemic 
transmission risks by weakening systemic resilience but also 
perpetuates coupling system imbalances.

The aforementioned research reveals that the core mechanism 
influencing coupled coordinated development stems from 
multidimensional interactions among economic-spatial-social-
environmental systems. This manifests in two distinct patterns: In rapidly 
developing regions (e.g., Chengdu, Mianyang), economic growth leads 
to excessive factor concentration, forming a “high investment-high 
density-high risk” transmission chain; whereas in underdeveloped areas 
(e.g., Guang’an), insufficient development momentum creates a vicious 
cycle of “low output-low protection-high vulnerability.” These findings 
align with the “economic foundation-spatial structure-governance 
capacity” synergistic mechanism proposed in Shekhar et  al. (37), 
unveiling the coupled pathways of regional system complexity:

First, the economic-spatial coupling in the Chengdu Plain region 
demonstrates a significant positive feedback effect. Taking Chengdu and 
Mianyang as examples, the agglomeration of high-tech industries has 
driven population concentration and mobility (66), while simultaneously 
triggering land-use pattern restructuring. However, excessive intensive 
development has led to a decline in per capita public service resources 
(34). This “high-density, high-pressure” coupling model resulted in 
infection risks in core urban areas far exceeding surrounding regions 
during the pandemic, confirming the risk accumulation effects brought 
about by economically-driven spatial restructuring.

Second, the economic-social coupling in northeastern Sichuan 
manifests as a bidirectional inhibitory effect. A representative case 

TABLE 6  Spearman’s rank correlation analysis.

Correlation

The composite risk 
index

Actual cumulative 
case counts

Spearman’s rho The composite risk index Correlation coefficient 1.000 0.680**

Significance (two-tailed) 0.002

N 18 18

Actual cumulative case counts Correlation coefficient 0.680** 1.000

Significance (two-tailed) 0.002

N 18 18

** The correlation is statistically significant at the 0.01 level (two-tailed).

FIGURE 9

Contrast diagram between risk index and coupling coordination degree.
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was the “May 09” outbreak in Guang’an, where monthly infections 
surged to 1,299 cases. This episode revealed that the region’s per 
capita medical expenditure lagged behind the provincial average, 
with medical facility shortages directly accelerating epidemic 
spread. The event not only demonstrated how infrastructure 
vulnerability amplifies risk transmission, but more importantly 
exposed the underlying mechanism: sluggish economic 
development severely constrains public service investment (67), 
while inadequate social protection simultaneously restricts human 
capital development and suppresses economic growth by weakening 
consumption capacity.

Third, the economic-environmental coupling demonstrates 
distinct stress effects in industrial cities, particularly evident in 
Nanchong, Yibin, and Meishan. The expansion of traditional 
industries (e.g., liquor manufacturing in Yibin, textile and chemical 
production in Nanchong) has driven increased PM2.5 concentrations 
and water quality deterioration. Insufficient environmental protection 
investment further exacerbates health risks, empirically validating 
how the tension between development intensity and ecological 
carrying capacity translates into public health threats.

Fourth, the coupling coordination between spatial and economic 
systems is particularly prominent in Panzhihua. Through measures 
including intensive mining area redevelopment, functional 
diversification in central urban zones, and strict ecological 
conservation management, the city has achieved optimal alignment 
between spatial resource allocation and economic development 
needs. This spatial optimization strategy has established Panzhihua 
as a core city in China’s national comprehensive resource utilization 
pilot zone. Such a coordinated development pathway provides 
replicable practical solutions for peer cities to construct more resilient 
industry-space-ecological systems.

Fifth, the synergistic effects of space-society-environment systems 
are prominently demonstrated in Guangyuan City. As Sichuan 
Province’s highest CCD-scoring city (CCD = 0.655), Guangyuan has 
achieved virtuous interaction between social systems and 
environmental governance through its “low-density, high-investment” 
development model. Leveraging its mountainous topography to create 
a polycentric spatial configuration, the city maintains relatively low 
population density while compensating for economic development 
limitations through extraordinary healthcare resource allocation and 
robust social security systems. This governance approach—integrating 
decentralized spatial structures, premium ecological endowments, 
and targeted social investments—has not only significantly reduced 
epidemic transmission risks but also established a distinctive resilient 
development paradigm for mountainous cities. It provides valuable 
reference for coordinating socioeconomic development with 
ecological conservation in underdeveloped western regions.

These coupling mechanisms not only deconstruct the generative 
logic of risk heterogeneity, but also empirically validate through 
typical cases a transmission chain of: industrial agglomeration 
(economic) → land-use compactness (spatial) → service coverage 
(social) → ecological sensitivity (environmental). This provides a 
differentiated theoretical framework for regional resilience planning.

4 Discussion and research 
contributions

4.1 Discussion

The coordinated development between infectious disease 
hazards and urban vulnerability constitutes a critical component 

FIGURE 10

Distribution characteristics of the coupling coordination degree between disaster risk and urban vulnerability.
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of urban public health risk governance (68). These two systems 
interact through factor flows and feedback mechanisms, 
collectively determining regional comprehensive risk levels. This 
study has measured infectious disease hazards, urban vulnerability, 
comprehensive risks, and coupling coordination, with regional 
distribution patterns visualized through spatial 
mapping techniques.

4.1.1 Validation of the CCD model
This study validated the coupling coordination degree (CCD) 

assessment results using cumulative infection case data from 
prefecture-level cities in Sichuan Province between January 1, 2020 
and December 31, 2021. The case growth increment (ΔC = C2022 – 
C2020-2021) was employed for verification, generating ΔC and CCDI 
zonal statistics maps for each city (Figure 11—the Y-axis values of 
CCD were magnified for detail display, while case increment data were 
compressed to a 3,000-range display, though Chengdu’s values 
remained the provincial maximum).

The results show that Chengdu exhibited the highest case growth 
increment (16,341 cases) in the province, far exceeding other cities, 
which corresponds with its lowest CCDI (0.031) in Sichuan. In 
striking contrast, Panzhihua recorded the lowest case growth 
increment (71 cases), demonstrating an inverse relationship with its 
high CCD index (0.649).

The research findings demonstrate a significant negative 
correlation between epidemic development and coupling coordination 
degree (CCD) across Sichuan Province’s cities during the Omicron 
variant outbreak. Cities with higher CCD values (e.g., Panzhihua) 
exhibited stronger epidemic resistance capabilities, maintaining 
relatively low case growth increments. Conversely, cities with lower 
CCD values (e.g., Chengdu) faced substantially greater epidemic 
prevention and control pressures. These results indicate that the CCD 
model can effectively predict case number trends across cities, 
validating the model’s accuracy and applicability in assessing regional 
epidemic prevention efficacy (69). The findings provide scientific 
evidence for formulating differentiated prevention and 
control strategies.

4.1.2 Comparative analysis with conventional risk 
models

The comparative analysis between the CCD model and traditional 
risk assessment models (Table  7) demonstrates that the CCD 
framework transcends the linear paradigms of conventional 
approaches (e.g., weighted summation or multiplicative models). Its 
fundamental innovation lies in capturing dynamic feedback 
mechanisms while quantitatively characterizing the synergistic 
interactions between hazards and vulnerability through coupling 
degree (C) and coordination degree (T), enabling the identification of 
vicious cycles such as accelerated disease transmission resulting from 
medical resource depletion (70). By leveraging the spatial 
heterogeneity characteristics of coupling coordination degree (D), the 
model overcomes the coarse-scale limitations inherent in regional 
averaging methods, thereby facilitating differentiated interventions 
across cities (71). Moreover, the analysis of coordination lag types 
(hazard-dominant versus vulnerability-dominant) facilitates the 
mapping of priority measures, effectively circumventing the resource 
misallocation associated with traditional homogeneous high-score 
interventions (72). Consequently, the coupling coordination degree 
model has emerged as a robust analytical tool for evaluating balanced 
regional development.

4.2 The main contributions of this study

This study developed a “hazard-vulnerability” risk coupling model 
based on the entropy method and Coupling Coordination Degree 
(CCD) model, systematically analyzing coupling coordination 
mechanisms and key influencing factors. The results reveal that the 
regional risk coupling system exhibits a distinct “high in central areas, 
low in peripheral regions” spatial differentiation pattern, where 
economic vulnerability, spatial vulnerability, and social vulnerability 
demonstrate complex nonlinear interactions.

To verify the reliability of research conclusions, this study 
conducted systematic validation through a triple-verification 
approach: First, correlation analysis between cumulative confirmed 

FIGURE 11

Comparison diagram of coupling coordination degree and case growth volume.
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cases and the comprehensive risk assessment system across 
prefecture-level cities in Sichuan Province confirmed the predictive 
validity of the evaluation framework. Second, cross-validation 
between the risk model and coupling model revealed a significant 
negative correlation, demonstrating that improved coupling 
coordination degree effectively reduces systemic risks. Finally, 
verification analysis between regional case growth increments and 
coupling coordination degree further ensured the robustness of 
research findings. These validation results provide a solid empirical 
foundation for subsequent policy recommendations.

Building upon these research findings, this study proposes 
differentiated governance strategies:

	 1)	 Optimization strategies for the Chengdu Plain region

Given Chengdu’s distinctive “low vulnerability-high risk” profile, 
systemic optimization strategies should be implemented. First, within 
the Chengdu-Chongqing Economic Circle framework, priority should 
be  given to developing regional growth poles such as Mianyang 
Science City and the Yibin-Luzhou industrial corridor. This can 
be achieved through industrial policy guidance and infrastructure 
interconnectivity to promote polycentric network development, 
thereby effectively alleviating single-core agglomeration pressures.

Second, urban spatial expansion should incorporate enhanced 
ecological resilience planning. This includes reserving ecological 
buffer zones along the outer ring expressway and connecting them 
through greenway systems to form emergency evacuation networks. 
Simultaneously, new urban developments should mandatorily reserve 
convertible emergency land parcels with pre-installed medical 
equipment interfaces.

Furthermore, structural adjustments to medical resources should 
be implemented via a “branch hospital system + tiered diagnosis and 
treatment” model.

These measures will ultimately establish a multidimensional 
prevention system encompassing “spatial decentralization—ecological 
buffering—emergency preparedness—medical resource balancing,” 
systematically mitigating public health risks in high-density 
urban areas.

	 2)	 Balanced development pathway for northeastern sichuan region

To address the concentration of impoverished populations and 
inadequate infrastructure in northeastern Sichuan, a systematic 
development strategy should be adopted.

First, priority should be given to cultivating competitive local 
industries such as specialty agriculture and green processing 
manufacturing, which can be  achieved by establishing return-to-
hometown entrepreneurship subsidies and industrial development 
funds to reverse outmigration trends and boost local employment.

Second, the returning population should be leveraged to drive 
local fiscal revenue growth, with newly increased public finances 
being preferentially allocated to upgrading medical facilities and 
improving transportation infrastructure to enhance public 
service delivery.

Ultimately, this integrated approach will establish a virtuous 
development cycle of “industrial revitalization → population 
agglomeration → fiscal expansion → service improvement,” 
fundamentally strengthening regional resilience. This cyclical model 
not only addresses current infrastructure deficiencies but also achieves 
sustainable development through endogenous growth drivers.

	 3)	 Transformation strategies for environmentally stressed cities

For environmentally stressed cities like Yibin and Nanchong, a 
development path coordinating industrial transformation with 
environmental governance should be adopted.

TABLE 7  Comparative analysis of CCD model vs. traditional models.

Dimension Traditional models (INFORM, 
PVI)

CCD model Comparative framework

Risk composition Linear additivity: Nonlinear coupling: Captures synergistic interactions between 
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Deciphers dynamic systemic risk circuits 
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Output Static risk scores Coordination typology + Lag direction (e.g., 
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Identifies priority domains for risk governance 

(Spatial heterogeneity)

Policy 
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First, ecological transformation of key industries should 
be  implemented to reduce pollution intensity through industrial 
structure optimization.

Second, environmental protection investments should 
be significantly increased through creating ecological compensation 
mechanisms, designating health protection buffer zones around major 
industrial parks, and building a tiered environmental risk 
prevention system.

Additionally, supporting environmental health monitoring 
networks should be  constructed to enable real-time warnings of 
pollution sources and health risks.

Through this triple-intervention approach of “industrial upgrading 
→ environmental governance → health protection,” environmentally 
high-risk cities can transition toward green development models.

	 4)	 Optimization and upgrading directions for Panzhihua

As a successfully transitioned resource-based city, Panzhihua has 
demonstrated outstanding performance in industrial-spatial-
ecological coordination, yet requires targeted enhancements in 
healthcare and social security systems.

First, healthcare system improvements should be  prioritized by 
increasing medical expenditure ratios and optimizing resource allocation.

Second, the current emergency supplies reserves are insufficient, 
necessitating the establishment of a three-tier allocation system 
encompassing municipal, county, and mining district levels.

Third, social insurance coverage expansion should be accelerated, 
particularly for vulnerable groups like miners, through customized 
insurance schemes and awareness campaigns.

Through this integrated approach of “medical investment → 
emergency preparedness → insurance coverage,” the city will 
systematically address existing gaps while reinforcing its sustainable 
development advantages.

	 5)	 Sustainable development pathway for Guangyuan City

As a exemplary model of resilient mountain city development, 
Guangyuan has achieved remarkable success in spatial-social-
environmental coordination, yet requires focused improvements in 
economic development levels.

First, economic scale expansion should be prioritized by addressing 
the below-average per capita GDP through targeted growth initiatives.

Second, industrial support strengthening should be implemented 
by cultivating regionally influential leading industries to address the 
current lack of driving industries.

Third, fiscal capacity building should be enhanced by improving 
financial self-sufficiency rates and accelerating infrastructure 
development to overcome current limitations.

Through this integrated approach of “specialty industry cultivation 
→ fiscal mechanism innovation → infrastructure improvement,” the 
city will effectively enhance endogenous growth drivers and 
sustainable development capacity.

5 Conclusion

This study innovatively constructs a “hazard-vulnerability” risk 
coupling model, introducing spatial coupling theory into the field of 

public health risk management. By employing the entropy method 
and coupling coordination degree model, it reveals significant spatial 
heterogeneity characteristics and dynamic interaction mechanisms 
between infectious disease transmission risks and urban systems, 
overcoming the limitations of traditional linear risk assessment 
approaches. Furthermore, the study identifies key factors across 
different coupling coordination types, providing scientific evidence 
for formulating differentiated risk prevention strategies and urban 
resilience solutions.

The results indicate that the coupling coordination degree (CCD) 
between infectious disease hazards and urban vulnerability in Sichuan 
Province remains at a relatively low level overall (mean = 0.384). 
Panzhihua and Guangyuan demonstrate optimal coordination states 
(with CCD values of 0.649 and 0.655 respectively), while Chengdu 
exhibits a characteristic “low vulnerability-high hazard” pattern 
(CCD = 0.031). The region displays a distinct core-periphery spatial 
differentiation pattern, where cities with imbalanced development are 
predominantly concentrated in the Chengdu Plain and southern 
Sichuan regions—a distribution showing significant correlation with 
the socioeconomic gradients of Sichuan’s four major economic zones. 
Notably, further typological analysis reveals a prevalent “hazard-
dominant lagging” coupling coordination characteristic across the 
province, which has been corroborated by vulnerability assessments 
of urban public health systems in relevant planning documents.

Further analysis reveals dual characteristics in the mechanisms 
influencing urban coupling coordination degree (CCD): on one hand, 
there exist significant interactions among economic-spatial-social-
environmental factors; on the other, these coupling relationships 
demonstrate pronounced spatial heterogeneity. The study demonstrates 
that regional coordinated development requires differentiated governance 
strategies: the Chengdu Plain region should focus on constructing a 
multidimensional prevention system encompassing “spatial 
decentralization—ecological buffering—emergency preparedness—
medical resource balancing”; northeastern Sichuan needs to establish a 
virtuous cycle of “industrial revitalization—population agglomeration—
fiscal expansion—service improvement”; environmentally stressed cities 
should prioritize coordinated transformation through “industrial 
upgrading—environmental governance—health protection”; transition 
cities like Panzhihua must perfect their social security networks via 
“medical investment—emergency preparedness—insurance coverage”; 
while resilient mountainous cities such as Guangyuan should strengthen 
their development pathway through “specialty industry cultivation—fiscal 
mechanism innovation—infrastructure improvement.”

This study establishes an analytical framework that provides 
crucial decision-making support for regional development planning 
and public health emergency system construction in Sichuan 
Province. Specifically, the differentiated intervention strategies 
proposed for regions with distinct characteristics can guide the 
optimization of public health resource allocation and the 
implementation of urban resilience-building projects. The research 
outcomes not only offer valuable references for infectious disease 
prevention and control in rapidly urbanizing areas, but also provide 
theoretical foundations for achieving healthy city initiatives and 
sustainable development goals.

It should be noted that this study still has several aspects requiring 
further development: First, the factor analysis in urban vulnerability 
assessment needs strengthening, and future research could introduce 
more comprehensive spatial variables and governance effect variables 
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to improve the evaluation system. Second, while the entropy method 
can objectively reflect data characteristics, its results may be influenced 
by data distribution—subsequent studies could incorporate other 
weighting determination methods like the Analytic Hierarchy Process 
for verification. Finally, the applicability of research conclusions 
drawn from western provinces to eastern developed regions requires 
validation. Future studies should expand the research scope and 
conduct comparative analyses of regional characteristics at different 
development stages to enhance the generalizability of findings.
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