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Objective: To investigate the partial mediating role of the inflammatory marker 
hemoglobin-to-red cell distribution width ratio (HRR) in the association between 
occupational aluminum exposure and cognitive function impairment, and its 
significance.
Methods: In this study, 401 workers from a Shanxi aluminum plant were selected 
by Cluster Sampling. Fasting elbow venous blood was collected for measuring 
routine blood counts, plasma aluminum concentration (P-Al) was measured 
using inductively coupled plasma mass spectrometry (ICP-MS), Montreal 
Cognitive Assessment (MoCA) was used to assess the cognitive function. 
Multiple linear regression was used to analyze the relationship between P-Al and 
cognitive function and HRR, and a restricted cubic spline model was used to fit 
the dose–response relationship, and mediated effects analysis was performed.
Results: The median plasma aluminum concentration ( 25 75,P P ) of the workers 
was 50.74 (23.45, 85.52) μg/L, the mean HRR was 11.87, the median MoCA 
total score ( 25 75,P P ) was 24.00 (22.00, 26.00). A dose–response relationship 
showed that the MoCA score decreased with increasing P-Al. After adjusting 
for demographic and lifestyle covariates, multiple linear regression showed 
that P-Al was negatively correlated with the HRR and MoCA score. For each 
unit increase in P-Al, the HRR decreased by an average of 0.17, and the total 
MoCA score decreased by an average of 0.9. HRR mediated 9.89% of the effect 
between P-Al and MoCA score.
Conclusion: Occupational aluminum exposure negatively affects workers’ 
cognitive function and HRR levels. HRR can partially explain the effects of 
occupational aluminum exposure on workers’ cognitive function.
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1 Introduction

Aluminum, the most abundant metallic element in the Earth’s crust 
(about 8.88%), is widely used in industries like aerospace, transportation, 
machinery, and power due to its high conductivity, processability, and 
plasticity. China, the world’s largest aluminum producer and consumer, 
has seen extensive occupational aluminum exposure from large-scale 
electrolytic aluminum production. Numerous studies have established 
an association between occupational aluminum exposure and cognitive 
impairment in workers (1).

Accumulating evidence indicates that aluminum enters the human 
body primarily through the respiratory and digestive tracts, exerting 
toxic effects on the nervous, skeletal, endocrine, and hematopoietic 
systems (2). Specifically, its hematotoxin effects frequently manifest as 
non-iron deficiency anemia and renal anemia (3). Mechanistically, 
aluminum disrupts erythropoiesis, resulting in morphological 
abnormalities (including acanthocytes and target cells) and elevated 
erythrocyte heterogeneity (4). Consistent with these findings, a study 
demonstrated significant reductions in hemoglobin levels, erythrocyte 
counts, and hematocrit values in aluminum-exposed rats (5). 
Collectively, these findings strongly suggest that aluminum and its 
compounds significantly impact the hematopoietic system.

Conventional blood indicators in the hematopoietic system include 
white blood cell count (WBC), lymphocyte count, neutrophil count, 
monocyte count, red blood cell count (RBC), and hemoglobin (HGB). 
Mean corpuscular volume (MCV), mean corpuscular hemoglobin 
content (MCH), mean corpuscular hemoglobin concentration (MCHC), 
hematocrit (PCV), platelet count (PLT), and red blood cell distribution 
width (RDW), etc. (6). Studies have found that lower MCH and RDW 
are associated with relatively lower language, numerical reasoning, and 
numerical memory, and lower hemoglobin levels in the blood are linked 
to poor cognitive function and AD (7). The comprehensive inflammation 
index is easy to measure and cost-effective, and has been widely applied 
in clinical and research fields. Studies have shown that there is a 
correlation between the level of immune cells in peripheral blood and 
the risk of AD (8). A study exploring the correlation between blood 
inflammatory indicators and the severity of cognitive impairment in 
patients with Alzheimer’s disease indicated that the neutrophil/
lymphocyte ratio (NLR), monocyte/lymphocyte ratio (MLR), and 
platelet/lymphocyte ratio (PLR) have become important independent 
risk factors for AD, NLR is regarded as having the greatest potential as a 
biomarker in AD (9). It is reported that neuroinflammation plays a 
significant role in promoting neurodegeneration in humans. In vivo 
studies have shown that inflammatory cells are activated in patients with 
AD, other dementias, and MCI (10). A significant portion of recent 
biomarker research has focused on peripheral inflammatory markers, 
which are key elements of neurodegeneration, including various 
cytokines, lymphocytes, neutrophils, other blood cells, and their counts 
and related ratios (11). Dysregulation of neuroinflammatory responses 
has been well documented in AD and MCI.

Hemoglobin (Hb), an oxygen-carrying protein predominantly 
found in red blood cells, serves as a key component of complete blood 
count analysis. Hb levels correlate with nutritional status and immune 
function, providing an indicator of anemia severity. Emerging evidence 
suggests Hb may also function as a marker of chronic inflammation 
(12). RDW, a measure of erythrocyte size heterogeneity, has been 
identified as an inflammatory marker. Under inflammatory conditions, 
erythrocyte lifespan is reduced, resulting in anemia and elevated RDW 
(13). Elevated levels of RDW are associated with increased risks of 

diabetes, strokes, and chronic health conditions, as well as higher 
overall mortality. Notably, a study demonstrated a J-shaped association 
between RDW and dementia risks in older adults (14).

The hemoglobin-to-red cell distribution width ratio (HRR), 
calculated as Hb/RDW, represents a novel inflammatory marker 
proposed by Sun et  al., which can effectively reflect the levels of 
oxidative stress and systemic inflammatory response in the body (15). 
Although HRR was first reported in 2016, its application value in 
various disease fields has only gradually attracted widespread attention 
in recent years. A study on HRR and stroke has shown that 
inflammation can disrupt iron metabolism, leading to a decrease in 
hemoglobin levels and an increase in red blood cell heterogeneity, 
thereby reducing the Hb/RDW ratio. HRR is negatively correlated 
with stroke. The higher the HRR, the lower the risk of stroke (16). 
Previous studies have found that people with lower hemoglobin levels 
have more severe cognitive decline, an increased risk of dementia, and 
elevated RDW is also associated with an increased risk of AD (17). 
Another study on the relationship between HRR and cognitive 
dysfunction after stroke found that patients with decreased HRR levels 
had an increased risk of cognitive dysfunction, and the two showed a 
negative linear relationship (18), and in a cross-sectional study on the 
ratio of hemoglobin to red blood cell distribution width and 
depression in older adults, it was shown that HRR may be  an 
independent risk factor for depression, being more powerful than Hb 
or RDW alone. It may help detect depression early, prevent clinical 
deterioration and recurrence, and can also serve as a therapeutic target 
(19). Inflammation constitutes a critical mechanism underlying 
cognitive dysfunction. Extensive scientific evidence indicates that 
dysregulation of this physiological response to tissue damage is not 
properly controlled, a chronic, low-grade state of inflammation 
occurs, and that this inflammation plays a key role in the pathogenesis 
of cognitive decline and dementia (20). To overcome single-marker 
limitations, we used a blood-based inflammatory composite score to 
evaluate its link to aluminum-induced cognitive decline.

We thus hypothesize that HRR mediates aluminum-induced 
cognitive impairment. Current studies largely focus on aluminum’s 
impact on the overall blood system, with limited research on its 
relationship with inflammatory markers and cognitive function. 
Occupational aluminum workers, due to their unique exposure, are 
more vulnerable to harmful effects. This study thus examines the 
relationship between plasma aluminum concentration, HRR level, and 
cognitive function in these workers.

2 Objects and methods

2.1 Study population

This study adopts the method of cluster sampling, mainly selecting 
on-the-job male workers in the electrolytic aluminum workshop and 
alumina workshop in a large-scale aluminum plant in Shanxi in 2019. Its 
leading products are alumina and aluminum hydroxide, and the 
production process adopts the more mature mixed-linkage method in 
China. We recruited 434 male workers and excluded 33 subjects based 
on the following criteria: service <1 year (n = 5); long-term use of 
aluminum-containing medications or foods (n = 4); diseases affecting 
blood routine indexes (such as anemia, hematological or cardiovascular 
disorders; n = 7); genetic mental or neurological disorders in the subject 
or family members (n = 2); extremely uncooperative subjects (n = 2); 
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and missing blood data or plasma aluminum concentration data 
(n = 13). Ultimately, 401 participants were included. Data were collected 
via a standardized occupational health questionnaire administered 
through face-to-face interviews by trained investigators. The survey 
covered demographics, lifestyle habits, medical history, and occupational 
experience, and cognitive function was assessed in a quiet environment. 
All participants provided written informed consent, and the study was 
approved by the Medical Ethics Committee of Shanxi Medical University.

2.2 Measurement of plasma aluminum 
concentration

Using sodium heparin anticoagulation tubes, 2 mL of whole blood 
was collected from workers in the early morning fasting state and 
centrifuged at 1000 r/min (r = 12 cm) for 10 min, and the upper layer of 
separated plasma was pipetted into a 1.5 mL centrifuge tube. 400 μL of 
plasma was added to 1.6 mL of diluent containing 0.1% Triton and 4% 
nitric acid and mixed thoroughly, and left at room temperature for 24 h. 
The supernatant was then centrifuged at 12,000 r/min (r = 6.5 cm) for 
15 min for detection. The aluminum concentration in plasma was 
determined by inductively coupled plasma mass spectrometry (NexlON 
300D, PerkinElmer, United States) (21). All laboratory utensils were 
made of plastic, and glass was not allowed to be used to prevent the 
aluminum contained in the utensils from affecting the results of the assay.

2.3 Routine blood measurements

Sodium heparin anticoagulant tubes were used to collect 5.0 mL/
person of fasting elbow venous blood from workers in the early 
morning, which was gently mixed at room temperature using a 
Sysmex XN1000 Hematology Analyzer, and the test was completed 
within 2 h. Routine blood measurements included RBC, Hb, RDW, 
WBC, and PLT. Instrument calibration is performed before testing, 
and quality control products are run daily to ensure that the coefficient 
of variation (CV) within a batch is <5%.

2.4 HRR calculations

Calculate the hemoglobin to red blood cell distribution width 
ratio (HRR) by dividing the hemoglobin (HGB) in grams per liter 
(g/L) by the red blood cell distribution width (RDW), with the 
detection unit being ‘%’. The normal reference value range for each 
indicator: HGB (120.00–160.00); RDW (11.50–14.50), any value 
below or above the normal reference range is defined as abnormal for 
this indicator. For accuracy, the result is rounded to two decimal places.

2.5 Cognitive assessment

In this study, we  used the Montreal Cognitive Assessment 
(MoCA) to assess the cognitive function of workers. It was 
administered by professional nurses from the Department of 
Neurology of the First Hospital of Shanxi Medical University in a 
standardized and quiet environment in a one-to-one manner. The 
MoCA scale covers a wide range of cognitive domains and has high 

sensitivity and specificity for the identification of MCI (22). The scale 
has a total score of 30; a score of <26 points suggests the occurrence 
of cognitive impairment, and one point will be added to the score if 
the participant has less than 12 years of education.

2.6 Other variables

In this study, the Body Mass Index (BMI) is calculated by dividing 
an individual’s weight in kilograms (kg) by the square of their height 
in meters ( 2m ); The calculation method for per capita monthly 
household income is the total monthly household income divided by 
the total number of household members, it is classified into three 
categories: <1999, 2000–4,999, and >5,000. According to the per capita 
disposable income of residents in the research area, they correspond, 
respectively, to the low, middle, and high-income groups; smoking 
was categorized into non-smokers and smokers (defined as those who 
smoked ≥1 cigarette/day for ≥6 months); alcohol consumption into 
non-drinkers and drinkers (defined as those who drank alcohol ≥1 
time/week for ≥6 months); educational level was categorized into 
junior high school and below and high school and above; exercise into 
non-exercisers and exercisers (defined as those who engaged in ≥3 
sessions/week of moderate-to-high intensity activities lasting ≥30 min 
each); marital status into married (including married, divorced, and 
widowed) and unmarried; and years of service were calculated from 
the time workers entered the aluminum plant to the start of this survey.

2.7 Statistical analysis

R 4.3.0 statistical analysis software was used in this study, all the 
research subjects were divided into the low-aluminum exposure group 
and the high-aluminum exposure group according to the median 
plasma aluminum concentration Normal distribution of continuous 
data was expressed as mean± standard deviation (Mean ± SD), and 
comparisons between multiple groups were performed using analysis 
of variance (ANOVA); Skewed distribution of continuous data was 
expressed as median and interquartile spacing M ( 25, 75P P ), and 
comparisons between groups were performed using the Kruskal-
Wallis H rank sum test; categorical data were expressed as N (%), and 
comparisons between groups were made using the chi-square test or 
Fisher’s exact probability method. p < 0.05 was considered a statistically 
significant difference. To improve data normality, plasma aluminum 
concentrations were natural log-transformed, and raw values for Hb, 
RDW, and cognitive scores were used for subsequent analyses.

Multiple linear regression models were used to explore the 
relationship between P-Al, HRR, and MoCA total scores, and univariate 
analyses were not adjusted for confounding variables, such as age, BMI, 
duration employment, education level, per capita monthly household 
income, smoking, alcohol consumption, exercise, and marital status, so 
further multivariate analyses were performed to rule out the above 
variables, followed by restricted cubic spline (RCS) to reflect the dose–
response relationship of P-Al with HRR and MoCA total score.

RCS indicates the existence of nonlinear correlations that can assist 
in identifying potential threshold intervals. Threshold analysis is 
conducted using the ‘segmented’ package. The threshold effect refers to 
the phenomenon where the magnitude of the effect on the dependent 
variable changes when the independent variable exceeds a certain point. 
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Through threshold effect analysis, important inflection points that 
significantly affect the correlation between variables can be identified. 
In the threshold analysis results, Model 1 is a regular regression analysis, 
while Model 2 is a two-stage regression. By observing the p-values 
above and below the inflection point, the correlation between exposure 
and outcome is determined. Here, “effect” represents the effect value in 
the regression; The P for the likelihood test is a likelihood ratio test. 
p > 0.05 indicates that there is no significant improvement in Model 1 
compared with Model 2. If p < 0.05, it suggests that there is a significant 
difference in the association strength before and after the inflection 
point, and the inflection point is statistically significant.

Mediation analysis examines how the effect of an exposure 
variable on an outcome variable is mediated through a third variable, 
given the association between the independent and dependent 
variables. The mediating effect requires three conditions (23): (1) the 
exposure variable significantly affects the outcome variable; (2) the 
exposure variable significantly affects the mediating variable; and (3) 
the mediating variable significantly affects the outcome variable. In 
this study, the ‘mediation’ package of R language was used to assess 

HRR’s mediating role in cognitive function changes due to aluminum 
exposure, with significance assessed at α = 0.05 using two-sided tests.

3 Results

3.1 General characteristics of participants

A total of 401 male workers participated in this study. The age of 
the study participants M ( 0 100,P P ) was 45.0 (23.0, 57.0) years, the 
length of service M ( 0 100,P P ) was 25.0 (3.0, 39.0) years, the average 
per capita monthly income of the family was mostly in the range of 
2000–4,999 yuan (83.54%), most of them were alcohol drinkers 
(50.37%), and more than half of the male workers smoked cigarettes 
(66.33%). The percentage of infrequent exercisers was higher (56.86%), 
and marital status was mainly married (96.76%). Table 1 summarizes 
the general demographic characteristics grouped by blood aluminum 
concentration, there were statistically significant differences between 
the two groups in terms of age, length of service, exercise status, 

TABLE 1  General demographic characteristics.

Variables Total (n = 401) Low-aluminum 
exposure group 

(n = 200)

High-aluminum 
exposure group 

(n = 201)

p

P-Al, (μg/L) 50.74 (23.45, 85.52) 23.31 (10.48, 36.02) 85.52 (68.10, 120.99) <0.001

Age, (years) 45.00 (39.00, 49.00) 47.00 (41.00, 49.25) 44.00 (38.00, 49.00) 0.009

BMI, ( / 2kg m ) 24.22 (21.22, 26.93) 24.55 (21.61, 27.02) 23.45 (20.98, 26.60) 0.081

Duration employment (years) 25.00 (17.00, 29.00) 26.00 (20.00, 30.00) 22.00 (14.00, 29.00) 0.008

Sum of MoCA 24.00 (22.00, 26.00) 24.00 (22.00, 26.00) 23.00 (21.00, 25.00) 0.025

HRR 11.87 ± 0.88 11.99 ± 0.81 11.75 ± 0.93 0.007

Per Capita Monthly Household Income (RMB) 0.189

 � <1999 51 (12.72) 30 (15.00) 21 (10.45)

 � 2000–4,999 335 (83.54) 165 (82.50) 170 (84.58)

 � >5,000 15 (3.74) 5 (2.50) 10 (4.98)

Education level 0.883

Junior high school and below 210 (52.37) 104 (52.00) 106 (52.74)

High school and above 191 (47.63) 96 (48.00) 95 (47.26)

Smoking 0.159

 � No 135 (33.67) 74 (37.00) 61 (30.35)

 � Yes 266 (66.33) 126 (63.00) 140 (69.65)

Drinking 0.099

 � No 199 (49.63) 91 (45.50) 108 (53.73)

 � Yes 202 (50.37) 109 (54.50) 93 (46.27)

Exercise 0.031

 � No 228 (56.86) 103 (51.50) 125 (62.19)

 � Yes 173 (43.14) 97 (48.50) 76 (37.81)

Marriage 0.771

 � No 13 (3.24) 7 (3.50) 6 (2.99)

 � Yes 388 (96.76) 193 (96.50) 195 (97.01)

Note: Bolded p-values indicate statistically significant differences between groups (p < 0.05).
P-Al, plasma aluminum; BMI, Body Mass Index; HRR, hemoglobin-to-red cell distribution width ratio; the measurement data are Mean ± SD or M (P25, P75), and the counting data are 
expressed as N (%).
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plasma aluminum level, HRR ratio and total MoCA score (p < 0.05), 
while the differences in BMI, education level, per capita monthly 
household income status, smoking, alcohol consumption, and marital 
status were not statistically significant (p > 0.05).

3.2 Relationship between aluminum 
exposure and cognitive scores

With the help of a multiple linear regression model, the effect of 
aluminum exposure level on cognitive scores was deeply analyzed, and 
the results of the analysis showed that there was a significant negative 
correlation between the aluminum exposure level and the total MoCA 
scores under the dual validation of univariate and multivariate 
analyses. As shown in Table 2, for each unit increase in aluminum 
exposure level, the MoCA total score was reduced by 0.89 points on 
average [β = −0.89, 95% CI (−1.50–−0.27)], and this negative 
correlation remained significant even after controlling for other 
variables [β = −0.90, 95% CI (−1.50–−0.30)].

In addition, the RCS model confirmed the dose-effect relationship 
between plasma aluminum concentration and total MoCA score, as 
shown in Figure 1A. A nonlinear relationship between aluminum 

exposure and total MoCA score could be  seen based on the RCS 
curves, and a threshold effect analysis showed that there was a 
threshold effect between the level of aluminum exposure and total 
MoCA score (p = 0.002). As seen in Table  3, when the natural 
logarithmic value of blood aluminum concentration was lower than 
1.81, no significant association was found with the MoCA score; when 
it was higher than 1.81, the aluminum exposure level was negatively 
associated with the MoCA score [β = −3.85, 95% CI (−6.42–1.28)], 
suggesting that the association between aluminum exposure and 
cognitive impairment was significantly strengthened when the plasma 
aluminum concentration was above the threshold, and this threshold 
may reflect the critical point where aluminum breaks through the 
physiological defense mechanism and triggers neurotoxicity. This 
finding provides an important basis for the development of safety 
standards for aluminum exposure and early intervention.

3.3 Relationship between aluminum 
exposure level and HRR

Analyzing the relationship between aluminum exposure level 
and HRR, the results of univariate analysis showed that for each 

TABLE 2  Relationship between plasma aluminum levels and cognitive scores.

Variables Single factor Multifactorial

β (95% CI) p β (95% CI) p

P-Al −0.89 (−1.50–−0.27) 0.005 −0.90 (−1.50–−0.30) 0.004

Age −0.09 (−0.14–−0.05) <0.001 −0.07 (−0.15–0.00) 0.053

BMI 0.07 (−0.00–0.15) 0.051 0.04 (−0.03–0.11) 0.268

Duration employment −0.07 (−0.10–−0.03) <0.001 −0.01 (−0.07–0.06) 0.867

Per Capita Monthly Household Income

 � <1999 Reference Reference

 � 2000–4,999 0.13 (−0.82–1.08) 0.791 0.02 (−0.88–0.92) 0.967

 � >5,000 0.59 (−1.26–2.45) 0.532 −0.01 (−1.77–1.75) 0.989

Education level

 � Junior middle school and below Reference Reference

 � High school and above 1.80 (1.19–2.40) <0.001 1.38 (0.75–2.01) <0.001

Smoking

 � No Reference Reference

 � Yes −0.04 (−0.71–0.63) 0.910 −0.14 (−0.79–0.52) 0.685

Drinking

 � No Reference Reference

 � Yes 0.84 (0.22–1.47) 0.009 0.80 (0.19–1.41) 0.010

Exercise

 � No Reference Reference

 � Yes 0.65 (0.02–1.28) 0.044 0.38 (−0.23–1.00) 0.221

Marriage

 � No Reference Reference

 � Yes 0.02 (−1.76–1.80) 0.982 0.40 (−1.28–2.09) 0.638

Note: Bolded p-values indicate that the association between the variable and cognitive scores is statistically significant (p < 0.05).
Adjusted age, BMI, duration employment, education level, per capita monthly household income, smoking, alcohol consumption, exercise, and marital status. P-Al, plasma aluminum; BMI, 
Body Mass Index.

https://doi.org/10.3389/fpubh.2025.1639229
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al.� 10.3389/fpubh.2025.1639229

Frontiers in Public Health 06 frontiersin.org

unit increase in aluminum exposure level, HRR decreased by 
0.21 units on average (p < 0.05), and after controlling for the other 
variables, this relationship was still significant, but with a slight 
decrease in β-value (from −0.21 to −0.17), as shown in Table 4. 
Based on the RCS curves as well as the analysis of the threshold 
effect, it was found that there was a dose–response relationship 
between HRR levels and plasma aluminum concentrations, but no 
nonlinear relationship was found between the two (As shown in 
Figure 1B; Table 5).

3.4 Relationship between HRR level and 
total MoCA score

HRR was included as a continuous variable in the multiple linear 
regression model for statistical analysis, and the results showed that 
there was a significant positive correlation between HRR and the total 
MoCA score. Specifically, as the HRR increases, the total MoCA score 

also increases, i.e., for every unit change in HRR, the total MoCA 
score increases by 0.45 points on average (Table 6).

3.5 Role of HRR in cognitive impairment 
due to aluminum exposure

Since the level of aluminum exposure was significantly correlated 
with HRR and total MoCA score, and there was also an association 
between HRR and total MoCA score, we  hypothesized that HRR 
might play a mediating role in cognitive impairment induced by 
aluminum exposure. We analyzed the mediating role of HRR by using 
plasma aluminum concentration as the independent variable, 
cognitive score as the dependent variable, and HRR as the mediator, 
and the adjustment of covariates was carried out. The results showed 
that HRR played a partial mediating role between cognitive 
dysfunction due to aluminum exposure, explaining about 9.89% of the 
effect (Table 7; Figure 2).

4 Discussion

This study explored HRR’s mediating role in aluminum-
induced cognitive impairment. Results showed significant links 
between aluminum exposure and both HRR levels and cognitive 
dysfunction. HRR independently correlated with cognitive 
impairment, and mediation analysis indicated that HRR 
mediated 9.89% of aluminum’s total neurotoxic effect, 
highlighting its partial role in mediating aluminum’s impact 
on cognition.

Evidence shows rising human exposure to aluminum, causing 
health concerns. Aluminum exerts toxic effects on multiple systems, 
including the nervous, hematopoietic, and skeletal systems, and is 
associated with encephalopathy, anemia, alumina disease, 

FIGURE 1

Restricted cubic spline model representing the association between log-transformed plasma aluminum concentrations and cognitive scores (A) and 
HRR levels (B). The mentioned cognitive scores and HRR levels are adjusted for age, BMI, length of service, per capita monthly household income, 
smoking and alcohol consumption, education level, exercise, and marital status. Red curves: indicate the association between plasma aluminum 
concentration and cognitive scores or HRR levels; pink shaded areas: indicate 95% confidence intervals for β values.

TABLE 3  Threshold analysis between plasma aluminum levels and total 
MoCA score.

Sum of MoCA Effect p

Model 1 Fitting model by 

standard linear regression
−0.90 (−1.50–−0.30) 0.004

Model 2 Fitting model by two-piecewise linear regression

Inflection point 1.81

 � <1.81 0.02 (−0.88–0.91) 0.973

 � ≥1.81 −4.17 (−6.77–−1.57) 0.002

P for likelihood test 0.002

Note: The bolded p value indicates a significant correlation between plasma aluminum levels 
and the total MoCA score.
Model 1, Model 2 adjusted age, BMI, duration employment, education level, per capita 
monthly household income, smoking, alcohol consumption, exercise, and marital status.
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osteochondrosis and osteoporosis, and other adverse health effects 
(24). Our previous findings demonstrated that occupational 
aluminum exposure can induce hematological alterations in workers, 
which manifests itself early in the form of decreased RBC and Hb 
levels. The well-documented neurotoxic effects of aluminum 
accumulation are mediated through proven neurotoxicity, increased 
inflammation, and oxidative stress (25). This inflammatory 
microenvironment may disrupt iron metabolism and suppress 
erythropoietin production, leading to a large number of immature 
erythrocytes from the bone marrow into the peripheral blood 
circulation, and the size of erythrocytes involved in the response to 
peripheral circulation is altered, manifested by an increase in the level 
of RDW (26). In agreement with our results, aluminum exposure 
levels are inversely correlated with HRR levels, and the RCS curve 
further demonstrates the dose–response relationship between plasma 
aluminum levels and HRR. Supporting these observations, animal 
studies have reported aluminum-induced erythroid system 
alterations. Decreased levels of RBC, Hb, and hematocrit and 
increased mean erythrocyte hemoglobin were observed in these 
animals (27). Additionally, sub-chronic low-dose aluminum exposure 
was shown to induce significantly severe dysfunction of the blood, 
liver, and kidneys in rats (28).

This study further explored the relationship between aluminum 
exposure and cognitive function. Maintaining metal homeostasis in 
the central nervous system is crucial for normal brain function, as 
metals serve as enzyme cofactors and key components in neuronal 
signaling. Disruption of metal regulation can severely impair neural 
networks, triggering pathological pathways that lead to oxidative 

TABLE 4  Relationship between plasma aluminum levels and HRR.

Variables Single factor Multifactorial

β (95% CI) p β (95% CI) p

P-Al −0.21 (−0.38–−0.04) 0.014 −0.17 (−0.34–−0.01) 0.047

Age −0.02 (−0.03–−0.01) 0.011 −0.02 (−0.04–−0.01) 0.042

BMI 0.05 (0.03–0.07) <0.001 0.04 (0.02–0.06) <0.001

Duration employment −0.00 (−0.02–0.01) 0.354 0.01 (−0.01–0.03) 0.203

Per Capita Monthly Household Income

 � <1999 Reference Reference

 � 2000–4,999 −0.04 (−0.30–0.22) 0.744 −0.06 (−0.31–0.19) 0.654

 � >5,000 −0.27 (−0.77–0.24) 0.304 −0.33 (−0.82–0.16) 0.186

Education level

 � Junior middle school and below Reference Reference

 � High school and above 0.38 (0.22–0.55) <0.001 0.32 (0.15–0.50) <0.001

Smoking

 � No Reference Reference

 � Yes −0.04 (−0.23–0.14) 0.640 −0.00 (−0.18–0.18) 0.977

Drinking

 � No Reference Reference

 � Yes 0.05 (−0.12–0.22) 0.588 0.03 (−0.14–0.20) 0.710

Exercise

 � No Reference Reference

 � Yes 0.18 (0.01–0.35) 0.041 0.09 (−0.08–0.26) 0.288

Marriage

 � No Reference Reference

 � Yes 0.06 (−0.42–0.55) 0.798 0.07 (−0.39–0.54) 0.761

Note: Bolded p -values indicate that the association between the variable and HRR level is statistically significant (p < 0.05).
Adjusted age, BMI, duration employment, education level, per capita monthly household income, smoking, alcohol consumption, exercise, and marital status. P-Al, plasma aluminum; BMI, 
Body Mass Index.

TABLE 5  Threshold analysis between plasma aluminum level and HRR.

HRR level Effect p

Model 1 Fitting model by 

standard linear regression
−0.17 (−0.34–−0.00) 0.047

Model 2 Fitting model by two-piecewise linear regression

Inflection point 1.68

 � <1.68 0.02 (−0.24–0.28) 0.873

 � ≥1.68 −0.56 (−1.15–0.04) 0.067

P for likelihood test 0.194

Note: The bolded p value indicates a significant correlation between plasma aluminum levels 
and HRR level.
Model 1, Model 2 adjusted age, BMI, duration employment, education level, per capita 
monthly household income, smoking, alcohol consumption, exercise, and marital status.
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stress, synaptic damage, and cognitive deficits (29). In a study by 
Campbell et al. that modeled human aluminum exposure through 
drinking water or diet, researchers observed increased inflammatory 
activity in mouse brain tissue, including elevated levels of 
inflammatory cytokines, nitric oxide synthase, and a marker of 
astrocyte activation, glial fibrillary acidic protein (GFAP). Significantly, 
Aged rats developed Alzheimer’s disease-like cognitive deficits and 
neuropathological changes after chronic exposure equivalent to the 
daily aluminum intake of a portion of the population (30). These 
findings suggest that chronic low-level aluminum exposure may 
accelerate a neuron-like aging process, which may lead to the 
exacerbation of excessive inflammatory responses that in turn drive 
the course of multiple age-related neurodegenerative diseases.

In the present study, we employed the MoCA scale to evaluate 
workers’ cognitive performance, as it demonstrates high sensitivity 
(up to 90%) for early-stage MCI detection (31). Studies have 
confirmed cognitive impairment associated with environmental 
aluminum exposure: when analyzed as a continuous variable, each 
e-fold increase in plasma aluminum concentration was associated 
with a 0.328-point decreased in total MoCA score; when treated as a 
categorical variable, plasma aluminum concentration showed a 
negative correlation with MoCA scores (32); An animal studies 

provide corroborating evidence, sub-chronic(60-day) low-dose 
aluminum exposure in Wistar rats through chow and drinking water 
induced could reach thresholds sufficient to promote memory 
impairment and neurotoxicity (33). Additionally, shuttle box 
experiments revealed dose-dependent learning and memory deficits 
and showed that sub-chronic aluminum exposure impaired learning 
and memory, cognitive impairment, and hippocampal histological 
changes are more pronounced with higher aluminum intake (34).

MCI represents a preclinical and transitional stage between 
normal aging and dementia (35). A meta-analysis of 53 publications 
found a 15.4% prevalence of MCI in Chinese residents (36). Research 
shows that long-term Al exposure may lead to mild cognitive 

TABLE 6  Relationship between HRR level and total MoCA score.

Variables Single factor Multifactorial

β (95% CI) p β (95% CI) p

HRR 0.74 (0.39–1.10) <0.001 0.45 (0.09–0.81) 0.015

Age −0.09 (−0.14–−0.05) <0.001 −0.05 (−0.13–0.02) 0.156

BMI 0.07 (−0.00–0.15) 0.051 0.03 (−0.04–0.11) 0.381

Duration employment −0.07 (−0.10–−0.03) <0.001 −0.01 (−0.07–0.05) 0.782

Per Capita Monthly Household Income

 � <1999 Reference Reference

 � 2000–4,999 0.13 (−0.82–1.08) 0.791 −0.05 (−0.96–0.85) 0.907

 � >5,000 0.59 (−1.26–2.45) 0.532 0.04 (−1.73–1.81) 0.964

Education level

 � Junior middle school and below Reference Reference

 � High school and above 1.80 (1.19–2.40) <0.001 1.30 (0.66–1.94) <0.001

Smoking

 � No Reference Reference

 � Yes −0.04 (−0.71–0.63) 0.910 −0.18 (−0.83–0.48) 0.599

Drinking

 � No Reference Reference

 � Yes 0.84 (0.22–1.47) 0.009 0.85 (0.24–1.46) 0.007

Exercise

 � No Reference Reference

 � Yes 0.65 (0.02–1.28) 0.044 0.41 (−0.20–1.03) 0.192

Marriage

 � No Reference Reference

 � Yes 0.02 (−1.76–1.80) 0.982 0.42 (−1.27–2.11) 0.623

Note: Bolded p -values indicate that the association between the variable and total MoCA score is statistically significant (p < 0.05).
Adjusted age, BMI, duration employment, education level, per capita monthly household income, smoking, alcohol consumption, exercise, and marital status. BMI, Body Mass Index; HRR, 
hemoglobin-to-red cell distribution width ratio.

TABLE 7  The coefficients of each path of the mediating effect.

Path β 95% CI p

P-Al → HRR −0.19 −0.36–−0.03 0.024

P-Al → MoCA −0.90 −1.51–−0.29 0.004

HRR → MoCA 0.52 0.17–0.88 0.004

Note: Bolded p-values indicate that the path effect is statistically significant (p < 0.05).
Adjusted age, BMI, duration employment, education level, per capita monthly household 
income, smoking, alcohol consumption, exercise, and marital status. P-Al, plasma 
aluminum; HRR, hemoglobin-to-red cell distribution width ratio.
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impairment (37). With Al being a widespread environmental 
contaminant, it is crucial to explore the human Al intake threshold 
sufficient to promote adverse effects. A review related to the harmful 
effects of aluminum on neurocognition, inflammation, and health 
described that compared with unexposed workers, workers exposed 
to occupational conditions experienced adverse changes in 
neuropsychological tests (involving attention, learning, and memory) 
(25). A study from Klotz and colleagues presented the well-
documented adverse effects of Al on health and peak levels in humans; 
occupational exposure easily exceeds reference values for maximum 
internal Al load (<5 μg/L in serum and <15 μg/L in urine) (38). A 
study on memory impairment in rats found that 60-day subchronic 
exposure to low doses of Al from feed and added to the water 
(reflecting human dietary Al intake) reaches a threshold sufficient to 
promote memory impairment (33). In another cross-sectional study 
on occupational aluminum exposure populations, it was found that 
when the plasma aluminum concentration reached 34.52 μmol/L, the 
cognitive impairment of aluminum-exposed workers mainly occurred 
in the Digit Span Test, especially in backward digit span (39). 
Although the current research on the exposure threshold effect of 
occupational aluminum population is rather complex, it still provides 
a key direction for the prevention and control of aluminum exposure: 
clarify the “safety threshold,” formulating aluminum exposure 
standards; conduct exposure control and use protective equipment; 
conducting occupational population monitoring to effectively reduce 
the risks of occupational aluminum exposure.

Detecting cognitive impairment in primary care is challenging 
due to screening complexities. However, blood-based biomarkers 
provide accessible, minimally invasive, and cost-effective alternatives, 
potentially aiding large-scale cognitive screening. Emerging evidence 
links routine blood parameters based on routine blood and 
biochemical tests, including Hb, platelets, and physiologic ion 
concentrations, are associated with cognitive impairment (40). 
Specifically, reduced Hb levels have been associated with cognitive 
decline, which may be attributed to decreased cerebral hypoxia or 
aerobic capacity due to low Hb levels (41); and community-based 

research has further established associations between increased RDW 
and impairment in all cognitive domains of MCI (42). Notably, 
increased RDW has been implicated in the inflammatory pathogenesis 
of AD (43).

The hemoglobin-to-red blood cell distribution width ratio (HRR) 
is recognized as a marker of inflammation associated with the 
incidence of various diseases and adverse events, and is an indicator 
of the level of inflammation and immunometabolism in the body. 
Neuroinflammation is key in neurodegenerative diseases. To facilitate 
early detection of dementia-related pathological changes as early as 
possible, considerable biomarker research has increasingly focused on 
several markers of peripheral inflammation that are key elements of 
neurodegenerative changes, including cytokines, lymphocytes, 
neutrophils, and various blood cell indices (10). These inflammatory 
indices offer practical advantages of being highly reproducible and low 
cost, and they have been widely used in a variety of neurodegenerative 
diseases (11, 44, 45). The HRR provides a sensitive measure of red 
blood cell function, and this ratio tends to rise as inflammation 
improves (16). Notably, low HRR levels have been identified as a low 
level of HRR could be an independent risk factor (14). For instance, 
in chronic obstructive pulmonary disease (COPD) patients has shown 
that HRR has some predictive value for mortality in COPD 
participants, and can be  used as a simple and convenient tool to 
identify high-risk patients and guide targeted interventions, which 
may contribute to a certain extent to the reduction of mortality in 
patients with COPD (46). Higher HRR levels correlate with lower 
stroke risk, highlighting its importance in identifying stroke-prone 
patients (16). Despite extensive investigations into aluminum 
exposure and the relationship between aluminum exposure and 
cognitive function, there are still some notable absences regarding the 
specific role and impact of HRR in this regard. Thus, HRR, reflecting 
inflammation, may serve as a potential marker for early cognitive 
impairment detection.

Our findings demonstrate that the hemoglobin-to-red cell 
distribution width ratio (HRR) mediated approximately 9.89% of the 
cognitive impairment induced by aluminum exposure. Although this 

FIGURE 2

Estimated proportions of correlations between plasma aluminum concentrations and HRR-mediated cognitive scores corrected for age, BMI, length of 
service, education level, per capita monthly household income, smoking, alcohol consumption, exercise, and marital status.
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mediating effect does not represent the dominant pathway, its 
statistical significance suggests HRR may constitute one potential 
mechanism underlying aluminum-induced neurotoxicity. The level of 
HRR reflects the anemia and inflammatory state of the organism, 
chronic and acute cerebral hypoxia may exist as a result of respiratory, 
cardiovascular, or anemia disorders, and hypoxia is widely associated 
with cognitive deficits (47). Recent studies have shown that a low Hb/
RDW ratio is associated with an increased risk of cognitive 
impairment and dementia. This might be attributed to the dual effects 
of low hemoglobin (leading to insufficient oxygenation in the brain) 
and high RDW (indicating potential underlying pathology and 
inflammation) (48). Neuroinflammation, a well-documented driver 
of neurodegeneration and AD progression (49).

The advantages of this study are as follows: this study is the first 
cross-sectional research on the association between HRR and 
cognitive function in the occupational aluminum exposure 
population, the focus was placed on the occupational aluminum 
exposure population, filling the evidence gap in the association 
between HRR and cognitive function in this special exposure 
population. Combining the traditional anemia differentiation 
indicator of the ratio of hemoglobin to red blood cell distribution 
width and extending the HRR indicator to the field of cognitive 
function research, a new perspective has been proposed for its 
potential biomarker of early neurological dysfunction. Through a 
cross-sectional study design, a direct association between HRR and 
cognitive function can be  rapidly established, providing a 
hypothesis basis for subsequent longitudinal mechanism research. 
These findings highlight HRR’s dual value as both an early warning 
indicator and intervention target: If elevated HRR is primarily 
driven by anemia, correction of anemia may partially reverse 
cognitive impairment, and HRR could be incorporated into multi-
targeted intervention (such as concurrent control of aluminum 
exposure, improvement of anemia, antioxidant therapy) rather 
than as a stand-alone target of intervention. Targeted interventions 
may be  of more pronounced benefit in aluminum-exposed 
individuals with abnormal HRR (such as anemia combined with 
high RDW). This study provides simple and economical blood 
routine-derived indicators for the early screening of neurotoxicity 
among aluminum workers and optimizes occupational health 
monitoring strategies.

However, this study has certain limitations: firstly, the moderate 
sample size may limit the generalizability of our findings, so the 
results should be treated with caution; secondly, this study is a cross-
sectional design, so it is not possible to clarify the causal relationship 
between plasma aluminum exposure levels, HRR levels, and cognitive 
impairment. Thirdly, the subjective/anamnestic data of this study 
were mainly used to establish inclusion/exclusion criteria, ensuring 
the homogeneity of the cohort and minimizing confounding effects 
to the greatest extent. Although this method enhanced internal 
effectiveness, it failed to capture the subjective complaints reported 
by the research subjects. Fourth, this study did not measure the 
aluminum concentration in the external working environment where 
aluminum workers were located, and lacked specific environmental 
aluminum concentration data, making it difficult to determine the 
specific level of aluminum exposure of workers and their direct 
association with health effects. This also limits our ability to fully 
understand the potential risks to worker health from aluminum 
exposure in the external work environment. Finally, current research 

reveals the correlation characteristics among variables through 
statistical models. However, the underlying biological regulatory 
mechanisms have not yet been verified through experimental means. 
The biological rationality of this approach still requires further 
clarification through subsequent studies in combination with 
molecular biology, neurophysiology, or neuroimaging.

Our research results indicate that the level of aluminum 
exposure is significantly negatively correlated with the total MoCA 
score: the higher the aluminum exposure, the lower the total MoCA 
score. It was also significantly negatively correlated with HRR, and 
this association remained significant even after controlling for 
related variables. In addition, HRR is significantly positively 
correlated with the total score of MoCA. This advances our 
understanding of aluminum toxicity mechanisms and how 
environmental factors impact brain health via blood components. 
Clinically, monitoring HRR in aluminum-exposed workers can 
identify changes due to high aluminum exposure and reduce 
cognitive impairment. Therefore, future studies should expand the 
sample size, consider a longitudinal design to more accurately 
assess the dynamic role of HRR between aluminum exposure and 
cognitive impairment, and incorporate detailed environmental 
monitoring data to more accurately quantify the level of aluminum 
exposure and to explore its relationship with health effects. Given 
that this study focuses on the health monitoring of the occupational 
aluminum exposure population and aims to rapidly assess the 
inflammatory status of the group through the basic data in routine 
blood tests, the selection of this indicator does not deny the clinical 
value of classic inflammatory indicators such as C-reactive protein 
(CRP), PCT, or WBC. Rather, it is a targeted choice made based on 
the actual demands for the convenience, economy, and operability 
of detection in large-scale occupational population screening. 
Future research can further incorporate these indicators. Through 
the joint analysis of multiple indicators, the characteristics of 
inflammatory responses related to occupational aluminum 
exposure can be revealed more comprehensively.

5 Conclusion

Occupational aluminum exposure increases the risk of HRR levels 
and cognitive impairment. HRR levels may be a mediator of cognitive 
impairment due to aluminum exposure. It is recommended that 
occupational aluminum workers focus on routine blood markers in 
their daily physical examinations and have their HRR levels 
monitored regularly.
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