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Background: Leptotrombidium rubellum (L. rubellum), a confirmed vector of 
scrub typhus, was historically restricted to southeastern coastal China but has 
recently been detected in southwestern regions. Species distribution modeling 
was applied to predict its current and future potential distribution areas under 
multiple climate scenarios, identify high-priority surveillance areas, and 
determine key environmental drivers. The results may facilitate a transition from 
passive to proactive vector monitoring.

Methods: Fifty-seven potential influencing factors were evaluated. The 
maximum entropy (MaxEnt) model projected potential distribution areas for 
near current and future climate scenarios. Occurrence records were extracted 
from published literature. The selection of environmental variables was 
conducted using a multi-stage analytical approach, consisting of contribution 
rate assessment, jackknife tests, and correlation analyses. Model parameters 
were optimized via feature class and regularization multiplier adjustments.

Results: The MaxEnt model demonstrated high predictive accuracy 
(AUC = 0.997) with minimal training omission error. July precipitation (prec7) 
and elevation (elev) were identified as the primary environmental determinants. 
Projections indicate near current suitable areas are concentrated in southern 
China, with potential northward expansion under future climate scenarios.

Conclusion: L. rubellum exhibits broad distribution areas across China, with 
climate change likely driving suitable areas expansion. Enhanced surveillance in 
currently suitable and future at-risk regions is critical to mitigate invasion risks.
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Introduction

Chigger mites serve as the primary vectors of scrub typhus, a 
febrile illness caused by the obligate intracellular bacterium Orientia 
tsutsugamushi. Emerging epidemiological evidence suggests these 
mites may serve as competent vectors not only for scrub typhus but 
also for hemorrhagic fever with renal syndrome (HFRS), epidemic 
hemorrhagic fever (EHF), and potentially other zoonoses (1–3). 
Globally, scrub typhus incidence has risen markedly in recent decades, 
with China representing s one of the most heavily burdened regions 
(4–6). Notably, Leptotrombidium rubellum (L. rubellum) has been 
epidemiologically confirmed a major scrub typhus vector in multiple 
Chinese provinces (7, 8), underscoring its public health significance. 
Traditional entomological surveys initially classified L. rubellum as 
having a narrow distribution, limited to coastal Fujian Province (9). 
Recent eco-epidemiological investigations, however, have expanded 
this understanding, confirming L. rubellum presence in Yunnan 
Province and documenting infections across multiple rodent host (9, 
10). The distribution patterns of chigger mites are shaped by dynamic 
interactions between microclimatic conditions, land cover type, and 
anthropogenic landscape modifications (4, 11, 12). Previous studies 
indicate that the distribution of L. rubellum is influenced by multiple 
environmental and ecological factors, including temperature, 
humidity, elevation, land cover type, and host availability (2, 10). 
Notably, field investigations have revealed that L. rubellum exhibits 
low host specificity and a broad host range, suggesting adaptability 
across diverse ecological niches. However, the precise mechanisms by 
which other factors shape its distribution remain insufficiently 
characterized, warranting further investigation.

Climate change has triggered profound ecosystems 
transformations over the past century, driving landscape modification, 
biodiversity loss, and public health impacts through ecological 
cascades (13–15). Key climatic variables-including temperature 
regimes, precipitation patterns, and land cover dynamics-directly 
govern vector distribution, population densities, and pathogen 
transmission efficiency (16–18). These environmental shifts may f 
lower ecological barriers for invasive species, potentially enabling 
range expansion of medically important vectors like L. rubellum (2, 
19–21). With projected warming trends and precipitation anomalies 
expected to create increasingly favorable conditions for this scrub 
typhus vector, predictive modeling of its future geographic range 
becomes vital for disease surveillance and prevention.

Species distribution models (SDMs) are essential for forecasting 
species geographic ranges under environmental change. The 
Maximum Entropy (MaxEnt) algorithm has emerged as a powerful 
SDM approach, distinguished by its ability to minimize commission 
errors while offering mechanistic insights. Key advantages include its 
quantitative assessment of environmental variable contributions, 
rigorous evaluation of variable importance through jackknife tests, 
and robust predictive accuracy validation using receiver operating 
characteristic (ROC) curve analysis (AUC) (22, 23). The MaxEnt 
model has been widely applied in studies of invasive species, 
biodiversity conservation, and disease risk assessment (24–28).

This study employed the MaxEnt model to predict current and 
future potential distribution areas of L. rubellum in China based on 
historical occurrence records, high-resolution bioclimatic variables, 
elevation data, and land cover type. The relative contributions of 
environmental factors to observed and projected range shifts were 

systematically evaluated under four representative climate change 
scenarios, providing insights for vector control strategies.

Materials and methods

Analytical workflow

This study mainly includes the following parts: collection and 
screening of L. rubellum and related environmental variables, model 
optimization, and classification of suitable areas (Figure 1).

Occurrence data collection and processing

Leptotrombidium rubellum occurrence data (1950–2024) were 
aggregated from Chinese (CNKI, Wan Fang, VIP), international 
(PubMed, Web of Science, Embase) databases, and related zoological 
works. We implemented a multi-stage validation process including 
methodological verification, ecological plausibility assessment, and 
geographic coordinate standardization. Initial compilation yielded 37 
occurrence points (Figure 2; Additional file 1). To address spatial 
autocorrelation (20), spatial thinning was performed using ENMTools 
(https://github.com/danlwarren/ENMTools; accessed 20 April 2024), 
retaining one record per 2.5 arc-minute environmental raster cell. This 
process resulted in 28 spatially independent occurrence points after 
removing 9 duplicate records located within identical grid cells.

Application software and geographic data

The MaxEnt software (version 3.4.1, https://
biodiversityinformatics.amnh.org/open_source/maxent/, accessed 
on 1 March 2024) was employed for species niche and distribution 
modeling. ArcGIS (version 10.8) was licensed by the Vector Control 
Department of the Institute of Infectious Disease Control and 
Prevention, Chinese Center for Disease Control and Prevention. 
Additional analyses utilized R (version 4.1.0, http://www.r-project.
org/, accessed on 1 March 2024) and DIVA-GIS (version 7.5.0, 
https://diva-gis.org/download.html, accessed on 31 May 2021) for 
model parameter adjustments. The China map (scale: 1:4,000,000) 
is from the National Geomatics Center of China (https://www.ngcc.
cn/; accessed on 1 April 2024), and the world map (scale: 
1:10,000,000) is from the Natural Earth (https://www.
naturalearthdata.com/downloads; accessed on 1 April 2024).

Environmental data processing

Fifty-seven environmental variables were initially compiled, 
including 56 variables from WorldClim1 at 2.5 arc-minute 
resolution: bioclimatic parameters (bio1–bio19), monthly 
temperature extremes (tmax1–tmax12; tmin1–tmin12), monthly 
precipitation (prec1–prec12), and elevation (elev). The dataset 

1  https://worldclim.org/
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encompassed both current (1970–2000) and future climate 
scenarios (2021–2,100) generated by BCC-CSM2-MR under four 
SSPs (1–2.6, 2–4.5, 3–7.0, 5–8.5). Land cover projections (2020–
2100) at 1 km spatial resolution were obtained from Figshare 
(https://figshare.com/articles/dataset/Global_LULC_projection_
dataset_from_2020_to_2100_at_a_1km_resolution/23542860 
LULC projection dataset from 2020 to 2,100 at a 1 km resolution/ 
23,542,860). Each GeoTIFF file contains integer raster attribute 
values from 1 to 6, representing different land use types: cropland, 
forest, grassland, urban areas, barren lands, and water bodies. All 
variables were resampled to 2.5 arc-minutes in WGS1984 using 
ArcGIS 10.8.

Model optimization

Four bioclimatic variables (bio8, bio9, bio18, bio19) were 
excluded due to known spatial bias risks (23), yielding 53 variables 

for initial analysis. MaxEnt 3.4.1 was configured with Cloglog 
output format, 5,000 bootstrap repetitions, 20 replicates, 75% 
training and 25% testing data partitioning, and Minimum training 
presence threshold rule. Variable selection involved first 
eliminating variables with <1% relative importance, followed by 
Pearson correlation analysis (|r| ≥ 0.8) to identify redundant 
variables while retaining those with higher contribution rates 
(Figure 3), ultimately resulting in 10 optimal climate factors for 
final modeling (Table 1).

When species distribution points are limited, default model 
parameters may yield suboptimal performance (29, 30). The initial 
Jackknife analysis utilized default MaxEnt parameters to identify 
broadly important variables, while the final model incorporated 
ENMeval-optimized feature combination (FC) and regularization 
multiplier (RM) combinations to maximize predictive performance 
(20). Parameter optimization was conducted using R software, 
systematically evaluating RM across eight levels (0.5–4 in 0.5-unit 
increments) and five fundamental FC combinations: linear (L), 

FIGURE 1

Workflow for predicting potential distribution of L. rubellum using MaxEnt model.
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quadratic (Q), hinge (H), product (P), and threshold (T), generating 
eight distinct feature sets (L, LQ, LQP, QHP, LQH, LQHP, QHPT and 
LQHPT). For MaxEnt model parameter optimization, this study used 
current climate data (1970–2000) from WorldClim as the baseline. 
Future climate projections (2021–2,100), derived from the 
BCC-CSM2-MR model under four SSP scenarios (SSP1-2.6, SSP2-
4.5, SSP3-7.0, and SSP5-8.5), were applied exclusively for subsequent 
distribution modeling and were not involved in model 
parameter calibration.

Model selection was performed using the ENMeval package 
in R 4.1.0, with Akaike’s Information Criterion (AIC) as the 
primary evaluation metric. The optimal model was identified as 
the one with the lowest AICc value. We calculated delta AICc 
(ΔAICc) as the difference between each candidate model’s AICc 
and the minimum AICc value among all models: ΔAICcᵢ = AICcᵢ 
− min (AICc). Models with ΔAICc < 2 were considered to have 
substantial empirical support. Alternative models were 
systematically evaluated through these AICc comparisons (27). 
This process determined LQH as the optimal FC and 4 as the ideal 
RM setting (Figure 4A).

Model performance was evaluated through receiver operating 
characteristic (ROC) curve analysis, with the area under the curve 
(AUC) serving as the accuracy metric: 0.5–0.7 (low predictive 
ability), 0.7–0.9 (moderate), and 0.9–1.0 (high). Under current 
climate conditions, the test set’s average omission rate matched the 
training set’s (Figure  4B), with training and test dataset AUC 

values of 0.997 and 0.991, respectively, (Figure 4C). The minimal 
metric differences and ENMeval-driven parameter optimization 
confirmed the model’s robustness against overfitting (20, 27).

Classification of the suitable areas

The distribution probability results of suitable areas generated 
by the MaxEnt model under current environmental conditions 
were classified into four categories using the Jenks natural breaks 
method (21): unsuitable area (0–0.0706), low suitable area 
(0.0706–0.2745), moderate suitable area (0.2745–0.6313), and 
high suitable area (0.6313–1). To ensure consistency in evaluation 
across time periods, these same classification thresholds were 
systematically applied to categorize habitat suitability under all 
future climate scenarios.

Results

The relationship between the distribution 
of Leptotrombidium rubellum and the 
environmental variables

Jackknife analysis identified precipitation in July (prec7) as the 
most influential environmental variable affecting L. rubellum 

FIGURE 2

Current distribution of L. rubellum in China.
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distribution, containing unique information not present in other 
factors, followed by June precipitation (prec6) (Figure 5). Response 
curves derived from 20 model replicates (with blue margins 
indicating ±1 SD) revealed specific environmental thresholds: 

optimal precipitation (prec7) ranged 43.32–1162.87 mm, elevation 
tolerance spanned −92.50 to 5798.14 m, and land cover suitability 
followed the hierarchy: croplands > forests > grasslands > urban areas 
> water bodies > barren lands (Figure 6).

FIGURE 3

Pearson correlation analysis of environmental variables. The blue dots in the figure represent positive correlation, the red dots represent negative 
correlation, and the darker the color, the stronger the correlation.

TABLE 1  Environment variables in projecting the distribution of L. rubellum.

Variables Description Unit Contribution (%)

prec7 Precipitation in July mm 26.1

elev Elevation m 25.8

prec6 Precipitation in June m 14.4

bio4 Temperature seasonality (standard deviation × 100) \ 9.1

prec4 Precipitation in April mm 8.8

prec1 Precipitation in January mm 5.0

bio15 Precipitation Seasonality \ 3.7

bio7 Temperature Annual Range °C 3.5

prec12 Precipitation in December mm 2.6

lc Land cover \ 1.0
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FIGURE 4

(A) AICc values for different regularization multiplier and feature combination. Delta. (B) Average omission and predicted area for L. rubellum. 
(C) Receiver operating characteristic curve of model prediction results.

FIGURE 5

Importance of the influence of environmental variables on the distribution of L. rubellum.
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FIGURE 6

Response curves of climatic variables to the distribution probability of L. rubellum. (A) Precipitation of July (prec7); (B) Elevation (elev); (C) Precipitation 
of June (prec6); (D) Temperature seasonality (bio4); (E) Precipitation of April (prec4); (F) Precipitation of January (prec1); (G) Precipitation seasonality 
(bio15); (H) Annual temperature range (bio7); (I) Precipitation of December (prc12); (J) Land cover type (lc).
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FIGURE 7

China potential distribution areas of L. rubellum under near current climatic conditions.

The potential distribution areas of 
Leptotrombidium rubellum under near 
current environmental conditions

Under near current conditions, L. rubellum is mainly found in 
southwestern and southeastern China, covering 19 provincial-
level regions from Yunnan to Taiwan (Figure 7). Future projections 
suggest a general expansion of its potential distribution areas, 
though the extent varies across different scenarios.

The range of potential distribution areas 
for Leptotrombidium rubellum under 
future environmental conditions

Under the SSP1-2.6 scenario, the potential distribution areas 
contracted, decreasing by 3.13% during 2021–2040 and 0.83% during 
2061–2080. In contrast, the other scenarios (SSP2-4.5, SSP3-7.0, and 
SSP5-8.5) consistently projected expansion of suitable areas 
throughout 2021–2,100 (Figure  8), with increases ranging from 
0.00073 to 26.53% (Table 2).

Spatial changes also differ by scenario. For SSP1-2.6 during 2021–
2040, there is a reduction of 0.92 × 105  km2 primarily in eastern 
provinces such as Zhejiang to Henan (Figure 9A). In contrast, under 
SSP3-7.0 during the same period, L. rubellum suitable areas expands 

by 7.76 × 105  km2, spreading from Taiwan to Tibet and covering 
northern and western regions (Figure 9B). The extreme range sizes 
vary between scenarios, with the smallest being 28.34 × 105 km2 under 
SSP1-2.6 and the largest reaching 37.01 × 105 km2 under SSP3-7.0 
(Table 2).

Discussion

With the rising incidence of scrub typhus globally, increasing 
research attention has been focused on its vector mites. L. rubellum, a 
recognized vector species in China, remains insufficiently studied 
regarding its geographical distribution. This study employs the MaxEnt 
model to predict L. rubellum potential suitable areas, thereby enhancing 
our understanding of its distribution patterns and providing valuable 
insights for public health strategies targeting scrub typhus prevention 
and control.

The distribution of L. rubellum is shaped by multiple environmental 
variables. As chigger mites progress through seven life stages (egg, 
deutovum, larva, nymphochrysalis, nymph, imagochrysalis, and 
adult), with only the larval stage being ectoparasite (31), their extensive 
free-living phases require adaptation to both abiotic (humidity, soil 
moisture, temperature) and biotic factors (vegetation density, host 
interactions). During blood-feeding, L. rubellum enters metabolic 
suppression, becoming particularly sensitive to ambient conditions 

https://doi.org/10.3389/fpubh.2025.1638468
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while relying on vegetation microhabitats for environmental regulation 
(11). Climate influences not only mite survival but also developmental 
rates and host-seeking behavior (32).

Climatic variables emerged as primary determinants of 
L. rubellum potential distribution areas, accounting for over 70% of 
total influence, with July precipitation (prec7) showing particular 
importance. This likely reflects moisture-dependent physiological 
requirements during critical midsummer periods. Elevation 
contributed approximately 26% to distribution patterns, consistent 
with previous reports of optimal suitability at lower latitudes and 
elevations (10). Notably, croplands—frequently associated with 
human activity—represented the most suitable land cover type, 
suggesting anthropogenic influences on distribution patterns.

Historically confined to coastal Fujian Province (9, 10), 
L. rubellum has recently expanded into Yunnan Province, indicating 

potential ongoing range shifts. Current suitable areas align with 
tropical/subtropical rainforests and monsoon climates, concentrated 
in southwestern and southeastern China including Sichuan, 
Guizhou, and Taiwan. While a 2022 BRT model produced 
congruent results (3), that study’s inclusion of multiple mite species 
may have masked L. rubellum-specific patterns and lacked 
future projections.

Future climate scenarios uniformly predict range expansion for 
L. rubellum, filling a critical knowledge gap as no previous studies have 
modeled its distribution under climate change (19, 23, 27, 33). 
Subtropical monsoon regions, highland areas, and zones with active 
tourism/trade—both coastal and inland—represent priority 
monitoring areas given invasion risks.

The current analysis has certain limitations that should 
be acknowledged. First, L. rubellum occurrence records were collected 

FIGURE 8

The potential distribution areas of suitable areas for L. rubellum around in China under the climatic conditions of SSP1-2.6, SSP2-4.5, SSP3-7.0 and 
SSP5-8.5. (A) 2021–2040; (B) 2041–2060; (C) 2061–2080; (D) 2081–2100.
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TABLE 2  Current and future potential distribution areas for L. rubellum across in China under different climatic conditions.

Climate 
scenario

Period Unsuitable 
area 

(×105 km2)

Moderate 
suitable area 

(×105 km2)

High suitable 
area 

(×105 km2)

Total area 
(×105 km2)

Area change 
(×105 km2)

Area 
change 
ratio (%)

current 1970–2000 13.24 7.58 8.43 29.25 0.00

SSP1-2.6 2021–2040 14.29 6.70 7.34 28.34 −0.92 −3.13

2041–2060 13.81 8.52 7.78 30.11 0.85 2.92

2061–2080 14.34 6.91 7.76 29.01 −0.24 −0.83

2081–2100 13.83 7.25 8.17 29.25 0.00 0.00073

SSP2-4.5 2021–2040 13.92 7.82 8.05 29.79 0.54 1.84

2041–2060 14.97 7.75 8.08 30.80 1.55 5.28

2061–2080 18.50 9.18 8.37 36.05 6.80 23.23

2081–2100 17.70 7.84 8.08 33.62 4.37 14.94

SSP3-7.0 2021–2040 16.68 10.41 9.92 37.01 7.76 26.53

2041–2060 12.93 8.25 8.73 29.91 0.66 2.25

2061–2080 17.29 10.33 9.28 36.90 7.65 26.14

2081–2100 14.02 7.97 8.07 30.06 0.80 2.75

SSP5-8.5 2021–2040 15.04 8.97 9.60 33.61 4.36 14.90

2041–2060 14.41 8.90 8.48 31.78 2.53 8.64

2061–2080 14.67 8.78 9.07 32.53 3.28 11.20

2081–2100 13.96 7.93 7.97 29.86 0.61 2.09

FIGURE 9

(A) Comparison of the current potential distribution areas to SSP1-2.6 2021–2040 periods in China. (B) Comparison of the current potential distribution 
areas to SSP3-7.0 2021–2040 periods in China.

post-2001, standardized bioclimatic variables for the 2000–2020 
period matching these records are not publicly available through 
established repositories. Consequently, our models relied on the 1970–
2000 climate baseline-the only globally consistent dataset for species 
distribution modeling under climate change scenarios. Future studies 
should prioritize integrating dynamically downscaled climate data 
when accessible. Second, the exclusion of human footprint indices and 
host interactions, despite their established importance in chigger mite 
distribution (3, 34), represents a notable constraint. Additionally, the 
model did not incorporate dynamic ecological processes such as host 

migration patterns or extreme climate events, nor did it account for 
short-term climate anomalies that may influence local habitat 
suitability. Future research addressing these factors would significantly 
improve the accuracy of distribution forecasting for L. rubellum.

Conclusion

This study provides the first comprehensive prediction of L. rubellum 
potential distribution across China under both current and future 
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environmental conditions. Its primary strengths derive from 
comprehensive data availability and unique findings that advance 
understanding of this vector’s distribution patterns. While the MaxEnt 
model effectively identified key environmental drivers, particularly 
precipitation and elevation as critical determinants of survival probability, 
certain limitations should be  noted, including potential biases in 
occurrence data, uncertainties in climate projections, and discrepancies 
when comparing results with existing findings from eastern regions.
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