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Predicting the potential
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Leptotrombidium rubellum under
current and future climate
change
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Background: Leptotrombidium rubellum (L. rubellum), a confirmed vector of
scrub typhus, was historically restricted to southeastern coastal China but has
recently been detected in southwestern regions. Species distribution modeling
was applied to predict its current and future potential distribution areas under
multiple climate scenarios, identify high-priority surveillance areas, and
determine key environmental drivers. The results may facilitate a transition from
passive to proactive vector monitoring.

Methods: Fifty-seven potential influencing factors were evaluated. The
maximum entropy (MaxEnt) model projected potential distribution areas for
near current and future climate scenarios. Occurrence records were extracted
from published literature. The selection of environmental variables was
conducted using a multi-stage analytical approach, consisting of contribution
rate assessment, jackknife tests, and correlation analyses. Model parameters
were optimized via feature class and regularization multiplier adjustments.

Results: The MaxEnt model demonstrated high predictive accuracy
(AUC = 0.997) with minimal training omission error. July precipitation (prec?)
and elevation (elev) were identified as the primary environmental determinants.
Projections indicate near current suitable areas are concentrated in southern
China, with potential northward expansion under future climate scenarios.

Conclusion: L. rubellum exhibits broad distribution areas across China, with
climate change likely driving suitable areas expansion. Enhanced surveillance in
currently suitable and future at-risk regions is critical to mitigate invasion risks.

KEYWORDS

Leptotrombidium rubellum, chigger mite, MaxEnt, climate change, potential
distribution areas
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Introduction

Chigger mites serve as the primary vectors of scrub typhus, a
febrile illness caused by the obligate intracellular bacterium Orientia
tsutsugamushi. Emerging epidemiological evidence suggests these
mites may serve as competent vectors not only for scrub typhus but
also for hemorrhagic fever with renal syndrome (HFRS), epidemic
hemorrhagic fever (EHF), and potentially other zoonoses (1-3).
Globally, scrub typhus incidence has risen markedly in recent decades,
with China representing s one of the most heavily burdened regions
(4-6). Notably, Leptotrombidium rubellum (L. rubellum) has been
epidemiologically confirmed a major scrub typhus vector in multiple
Chinese provinces (7, 8), underscoring its public health significance.
Traditional entomological surveys initially classified L. rubellum as
having a narrow distribution, limited to coastal Fujian Province (9).
Recent eco-epidemiological investigations, however, have expanded
this understanding, confirming L. rubellum presence in Yunnan
Province and documenting infections across multiple rodent host (9,
10). The distribution patterns of chigger mites are shaped by dynamic
interactions between microclimatic conditions, land cover type, and
anthropogenic landscape modifications (4, 11, 12). Previous studies
indicate that the distribution of L. rubellum is influenced by multiple
environmental and ecological factors, including temperature,
humidity, elevation, land cover type, and host availability (2, 10).
Notably, field investigations have revealed that L. rubellum exhibits
low host specificity and a broad host range, suggesting adaptability
across diverse ecological niches. However, the precise mechanisms by
which other factors shape its distribution remain insufficiently
characterized, warranting further investigation.

Climate change has triggered profound ecosystems
transformations over the past century, driving landscape modification,
biodiversity loss, and public health impacts through ecological
cascades (13-15). Key climatic variables-including temperature
regimes, precipitation patterns, and land cover dynamics-directly
govern vector distribution, population densities, and pathogen
transmission efficiency (16-18). These environmental shifts may f
lower ecological barriers for invasive species, potentially enabling
range expansion of medically important vectors like L. rubellum (2,
19-21). With projected warming trends and precipitation anomalies
expected to create increasingly favorable conditions for this scrub
typhus vector, predictive modeling of its future geographic range
becomes vital for disease surveillance and prevention.

Species distribution models (SDMs) are essential for forecasting
species geographic ranges under environmental change. The
Maximum Entropy (MaxEnt) algorithm has emerged as a powerful
SDM approach, distinguished by its ability to minimize commission
errors while offering mechanistic insights. Key advantages include its
quantitative assessment of environmental variable contributions,
rigorous evaluation of variable importance through jackknife tests,
and robust predictive accuracy validation using receiver operating
characteristic (ROC) curve analysis (AUC) (22, 23). The MaxEnt
model has been widely applied in studies of invasive species,
biodiversity conservation, and disease risk assessment (24-28).

This study employed the MaxEnt model to predict current and
future potential distribution areas of L. rubellum in China based on
historical occurrence records, high-resolution bioclimatic variables,
elevation data, and land cover type. The relative contributions of
environmental factors to observed and projected range shifts were
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systematically evaluated under four representative climate change
scenarios, providing insights for vector control strategies.

Materials and methods
Analytical workflow

This study mainly includes the following parts: collection and
screening of L. rubellum and related environmental variables, model
optimization, and classification of suitable areas (Figure 1).

Occurrence data collection and processing

Leptotrombidium rubellum occurrence data (1950-2024) were
aggregated from Chinese (CNKI, Wan Fang, VIP), international
(PubMed, Web of Science, Embase) databases, and related zoological
works. We implemented a multi-stage validation process including
methodological verification, ecological plausibility assessment, and
geographic coordinate standardization. Initial compilation yielded 37
occurrence points (Figure 2; Additional file 1). To address spatial
autocorrelation (20), spatial thinning was performed using ENMTools
(https://github.com/danlwarren/ENMTools; accessed 20 April 2024),
retaining one record per 2.5 arc-minute environmental raster cell. This
process resulted in 28 spatially independent occurrence points after
removing 9 duplicate records located within identical grid cells.

Application software and geographic data

The MaxEnt software (version 3.4.1, https://
biodiversityinformatics.amnh.org/open_source/maxent/, accessed
on 1 March 2024) was employed for species niche and distribution
modeling. ArcGIS (version 10.8) was licensed by the Vector Control
Department of the Institute of Infectious Disease Control and
Prevention, Chinese Center for Disease Control and Prevention.
Additional analyses utilized R (version 4.1.0, http://www.r-project.
org/, accessed on 1 March 2024) and DIVA-GIS (version 7.5.0,
https://diva-gis.org/download.html, accessed on 31 May 2021) for
model parameter adjustments. The China map (scale: 1:4,000,000)
is from the National Geomatics Center of China (https://www.ngcc.
cn/; accessed on 1 April 2024), and the world map (scale:
1:10,000,000) is Natural Earth

naturalearthdata.com/downloads; accessed on 1 April 2024).

from the (https://www.

Environmental data processing

Fifty-seven environmental variables were initially compiled,
including 56 variables from WorldClim' at 2.5 arc-minute
resolution: bioclimatic parameters (biol-biol9), monthly
temperature extremes (tmax1-tmax12; tminl-tmin12), monthly
precipitation (precl-prec12), and elevation (elev). The dataset

1 https://worldclim.org/
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FIGURE 1

Workflow for predicting potential distribution of L. rubellum using MaxEnt model.

encompassed both current (1970-2000) and future climate
scenarios (2021-2,100) generated by BCC-CSM2-MR under four
SSPs (1-2.6, 2-4.5, 3-7.0, 5-8.5). Land cover projections (2020-
2100) at 1 km spatial resolution were obtained from Figshare
(https://figshare.com/articles/dataset/Global_LULC_projection_
dataset_from_2020_to_2100_at_a_lkm_resolution/23542860

LULC projection dataset from 2020 to 2,100 at a 1 km resolution/
23,542,860). Each GeoTIFF file contains integer raster attribute
values from 1 to 6, representing different land use types: cropland,
forest, grassland, urban areas, barren lands, and water bodies. All
variables were resampled to 2.5 arc-minutes in WGS1984 using
ArcGIS 10.8.

Model optimization

Four bioclimatic variables (bio8, bio9, biol8, bio19) were
excluded due to known spatial bias risks (23), yielding 53 variables
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for initial analysis. MaxEnt 3.4.1 was configured with Cloglog
output format, 5,000 bootstrap repetitions, 20 replicates, 75%
training and 25% testing data partitioning, and Minimum training
presence threshold rule. Variable selection involved first
eliminating variables with <1% relative importance, followed by
Pearson correlation analysis (Jr| > 0.8) to identify redundant
variables while retaining those with higher contribution rates
(Figure 3), ultimately resulting in 10 optimal climate factors for
final modeling (Table 1).

When species distribution points are limited, default model
parameters may yield suboptimal performance (29, 30). The initial
Jackknife analysis utilized default MaxEnt parameters to identify
broadly important variables, while the final model incorporated
ENMeval-optimized feature combination (FC) and regularization
multiplier (RM) combinations to maximize predictive performance
(20). Parameter optimization was conducted using R software,
systematically evaluating RM across eight levels (0.5-4 in 0.5-unit
increments) and five fundamental FC combinations: linear (L),
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FIGURE 2
Current distribution of L. rubellum in China.

quadratic (Q), hinge (H), product (P), and threshold (T), generating
eight distinct feature sets (L, LQ, LQP, QHP, LQH, LQHP, QHPT and
LQHPT). For MaxEnt model parameter optimization, this study used
current climate data (1970-2000) from WorldClim as the baseline.
Future climate projections (2021-2,100), derived from the
BCC-CSM2-MR model under four SSP scenarios (SSP1-2.6, SSP2-
4.5, SSP3-7.0, and SSP5-8.5), were applied exclusively for subsequent
distribution modeling and were not involved in model
parameter calibration.

Model selection was performed using the ENMeval package
in R 4.1.0, with Akaike’s Information Criterion (AIC) as the
primary evaluation metric. The optimal model was identified as
the one with the lowest AICc value. We calculated delta AICc
(AAICc) as the difference between each candidate model’s AICc
and the minimum AICc value among all models: AAICc; = AICc;
— min (AICc). Models with AAICc < 2 were considered to have
substantial empirical support. Alternative models were
systematically evaluated through these AICc comparisons (27).
This process determined LQH as the optimal FC and 4 as the ideal
RM setting (Figure 4A).

Model performance was evaluated through receiver operating
characteristic (ROC) curve analysis, with the area under the curve
(AUCQ) serving as the accuracy metric: 0.5-0.7 (low predictive
ability), 0.7-0.9 (moderate), and 0.9-1.0 (high). Under current
climate conditions, the test set’s average omission rate matched the

training set’s (Figure 4B), with training and test dataset AUC
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values of 0.997 and 0.991, respectively, (Figure 4C). The minimal
metric differences and ENMeval-driven parameter optimization
confirmed the model’s robustness against overfitting (20, 27).

Classification of the suitable areas

The distribution probability results of suitable areas generated
by the MaxEnt model under current environmental conditions
were classified into four categories using the Jenks natural breaks
method (21): unsuitable area (0-0.0706), low suitable area
(0.0706-0.2745), moderate suitable area (0.2745-0.6313), and
high suitable area (0.6313-1). To ensure consistency in evaluation
across time periods, these same classification thresholds were
systematically applied to categorize habitat suitability under all
future climate scenarios.

Results

The relationship between the distribution
of Leptotrombidium rubellum and the
environmental variables

Jackknife analysis identified precipitation in July (prec7) as the
most influential environmental variable affecting L. rubellum

frontiersin.org
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FIGURE 3
Pearson correlation analysis of environmental variables. The blue dots in the figure represent positive correlation, the red dots represent negative
correlation, and the darker the color, the stronger the correlation.

TABLE 1 Environment variables in projecting the distribution of L. rubellum.

Variables Description Unit Contribution (%)
prec7 Precipitation in July mm 26.1
elev Elevation m 25.8
precé Precipitation in June m 144
bio4 Temperature seasonality (standard deviation x 100) \ 9.1
prec4 Precipitation in April mm 8.8
precl Precipitation in January mm 5.0
biol5 Precipitation Seasonality \ 3.7
bio7 Temperature Annual Range °C 35
precl2 Precipitation in December mm 2.6
Ic Land cover \ 1.0

distribution, containing unique information not present in other
factors, followed by June precipitation (prec6) (Figure 5). Response
curves derived from 20 model replicates (with blue margins
indicating +1 SD) revealed specific environmental thresholds:
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05

optimal precipitation (prec7) ranged 43.32-1162.87 mm, elevation
tolerance spanned —92.50 to 5798.14 m, and land cover suitability
followed the hierarchy: croplands > forests > grasslands > urban areas
> water bodies > barren lands (Figure 6).
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FIGURE 4
(A) AlCc values for different regularization multiplier and feature combination. Delta. (B) Average omission and predicted area for L. rubellum.
(C) Receiver operating characteristic curve of model prediction results.
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FIGURE 5

Importance of the influence of environmental variables on the distribution of L. rubellum.
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FIGURE 6

Response curves of climatic variables to the distribution probability of L. rubellum. (A) Precipitation of July (prec?); (B) Elevation (elev); (C) Precipitation
of June (prec6); (D) Temperature seasonality (bio4); (E) Precipitation of April (prec4); (F) Precipitation of January (precl); (G) Precipitation seasonality
(bio15); (H) Annual temperature range (bio7); (I) Precipitation of December (prc12); (3) Land cover type (lc)
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FIGURE 7

China potential distribution areas of L. rubellum under near current climatic conditions.

The potential distribution areas of
Leptotrombidium rubellum under near
current environmental conditions

Under near current conditions, L. rubellum is mainly found in
southwestern and southeastern China, covering 19 provincial-
level regions from Yunnan to Taiwan (Figure 7). Future projections
suggest a general expansion of its potential distribution areas,
though the extent varies across different scenarios.

The range of potential distribution areas
for Leptotrombidium rubellum under
future environmental conditions

Under the SSP1-2.6 scenario, the potential distribution areas
contracted, decreasing by 3.13% during 2021-2040 and 0.83% during
2061-2080. In contrast, the other scenarios (SSP2-4.5, SSP3-7.0, and
SSP5-8.5) consistently projected expansion of suitable areas
throughout 2021-2,100 (Figure 8), with increases ranging from
0.00073 to 26.53% (Table 2).

Spatial changes also differ by scenario. For SSP1-2.6 during 2021-
2040, there is a reduction of 0.92 x 10° km? primarily in eastern
provinces such as Zhejiang to Henan (Figure 9A). In contrast, under
SSP3-7.0 during the same period, L. rubellum suitable areas expands
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by 7.76 x 10° km?, spreading from Taiwan to Tibet and covering
northern and western regions (Figure 9B). The extreme range sizes
vary between scenarios, with the smallest being 28.34 x 10° km” under
SSP1-2.6 and the largest reaching 37.01 x 10° km* under SSP3-7.0
(Table 2).

Discussion

With the rising incidence of scrub typhus globally, increasing
research attention has been focused on its vector mites. L. rubellum, a
recognized vector species in China, remains insufficiently studied
regarding its geographical distribution. This study employs the MaxEnt
model to predict L. rubellum potential suitable areas, thereby enhancing
our understanding of its distribution patterns and providing valuable
insights for public health strategies targeting scrub typhus prevention
and control.

The distribution of L. rubellum is shaped by multiple environmental
variables. As chigger mites progress through seven life stages (egg,
deutovum, larva, nymphochrysalis, nymph, imagochrysalis, and
adult), with only the larval stage being ectoparasite (31), their extensive
free-living phases require adaptation to both abiotic (humidity, soil
moisture, temperature) and biotic factors (vegetation density, host
interactions). During blood-feeding, L. rubellum enters metabolic
suppression, becoming particularly sensitive to ambient conditions

frontiersin.org
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SSP1-2.6

FIGURE 8

SSP5-8.5. (A) 2021-2040; (B) 2041-2060; (C) 2061-2080; (D) 2081-2100.

The potential distribution areas of suitable areas for L. rubellum around in China under the climatic conditions of SSP1-2.6, SSP2-4.5, SSP3-7.0 and

SSP2-4.5

while relying on vegetation microhabitats for environmental regulation
(11). Climate influences not only mite survival but also developmental
rates and host-seeking behavior (32).

Climatic variables emerged as primary determinants of
L. rubellum potential distribution areas, accounting for over 70% of
total influence, with July precipitation (prec7) showing particular
importance. This likely reflects moisture-dependent physiological
requirements during critical midsummer periods. Elevation
contributed approximately 26% to distribution patterns, consistent
with previous reports of optimal suitability at lower latitudes and
elevations (10). Notably, croplands—frequently associated with
human activity—represented the most suitable land cover type,
suggesting anthropogenic influences on distribution patterns.

Historically confined to coastal Fujian Province (9, 10),
L. rubellum has recently expanded into Yunnan Province, indicating
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potential ongoing range shifts. Current suitable areas align with
tropical/subtropical rainforests and monsoon climates, concentrated
in southwestern and southeastern China including Sichuan,
Guizhou, and Taiwan. While a 2022 BRT model produced
congruent results (3), that study’s inclusion of multiple mite species
may have masked L. rubellum-specific patterns and lacked
future projections.

Future climate scenarios uniformly predict range expansion for
L. rubellum, filling a critical knowledge gap as no previous studies have
modeled its distribution under climate change (19, 23, 27, 33).
Subtropical monsoon regions, highland areas, and zones with active
tourism/trade—both coastal and inland—represent priority
monitoring areas given invasion risks.

The current analysis has certain limitations that should

be acknowledged. First, L. rubellum occurrence records were collected
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TABLE 2 Current and future potential distribution areas for L. rubellum across in China under different climatic conditions.

Climate Period Unsuitable Moderate High suitable Total area Area change Area
scenario area suitable area area (x10° km?) (x10° km?) change
(x10° km?) (x10° km?) (x10° km?) ratio (%)
current 1970-2000 13.24 7.58 8.43 29.25 0.00
SSP1-2.6 2021-2040 14.29 6.70 7.34 28.34 -0.92 -3.13
2041-2060 13.81 8.52 7.78 30.11 0.85 2.92
2061-2080 14.34 6.91 7.76 29.01 —0.24 —0.83
2081-2100 13.83 7.25 8.17 29.25 0.00 0.00073
SSP2-4.5 2021-2040 13.92 7.82 8.05 29.79 0.54 1.84
2041-2060 14.97 7.75 8.08 30.80 1.55 5.28
2061-2080 18.50 9.18 8.37 36.05 6.80 23.23
2081-2100 17.70 7.84 8.08 33.62 437 14.94
SSP3-7.0 2021-2040 16.68 10.41 9.92 37.01 7.76 26.53
2041-2060 12.93 8.25 8.73 2991 0.66 225
2061-2080 17.29 10.33 9.28 36.90 7.65 26.14
2081-2100 14.02 7.97 8.07 30.06 0.80 2.75
SSP5-8.5 2021-2040 15.04 8.97 9.60 33.61 436 14.90
2041-2060 14.41 8.90 8.48 31.78 2.53 8.64
2061-2080 14.67 8.78 9.07 3253 3.28 11.20
2081-2100 13.96 7.93 7.97 29.86 0.61 2.09
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FIGURE 9

areas to SSP3-7.0 2021-2040 periods in China.
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(A) Comparison of the current potential distribution areas to SSP1-2.6 2021-2040 periods in China. (B) Comparison of the current potential distribution

post-2001, standardized bioclimatic variables for the 2000-2020
period matching these records are not publicly available through
established repositories. Consequently, our models relied on the 1970-
2000 climate baseline-the only globally consistent dataset for species
distribution modeling under climate change scenarios. Future studies
should prioritize integrating dynamically downscaled climate data
when accessible. Second, the exclusion of human footprint indices and
host interactions, despite their established importance in chigger mite
distribution (3, 34), represents a notable constraint. Additionally, the
model did not incorporate dynamic ecological processes such as host
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migration patterns or extreme climate events, nor did it account for
short-term climate anomalies that may influence local habitat
suitability. Future research addressing these factors would significantly
improve the accuracy of distribution forecasting for L. rubellum.

Conclusion

This study provides the first comprehensive prediction of L. rubellum
potential distribution across China under both current and future
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environmental conditions. Its primary strengths derive from
comprehensive data availability and unique findings that advance
understanding of this vector’s distribution patterns. While the MaxEnt
model effectively identified key environmental drivers, particularly
precipitation and elevation as critical determinants of survival probability,
certain limitations should be noted, including potential biases in
occurrence data, uncertainties in climate projections, and discrepancies
when comparing results with existing findings from eastern regions.
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