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Digital technology and artificial intelligence have revolutionized predictive models
based on clinical data, creating opportunities for proactive health management.
This review systematically evaluates the role and effectiveness of biomarker-driven
predictive models across disease detection, personalized intervention, and healthcare
resource optimization. Critical challenges hindering their implementation include
data heterogeneity, inconsistent standardization protocols, limited generalizability
across populations, high implementation costs, and substantial barriers in clinical
translation. To address these challenges, we propose an integrated framework
prioritizing three pillars: multi-modal data fusion, standardized governance protocols,
and interpretability enhancement, systematically addressing implementation barriers
from data heterogeneity to clinical adoption. This systematic approach enhances
early disease screening accuracy while supporting risk stratification and precision
diagnosis, particularly for chronic conditions and oncology applications. By effectively
connecting biomarker discovery with practical clinical utilization, our proposed
framework offers actionable methodologies that address existing limitations while
guiding multidisciplinary research teams. Moving forward, expanding these predictive
models to rare diseases, incorporating dynamic health indicators, strengthening
integrative multi-omics approaches, conducting longitudinal cohort studies, and
leveraging edge computing solutions for low-resource settings emerge as critical
areas requiring innovation and exploration.

KEYWORDS

proactive health management, biomarkers, predictive models, data heterogeneity,
public health resources, multi-omics integration

1 Introduction
1.1 Research background and objectives

Digital technology and artificial intelligence are transforming healthcare research and practice
paradigms. Improved computational capabilities now enable integration of clinical testing
databases, electronic health records, and multi-omics data, creating a multidimensional health
ecosystem across the human lifecycle (1, 2). This multimodal data integration captures disease
progression trajectories (3) and elucidates mechanisms underlying individual drug response
variations through integrated analysis of pharmacogenomics and proteomics (4), creating a robust
foundation for developing prognosis assessment and health risk predictive models (5).
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The evolution of Artificial intelligence (AI) technologies has
introduced transformative tools for medical data analysis. Deep learning
algorithms, specifically, with their advanced feature learning capabilities,
have enhanced the efficiency of analyzing high-dimensional
heterogeneous data (6). These computational approaches systematically
identify complex biomarker-disease associations that traditional
statistical methods often overlook, enabling more granular risk
stratification. Research demonstrates that Transformer-based algorithms
enable precise disease risk stratification (7), accurate diagnostic
determinations (2), and personalized treatment regimen optimization
(8) through systematic identification of complex non-linear associations.
These technological advances are shifting medical practice from
traditional population-based approaches toward precision medicine
focused on individual characteristics, with clinical efficacy validated
through multicenter randomized controlled trials (9, 10).

Despite technological advances, significant challenges persist in
effectively integrating biomarker data, developing reliable predictive
models, and implementing these in clinical practice (11). Key
challenges requiring resolution include data standardization (12),
model generalizability (9), and clinical implementation pathways (13).
This review systematically analyzes the application value and technical
approaches of biomarker-based disease predictive models in proactive
health management, while examining key challenges and
corresponding strategies. Through integration of multidisciplinary
perspectives from epidemiology, clinical medicine, bioinformatics,
and artificial intelligence, we propose a comprehensive framework
encompassing biomarker discovery, data integration, model
construction, and clinical translation, providing systematic guidance
for the implementation of predictive models in precision medicine.

1.2 The new paradigm of proactive health
management

Proactive health management represents a transformative shift in
modern medicine, transitioning from traditional disease diagnosis
and treatment models to health maintenance approaches based on
prediction and prevention (14). This transformation is grounded in
the biopsychosocial medical model, emphasizing early health risk
identification and implementation of targeted interventions to prevent
disease onset or delay progression (5). This paradigm specifically aims
to extend healthspan through preemptive interventions targeting
subclinical pathological processes. Unlike traditional episodic care
models, proactive systems implement continuous physiological
monitoring (15) integrated with dynamic risk assessment
methodologies (16), thereby maintaining functional capacity through
preventive intervention. Such paradigmatic transformation aligns
with strategic health initiatives, including “Healthy China 2030,” and
addresses demographic challenges posed by increasing chronic disease
prevalence in aging populations (17).

Abbreviations: Al, Artificial intelligence; AUC, Area under the curve; DNN, Deep
neural network; GDPR, General data protection regulation; IQR, Interquartile
range; LASSO, Least absolute shrinkage and selection operator; MICE, Multiple
imputation by chained equations; PCA, Principal component analysis; R&D,
Research and development; SHAP, SHapley Additive exPlanations; t-SNE,

t-distributed stochastic neighbor embedding; XGBoost, Extreme gradient boosting.
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The evolution of this new paradigm has advanced through
significant breakthroughs in clinical testing technologies, initiating a new
era of biomarker research. Contemporary detection platforms (e.g.,
single-cell sequencing, spatial transcriptomics, and high-throughput
proteomics) generate comprehensive molecular profiles including
metabolomic, proteomic, and epigenetic features, offering unprecedented
insights into disease mechanisms (18). Integrated profiling across these
platforms captures dynamic molecular interactions between biological
layers, revealing pathogenic mechanisms otherwise undetectable via
single-omics approaches. This technological advancement has
transformed biomarker discovery from traditional experience-based
approaches to data-driven precise identification processes. For instance,
the integration of multi-omics data and advanced analytical methods has
improved early Alzheimer’s disease diagnosis specificity by 32%,
providing a crucial intervention window (19, 20).

These technological breakthroughs have been accompanied by
continuous refinement in detection methodologies, enabling cost-
effective biomarker discovery and longitudinal monitoring capabilities.
Progressive refinement of detection methodologies coupled with
reduction in implementation costs has expanded biomarker applications
beyond traditional diagnostics toward prospective risk assessment and
targeted intervention strategies (21). The evolution encompasses
diversification of clinical applications, transition from univariate to
multivariate biomarker panels, and development of longitudinal
monitoring systems capturing temporal physiological variations (22).
Nevertheless, expanded application domains introduce significant
methodological challenges requiring systematic resolution to realize the
full potential of biomarker-driven precision health management.

1.3 Research methodology and content
framework

To address implementation challenges and evaluate current

evidence supporting biomarker-driven predictive models,
we conducted a systematic literature analysis using structured review
methodology. Comprehensive database searches in PubMed
encompassed peer-reviewed publications from January 2020 through
April 2025, employing Boolean combinations of standardized medical
subject headings and field-specific

terminology including

» » «
>

“biomarkers;” “predictive models,” “health risk assessment;” “proactive
health management,” and “precision medicine” The methodological
approach specifically targeted research addressing critical challenges
in data heterogeneity management, model interpretability, and clinical
implementation within personalized medicine contexts.

Through systematic analysis of the selected studies, the research
synthesized current findings and identified key deficiencies and
unresolved issues. Based on these analyses, a theoretically grounded
content framework was constructed to systematically elucidate the key
elements, technical pathways, and application prospects of biomarker-
driven predictive models. Specifically, this review initially clarifies
biomarker concepts and their fundamental role in establishing disease
relationships, establishing the theoretical foundation for subsequent
discussions; then explores the core value of biomarker predictive
models in proactive health applications, including early risk
stratification, personalized health interventions, and public health
optimization; the technical framework section details the complete
methodological pathway from data acquisition, biomarker screening
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to model construction and optimization, providing specific guidance
for practical applications; finally, it analyzes systematically key
challenges in data quality, model generalizability, clinical translation,
and proposes corresponding solution strategies, indicating directions
for future research.

Through this structured research methodology and systematic
content framework, this review aims to provide researchers, clinicians,
and policy makers with comprehensive knowledge regarding
biomarker predictive models in proactive health management,
advancing related technologies and improvements in clinical practice
improvements. Particularly, we focus on analyzing from
multidisciplinary perspectives the translation of biomarker predictive
models into clinical practice, supporting personalized health
management systems in precision medicine and facilitating medical

practice transformation from passive response to proactive prevention.

2 Biomarker concepts and disease
relationship construction

2.1 Basic concept definition

Biomarkers, defined by the U. S. Institute of Medicine as
“objectively measurable indicators of biological processes” (23),
function as indicators of normal biological processes, pathological
processes, or pharmacological responses to therapeutic interventions.
This definition emphasizes biomarkers’ objectivity and measurability,
establishing the foundation for their clinical application.

From a molecular classification perspective, biomarkers include
genetic markers, epigenetic markers, transcriptomic markers, protein
markers, and metabolic markers, reflecting multi-level biological
information from genes to phenotypes (24). With technological
advancement, biomarker research has evolved from single molecular

TABLE 1 Classification and clinical application characteristics of biomarkers.

Biomarker type = Molecular characteristics

and origin

Detection technologies

10.3389/fpubh.2025.1633487

indicators to multidimensional marker combinations, and from static
measurements to dynamic monitoring, enabling more comprehensive
capture of disease biological features and providing enhanced
information for precision medicine (25). Table 1 summarizes the
characteristics, detection technologies, and clinical applications of
major biomarker types, demonstrating their distinct values and
limitations in proactive health management.

2.2 Establishing associations between
biomarkers and diseases

Establishing reliable associations between biomarkers and diseases
requires integrating multidisciplinary approaches and multi-level
validation. The advancement of big data and artificial intelligence
technologies, has transformed biomarker research from hypothesis-
driven to data-driven approaches, expanding potential marker
identification (26). As illustrated in Figure 1, the relationship between
biomarkers and diseases demonstrates multidimensional
characteristics, including sensitivity, specificity, predictive value,
dynamic changes, and technical limitations, which collectively
determine their efficacy and constraints in clinical applications (27).
These multidimensional characteristics collectively inform how
biomarker data should be interpreted within specific clinical contexts,
particularly when determining intervention thresholds that optimize
the balance between diagnostic accuracy and early detection capabilities.

A systematic biomarker validation process encompasses discovery,
validation, and clinical validation phases, ensuring research findings’
reliability and clinical applicability. Multi-omics integration methods
serve a crucial role in this process, developing comprehensive
molecular disease maps by combining genomics (5), transcriptomics
(28), proteomics (29), and metabolomics data (30), thereby identifying

complex marker combinations that traditional methods might overlook.

Clinical application value

Genetic biomarkers DNA sequence variants or gene Whole genome sequencing, PCR, Genetic disease risk assessment, drug target 39019673
expression regulatory changes SNP arrays screening, tumor subtyping

Epigenetic biomarkers DNA methylation, histone Methylation arrays, ChIP-seq, Environmental exposure assessment, early cancer =~ 37302584
modifications, chromatin remodeling ATAC-seq diagnosis, drug response prediction

Transcriptomic mRNA expression profiles, non-coding RNA-seq, microarrays, real-time Molecular disease subtyping, treatment response | 39736681

biomarkers RNAEs, alternative splicing qPCR prediction, pathological mechanism exploration

Proteomic biomarkers Protein expression levels, post- Mass spectrometry, ELISA, protein | Disease diagnosis, prognosis evaluation, 37481764
translational modifications, functional arrays therapeutic monitoring
states

Metabolomic Metabolite concentration profiles, LC-MS/MS, GC-MS, NMR Metabolic disease screening, drug toxicity 38280419

biomarkers metabolic pathway activities evaluation, environmental exposure monitoring

Imaging biomarkers Anatomical structures, functional MRI, PET-CT, ultrasound, Disease staging, treatment response assessment, 37776766
activities, molecular targets radiomics prognosis prediction

Digital biomarkers Behavioral characteristics, physiological | Wearable devices, mobile Chronic disease management, health behavior 38347143
fluctuations, molecular sensing applications, IoT sensors monitoring, early warning

PCR, Polymerase Chain Reaction; SNP, Single Nucleotide Polymorphism; ChIP-seq, Chromatin Immunoprecipitation Sequencing; ATAC-seq, Assay for Transposase-Accessible Chromatin
using Sequencing; mRNA, messenger Ribonucleic Acid; qPCR, quantitative Polymerase Chain Reaction; ELISA, Enzyme-Linked Immunosorbent Assay; LC-MS/MS, Liquid
Chromatography-Tandem Mass Spectrometry; GC-MS, Gas Chromatography-Mass Spectrometry; NMR, Nuclear Magnetic Resonance; MRI, Magnetic Resonance Imaging; PET-CT,
Positron Emission Tomography-Computed Tomography; IoT, Internet of Things; PMID, PubMed Identifier.
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Temporal data holds distinct value in biomarker research.
Through longitudinal cohort studies capturing markers’ dynamic
changes over time, researchers obtain vital information about disease
natural history. Studies demonstrate that marker trajectories generally
provide more comprehensive predictive information than single time-
point measurements (31).

2.3 Predictive model construction methods

Predictive model construction represents a crucial step in
converting biomarker information into clinical decision-making tools.
Model selection should consider data characteristics, prediction
objectives, and application scenarios, aiming to a balance predictive
accuracy, complexity, and interpretability (32).

10.3389/fpubh.2025.1633487

Traditional statistical methods including logistic regression

and Cox proportional hazards models provide strong
interpretability, quantifying each marker’s contribution and
enhancing clinical understanding (33). However, these approaches
show limitations in managing high-dimensional data and complex
non-linear relationships.

Machine learning methods such as random forests, support vector
machines, and gradient boosting trees effectively process high-
dimensional data, identify non-linear relationships and variable
interactions, particularly excelling in multi-omics data analysis (34).
Studies indicate that gradient boosting tree-based models achieve
superior accuracy in cardiovascular disease risk prediction compared
to traditional risk scores (35).

Deep learning shows significant potential in processing images,

temporal data, and multimodal integration, though its “black box”

FIGURE 1

Characteristics
of the relationship

between biological

indicators and
diseases

Characteristics influencing the relationship between biological indicators and diseases. The diagram outlines key factors such as sensitivity, specificity,
adaptive reference ranges, dynamic changes, predictive value, technical limitations, and temporal or biological variability. These factors collectively
shape the interpretive and diagnostic utility of biological indicators in disease contexts
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nature restricts clinical interpretability (36). Model evaluation should
thoroughly assess discriminatory power, calibration, and clinical
utility, ensuring model generalizability through rigorous cross-
validation and external validation. Table 2 presents a comparison of
various predictive modeling methods” advantages and limitations in
processing biomarker data, offering guidance for selecting appropriate
algorithms in specific health management contexts.

In summary, biomarker predictive models demonstrate
substantial application value in early disease prevention, personalized
diagnosis and treatment, and public health management, advancing
medical practice from reactive response toward proactive prevention.
The subsequent chapter explores these models’ specific value
manifestations in proactive health applications. These methodological
considerations necessitate the development of an integrated technical
framework, as detailed in Section 4.

3 Prospects for proactive health
applications

Biomarker-driven predictive models present extensive application
prospects in proactive health management, with their core value
manifesting in three key dimensions: early risk warning, personalized
health management, and public health resource optimization. These
applications are progressively evolving from theoretical possibilities to
clinical practice, providing robust technical support for healthcare
model transformation.

3.1 Early disease risk warning

Predictive models based on biomarkers can detect potential health
risks before clinical symptoms manifest by identifying subtle changes
at molecular and cellular levels. This early warning mechanism
provides valuable intervention windows for chronic disease
management and tumor intervention, altering the timing and
effectiveness of disease interventions (37, 38).

TABLE 2 Comparative methodology of predictive model construction.

Modeling

Algorithm principles

Technical advantages

10.3389/fpubh.2025.1633487

Multiple prospective studies validate that biomarker warning
systems effectively enhance disease management outcomes. For type 2
diabetes, predictive models incorporating glycemic control indicators
(HbAlc), inflammatory markers (IL-6, TNF-«), and metabolomic
features can identify high-risk individuals 5-7 years before clinical
diagnosis (39, 40). This early identification enables implementation of
lifestyle interventions before irreversible pancreatic p-cell damage
occurs, effectively delaying or preventing disease progression. In the
field of cardiovascular disease, genetic polymorphism analysis of TNF-o
and IL-6 combined with assessment of inflammatory markers and
metabolic variables can identify potential risk groups for cardiovascular
events among patients with chronic heart failure (41, 42).

In neurodegenerative diseases, predictive models integrating
blood biomarkers such as f-amyloid and tau proteins can identify
high-risk populations for Alzheimer’s disease before significant
cognitive decline (43, 44). This early identification provides critical
opportunities for time-sensitive interventions, enhancing treatment
success probability (45). Notably, this biomarker-based early warning
system represents a paradigm shift from reactive to proactive
medical practice.

3.2 Personalized health management

Personalized health management represents the core practice of
the proactive health concept. Biomarker-based predictive models
facilitate the transition from population-level averages to individual
precision management by providing tailored risk assessments and
intervention recommendations.

3.2.1 Precise prediction and intervention

Biomarker predictions based on individual genetic backgrounds
and metabolic characteristics deliver more precise assessments of
disease susceptibility. Machine learning methods enhance risk
prediction accuracy by integrating multidimensional biomarkers with
clinical data (46), particularly in specific subgroups such as diabetes
patients and cancer survivors (47).

Limitations

method

Logistic/cox Linear combination predicting

regression probability or hazard ratio

Strong interpretability, computational efficiency, direct

quantification of biomarker contributions

Difficulty capturing complex non-linear relationships

and higher-order interactions

Random forest Multi-decision tree voting

ensemble

Strong capability for high-dimensional data, automatic

identification of complex interactions, robustness to outliers

High computational resource requirements,

overfitting risk, complex interpretation

Deep learning Multi-layer neural networks

extracting hierarchical features temporal feature capture

Automatic feature extraction, multi-modal data processing,

Requires large training datasets, black-box

characteristics, computationally intensive

Gradient Tree ensemble with serial

boosting trees optimization of residuals

High prediction accuracy, strong capability for handling

missing values, feature importance assessment

Complex hyperparameter tuning, overfitting risk,

interpretability inferior to linear models

Support vector Maximum margin hyperplane

Effective in high-dimensional spaces, kernel functions for

Tedious parameter tuning, low computational

machines classification non-linearity, strong generalization capability efficiency for large datasets

Bayesian Probabilistic graphical models Integration of prior knowledge, uncertainty handling, High computational complexity, requires expert
networks representing causal relationships | visualization of variable relationships knowledge for model structure

Ensemble Multi-model combination Combines advantages of multiple models, reduces single- Increases model complexity, reduces interpretability,
methods optimizing prediction model risk, improves stability increases computational overhead
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Digital twin technology facilitates the optimization of dynamic
intervention strategies through real-time simulation of patient
physiological data. Studies demonstrate that predictive models
incorporating multiple dynamic biomarkers enable accurate patient
risk stratification, establishing a more reliable foundation for clinical
decision-making (48). The fundamental value of precision prediction
lies in enabling targeted interventions, allowing medical resources to
high-risk, patients while minimizing unnecessary medical
interventions for low-risk populations (49).

3.2.2 Health risk stratification

Biomarker-driven risk stratification establishes the basis for
implementing differentiated health management. In metabolic disease
management, risk stratification systems utilizing multiple blood
markers effectively identify subgroups with different complication
risks, enabling targeted intervention strategies. These systems have
demonstrated efficacy in identifying diabetes subtypes associated with
elevated mortality risk, supporting evidence-based precision
prevention and treatment (50, 51).

The combination of cardiac biomarkers (e.g., NT-proBNP,
hs-cTnT) with polygenic risk scores enhances cardiovascular risk
stratification (52). This enhanced risk stratification facilitates more
efficient medical resource allocation while providing patients with
clearer risk information, enabling their active participation in health
decision-making processes (53, 54).

3.2.3 Dynamic monitoring and feedback

Periodic biomarker testing enables continuous health status
monitoring. Regular assessment of marker trends facilitates early
detection of abnormal changes and provides real-time feedback,
supporting dynamic adjustment of intervention plans. Periodic
biomarker testing enables continuous health status monitoring.
Regular assessment of marker trends facilitates early detection of
abnormal changes and provides real-time feedback, supporting
dynamic adjustment of intervention plans. For example, wearable IoT
biomarker sensors have been utilized for early disease diagnosis and
continuous monitoring, significantly enhancing health management
capabilities particularly in resource-limited regions (55). These devices
achieve continuous sampling through microfluidic technology,
providing technical support for individualized health tracking
(55, 56).

Modern intelligent wearable devices incorporate continuous
monitoring capabilities for multiple physiological parameters,
(e.g.
biofeedback-enabled wearables) when combined with specialized

establishing closed-loop health management systems
testing equipment. Research demonstrates that real-time heart rate
monitoring through wearable devices has been implemented for
stimulation decisions in closed-loop devices (57), while analysis of
exercise-related electroencephalogram signals provides biomarker
support for closed-loop neuroregulation (58). Such systems have
significantly improved disease control outcomes, particularly in
diabetes management, where closed-loop systems combining
continuous glucose monitoring (CGM) with insulin pumps have
achieved precise glycemic regulation (59, 60).

Dynamic monitoring enhances both disease management and
long-term maintenance of healthy behaviors. Through real-time
health data feedback, individuals can directly observe the immediate
effects of lifestyle modifications on health indicators; for instance,
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biofeedback techniques in stress management can enhance positive
“closed-loop” health
management system embodies the fundamental concept of proactive

behavioral reinforcement (61, 62). This

health management-empowering individuals as active managers of
their own health. The realization of personalized management
ultimately depends on intelligent delivery systems that translate model
outputs into actionable insights, as discussed in Section 4.4.

3.2.4 Public health resource optimization

At the population health level, biomarker-driven prediction
systems enhance public health resource allocation efficiency. Analysis
of population-level biomarker data enables disease trend prediction
and high-risk community identification, facilitating precise resource
allocation. As objective indicators for disease diagnosis, treatment
response prediction, and personalized medicine, biomarkers reduce
medical costs and improve population health outcomes through early
detection (63). Their utility as early warning systems has been
validated in medical practice, with notable increases disease risk
assessment applications (64). In primary prevention contexts,
biomarker-supported health monitoring systems effectively identify
high-risk population distributions (65).

The cornerstone of public health resource optimization lies in
achieving effective population-level risk stratification. Analysis of
regional biomarker data, variations enable health decision-makers to
identify area-specific health risk patterns and design targeted
interventions. Studies confirm that adjusting resource allocation
formulas based on biomarker variations enhances both equity and
efficiency in health resource distribution (66). For instance, optimizing
screening service distribution based on regional disease burden
characteristics through small-area health data analysis has proven
effective for resource allocation (67). In urological emergencies, rapid
risk stratification of urosepsis in patients with urinary calculi through
urinary biomarkers allows high-risk patients to receive priority access
to intensive care resources while preventing overtreatment in medium
and low-risk patients, thereby reducing emergency department length
of stay and healthcare costs (68).

In public health emergencies, biomarker monitoring provides
early warning indicators, supporting rapid response and resource
deployment. During the COVID-19 pandemic, community
wastewater SARS-CoV-2 monitoring emerged as an effective tool for
predicting regional epidemic trends, assisting public health
departments in optimizing testing and medical resource allocation
(69). In dengue-endemic regions, early warning models constructed
through mosquito-borne virus genomic surveillance combined with
meteorological data enable the deployment of vector control resources
and mobile medical units to high-risk communities before outbreak
occurrence (70, 71).

Furthermore, correlation analysis between biomarkers and
environmental factors provides scientific evidence for environmental
health policy development. Environmental intervention effectiveness
can be evaluated through monitoring environmental exposure
markers in specific populations. This data-driven approach addresses
health equity issues in resource allocation (72), particularly when
exposure risks demonstrate significant geographical variations,
biomarker data guides policymakers in prioritizing environmental
governance (73).

The successful implementation of proactive health applications
requires comprehensive technical support. The following chapter
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details the complete technical pathway from data acquisition, and
biomarker screening to model construction and optimization,
providing methodological

guidance for practical

application implementation.

4 Technical framework and
methodological pathway

Realizing the application value of biomarker-driven predictive
models in proactive health management requires a comprehensive
technical framework and methodological pathway, encompassing data
acquisition, analysis, processing, model construction, evaluation, and
application. This chapter systematically examines each component of
this technical framework and their interconnections, providing
methodological guidance for practical applications.

4.1 Data acquisition and preprocessing

Data acquisition and preprocessing constitute fundamental
elements of the technical framework, directly influencing the quality of
subsequent analysis and model construction. The primary objective of
this stage involves ensuring data completeness, consistency, and
reliability, establishing a high-quality foundation for subsequent analyses.

4.1.1 Multi-source data integration

The integration of multi-source heterogeneous data is
fundamental to developing comprehensive biomarker models. The
establishment of unified data standards and interoperability
frameworks facilitates seamless integration of clinical measurements,
genomic information, and environmental factors (74). This integration
process must address technical challenges including data format
inconsistencies, terminology variations, and semantic compatibility
issues (75).

Data source quality assessment and consistency verification are
crucial in research practice to ensure integrated data reliability. This
process involves implementing data quality scoring systems to
evaluate different sources and adjust their analytical weights
accordingly (76, 77). The integration process must maintain temporal
consistency, ensuring proper alignment of data from various time
points to support longitudinal analysis (78).

Ontology-based data integration methods serve as an effective
approach, facilitating semantic mapping between diverse data sources
by through shared conceptual frameworks (79). This methodology
enables the creation of unified data views while maintaining original
data characteristics, establishing structured foundations for
subsequent analyses.

4.1.2 Data quality control and standardization

Rigorous data quality control serves as the cornerstone for
ensuring model performance. Multi-level quality assurance
mechanisms, incorporating automated anomaly detection and
standardized preprocessing workflows, should be integrated into
routine components of data processing (80). Quality control protocols
must encompass anomaly identification and processing, missing value
assessment and imputation, duplicate record detection, and additional
measures to ensure data completeness and accuracy (81).
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Standardization represents a critical step in processing multi-
center and multi-source data. The variation in measurement units and
reference ranges, across detection platforms and laboratories often
renders direct data comparison impossible (82). Standardization
techniques such as Z-score normalization or percentile transformation
enable conversion of diverse data sources to a unified scale (83). For
high-throughput omics data exhibiting significant, specialized batch
effect correction methods such as ComBat are essential (84).

The implementation of standardized data governance frameworks
enhances cross-institutional data comparability and consistency,
thereby improving model stability. This encompasses the establishment
of data dictionaries, standard operating procedures, and quality
monitoring processes to maintain consistency in data collection and
processing (84).

4.1.3 Privacy protection mechanisms

Clinical data processing requires adherence to strict privacy
protection frameworks, that balance data utilization value with ethical
requirements. Multi-level security architectures incorporate data source
encryption and transmission endpoint encryption, providing
continuous data protection throughout the process, exemplified by
blockchain smart contract data integrity verification in multi-center
medical alliances (85, 86). Attribute-based access control systems enable
precise restrictions on user roles, identity characteristics, and specific
operations, ensuring compliance and traceability through audit logs.

Contemporary security frameworks are designed to comply with
the European Unions General Data Protection Regulation (GDPR)
requirements for sensitive medical information processing (87).
Blockchain smart contracts enable regular data integrity verification,
minimizing anomalies caused hardware failures, as validated on
multi-center medical alliance platforms (84).

Balancing data usability with privacy protection a significant
challenge. Advanced technologies including differential privacy and
federated learning enable collaborative analysis and model training
without raw data sharing (88, 89). These innovations create new
opportunities for multi-center collaborative research while
safeguarding patient privacy and data sovereignty.

The data acquisition and preprocessing phase establishes the
foundation for subsequent biomarker screening and model
development. High-quality, standardized, and secure data constitutes
a prerequisite for achieving accurate predictions and effective clinical
applications. The following section explores methods for screening
and validating clinically valuable biomarkers from this data.

4.2 Biomarker screening and validation

Biomarker screening and validation is a key link connecting data
and models, with the goal of identifying indicator combinations with
clinical predictive value from massive data. This process requires
combining statistical methods, machine learning techniques, and
biological knowledge to ensure that the selected biomarkers have
statistical significance, biological rationality, and clinical practicality.

4.2.1 Application of machine learning and
statistical methods

The identification, of clinically valuable biomarkers from multi-
omics data represents a central challenge in precision medicine. While
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traditional statistical methods offer robustness, they encounter
limitations in processing high-dimensional data and non-linear
relationships (90). Recent machine learning advances, particularly
ensemble algorithms such as Extreme Gradient Boosting (XGBoost)
and Deep Neural Networks (DNNs), have enhanced biomarker
screening efficiency through automatic capture of non-linear
interactions and hierarchical feature expressions (91, 92). Wrapper
feature selection techniques utilizing genetic algorithms can evaluate
multiple feature combinations to optimize model performance in
supervised tasks such as cancer Cclassification (93). These
methodologies demonstrate superior capabilities in feature selection
and pattern recognition compared to conventional approaches.

The integration of machine learning with statistical methods
addresses the limitations of conventional approaches in identifying
non-linear relationships. Evidence indicates that this combined
approach enhances screening efficiency and accuracy while
maintaining statistical rigor, generating novel insights for biomarker
research (94). The practical implementation typically involves
statistical methods for initial screening, followed by machine learning
techniques for detailed analysis, and subsequent validation through
biological knowledge assessment. Research demonstrates that these
integrated approaches improve Area Under the Curve (AUC) values
by 12-18% in survival prediction and disease classification compared
to individual methods (95, 96).

Data preprocessing plays a vital role in ensuring reliable analysis
and model performance. Box plots and interquartile range (IQR)
methods effectively handle outliers, while missing data managed
through Multiple Imputation by Chained Equations (MICE)
maintains sample integrity (12, 90). For multi-center studies with
batch effects, the ComBat normalization algorithm employs a
Bayesian framework to address platform biases, enhancing cross-
dataset biomarker comparability by over 30% (97).

The optimization of screening strategies necessitates a balance
between statistical power and computational efficiency. For high-
dimensional data analysis, two-stage screening approaches
demonstrate superior effectiveness: initially employing rapid
algorithms (e.g., LASSO regularization or random forest importance
scoring) for preliminary screening (98), followed by comprehensive
evaluations of candidate features, including statistical significance
testing, stability analysis, and biological pathway enrichment analysis
(99). This approach reduced model computation time by 58% in renal
transplant cardiovascular risk prediction while maintaining 95%
prediction accuracy (100). The integration of these computational
approaches with biological context is particularly crucial in multi-
omics research, where heterogeneous data layers demand unified
analytical frameworks, as discussed below.

4.2.2 Multi-omics integration research design

Multi-omics research design facilitates comprehensive
understanding of disease mechanisms. While single omics data (e.g.,
genomics) provides substantial information, it often fails to capture
the complete complexity of diseases. The integration of multi-level
biological information, including genotype, expression profiles,
protein levels, and metabolites, enables the construction of more
comprehensive molecular disease maps (101).

The combination of proteomics, metabolomics, and genomics
data yields more comprehensive molecular characteristics. This

integrated approach enables the identification of essential biomarkers
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and pathways that remain undetectable through single omics methods
(102). Various integration strategies are applicable, including early
integration (merging data at the feature level), intermediate integration
(merging results at the model level), and late integration (merging
predictions at the decision level).

Multi-omics integration presents technical challenges including
data dimension imbalance, feature scale differences, and data
completeness issues. Specialized integration algorithms, such as multi-
view learning and tensor decomposition methods, effectively address
these challenges by processing heterogeneous data sources and extract
complementary information (103). During validation, careful
consideration of the incremental value of integrated models compared
to single omics models, ensures substantial improvements in
predictive performance.

Multi-omics research design requires consideration of cost-
effectiveness balance. Although comprehensive multi-omics analysis
generates extensive information, clinical implementation remains
costly and complex (104). Selecting optimal omics combinations with
maximum incremental predictive value achieves optimal cost-
effectiveness ratios for specific applications. For routine clinical
applications, developing simplified models incorporating select high-
value biomarkers based on previous research enhances clinical
feasibility (105).

Systematic biomarker screening and validation enables the
identification of clinically predictive indicator combinations,
establishing a foundation for subsequent model construction. These
validated biomarkers demonstrate both statistical predictive power
and biological disease mechanisms, facilitating the translation from
data to clinical insights.

4.3 Model development and optimization

Model development and optimization is the core component of
the technical framework, transforming screened biomarkers into
predictive tools for clinical decision-making. This stage requires
selecting appropriate algorithms, optimizing model structure and
parameters, validating model performance, and ensuring clinical
applicability of the model.

4.3.1 Multifactor prediction model construction

In contemporary medical research, multifactor predictive models
have largely superseded univariate analysis as primary tools for disease
risk assessment. Biomarker screening provides fundamental support
for model development (106), but comprehensive disease mechanism
(e.g.
environmental exposures and behavioral patterns). Model selection

analysis requires integration of exogenous variables
should align with data characteristics and research objectives: logistic
regression offers high interpretability for quantifying biomarker-
disease associations (107), while ensemble methods (e.g., random
forests) provide robust performance in capturing complex nonlinear
patterns (108).

Deep learning enhances high-dimensional heterogeneous data
processing through multiple non-linear transformations to extract
potential feature patterns (109). However, its inherent “black box”
nature constrains clinical translation (110). The introduction of
enhanced interpretability techniques (e.g., attention mechanisms and
SHAP value frameworks) addresses this limitation, balancing
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predictive accuracy with model transparency (111). This technological
integration establishes new pathways for clinical implementation of
predictive models.

Hierarchical model building strategies demonstrate superior
outcomes, by first assessing foundation models based on clinical and
routine biochemical indicators, then evaluating the incremental
predictive value of novel biomarkers (106). This methodology
quantifies the contribution of new markers while ensuring models
maintain clinical utility. For complex diseases, stratified modeling
approaches, which develop specialized predictive models for distinct
disease subtypes or risk levels, effectively enhance prediction accuracy.

4.3.2 Feature engineering

The predictive performance of multifactor models relies on the
relevance and representativeness of selected features. As the
foundation of model development, feature engineering significantly
influences model accuracy and generalizability through the selection,
transformation, and creation of variables to optimize attribute
representation. Dimensionality reduction techniques (e.g., PCA,
t-SNE) simplify complex biomarker data while preserving critical
information (112).

In clinical applications, feature interpretability and stability are
essential considerations, making feature combinations with clear
biological significance preferable. Domain knowledge is instrumental
in feature engineering, guiding the development of clinically
meaningful derived features, such as establishing “intervention
measures” and “orthotic device” related feature sets through medical
expert knowledge (113), or developing dynamic indicators such as
biomarker ratios and rates of change based on pathological
progression mechanisms (114).

The synthesis of clinical experience and algorithmic feature
selection optimally identifies variable combinations with biological
significance. For instance, in cardiovascular risk prediction, combining
7 imaging features selected by LASSO regression with 4 clinical
features achieved an AUC of 0.848 (115); while in sepsis prediction,
incorporating hemodynamic fluctuation indicators with temporal
trend features through random forest algorithms enhanced the
model’s capacity to capture pathological dynamic changes (116). These
dynamic features provide predictive information beyond traditional
static indicators by reflecting longitudinal change patterns of
biomarkers (e.g., cerebral blood volume fluctuations, metabolite time
series fluctuations).

Feature engineering must address the feasibility of practical
clinical applications. Optimal feature combinations should balance
predictive performance, measurement cost, and operational
complexity. Studies indicate that simplified models integrating routine
examination indicators (e.g., prostate-specific antigen density) with
radiomics features reduced feature dimensions from 107 to 8 while
maintaining an AUC of 0.774 (117). In implementation, developing
predictive models of varying complexity, from simplified versions with
routine examination indicators to advanced versions incorporating
multi-omics data, enables adaptation to different application scenarios
and resource constraints.

4.3.3 Model validation and evaluation

Rigorous validation frameworks are essential for ensuring model
reliability in real applications. Multi-level validation strategies,
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encompassing internal cross-validation, external independent cohort
validation, and robustness testing for different populations, represent
standard practices in modern model evaluation. Internal validation
typically employs k-fold cross-validation (118) or bootstrapping to
assess model stability on training data; external validation tests model
generalizability in new populations or different clinical environments
(119), a critical step in determining the model’s true value.

Comprehensive evaluation frameworks should incorporate
multiple performance metrics to thoroughly assess the models
predictive capability, stability, and clinical value. For classification
tasks, beyond traditional AUC, sensitivity, specificity, and positive
predictive value warrant examination; for prognosis prediction,
calibration (consistency between predicted probabilities and actual
event rates) and discriminative ability (e.g., C-index) require
evaluation (120, 121). Decision Curve Analysis (DCA) has emerged
as a vital tool for evaluating clinical value, quantifying net benefits at
different decision thresholds (122).

Transparency and completeness in the validation process are
crucial. In paper publications and clinical applications, validation
methods, population characteristics, and all performance metrics
require detailed reporting, enabling other researchers and clinical
users to accurately assess the model’s applicable scope and
limitations. Additionally, public sharing of model code and
validation ~ datasets research

promotes transparency

and reproducibility.

4.3.4 Clinical utility evaluation

The ultimate value of predictive models resides in their clinical
utility. Tools such as decision curve analysis and clinical impact graphs
quantify the net benefit of models at different decision thresholds.
These methods evaluate the value of models in actual clinical
scenarios, considering the relative costs of false positives and false
negatives, providing a foundation for
thresholds (123).

Research demonstrates that integrating prediction results with

selecting  decision

existing clinical risk scores substantially increases physicians’ trust in
model outputs (124). Developing decision support tools compatible
with existing clinical workflows, enabling model predictions to
integrate seamlessly into daily clinical practice, represents an effective
strategy for improving clinical acceptance (125). Model outputs
should be presented in intuitive and comprehensible forms, such as
risk classifications, risk percentiles, or comparisons with reference
populations, enabling informed decision-making by clinicians
and patients.

Clinical utility evaluation should consider implementation costs
and operational complexity. High-performance but complex and
expensive models may face limitations in practical applications (126),
necessitating balance between so performance and feasibility during
model development. Early consideration of model clinical pathway
integration strategies ensures effective translation of technological
innovation into clinical value.

4.3.5 lterative model optimization

Prediction model development is an iterative process necessitating
continuous refinement based on evolving clinical needs, emerging
data, and performance feedback from real-world deployment.
Optimization cycles involve re-evaluating model architecture,
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retraining with updated datasets, adjusting hyperparameters, and
incorporating novel biomarkers or features to enhance predictive
accuracy, stability, and clinical utility over time (127, 128). Moreover,
establishing mechanisms for regular model performance monitoring,
feedback collection from end-users (clinicians, patients), and
scheduled re-validation is critical, particularly as clinical practices
evolve or population characteristics shift. This ongoing process
ensures the model remains relevant, reliable, and effective in
supporting  clinical ~decision-making within the dynamic
healthcare environment.

Following model development and optimization, the critical next
phase involves effectively delivering prediction results to end users to

realize their clinical value.

4.4 Model prediction results delivery

The effectiveness of model predictions ultimately depends on
how results are communicated and used. Prediction results
delivery is the key link in transforming model outputs into
actionable information, requiring consideration of user needs,
methods, and decision

information presentation

support functions.

4.4.1 Intelligent delivery system construction

Intelligent results delivery systems should adapt information
display methods according to specific user roles and clinical contexts.
For clinicians, the system provides comprehensive risk assessment
results, including key risk factors, recommended interventions, and
expected outcomes (129); for patients, it delivers accessible risk
information and personalized health recommendations (130); for
health management organizations, it generates population-level risk
analysis reports to support resource allocation decisions (131).

Delivery mechanisms incorporating decision support functions
and interpretability tools enhance clinical acceptance. These include
providing evidence links, explaining primary predictive factors,
comparing potential outcomes of different intervention strategies, and
offering personalized recommendations based on historical decision
patterns (132-134). Results delivery should integrate risk explanation
with actionable intervention recommendations to maximize
clinical utility.

From a technical perspective, delivery systems should facilitate
multi-platform integration and real-time updates. Contemporary
delivery architectures typically encompass web applications, mobile
applications, and electronic health record system integration, ensuring
accessibility across various environments (135). Moreover, systems
should incorporate configurable alert mechanisms that automatically
generate notifications based on predicted risk levels and time
sensitivity, enabling timely intervention for high-risk cases (136).

Through a
methodological pathway, biomarker-driven predictive models

comprehensive  technical framework and
establish a closed loop from data acquisition and analysis to clinical
application, achieving proactive health management objectives
(Figure 2). This integrated framework illustrates how the systematic
processing of biomarker data through standardized analytical
pathways enables transition from reactive medical interventions to

proactive health monitoring and personalized risk assessment,
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representing a paradigm shift in clinical practice methodology.
Nevertheless, this process faces multiple challenges requiring
systematic response strategies, which the next chapter examines
in detail.

5 Data quality and standardization
challenges

The challenges facing biomarker-based predictive models
span the entire pipeline from data to clinical implementation:
data quality and standardization issues constitute fundamental
barriers at the foundational level; limited model generalizability
restricts the broad applicability of these technologies; difficulties
in clinical translation of biomarkers impede the transformation
of research findings into clinical practice; while public acceptance
and resource constraints affect the ultimate implementation
effectiveness. These challenges form a multi-layered problem
social dimensions,

system from technical to requiring

systematic solutions.

5.1 Data quality and standardization

Challenges: Clinical test data originates from multiple sources,
lacking standardized collection and storage protocols (137). Variations
in testing equipment parameters and operational standards create
systematic biases in cross-institutional indicators (138). Manual input
errors and heterogeneous system compatibility issues may
compromise data integrity, affecting the reliability and comparability
of subsequent analyses (139). This data heterogeneity constrains
predictive model optimization, creating structural barriers to multi-
scenario applicability (140).

Solutions: Implement quality control systems and standardize
data governance from the source, conducting regular equipment
calibration and enhancing operator training. In data processing,
establish traceable cleaning mechanisms and standardized outlier
handling protocols (141). Systematically standardize the entire data
lifecycle management process according to international clinical
laboratory quality management systems (142). This includes
establishing unified data collection and coding standards,
implementing standardized medical terminology systems (e.g.,
SNOMED CT or LOINC) (140), and deploying automated data
quality monitoring processes.

These measures will enhance data quality, establish a robust
foundation for model construction, and strengthen prediction system
(143). data
collaboration networks and sharing standardized data collection and

reliability Meanwhile, developing multi-center
processing methods can accelerate high-quality health data
accumulation (144), providing adequate training samples for accurate
predictive models.

Additionally, we recommend developing intelligent data cleaning
and standardization tools for automatic identification and processing
of common data issues, including outlier detection, unit conversion,
and missing value handling. These tools should be adaptable to
accommodate the requirements of various medical environments and
data types, while maintaining comprehensive records of the
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A data-driven framework for health management: from biomarker discovery to personalized health implementation. The diagram depicts the cyclical
process of: (I) Data Acquisition and Preprocessing (show in blue); () Biomarker Screening and Validation(show in yellow); (Ill) Model Development and
Optimization(show in purple); (IV) Result Delivery and Implementation(show in green). Each stage contains essential components for translating
biomarker discovery into clinical application, with implementation workflow at the center.

processing, to ensure transparency and traceability of data
processing (145).

5.2 Model generalizability

Challenges: Current predictive models frequently experience
performance degradation in “laboratory-to-clinical” scenarios,
primarily due to limitations in training data regarding geographic, age,
and racial diversity (146). This insufficient data representativeness
impedes the model’s capacity to capture complex population
differences, reducing its adaptability in clinical healthcare (147).
Models demonstrate performance deterioration in real-world clinical
practice implementation; this “laboratory-to-reality” performance gap
represents a major obstacle to the implementation of precision
medicine (128, 148).

Solutions: Enhancement of model generalizability necessitates
constructing training datasets with greater ecological validity. Multi-
center collaborative collection of health data encompassing
geographic/demographic/environmental variations can strengthen
model generalization capabilities through the integration of diverse
feature sets (146). In model design, we recommend adopting domain
adaptation and transfer learning techniques to enable models to better
adapt to feature distributions in new populations. Incremental
learning strategies facilitate model updates with new data without
complete retraining (149), which is essential for dynamically adapting
to changes in clinical environments.

In model validation, we recommend combining independent
cohort validation with real-world data testing. Robustness testing
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that considers dynamic environmental factors and individual
differences effectively identifies models with clinical utility (150,
151). This multidimensional validation system provides a scientific
basis for model deployment, while identifying the model’s
applicable scope and limitations, offering clear guidance for
clinical use.

Furthermore, we advocate developing integrated and adaptive
model architectures capable of automatically adjusting prediction
strategies based on different population characteristics. For instance,
utilizing meta-learning frameworks to build models that rapidly adapt
to new populations, or adopting stratified model strategies to train
specialized models for different population subgroups and then
integrating results through ensemble methods. This approach better
adapts to population heterogeneity while maintaining overall
prediction accuracy (152).

5.3 Difficulty of clinical translation of
biomarkers

Challenges: A substantial gap exists between basic biomarker
research and clinical applications, with detection performance
variability and disease heterogeneity serving as key bottlenecks
(153). Although high-throughput detection enhances sensitivity, its
high cost and complex operations restrict widespread use (154).
Moreover, clinical validation requires large-scale, prospective
longitudinal cohorts (155), further decelerating the translation
process. Clinical application of novel biomarkers faces extended
processes of regulatory approval (156) and inclusion in clinical
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guidelines (157), impeding the timely delivery of innovative results
to patients.

Solutions: Addressing this challenge requires establishing “basic-
clinical” feedback mechanisms. Systematic evaluation of marker
predictive performance in various clinical scenarios through multi-
center trials and establishment of automated testing platforms
balances accuracy and cost. This evaluation should follow unified
methodological standards and reporting guidelines (158), ensuring
result comparability and reliability.

Formulating standardized clinical guidelines and dynamic evaluation
systems is essential for biomarker standardization. We recommend
establishing biomarker evaluation alliances (157), integrating resources
from academic institutions, medical centers, and industry (158)
accelerates the validation and translation of high-value markers.
Meanwhile, developing simplified testing technologies and point-of-care
devices reduces the cost and complexity of high-value biomarker
detection, enhancing suitability for routine clinical applications.

We believe that constructing a complete translation pipeline from
discovery to application, including early clinical validation,
commercialization pathway planning, and regulatory strategy
formulation (159), can expedite the clinical translation of biomarkers.
This process, close collaboration between academia and industry for
efficient transformation of scientific discoveries into clinical testing
products. Establishing biomarker research and development sharing
platforms promotes open sharing of data, methods, and resources
helping avoid duplication and accelerate innovation.

5.4 Public acceptance of artificial
intelligence and big data

Challenges: While technological safeguards (Section 4.1.3)
address data security, public acceptance requires additional
sociotechnical considerations, including algorithmic transparency and
ethical governance. Advanced medical AI applications raise concerns
regarding algorithmic interpretability and privacy security. Limited
trust in prediction results among healthcare providers and patients
stems from insufficient technological transparency and risk
communication (160). Vulnerabilities in health data lifecycle
management, particularly leakage risks, intensify public skepticism
and concern (161). Inadequate consent mechanisms in data collection
processes and concerns about health data usage impede public
acceptance of Al-based health solutions (162).

Establishing
multidimensional public engagement. Creating open technology

Solutions: technological trust requires
exchange platforms to explain Al decision logic and uncertainty
enhances prediction result transparency for healthcare providers
and patients. This includes developing visualization tools to display
key predictive factors and uncertainties, and providing user-
friendly explanation systems that translate complex model
decisions into comprehensible language (163).

For data security, we recommend technologies such as differential
privacy and federated learning, and implementing layered authorization
and traceability mechanisms. These technologies enable model training
and prediction while protecting data privacy, minimizing data sharing
(164). Establishing robust data governance frameworks, including clear
data usage policies, transparent consent processes, and comprehensive

security measures, forms the foundation for building public trust.
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We propose that comprehensive technological ethics
governance frameworks can enhance public acceptance as a
positive catalyst for implementation. This involves establishing
multidisciplinary ethics committees to oversee the development
and deployment of Al systems, ensuring technological innovation
prioritizes patient welfare (160). Conducting systematic public
education and engagement initiatives to explain the capabilities
and limitations of AI in healthcare helps foster public
understanding and acceptance of these emerging technologies.
Additionally, implementing clear responsibility and accountability
mechanisms at the policy level clarifies the obligations of various
stakeholders in data use and AI deployment. Well-defined regulatory
frameworks protect patient rights while providing clear guidance for
technological  innovation, sustainable

fostering industry

development (165).

5.5 Resource and cost issues

Challenges: Developing high-performance predictive models
requires integrating expertise from medicine, computer science,
and biology, but the scarcity of interdisciplinary professionals
presents a major constraint (166). Model development requires
terabyte-scale data storage and high-performance computing,
creating substantial hardware demands, while ongoing R&D
investment strains small and medium-sized organizations (167,
168). In the large-scale clinical implementation, costs of iterative
device upgrades and network infrastructure maintenance
seriously impact resource allocation (169). These resource
affect both
deployment in resource-limited settings (170).

constraints technological development and

Solutions: Developing comprehensive talent cultivation systems
and industry-academia-research collaboration mechanisms is
essential for addressing resource limitations. Higher education
institutions can nurture multidisciplinary professionals with both
clinical expertise and algorithm development capabilities through
interdisciplinary laboratories (166). Meanwhile, implementing data
science training programs for practicing healthcare professionals
enhances the technical capabilities of existing medical teams effectively
addressing immediate talent shortages (171).

Establishing data resource sharing and technology collaboration
platforms between healthcare institutions, research institutes, and
enterprises can minimize translation costs. Such partnerships can
leverage the distinctive resources of different institutions, prevent
redundant investments, and expedite the translation of innovations.
For example, healthcare institutions provide clinical data and
application scenarios, research institutions contribute algorithms and
analytical methods, and enterprises deliver technological
implementation and productization support, creating a synergistic
research ecosystem (170, 172).

Developing intelligent medical technology training programs for
practicing personnel can enhance the technological integration
capabilities of existing teams, facilitating predictive model adoption.
This includes developing modular and customizable learning
resources, enabling healthcare professionals to learn according to their
needs and schedules (173). Meanwhile, developing “technical
assistant” systems to support clinicians using complex prediction tools

effectively reduces technological usage barriers (174).
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For resource optimization, we recommend implementing
architectures that combine cloud computing and edge computing to
balance performance and cost. Cloud computing offers flexible
computational resources that adjust dynamically to demands, avoiding
substantial fixed asset investments (175); edge computing processes
certain data and computational tasks locally, reducing network
bandwidth requirements and latency (167). For resource-constrained
environments, developing efficient algorithms and model compression
techniques enables prediction systems to operate effectively on
standard hardware.

Through systematic approaches to these challenges, biomarker-
based predictive models can overcome current development
constraints and more effectively support proactive health management
objectives. Table 3 summarizes the primary challenges facing
biomarker predictive models and their solutions, highlighting the
multifaceted efforts required to advance technology from laboratory
to clinical application. This structured framework illustrates why
successful implementation requires coordinated efforts across
technical, clinical, and social domains to deliver the potential benefits
of predictive models in real-world healthcare settings. The next
chapter summarize the main findings and contributions of this
research and look toward future development directions.

6 Conclusion and outlook

6.1 Application prospects and remaining
challenges

Biomarker-based predictive models advance proactive health
management by integrating biomarker data with computational
technologies. These models demonstrate potential in: (1) Early
disease detection at pre-clinical stages; (2) Dynamic health
monitoring with real-time assessment; (3) Evidence-based
healthcare resource optimization.

However, challenges persist: data heterogeneity, limited model
generalizability, high costs, and public trust concerns. Technological
advancements including federated learning, differential privacy

10.3389/fpubh.2025.1633487

techniques, simplified testing technologies, and improved model
explanation tools will progressively address these barriers.

6.2 Research contributions and innovation
value

This review’s contributions include: (1) Establishing a
comprehensive framework connecting biomarker discovery with
clinical application; (2) Presenting viable solutions for key
implementation challenges through data governance frameworks and
validation strategies; (3) Investigating the interplay between
technological advancement and ethical considerations; (4) Expanding

biomarker-driven frameworks to public health decision-making.

6.3 Future research directions

Future research should prioritize: expanding to rare disease
markers and dynamic health indicators; deepening multi-omics
integration through systematic analysis of genomic, epigenomic,
transcriptomic, proteomic, and metabolomic data; conducting
longitudinal studies covering the entire life cycle; developing edge
computing and lightweight algorithms for resource-constrained
environments; and strengthening cross-collaboration between
medicine, computer science, and social sciences.

6.4 Summary and vision

This review establishes a multidisciplinary framework for
advancing biomarker-driven predictive models in proactive health
management, addressing critical barriers in data standardization,
model interpretability, and clinical implementation.

Biomarker-based predictive models represent a paradigm shift
from reactive medicine to proactive prevention. Through integration
of multidimensional biomarker data with advanced computational
methodologies, these systems enable early disease detection, risk

TABLE 3 Challenges and solution strategies for clinical translation of biomarker predictive models.

Challenge Key issues

dimension

Data quality and Cross-platform heterogeneity, batch effects
standardization

Core solutions

Unified data governance framework, standardized

biorepositories

Implementation examples

Global biomarker reference standards

Model generalizability Insufficient population diversity, temporal

stability issues

Multi-center validation, transfer learning methods

Diverse validation cohorts

Clinical translation Basic-clinical gap, regulatory uncertainties

Simplified detection technologies, standardized

evaluation systems

Point-of-care testing development

Public acceptance Privacy concerns, transparency issues

Privacy-preserving computing, explainable Al

approaches

Federated learning implementation

Resource limitations Interdisciplinary talent gaps, infrastructure

challenges

Talent development programs, tiered

implementation strategies

University-hospital collaborations

Ethical considerations Health inequality risks, algorithmic bias

Equity assessment frameworks, inclusive design

methodologies

Ethical impact assessments

Al Artificial Intelligence.
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stratification, and personalized interventions—foundational elements
for evidence-based health management. The technical framework
proposed herein provides structured guidance for real-world
healthcare applications.

This prevention-centered paradigm represents a viable approach for
enhancing population health outcomes. As technological innovation
advances and interdisciplinary collaboration strengthens, biomarker-
driven predictive models will assume increasingly significant roles in
health management, contributing substantially to disease prevention
initiatives. This transition requires technological advancement alongside
appropriate regulatory frameworks, ethical considerations, and societal
engagement across medical, technological, and societal domains.
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