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Digital technology and artificial intelligence have revolutionized predictive models 
based on clinical data, creating opportunities for proactive health management. 
This review systematically evaluates the role and effectiveness of biomarker-driven 
predictive models across disease detection, personalized intervention, and healthcare 
resource optimization. Critical challenges hindering their implementation include 
data heterogeneity, inconsistent standardization protocols, limited generalizability 
across populations, high implementation costs, and substantial barriers in clinical 
translation. To address these challenges, we propose an integrated framework 
prioritizing three pillars: multi-modal data fusion, standardized governance protocols, 
and interpretability enhancement, systematically addressing implementation barriers 
from data heterogeneity to clinical adoption. This systematic approach enhances 
early disease screening accuracy while supporting risk stratification and precision 
diagnosis, particularly for chronic conditions and oncology applications. By effectively 
connecting biomarker discovery with practical clinical utilization, our proposed 
framework offers actionable methodologies that address existing limitations while 
guiding multidisciplinary research teams. Moving forward, expanding these predictive 
models to rare diseases, incorporating dynamic health indicators, strengthening 
integrative multi-omics approaches, conducting longitudinal cohort studies, and 
leveraging edge computing solutions for low-resource settings emerge as critical 
areas requiring innovation and exploration.
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1 Introduction

1.1 Research background and objectives

Digital technology and artificial intelligence are transforming healthcare research and practice 
paradigms. Improved computational capabilities now enable integration of clinical testing 
databases, electronic health records, and multi-omics data, creating a multidimensional health 
ecosystem across the human lifecycle (1, 2). This multimodal data integration captures disease 
progression trajectories (3) and elucidates mechanisms underlying individual drug response 
variations through integrated analysis of pharmacogenomics and proteomics (4), creating a robust 
foundation for developing prognosis assessment and health risk predictive models (5).
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The evolution of Artificial intelligence (AI) technologies has 
introduced transformative tools for medical data analysis. Deep learning 
algorithms, specifically, with their advanced feature learning capabilities, 
have enhanced the efficiency of analyzing high-dimensional 
heterogeneous data (6). These computational approaches systematically 
identify complex biomarker-disease associations that traditional 
statistical methods often overlook, enabling more granular risk 
stratification. Research demonstrates that Transformer-based algorithms 
enable precise disease risk stratification (7), accurate diagnostic 
determinations (2), and personalized treatment regimen optimization 
(8) through systematic identification of complex non-linear associations. 
These technological advances are shifting medical practice from 
traditional population-based approaches toward precision medicine 
focused on individual characteristics, with clinical efficacy validated 
through multicenter randomized controlled trials (9, 10).

Despite technological advances, significant challenges persist in 
effectively integrating biomarker data, developing reliable predictive 
models, and implementing these in clinical practice (11). Key 
challenges requiring resolution include data standardization (12), 
model generalizability (9), and clinical implementation pathways (13). 
This review systematically analyzes the application value and technical 
approaches of biomarker-based disease predictive models in proactive 
health management, while examining key challenges and 
corresponding strategies. Through integration of multidisciplinary 
perspectives from epidemiology, clinical medicine, bioinformatics, 
and artificial intelligence, we propose a comprehensive framework 
encompassing biomarker discovery, data integration, model 
construction, and clinical translation, providing systematic guidance 
for the implementation of predictive models in precision medicine.

1.2 The new paradigm of proactive health 
management

Proactive health management represents a transformative shift in 
modern medicine, transitioning from traditional disease diagnosis 
and treatment models to health maintenance approaches based on 
prediction and prevention (14). This transformation is grounded in 
the biopsychosocial medical model, emphasizing early health risk 
identification and implementation of targeted interventions to prevent 
disease onset or delay progression (5). This paradigm specifically aims 
to extend healthspan through preemptive interventions targeting 
subclinical pathological processes. Unlike traditional episodic care 
models, proactive systems implement continuous physiological 
monitoring (15) integrated with dynamic risk assessment 
methodologies (16), thereby maintaining functional capacity through 
preventive intervention. Such paradigmatic transformation aligns 
with strategic health initiatives, including “Healthy China 2030,” and 
addresses demographic challenges posed by increasing chronic disease 
prevalence in aging populations (17).

The evolution of this new paradigm has advanced through 
significant breakthroughs in clinical testing technologies, initiating a new 
era of biomarker research. Contemporary detection platforms (e.g., 
single-cell sequencing, spatial transcriptomics, and high-throughput 
proteomics) generate comprehensive molecular profiles including 
metabolomic, proteomic, and epigenetic features, offering unprecedented 
insights into disease mechanisms (18). Integrated profiling across these 
platforms captures dynamic molecular interactions between biological 
layers, revealing pathogenic mechanisms otherwise undetectable via 
single-omics approaches. This technological advancement has 
transformed biomarker discovery from traditional experience-based 
approaches to data-driven precise identification processes. For instance, 
the integration of multi-omics data and advanced analytical methods has 
improved early Alzheimer’s disease diagnosis specificity by 32%, 
providing a crucial intervention window (19, 20).

These technological breakthroughs have been accompanied by 
continuous refinement in detection methodologies, enabling cost-
effective biomarker discovery and longitudinal monitoring capabilities. 
Progressive refinement of detection methodologies coupled with 
reduction in implementation costs has expanded biomarker applications 
beyond traditional diagnostics toward prospective risk assessment and 
targeted intervention strategies (21). The evolution encompasses 
diversification of clinical applications, transition from univariate to 
multivariate biomarker panels, and development of longitudinal 
monitoring systems capturing temporal physiological variations (22). 
Nevertheless, expanded application domains introduce significant 
methodological challenges requiring systematic resolution to realize the 
full potential of biomarker-driven precision health management.

1.3 Research methodology and content 
framework

To address implementation challenges and evaluate current 
evidence supporting biomarker-driven predictive models, 
we conducted a systematic literature analysis using structured review 
methodology. Comprehensive database searches in PubMed 
encompassed peer-reviewed publications from January 2020 through 
April 2025, employing Boolean combinations of standardized medical 
subject headings and field-specific terminology including 
“biomarkers,” “predictive models,” “health risk assessment,” “proactive 
health management,” and “precision medicine.” The methodological 
approach specifically targeted research addressing critical challenges 
in data heterogeneity management, model interpretability, and clinical 
implementation within personalized medicine contexts.

Through systematic analysis of the selected studies, the research 
synthesized current findings and identified key deficiencies and 
unresolved issues. Based on these analyses, a theoretically grounded 
content framework was constructed to systematically elucidate the key 
elements, technical pathways, and application prospects of biomarker-
driven predictive models. Specifically, this review initially clarifies 
biomarker concepts and their fundamental role in establishing disease 
relationships, establishing the theoretical foundation for subsequent 
discussions; then explores the core value of biomarker predictive 
models in proactive health applications, including early risk 
stratification, personalized health interventions, and public health 
optimization; the technical framework section details the complete 
methodological pathway from data acquisition, biomarker screening 

Abbreviations: AI, Artificial intelligence; AUC, Area under the curve; DNN, Deep 

neural network; GDPR, General data protection regulation; IQR, Interquartile 

range; LASSO, Least absolute shrinkage and selection operator; MICE, Multiple 

imputation by chained equations; PCA, Principal component analysis; R&D, 

Research and development; SHAP, SHapley Additive exPlanations; t-SNE, 

t-distributed stochastic neighbor embedding; XGBoost, Extreme gradient boosting.
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to model construction and optimization, providing specific guidance 
for practical applications; finally, it analyzes systematically key 
challenges in data quality, model generalizability, clinical translation, 
and proposes corresponding solution strategies, indicating directions 
for future research.

Through this structured research methodology and systematic 
content framework, this review aims to provide researchers, clinicians, 
and policy makers with comprehensive knowledge regarding 
biomarker predictive models in proactive health management, 
advancing related technologies and improvements in clinical practice 
improvements. Particularly, we  focus on analyzing from 
multidisciplinary perspectives the translation of biomarker predictive 
models into clinical practice, supporting personalized health 
management systems in precision medicine and facilitating medical 
practice transformation from passive response to proactive prevention.

2 Biomarker concepts and disease 
relationship construction

2.1 Basic concept definition

Biomarkers, defined by the U. S. Institute of Medicine as 
“objectively measurable indicators of biological processes” (23), 
function as indicators of normal biological processes, pathological 
processes, or pharmacological responses to therapeutic interventions. 
This definition emphasizes biomarkers’ objectivity and measurability, 
establishing the foundation for their clinical application.

From a molecular classification perspective, biomarkers include 
genetic markers, epigenetic markers, transcriptomic markers, protein 
markers, and metabolic markers, reflecting multi-level biological 
information from genes to phenotypes (24). With technological 
advancement, biomarker research has evolved from single molecular 

indicators to multidimensional marker combinations, and from static 
measurements to dynamic monitoring, enabling more comprehensive 
capture of disease biological features and providing enhanced 
information for precision medicine (25). Table  1 summarizes the 
characteristics, detection technologies, and clinical applications of 
major biomarker types, demonstrating their distinct values and 
limitations in proactive health management.

2.2 Establishing associations between 
biomarkers and diseases

Establishing reliable associations between biomarkers and diseases 
requires integrating multidisciplinary approaches and multi-level 
validation. The advancement of big data and artificial intelligence 
technologies, has transformed biomarker research from hypothesis-
driven to data-driven approaches, expanding potential marker 
identification (26). As illustrated in Figure 1, the relationship between 
biomarkers and diseases demonstrates multidimensional 
characteristics, including sensitivity, specificity, predictive value, 
dynamic changes, and technical limitations, which collectively 
determine their efficacy and constraints in clinical applications (27). 
These multidimensional characteristics collectively inform how 
biomarker data should be interpreted within specific clinical contexts, 
particularly when determining intervention thresholds that optimize 
the balance between diagnostic accuracy and early detection capabilities.

A systematic biomarker validation process encompasses discovery, 
validation, and clinical validation phases, ensuring research findings’ 
reliability and clinical applicability. Multi-omics integration methods 
serve a crucial role in this process, developing comprehensive 
molecular disease maps by combining genomics (5), transcriptomics 
(28), proteomics (29), and metabolomics data (30), thereby identifying 
complex marker combinations that traditional methods might overlook.

TABLE 1  Classification and clinical application characteristics of biomarkers.

Biomarker type Molecular characteristics 
and origin

Detection technologies Clinical application value PMID

Genetic biomarkers DNA sequence variants or gene 

expression regulatory changes

Whole genome sequencing, PCR, 

SNP arrays

Genetic disease risk assessment, drug target 

screening, tumor subtyping

39019673

Epigenetic biomarkers DNA methylation, histone 

modifications, chromatin remodeling

Methylation arrays, ChIP-seq, 

ATAC-seq

Environmental exposure assessment, early cancer 

diagnosis, drug response prediction

37302584

Transcriptomic 

biomarkers

mRNA expression profiles, non-coding 

RNAs, alternative splicing

RNA-seq, microarrays, real-time 

qPCR

Molecular disease subtyping, treatment response 

prediction, pathological mechanism exploration

39736681

Proteomic biomarkers Protein expression levels, post-

translational modifications, functional 

states

Mass spectrometry, ELISA, protein 

arrays

Disease diagnosis, prognosis evaluation, 

therapeutic monitoring

37481764

Metabolomic 

biomarkers

Metabolite concentration profiles, 

metabolic pathway activities

LC–MS/MS, GC–MS, NMR Metabolic disease screening, drug toxicity 

evaluation, environmental exposure monitoring

38280419

Imaging biomarkers Anatomical structures, functional 

activities, molecular targets

MRI, PET-CT, ultrasound, 

radiomics

Disease staging, treatment response assessment, 

prognosis prediction

37776766

Digital biomarkers Behavioral characteristics, physiological 

fluctuations, molecular sensing

Wearable devices, mobile 

applications, IoT sensors

Chronic disease management, health behavior 

monitoring, early warning

38347143

PCR, Polymerase Chain Reaction; SNP, Single Nucleotide Polymorphism; ChIP-seq, Chromatin Immunoprecipitation Sequencing; ATAC-seq, Assay for Transposase-Accessible Chromatin 
using Sequencing; mRNA, messenger Ribonucleic Acid; qPCR, quantitative Polymerase Chain Reaction; ELISA, Enzyme-Linked Immunosorbent Assay; LC–MS/MS, Liquid 
Chromatography–Tandem Mass Spectrometry; GC–MS, Gas Chromatography–Mass Spectrometry; NMR, Nuclear Magnetic Resonance; MRI, Magnetic Resonance Imaging; PET-CT, 
Positron Emission Tomography-Computed Tomography; IoT, Internet of Things; PMID, PubMed Identifier.
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Temporal data holds distinct value in biomarker research. 
Through longitudinal cohort studies capturing markers’ dynamic 
changes over time, researchers obtain vital information about disease 
natural history. Studies demonstrate that marker trajectories generally 
provide more comprehensive predictive information than single time-
point measurements (31).

2.3 Predictive model construction methods

Predictive model construction represents a crucial step in 
converting biomarker information into clinical decision-making tools. 
Model selection should consider data characteristics, prediction 
objectives, and application scenarios, aiming to a balance predictive 
accuracy, complexity, and interpretability (32).

Traditional statistical methods including logistic regression 
and Cox proportional hazards models provide strong 
interpretability, quantifying each marker’s contribution and 
enhancing clinical understanding (33). However, these approaches 
show limitations in managing high-dimensional data and complex 
non-linear relationships.

Machine learning methods such as random forests, support vector 
machines, and gradient boosting trees effectively process high-
dimensional data, identify non-linear relationships and variable 
interactions, particularly excelling in multi-omics data analysis (34). 
Studies indicate that gradient boosting tree-based models achieve 
superior accuracy in cardiovascular disease risk prediction compared 
to traditional risk scores (35).

Deep learning shows significant potential in processing images, 
temporal data, and multimodal integration, though its “black box” 

FIGURE 1

Characteristics influencing the relationship between biological indicators and diseases. The diagram outlines key factors such as sensitivity, specificity, 
adaptive reference ranges, dynamic changes, predictive value, technical limitations, and temporal or biological variability. These factors collectively 
shape the interpretive and diagnostic utility of biological indicators in disease contexts.
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nature restricts clinical interpretability (36). Model evaluation should 
thoroughly assess discriminatory power, calibration, and clinical 
utility, ensuring model generalizability through rigorous cross-
validation and external validation. Table 2 presents a comparison of 
various predictive modeling methods’ advantages and limitations in 
processing biomarker data, offering guidance for selecting appropriate 
algorithms in specific health management contexts.

In summary, biomarker predictive models demonstrate 
substantial application value in early disease prevention, personalized 
diagnosis and treatment, and public health management, advancing 
medical practice from reactive response toward proactive prevention. 
The subsequent chapter explores these models’ specific value 
manifestations in proactive health applications. These methodological 
considerations necessitate the development of an integrated technical 
framework, as detailed in Section 4.

3 Prospects for proactive health 
applications

Biomarker-driven predictive models present extensive application 
prospects in proactive health management, with their core value 
manifesting in three key dimensions: early risk warning, personalized 
health management, and public health resource optimization. These 
applications are progressively evolving from theoretical possibilities to 
clinical practice, providing robust technical support for healthcare 
model transformation.

3.1 Early disease risk warning

Predictive models based on biomarkers can detect potential health 
risks before clinical symptoms manifest by identifying subtle changes 
at molecular and cellular levels. This early warning mechanism 
provides valuable intervention windows for chronic disease 
management and tumor intervention, altering the timing and 
effectiveness of disease interventions (37, 38).

Multiple prospective studies validate that biomarker warning 
systems effectively enhance disease management outcomes. For type 2 
diabetes, predictive models incorporating glycemic control indicators 
(HbA1c), inflammatory markers (IL-6, TNF-α), and metabolomic 
features can identify high-risk individuals 5–7 years before clinical 
diagnosis (39, 40). This early identification enables implementation of 
lifestyle interventions before irreversible pancreatic β-cell damage 
occurs, effectively delaying or preventing disease progression. In the 
field of cardiovascular disease, genetic polymorphism analysis of TNF-α 
and IL-6 combined with assessment of inflammatory markers and 
metabolic variables can identify potential risk groups for cardiovascular 
events among patients with chronic heart failure (41, 42).

In neurodegenerative diseases, predictive models integrating 
blood biomarkers such as β-amyloid and tau proteins can identify 
high-risk populations for Alzheimer’s disease before significant 
cognitive decline (43, 44). This early identification provides critical 
opportunities for time-sensitive interventions, enhancing treatment 
success probability (45). Notably, this biomarker-based early warning 
system represents a paradigm shift from reactive to proactive 
medical practice.

3.2 Personalized health management

Personalized health management represents the core practice of 
the proactive health concept. Biomarker-based predictive models 
facilitate the transition from population-level averages to individual 
precision management by providing tailored risk assessments and 
intervention recommendations.

3.2.1 Precise prediction and intervention
Biomarker predictions based on individual genetic backgrounds 

and metabolic characteristics deliver more precise assessments of 
disease susceptibility. Machine learning methods enhance risk 
prediction accuracy by integrating multidimensional biomarkers with 
clinical data (46), particularly in specific subgroups such as diabetes 
patients and cancer survivors (47).

TABLE 2  Comparative methodology of predictive model construction.

Modeling 
method

Algorithm principles Technical advantages Limitations

Logistic/cox 

regression

Linear combination predicting 

probability or hazard ratio

Strong interpretability, computational efficiency, direct 

quantification of biomarker contributions

Difficulty capturing complex non-linear relationships 

and higher-order interactions

Random forest Multi-decision tree voting 

ensemble

Strong capability for high-dimensional data, automatic 

identification of complex interactions, robustness to outliers

High computational resource requirements, 

overfitting risk, complex interpretation

Deep learning Multi-layer neural networks 

extracting hierarchical features

Automatic feature extraction, multi-modal data processing, 

temporal feature capture

Requires large training datasets, black-box 

characteristics, computationally intensive

Gradient 

boosting trees

Tree ensemble with serial 

optimization of residuals

High prediction accuracy, strong capability for handling 

missing values, feature importance assessment

Complex hyperparameter tuning, overfitting risk, 

interpretability inferior to linear models

Support vector 

machines

Maximum margin hyperplane 

classification

Effective in high-dimensional spaces, kernel functions for 

non-linearity, strong generalization capability

Tedious parameter tuning, low computational 

efficiency for large datasets

Bayesian 

networks

Probabilistic graphical models 

representing causal relationships

Integration of prior knowledge, uncertainty handling, 

visualization of variable relationships

High computational complexity, requires expert 

knowledge for model structure

Ensemble 

methods

Multi-model combination 

optimizing prediction

Combines advantages of multiple models, reduces single-

model risk, improves stability

Increases model complexity, reduces interpretability, 

increases computational overhead
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Digital twin technology facilitates the optimization of dynamic 
intervention strategies through real-time simulation of patient 
physiological data. Studies demonstrate that predictive models 
incorporating multiple dynamic biomarkers enable accurate patient 
risk stratification, establishing a more reliable foundation for clinical 
decision-making (48). The fundamental value of precision prediction 
lies in enabling targeted interventions, allowing medical resources to 
high-risk, patients while minimizing unnecessary medical 
interventions for low-risk populations (49).

3.2.2 Health risk stratification
Biomarker-driven risk stratification establishes the basis for 

implementing differentiated health management. In metabolic disease 
management, risk stratification systems utilizing multiple blood 
markers effectively identify subgroups with different complication 
risks, enabling targeted intervention strategies. These systems have 
demonstrated efficacy in identifying diabetes subtypes associated with 
elevated mortality risk, supporting evidence-based precision 
prevention and treatment (50, 51).

The combination of cardiac biomarkers (e.g., NT-proBNP, 
hs-cTnT) with polygenic risk scores enhances cardiovascular risk 
stratification (52). This enhanced risk stratification facilitates more 
efficient medical resource allocation while providing patients with 
clearer risk information, enabling their active participation in health 
decision-making processes (53, 54).

3.2.3 Dynamic monitoring and feedback
Periodic biomarker testing enables continuous health status 

monitoring. Regular assessment of marker trends facilitates early 
detection of abnormal changes and provides real-time feedback, 
supporting dynamic adjustment of intervention plans. Periodic 
biomarker testing enables continuous health status monitoring. 
Regular assessment of marker trends facilitates early detection of 
abnormal changes and provides real-time feedback, supporting 
dynamic adjustment of intervention plans. For example, wearable IoT 
biomarker sensors have been utilized for early disease diagnosis and 
continuous monitoring, significantly enhancing health management 
capabilities particularly in resource-limited regions (55). These devices 
achieve continuous sampling through microfluidic technology, 
providing technical support for individualized health tracking 
(55, 56).

Modern intelligent wearable devices incorporate continuous 
monitoring capabilities for multiple physiological parameters, 
establishing closed-loop health management systems (e.g., 
biofeedback-enabled wearables) when combined with specialized 
testing equipment. Research demonstrates that real-time heart rate 
monitoring through wearable devices has been implemented for 
stimulation decisions in closed-loop devices (57), while analysis of 
exercise-related electroencephalogram signals provides biomarker 
support for closed-loop neuroregulation (58). Such systems have 
significantly improved disease control outcomes, particularly in 
diabetes management, where closed-loop systems combining 
continuous glucose monitoring (CGM) with insulin pumps have 
achieved precise glycemic regulation (59, 60).

Dynamic monitoring enhances both disease management and 
long-term maintenance of healthy behaviors. Through real-time 
health data feedback, individuals can directly observe the immediate 
effects of lifestyle modifications on health indicators; for instance, 

biofeedback techniques in stress management can enhance positive 
behavioral reinforcement (61, 62). This “closed-loop” health 
management system embodies the fundamental concept of proactive 
health management-empowering individuals as active managers of 
their own health. The realization of personalized management 
ultimately depends on intelligent delivery systems that translate model 
outputs into actionable insights, as discussed in Section 4.4.

3.2.4 Public health resource optimization
At the population health level, biomarker-driven prediction 

systems enhance public health resource allocation efficiency. Analysis 
of population-level biomarker data enables disease trend prediction 
and high-risk community identification, facilitating precise resource 
allocation. As objective indicators for disease diagnosis, treatment 
response prediction, and personalized medicine, biomarkers reduce 
medical costs and improve population health outcomes through early 
detection (63). Their utility as early warning systems has been 
validated in medical practice, with notable increases disease risk 
assessment applications (64). In primary prevention contexts, 
biomarker-supported health monitoring systems effectively identify 
high-risk population distributions (65).

The cornerstone of public health resource optimization lies in 
achieving effective population-level risk stratification. Analysis of 
regional biomarker data, variations enable health decision-makers to 
identify area-specific health risk patterns and design targeted 
interventions. Studies confirm that adjusting resource allocation 
formulas based on biomarker variations enhances both equity and 
efficiency in health resource distribution (66). For instance, optimizing 
screening service distribution based on regional disease burden 
characteristics through small-area health data analysis has proven 
effective for resource allocation (67). In urological emergencies, rapid 
risk stratification of urosepsis in patients with urinary calculi through 
urinary biomarkers allows high-risk patients to receive priority access 
to intensive care resources while preventing overtreatment in medium 
and low-risk patients, thereby reducing emergency department length 
of stay and healthcare costs (68).

In public health emergencies, biomarker monitoring provides 
early warning indicators, supporting rapid response and resource 
deployment. During the COVID-19 pandemic, community 
wastewater SARS-CoV-2 monitoring emerged as an effective tool for 
predicting regional epidemic trends, assisting public health 
departments in optimizing testing and medical resource allocation 
(69). In dengue-endemic regions, early warning models constructed 
through mosquito-borne virus genomic surveillance combined with 
meteorological data enable the deployment of vector control resources 
and mobile medical units to high-risk communities before outbreak 
occurrence (70, 71).

Furthermore, correlation analysis between biomarkers and 
environmental factors provides scientific evidence for environmental 
health policy development. Environmental intervention effectiveness 
can be  evaluated through monitoring environmental exposure 
markers in specific populations. This data-driven approach addresses 
health equity issues in resource allocation (72), particularly when 
exposure risks demonstrate significant geographical variations, 
biomarker data guides policymakers in prioritizing environmental 
governance (73).

The successful implementation of proactive health applications 
requires comprehensive technical support. The following chapter 
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details the complete technical pathway from data acquisition, and 
biomarker screening to model construction and optimization, 
providing methodological guidance for practical 
application implementation.

4 Technical framework and 
methodological pathway

Realizing the application value of biomarker-driven predictive 
models in proactive health management requires a comprehensive 
technical framework and methodological pathway, encompassing data 
acquisition, analysis, processing, model construction, evaluation, and 
application. This chapter systematically examines each component of 
this technical framework and their interconnections, providing 
methodological guidance for practical applications.

4.1 Data acquisition and preprocessing

Data acquisition and preprocessing constitute fundamental 
elements of the technical framework, directly influencing the quality of 
subsequent analysis and model construction. The primary objective of 
this stage involves ensuring data completeness, consistency, and 
reliability, establishing a high-quality foundation for subsequent analyses.

4.1.1 Multi-source data integration
The integration of multi-source heterogeneous data is 

fundamental to developing comprehensive biomarker models. The 
establishment of unified data standards and interoperability 
frameworks facilitates seamless integration of clinical measurements, 
genomic information, and environmental factors (74). This integration 
process must address technical challenges including data format 
inconsistencies, terminology variations, and semantic compatibility 
issues (75).

Data source quality assessment and consistency verification are 
crucial in research practice to ensure integrated data reliability. This 
process involves implementing data quality scoring systems to 
evaluate different sources and adjust their analytical weights 
accordingly (76, 77). The integration process must maintain temporal 
consistency, ensuring proper alignment of data from various time 
points to support longitudinal analysis (78).

Ontology-based data integration methods serve as an effective 
approach, facilitating semantic mapping between diverse data sources 
by through shared conceptual frameworks (79). This methodology 
enables the creation of unified data views while maintaining original 
data characteristics, establishing structured foundations for 
subsequent analyses.

4.1.2 Data quality control and standardization
Rigorous data quality control serves as the cornerstone for 

ensuring model performance. Multi-level quality assurance 
mechanisms, incorporating automated anomaly detection and 
standardized preprocessing workflows, should be  integrated into 
routine components of data processing (80). Quality control protocols 
must encompass anomaly identification and processing, missing value 
assessment and imputation, duplicate record detection, and additional 
measures to ensure data completeness and accuracy (81).

Standardization represents a critical step in processing multi-
center and multi-source data. The variation in measurement units and 
reference ranges, across detection platforms and laboratories often 
renders direct data comparison impossible (82). Standardization 
techniques such as Z-score normalization or percentile transformation 
enable conversion of diverse data sources to a unified scale (83). For 
high-throughput omics data exhibiting significant, specialized batch 
effect correction methods such as ComBat are essential (84).

The implementation of standardized data governance frameworks 
enhances cross-institutional data comparability and consistency, 
thereby improving model stability. This encompasses the establishment 
of data dictionaries, standard operating procedures, and quality 
monitoring processes to maintain consistency in data collection and 
processing (84).

4.1.3 Privacy protection mechanisms
Clinical data processing requires adherence to strict privacy 

protection frameworks, that balance data utilization value with ethical 
requirements. Multi-level security architectures incorporate data source 
encryption and transmission endpoint encryption, providing 
continuous data protection throughout the process, exemplified by 
blockchain smart contract data integrity verification in multi-center 
medical alliances (85, 86). Attribute-based access control systems enable 
precise restrictions on user roles, identity characteristics, and specific 
operations, ensuring compliance and traceability through audit logs.

Contemporary security frameworks are designed to comply with 
the European Union’s General Data Protection Regulation (GDPR) 
requirements for sensitive medical information processing (87). 
Blockchain smart contracts enable regular data integrity verification, 
minimizing anomalies caused hardware failures, as validated on 
multi-center medical alliance platforms (84).

Balancing data usability with privacy protection a significant 
challenge. Advanced technologies including differential privacy and 
federated learning enable collaborative analysis and model training 
without raw data sharing (88, 89). These innovations create new 
opportunities for multi-center collaborative research while 
safeguarding patient privacy and data sovereignty.

The data acquisition and preprocessing phase establishes the 
foundation for subsequent biomarker screening and model 
development. High-quality, standardized, and secure data constitutes 
a prerequisite for achieving accurate predictions and effective clinical 
applications. The following section explores methods for screening 
and validating clinically valuable biomarkers from this data.

4.2 Biomarker screening and validation

Biomarker screening and validation is a key link connecting data 
and models, with the goal of identifying indicator combinations with 
clinical predictive value from massive data. This process requires 
combining statistical methods, machine learning techniques, and 
biological knowledge to ensure that the selected biomarkers have 
statistical significance, biological rationality, and clinical practicality.

4.2.1 Application of machine learning and 
statistical methods

The identification, of clinically valuable biomarkers from multi-
omics data represents a central challenge in precision medicine. While 
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traditional statistical methods offer robustness, they encounter 
limitations in processing high-dimensional data and non-linear 
relationships (90). Recent machine learning advances, particularly 
ensemble algorithms such as Extreme Gradient Boosting (XGBoost) 
and Deep Neural Networks (DNNs), have enhanced biomarker 
screening efficiency through automatic capture of non-linear 
interactions and hierarchical feature expressions (91, 92). Wrapper 
feature selection techniques utilizing genetic algorithms can evaluate 
multiple feature combinations to optimize model performance in 
supervised tasks such as cancer classification (93). These 
methodologies demonstrate superior capabilities in feature selection 
and pattern recognition compared to conventional approaches.

The integration of machine learning with statistical methods 
addresses the limitations of conventional approaches in identifying 
non-linear relationships. Evidence indicates that this combined 
approach enhances screening efficiency and accuracy while 
maintaining statistical rigor, generating novel insights for biomarker 
research (94). The practical implementation typically involves 
statistical methods for initial screening, followed by machine learning 
techniques for detailed analysis, and subsequent validation through 
biological knowledge assessment. Research demonstrates that these 
integrated approaches improve Area Under the Curve (AUC) values 
by 12–18% in survival prediction and disease classification compared 
to individual methods (95, 96).

Data preprocessing plays a vital role in ensuring reliable analysis 
and model performance. Box plots and interquartile range (IQR) 
methods effectively handle outliers, while missing data managed 
through Multiple Imputation by Chained Equations (MICE) 
maintains sample integrity (12, 90). For multi-center studies with 
batch effects, the ComBat normalization algorithm employs a 
Bayesian framework to address platform biases, enhancing cross-
dataset biomarker comparability by over 30% (97).

The optimization of screening strategies necessitates a balance 
between statistical power and computational efficiency. For high-
dimensional data analysis, two-stage screening approaches 
demonstrate superior effectiveness: initially employing rapid 
algorithms (e.g., LASSO regularization or random forest importance 
scoring) for preliminary screening (98), followed by comprehensive 
evaluations of candidate features, including statistical significance 
testing, stability analysis, and biological pathway enrichment analysis 
(99). This approach reduced model computation time by 58% in renal 
transplant cardiovascular risk prediction while maintaining 95% 
prediction accuracy (100). The integration of these computational 
approaches with biological context is particularly crucial in multi-
omics research, where heterogeneous data layers demand unified 
analytical frameworks, as discussed below.

4.2.2 Multi-omics integration research design
Multi-omics research design facilitates comprehensive 

understanding of disease mechanisms. While single omics data (e.g., 
genomics) provides substantial information, it often fails to capture 
the complete complexity of diseases. The integration of multi-level 
biological information, including genotype, expression profiles, 
protein levels, and metabolites, enables the construction of more 
comprehensive molecular disease maps (101).

The combination of proteomics, metabolomics, and genomics 
data yields more comprehensive molecular characteristics. This 
integrated approach enables the identification of essential biomarkers 

and pathways that remain undetectable through single omics methods 
(102). Various integration strategies are applicable, including early 
integration (merging data at the feature level), intermediate integration 
(merging results at the model level), and late integration (merging 
predictions at the decision level).

Multi-omics integration presents technical challenges including 
data dimension imbalance, feature scale differences, and data 
completeness issues. Specialized integration algorithms, such as multi-
view learning and tensor decomposition methods, effectively address 
these challenges by processing heterogeneous data sources and extract 
complementary information (103). During validation, careful 
consideration of the incremental value of integrated models compared 
to single omics models, ensures substantial improvements in 
predictive performance.

Multi-omics research design requires consideration of cost-
effectiveness balance. Although comprehensive multi-omics analysis 
generates extensive information, clinical implementation remains 
costly and complex (104). Selecting optimal omics combinations with 
maximum incremental predictive value achieves optimal cost-
effectiveness ratios for specific applications. For routine clinical 
applications, developing simplified models incorporating select high-
value biomarkers based on previous research enhances clinical 
feasibility (105).

Systematic biomarker screening and validation enables the 
identification of clinically predictive indicator combinations, 
establishing a foundation for subsequent model construction. These 
validated biomarkers demonstrate both statistical predictive power 
and biological disease mechanisms, facilitating the translation from 
data to clinical insights.

4.3 Model development and optimization

Model development and optimization is the core component of 
the technical framework, transforming screened biomarkers into 
predictive tools for clinical decision-making. This stage requires 
selecting appropriate algorithms, optimizing model structure and 
parameters, validating model performance, and ensuring clinical 
applicability of the model.

4.3.1 Multifactor prediction model construction
In contemporary medical research, multifactor predictive models 

have largely superseded univariate analysis as primary tools for disease 
risk assessment. Biomarker screening provides fundamental support 
for model development (106), but comprehensive disease mechanism 
analysis requires integration of exogenous variables (e.g., 
environmental exposures and behavioral patterns). Model selection 
should align with data characteristics and research objectives: logistic 
regression offers high interpretability for quantifying biomarker-
disease associations (107), while ensemble methods (e.g., random 
forests) provide robust performance in capturing complex nonlinear 
patterns (108).

Deep learning enhances high-dimensional heterogeneous data 
processing through multiple non-linear transformations to extract 
potential feature patterns (109). However, its inherent “black box” 
nature constrains clinical translation (110). The introduction of 
enhanced interpretability techniques (e.g., attention mechanisms and 
SHAP value frameworks) addresses this limitation, balancing 
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predictive accuracy with model transparency (111). This technological 
integration establishes new pathways for clinical implementation of 
predictive models.

Hierarchical model building strategies demonstrate superior 
outcomes, by first assessing foundation models based on clinical and 
routine biochemical indicators, then evaluating the incremental 
predictive value of novel biomarkers (106). This methodology 
quantifies the contribution of new markers while ensuring models 
maintain clinical utility. For complex diseases, stratified modeling 
approaches, which develop specialized predictive models for distinct 
disease subtypes or risk levels, effectively enhance prediction accuracy.

4.3.2 Feature engineering
The predictive performance of multifactor models relies on the 

relevance and representativeness of selected features. As the 
foundation of model development, feature engineering significantly 
influences model accuracy and generalizability through the selection, 
transformation, and creation of variables to optimize attribute 
representation. Dimensionality reduction techniques (e.g., PCA, 
t-SNE) simplify complex biomarker data while preserving critical 
information (112).

In clinical applications, feature interpretability and stability are 
essential considerations, making feature combinations with clear 
biological significance preferable. Domain knowledge is instrumental 
in feature engineering, guiding the development of clinically 
meaningful derived features, such as establishing “intervention 
measures” and “orthotic device” related feature sets through medical 
expert knowledge (113), or developing dynamic indicators such as 
biomarker ratios and rates of change based on pathological 
progression mechanisms (114).

The synthesis of clinical experience and algorithmic feature 
selection optimally identifies variable combinations with biological 
significance. For instance, in cardiovascular risk prediction, combining 
7 imaging features selected by LASSO regression with 4 clinical 
features achieved an AUC of 0.848 (115); while in sepsis prediction, 
incorporating hemodynamic fluctuation indicators with temporal 
trend features through random forest algorithms enhanced the 
model’s capacity to capture pathological dynamic changes (116). These 
dynamic features provide predictive information beyond traditional 
static indicators by reflecting longitudinal change patterns of 
biomarkers (e.g., cerebral blood volume fluctuations, metabolite time 
series fluctuations).

Feature engineering must address the feasibility of practical 
clinical applications. Optimal feature combinations should balance 
predictive performance, measurement cost, and operational 
complexity. Studies indicate that simplified models integrating routine 
examination indicators (e.g., prostate-specific antigen density) with 
radiomics features reduced feature dimensions from 107 to 8 while 
maintaining an AUC of 0.774 (117). In implementation, developing 
predictive models of varying complexity, from simplified versions with 
routine examination indicators to advanced versions incorporating 
multi-omics data, enables adaptation to different application scenarios 
and resource constraints.

4.3.3 Model validation and evaluation
Rigorous validation frameworks are essential for ensuring model 

reliability in real applications. Multi-level validation strategies, 

encompassing internal cross-validation, external independent cohort 
validation, and robustness testing for different populations, represent 
standard practices in modern model evaluation. Internal validation 
typically employs k-fold cross-validation (118) or bootstrapping to 
assess model stability on training data; external validation tests model 
generalizability in new populations or different clinical environments 
(119), a critical step in determining the model’s true value.

Comprehensive evaluation frameworks should incorporate 
multiple performance metrics to thoroughly assess the model’s 
predictive capability, stability, and clinical value. For classification 
tasks, beyond traditional AUC, sensitivity, specificity, and positive 
predictive value warrant examination; for prognosis prediction, 
calibration (consistency between predicted probabilities and actual 
event rates) and discriminative ability (e.g., C-index) require 
evaluation (120, 121). Decision Curve Analysis (DCA) has emerged 
as a vital tool for evaluating clinical value, quantifying net benefits at 
different decision thresholds (122).

Transparency and completeness in the validation process are 
crucial. In paper publications and clinical applications, validation 
methods, population characteristics, and all performance metrics 
require detailed reporting, enabling other researchers and clinical 
users to accurately assess the model’s applicable scope and 
limitations. Additionally, public sharing of model code and 
validation datasets promotes research transparency 
and reproducibility.

4.3.4 Clinical utility evaluation
The ultimate value of predictive models resides in their clinical 

utility. Tools such as decision curve analysis and clinical impact graphs 
quantify the net benefit of models at different decision thresholds. 
These methods evaluate the value of models in actual clinical 
scenarios, considering the relative costs of false positives and false 
negatives, providing a foundation for selecting decision 
thresholds (123).

Research demonstrates that integrating prediction results with 
existing clinical risk scores substantially increases physicians’ trust in 
model outputs (124). Developing decision support tools compatible 
with existing clinical workflows, enabling model predictions to 
integrate seamlessly into daily clinical practice, represents an effective 
strategy for improving clinical acceptance (125). Model outputs 
should be presented in intuitive and comprehensible forms, such as 
risk classifications, risk percentiles, or comparisons with reference 
populations, enabling informed decision-making by clinicians 
and patients.

Clinical utility evaluation should consider implementation costs 
and operational complexity. High-performance but complex and 
expensive models may face limitations in practical applications (126), 
necessitating balance between so performance and feasibility during 
model development. Early consideration of model clinical pathway 
integration strategies ensures effective translation of technological 
innovation into clinical value.

4.3.5 Iterative model optimization
Prediction model development is an iterative process necessitating 

continuous refinement based on evolving clinical needs, emerging 
data, and performance feedback from real-world deployment. 
Optimization cycles involve re-evaluating model architecture, 
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retraining with updated datasets, adjusting hyperparameters, and 
incorporating novel biomarkers or features to enhance predictive 
accuracy, stability, and clinical utility over time (127, 128). Moreover, 
establishing mechanisms for regular model performance monitoring, 
feedback collection from end-users (clinicians, patients), and 
scheduled re-validation is critical, particularly as clinical practices 
evolve or population characteristics shift. This ongoing process 
ensures the model remains relevant, reliable, and effective in 
supporting clinical decision-making within the dynamic 
healthcare environment.

Following model development and optimization, the critical next 
phase involves effectively delivering prediction results to end users to 
realize their clinical value.

4.4 Model prediction results delivery

The effectiveness of model predictions ultimately depends on 
how results are communicated and used. Prediction results 
delivery is the key link in transforming model outputs into 
actionable information, requiring consideration of user needs, 
information presentation methods, and decision 
support functions.

4.4.1 Intelligent delivery system construction
Intelligent results delivery systems should adapt information 

display methods according to specific user roles and clinical contexts. 
For clinicians, the system provides comprehensive risk assessment 
results, including key risk factors, recommended interventions, and 
expected outcomes (129); for patients, it delivers accessible risk 
information and personalized health recommendations (130); for 
health management organizations, it generates population-level risk 
analysis reports to support resource allocation decisions (131).

Delivery mechanisms incorporating decision support functions 
and interpretability tools enhance clinical acceptance. These include 
providing evidence links, explaining primary predictive factors, 
comparing potential outcomes of different intervention strategies, and 
offering personalized recommendations based on historical decision 
patterns (132–134). Results delivery should integrate risk explanation 
with actionable intervention recommendations to maximize 
clinical utility.

From a technical perspective, delivery systems should facilitate 
multi-platform integration and real-time updates. Contemporary 
delivery architectures typically encompass web applications, mobile 
applications, and electronic health record system integration, ensuring 
accessibility across various environments (135). Moreover, systems 
should incorporate configurable alert mechanisms that automatically 
generate notifications based on predicted risk levels and time 
sensitivity, enabling timely intervention for high-risk cases (136).

Through a comprehensive technical framework and 
methodological pathway, biomarker-driven predictive models 
establish a closed loop from data acquisition and analysis to clinical 
application, achieving proactive health management objectives 
(Figure 2). This integrated framework illustrates how the systematic 
processing of biomarker data through standardized analytical 
pathways enables transition from reactive medical interventions to 
proactive health monitoring and personalized risk assessment, 

representing a paradigm shift in clinical practice methodology. 
Nevertheless, this process faces multiple challenges requiring 
systematic response strategies, which the next chapter examines 
in detail.

5 Data quality and standardization 
challenges

The challenges facing biomarker-based predictive models 
span the entire pipeline from data to clinical implementation: 
data quality and standardization issues constitute fundamental 
barriers at the foundational level; limited model generalizability 
restricts the broad applicability of these technologies; difficulties 
in clinical translation of biomarkers impede the transformation 
of research findings into clinical practice; while public acceptance 
and resource constraints affect the ultimate implementation 
effectiveness. These challenges form a multi-layered problem 
system from technical to social dimensions, requiring 
systematic solutions.

5.1 Data quality and standardization

Challenges: Clinical test data originates from multiple sources, 
lacking standardized collection and storage protocols (137). Variations 
in testing equipment parameters and operational standards create 
systematic biases in cross-institutional indicators (138). Manual input 
errors and heterogeneous system compatibility issues may 
compromise data integrity, affecting the reliability and comparability 
of subsequent analyses (139). This data heterogeneity constrains 
predictive model optimization, creating structural barriers to multi-
scenario applicability (140).

Solutions: Implement quality control systems and standardize 
data governance from the source, conducting regular equipment 
calibration and enhancing operator training. In data processing, 
establish traceable cleaning mechanisms and standardized outlier 
handling protocols (141). Systematically standardize the entire data 
lifecycle management process according to international clinical 
laboratory quality management systems (142). This includes 
establishing unified data collection and coding standards, 
implementing standardized medical terminology systems (e.g., 
SNOMED CT or LOINC) (140), and deploying automated data 
quality monitoring processes.

These measures will enhance data quality, establish a robust 
foundation for model construction, and strengthen prediction system 
reliability (143). Meanwhile, developing multi-center data 
collaboration networks and sharing standardized data collection and 
processing methods can accelerate high-quality health data 
accumulation (144), providing adequate training samples for accurate 
predictive models.

Additionally, we recommend developing intelligent data cleaning 
and standardization tools for automatic identification and processing 
of common data issues, including outlier detection, unit conversion, 
and missing value handling. These tools should be  adaptable to 
accommodate the requirements of various medical environments and 
data types, while maintaining comprehensive records of the 
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processing, to ensure transparency and traceability of data 
processing (145).

5.2 Model generalizability

Challenges: Current predictive models frequently experience 
performance degradation in “laboratory-to-clinical” scenarios, 
primarily due to limitations in training data regarding geographic, age, 
and racial diversity (146). This insufficient data representativeness 
impedes the model’s capacity to capture complex population 
differences, reducing its adaptability in clinical healthcare (147). 
Models demonstrate performance deterioration in real-world clinical 
practice implementation; this “laboratory-to-reality” performance gap 
represents a major obstacle to the implementation of precision 
medicine (128, 148).

Solutions: Enhancement of model generalizability necessitates 
constructing training datasets with greater ecological validity. Multi-
center collaborative collection of health data encompassing 
geographic/demographic/environmental variations can strengthen 
model generalization capabilities through the integration of diverse 
feature sets (146). In model design, we recommend adopting domain 
adaptation and transfer learning techniques to enable models to better 
adapt to feature distributions in new populations. Incremental 
learning strategies facilitate model updates with new data without 
complete retraining (149), which is essential for dynamically adapting 
to changes in clinical environments.

In model validation, we recommend combining independent 
cohort validation with real-world data testing. Robustness testing 

that considers dynamic environmental factors and individual 
differences effectively identifies models with clinical utility (150, 
151). This multidimensional validation system provides a scientific 
basis for model deployment, while identifying the model’s 
applicable scope and limitations, offering clear guidance for 
clinical use.

Furthermore, we advocate developing integrated and adaptive 
model architectures capable of automatically adjusting prediction 
strategies based on different population characteristics. For instance, 
utilizing meta-learning frameworks to build models that rapidly adapt 
to new populations, or adopting stratified model strategies to train 
specialized models for different population subgroups and then 
integrating results through ensemble methods. This approach better 
adapts to population heterogeneity while maintaining overall 
prediction accuracy (152).

5.3 Difficulty of clinical translation of 
biomarkers

Challenges: A substantial gap exists between basic biomarker 
research and clinical applications, with detection performance 
variability and disease heterogeneity serving as key bottlenecks 
(153). Although high-throughput detection enhances sensitivity, its 
high cost and complex operations restrict widespread use (154). 
Moreover, clinical validation requires large-scale, prospective 
longitudinal cohorts (155), further decelerating the translation 
process. Clinical application of novel biomarkers faces extended 
processes of regulatory approval (156) and inclusion in clinical 

FIGURE 2

A data-driven framework for health management: from biomarker discovery to personalized health implementation. The diagram depicts the cyclical 
process of: (I) Data Acquisition and Preprocessing (show in blue); (II) Biomarker Screening and Validation(show in yellow); (III) Model Development and 
Optimization(show in purple); (IV) Result Delivery and Implementation(show in green). Each stage contains essential components for translating 
biomarker discovery into clinical application, with implementation workflow at the center.
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guidelines (157), impeding the timely delivery of innovative results 
to patients.

Solutions: Addressing this challenge requires establishing “basic-
clinical” feedback mechanisms. Systematic evaluation of marker 
predictive performance in various clinical scenarios through multi-
center trials and establishment of automated testing platforms 
balances accuracy and cost. This evaluation should follow unified 
methodological standards and reporting guidelines (158), ensuring 
result comparability and reliability.

Formulating standardized clinical guidelines and dynamic evaluation 
systems is essential for biomarker standardization. We  recommend 
establishing biomarker evaluation alliances (157), integrating resources 
from academic institutions, medical centers, and industry (158) 
accelerates the validation and translation of high-value markers. 
Meanwhile, developing simplified testing technologies and point-of-care 
devices reduces the cost and complexity of high-value biomarker 
detection, enhancing suitability for routine clinical applications.

We believe that constructing a complete translation pipeline from 
discovery to application, including early clinical validation, 
commercialization pathway planning, and regulatory strategy 
formulation (159), can expedite the clinical translation of biomarkers. 
This process, close collaboration between academia and industry for 
efficient transformation of scientific discoveries into clinical testing 
products. Establishing biomarker research and development sharing 
platforms promotes open sharing of data, methods, and resources 
helping avoid duplication and accelerate innovation.

5.4 Public acceptance of artificial 
intelligence and big data

Challenges: While technological safeguards (Section 4.1.3) 
address data security, public acceptance requires additional 
sociotechnical considerations, including algorithmic transparency and 
ethical governance. Advanced medical AI applications raise concerns 
regarding algorithmic interpretability and privacy security. Limited 
trust in prediction results among healthcare providers and patients 
stems from insufficient technological transparency and risk 
communication (160). Vulnerabilities in health data lifecycle 
management, particularly leakage risks, intensify public skepticism 
and concern (161). Inadequate consent mechanisms in data collection 
processes and concerns about health data usage impede public 
acceptance of AI-based health solutions (162).

Solutions: Establishing technological trust requires 
multidimensional public engagement. Creating open technology 
exchange platforms to explain AI decision logic and uncertainty 
enhances prediction result transparency for healthcare providers 
and patients. This includes developing visualization tools to display 
key predictive factors and uncertainties, and providing user-
friendly explanation systems that translate complex model 
decisions into comprehensible language (163).

For data security, we recommend technologies such as differential 
privacy and federated learning, and implementing layered authorization 
and traceability mechanisms. These technologies enable model training 
and prediction while protecting data privacy, minimizing data sharing 
(164). Establishing robust data governance frameworks, including clear 
data usage policies, transparent consent processes, and comprehensive 
security measures, forms the foundation for building public trust.

We propose that comprehensive technological ethics 
governance frameworks can enhance public acceptance as a 
positive catalyst for implementation. This involves establishing 
multidisciplinary ethics committees to oversee the development 
and deployment of AI systems, ensuring technological innovation 
prioritizes patient welfare (160). Conducting systematic public 
education and engagement initiatives to explain the capabilities 
and limitations of AI in healthcare helps foster public 
understanding and acceptance of these emerging technologies.

Additionally, implementing clear responsibility and accountability 
mechanisms at the policy level clarifies the obligations of various 
stakeholders in data use and AI deployment. Well-defined regulatory 
frameworks protect patient rights while providing clear guidance for 
technological innovation, fostering sustainable industry 
development (165).

5.5 Resource and cost issues

Challenges: Developing high-performance predictive models 
requires integrating expertise from medicine, computer science, 
and biology, but the scarcity of interdisciplinary professionals 
presents a major constraint (166). Model development requires 
terabyte-scale data storage and high-performance computing, 
creating substantial hardware demands, while ongoing R&D 
investment strains small and medium-sized organizations (167, 
168). In the large-scale clinical implementation, costs of iterative 
device upgrades and network infrastructure maintenance 
seriously impact resource allocation (169). These resource 
constraints affect both technological development and 
deployment in resource-limited settings (170).

Solutions: Developing comprehensive talent cultivation systems 
and industry-academia-research collaboration mechanisms is 
essential for addressing resource limitations. Higher education 
institutions can nurture multidisciplinary professionals with both 
clinical expertise and algorithm development capabilities through 
interdisciplinary laboratories (166). Meanwhile, implementing data 
science training programs for practicing healthcare professionals 
enhances the technical capabilities of existing medical teams effectively 
addressing immediate talent shortages (171).

Establishing data resource sharing and technology collaboration 
platforms between healthcare institutions, research institutes, and 
enterprises can minimize translation costs. Such partnerships can 
leverage the distinctive resources of different institutions, prevent 
redundant investments, and expedite the translation of innovations. 
For example, healthcare institutions provide clinical data and 
application scenarios, research institutions contribute algorithms and 
analytical methods, and enterprises deliver technological 
implementation and productization support, creating a synergistic 
research ecosystem (170, 172).

Developing intelligent medical technology training programs for 
practicing personnel can enhance the technological integration 
capabilities of existing teams, facilitating predictive model adoption. 
This includes developing modular and customizable learning 
resources, enabling healthcare professionals to learn according to their 
needs and schedules (173). Meanwhile, developing “technical 
assistant” systems to support clinicians using complex prediction tools 
effectively reduces technological usage barriers (174).
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For resource optimization, we  recommend implementing 
architectures that combine cloud computing and edge computing to 
balance performance and cost. Cloud computing offers flexible 
computational resources that adjust dynamically to demands, avoiding 
substantial fixed asset investments (175); edge computing processes 
certain data and computational tasks locally, reducing network 
bandwidth requirements and latency (167). For resource-constrained 
environments, developing efficient algorithms and model compression 
techniques enables prediction systems to operate effectively on 
standard hardware.

Through systematic approaches to these challenges, biomarker-
based predictive models can overcome current development 
constraints and more effectively support proactive health management 
objectives. Table  3 summarizes the primary challenges facing 
biomarker predictive models and their solutions, highlighting the 
multifaceted efforts required to advance technology from laboratory 
to clinical application. This structured framework illustrates why 
successful implementation requires coordinated efforts across 
technical, clinical, and social domains to deliver the potential benefits 
of predictive models in real-world healthcare settings. The next 
chapter summarize the main findings and contributions of this 
research and look toward future development directions.

6 Conclusion and outlook

6.1 Application prospects and remaining 
challenges

Biomarker-based predictive models advance proactive health 
management by integrating biomarker data with computational 
technologies. These models demonstrate potential in: (1) Early 
disease detection at pre-clinical stages; (2) Dynamic health 
monitoring with real-time assessment; (3) Evidence-based 
healthcare resource optimization.

However, challenges persist: data heterogeneity, limited model 
generalizability, high costs, and public trust concerns. Technological 
advancements including federated learning, differential privacy 

techniques, simplified testing technologies, and improved model 
explanation tools will progressively address these barriers.

6.2 Research contributions and innovation 
value

This review’s contributions include: (1) Establishing a 
comprehensive framework connecting biomarker discovery with 
clinical application; (2) Presenting viable solutions for key 
implementation challenges through data governance frameworks and 
validation strategies; (3) Investigating the interplay between 
technological advancement and ethical considerations; (4) Expanding 
biomarker-driven frameworks to public health decision-making.

6.3 Future research directions

Future research should prioritize: expanding to rare disease 
markers and dynamic health indicators; deepening multi-omics 
integration through systematic analysis of genomic, epigenomic, 
transcriptomic, proteomic, and metabolomic data; conducting 
longitudinal studies covering the entire life cycle; developing edge 
computing and lightweight algorithms for resource-constrained 
environments; and strengthening cross-collaboration between 
medicine, computer science, and social sciences.

6.4 Summary and vision

This review establishes a multidisciplinary framework for 
advancing biomarker-driven predictive models in proactive health 
management, addressing critical barriers in data standardization, 
model interpretability, and clinical implementation.

Biomarker-based predictive models represent a paradigm shift 
from reactive medicine to proactive prevention. Through integration 
of multidimensional biomarker data with advanced computational 
methodologies, these systems enable early disease detection, risk 

TABLE 3  Challenges and solution strategies for clinical translation of biomarker predictive models.

Challenge 
dimension

Key issues Core solutions Implementation examples

Data quality and 

standardization

Cross-platform heterogeneity, batch effects Unified data governance framework, standardized 

biorepositories

Global biomarker reference standards

Model generalizability Insufficient population diversity, temporal 

stability issues

Multi-center validation, transfer learning methods Diverse validation cohorts

Clinical translation Basic-clinical gap, regulatory uncertainties Simplified detection technologies, standardized 

evaluation systems

Point-of-care testing development

Public acceptance Privacy concerns, transparency issues Privacy-preserving computing, explainable AI 

approaches

Federated learning implementation

Resource limitations Interdisciplinary talent gaps, infrastructure 

challenges

Talent development programs, tiered 

implementation strategies

University-hospital collaborations

Ethical considerations Health inequality risks, algorithmic bias Equity assessment frameworks, inclusive design 

methodologies

Ethical impact assessments

AI, Artificial Intelligence.
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stratification, and personalized interventions—foundational elements 
for evidence-based health management. The technical framework 
proposed herein provides structured guidance for real-world 
healthcare applications.

This prevention-centered paradigm represents a viable approach for 
enhancing population health outcomes. As technological innovation 
advances and interdisciplinary collaboration strengthens, biomarker-
driven predictive models will assume increasingly significant roles in 
health management, contributing substantially to disease prevention 
initiatives. This transition requires technological advancement alongside 
appropriate regulatory frameworks, ethical considerations, and societal 
engagement across medical, technological, and societal domains.
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