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Metabolic syndrome is a critical predictor of future cardiometabolic disease and 
an emerging public health concern, particularly in high-demand populations 
such as military personnel. This study aimed to develop and evaluate sex-
specific machine learning models for the early detection of metabolic syndrome 
using annual health check data. We analyzed records from 179,620 Taiwanese 
Air Force personnel between 2014 and 2022, incorporating demographic, 
anthropometric, clinical, lifestyle, mental health, and biochemical variables. 
Six machine learning algorithms—including logistic regression, random 
forest, K-nearest neighbor, support vector machine, neural network, and 
naïve Bayes—were trained separately for men and women. Among these 
models, logistic regression outperformed the others, achieving an accuracy 
and area under the curve (AUC) of 0.89. Body mass index, age, and alanine 
aminotransferase levels were consistent predictors across sexes. For men, 
total cholesterol and uric acid contributed significantly, while hemoglobin and 
hematocrit were more predictive in women. These findings demonstrate that 
sex-specific predictive models can support early identification of individuals 
at high risk for metabolic syndrome, enabling targeted prevention strategies 
and strengthening population health efforts in military populations and other 
young to middle-aged adult groups.
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1 Introduction

Metabolic syndrome (MetS) is a cluster of interrelated conditions including obesity, 
elevated blood glucose, dyslipidemia, and hypertension. These conditions frequently co-occur 
in individuals at increased risk of cardiovascular disease and type 2 diabetes and are strong 
predictors of morbidity and mortality (1). As of 2018, the global prevalence of MetS was 
estimated at 25% and has since continued to rise, making it a growing public health concern 
(2). Among Air Force personnel, high stress levels increase susceptibility to metabolic 
disorders (3), underscoring the need for early risk detection and targeted prevention strategies 
in this population.

Numerous factors contribute to MetS, including age, sex (3, 4), chronic disease 
history (5), family history (5), and behaviors such as smoking (6), alcohol consumption 
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(7), betel nut use (5), and physical inactivity (8). Betel nut chewing 
is particularly relevant in Asian populations, where its high 
prevalence and established associations with central obesity, 
dyslipidemia, and impaired glucose regulation make it a culturally 
specific conditioning factor in the development of MetS (9). 
Although body mass index (BMI) is frequently used in population 
screening to identify individuals at risk (10), it is not itself a causal 
determinant of MetS. Instead, the pathophysiological link between 
MetS and cardiometabolic disease arises from the quantity, 
distribution, and functionality of adipose tissue, with visceral fat 
and dysfunctional adipose compartments playing a more critical 
role than overall body weight (11). This distinction underscores 
the need to interpret BMI cautiously and to consider more direct 
indicators of body fat and adiposity function in risk assessments. 
Mental health status (12) and biochemical indicators—such as 
white blood cell count, hemoglobin, total cholesterol, alanine 
aminotransferase (ALT), and uric acid level (13, 14)—also show 
strong associations with MetS risk. While many predictive models 
have been developed, most rely on traditional statistical methods 
such as logistic regression and may not fully capture complex 
interactions among variables.

Machine learning offers a data-driven alternative capable of 
analyzing high-dimensional health data and identifying nonlinear 
patterns (15). It has shown promise in disease prediction across 
various health domains. This study focuses on six widely used machine 
learning algorithms: logistic regression (LR), random forest (RF), 
K-nearest neighbor (KNN), support vector machine (SVM), neural 
network (NN), and naïve Bayes (NB) (16, 17). Each algorithm varies 
in structure and learning mechanism, providing different strengths in 
predictive modeling (18–20).

Despite increasing interest in machine learning for health 
prediction (21), its application to MetS risk detection in military 
populations remains underexplored. This study aims to evaluate the 
predictive accuracy of multiple machine learning models for MetS 
using annual health check data from Taiwanese Air Force personnel. 
We further examine how sex-specific models may enhance prediction 
by identifying distinct risk profiles in men and women. Our goal is to 
inform early detection and personalized prevention strategies, 
contributing to improved metabolic health and operational readiness 
in high-demand populations.

2 Materials and methods

2.1 Study design and cohort

This population-based study used data from the Taiwanese 
Military Health Management Information System, which collects 
annual worksite health examination data from active-duty 
personnel. We included Air Force members aged 18 to 58 years 
who underwent health screenings between 2014 and 2022. Data 
included demographic characteristics, anthropometric measures, 
medical history, lifestyle behaviors, mental health indicators, and 
biochemical parameters. All procedures followed the ethical 
standards of the 1975 Declaration of Helsinki and were approved 
by the Institutional Review Board of Tri-Service General Hospital, 
Taiwan (approval number: A202305142).

2.2 Measures

We initially examined 36 features potentially associated with MetS 
(22), grouped into three categories: (1) demographic and 
anthropometric; (2) clinical, lifestyle, and mental health; and (3) 
biochemical.

2.2.1 Step 1: demographic and anthropometric 
features

Age, sex, waist circumference, and BMI were included. BMI was 
calculated as weight (kg) divided by height squared (m2).

2.2.2 Step 2: clinical, lifestyle, and mental health 
features

Clinical features included history of chronic disease, family history, 
and blood pressure (systolic and diastolic). Lifestyle features included 
smoking, betel nut use, alcohol consumption, physical activity, rapid 
fatigue during exercise, infection within 1 month, and regular 
medication use. The mental health features—insomnia, depression, 
hostility, anxiety, interpersonal sensitivity, and suicidal ideation—were 
assessed using the Brief Symptom Rating Scale-5 (BSRS-5), a validated 
five-item scale scored on a 5-point Likert scale (0–4) (23, 24). Higher 
scores indicated poorer psychological well-being. The Cronbach’s α 
value for the BSRS-5 ranges from 0.77 to 0.90 (23).

2.2.3 Step 3: biochemical features
Biochemical features included liver function markers—aspartate 

aminotransferase (AST) and alanine aminotransferase (ALT); renal 
function markers—blood urea nitrogen (BUN) and creatinine; 
hematological parameters—red blood cell (RBC) count, white blood 
cell (WBC) count, hemoglobin, hematocrit, and platelet count; and 
cardiovascular indicators—total cholesterol (TC), uric acid (UA), 
triglycerides, high-density lipoprotein cholesterol level (HDL-C), 
low-density lipoprotein cholesterol (LDL-C), and fasting plasma 
glucose. The Air Force personnel fasted overnight before venous blood 
collection. Samples were processed using a clinical chemistry analyzer 
(ADVIA1800, Siemens, United States).

2.3 Study outcomes

The study outcome was the occurrence of MetS during a 9-year 
surveillance period. MetS diagnosis followed the modified National 
Cholesterol Education Program Adult Treatment Panel III criteria, 
with modifications from the International Diabetes Federation, which 
accounts for waist circumference norms in the Asian population (25). 
Individuals meeting three or more of the following criteria were 
diagnosed with MetS (4): triglycerides ≥150 mg/dL, fasting plasma 
glucose ≥100 mg/dL, HDL-C < 40 mg/dL (men) or <50 mg/dL 
(women), systolic blood pressure ≥130 mmHg or diastolic blood 
pressure ≥85 mmHg, and waist circumference ≥90 cm (men) or 
≥80 cm (women).

Because triglycerides, fasting plasma glucose, HDL-C, blood 
pressure, and waist circumference were used to define the MetS 
outcome, these variables were not included as predictors in the 
machine learning models to avoid circularity and redundancy. In 
addition, the BSRS total score overlapped with its five individual 
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items, which were retained to provide more granular information. 
Therefore, seven features were excluded, and the remaining 29 features 
were retained for model development using the sequential three-step 
process described above (Figure 1).

2.4 Machine learning

A total of 29 key features of MetS were included in the models in 
three sequential steps (Figure 1). The contribution of each feature to 
model performance was evaluated. The dataset was divided into MetS 
and non-MetS groups at an 80:20 ratio, yielding training and test 
datasets of 143,696 and 35,924 Air Force personnel, respectively. To 
address class imbalance, the synthetic minority oversampling 
technique (SMOTE) was applied exclusively to the training dataset 
prior to model development, while the test dataset was left unchanged 
to ensure unbiased evaluation (26). For comparison, we also assessed 
two other approaches, adaptive synthetic sampling (ADASYN) and 
class weighting, both of which produced area under the receiver 
operating characteristic curve (AUC) values similar to those obtained 
with SMOTE (see Supplementary Table S1 for detailed results). 
Because SMOTE is well validated and widely applied in biomedical 
prediction research, it was selected as the primary method for 
handling class imbalance in this study.

Data preprocessing included standardization to ensure 
compatibility across models. Six machine learning algorithms—KNN, 
RF, LR, SVM, NN, and NB—were implemented via Python (version 

3.8) with libraries including scikit-learn, imbalanced-learn, and SHapley 
Additive exPlanations (SHAP). Each model was initially trained with 
default hyperparameters, followed by optimization through grid search.

Hyperparameter optimization was conducted using grid search 
with 5-fold cross-validation for the RF, SVM, and NN models, whereas 
KNN, LR, and NB were implemented with standard or default 
configurations. For RF, the grid included variations in the number of 
trees, maximum depth, and minimum split size; for SVM, the penalty 
parameter (C) and kernel coefficient (gamma) were tuned with the 
RBF kernel; and for NN, hidden layer sizes, regularization (alpha), and 
learning rate were explored. The detailed parameter ranges for all 
models are provided in Supplementary Table S2.

Model performance was evaluated via multiple metrics, including 
accuracy, F1 score, precision, recall, specificity, and area under the 
receiver operating characteristic curve (AUC). Accuracy was calculated 
via the following equation: true positives (TP) + true negatives (TN) / 
(TP + false negatives [FN] + false positives [FP] + TN) = (TP + TN) / 
total sample count. The F1 score is the harmonic mean of precision and 
sensitivity. The precision was calculated as follows: TP / (TP + FP). 
Recall was calculated as follows: TP / (TP + FN). The specificity was 
calculated as follows: TN / (FP + TN).

The discriminatory ability of the models was visualized via 
receiver operating characteristic (ROC) curves. Feature importance 
was assessed via SHAP values, which provided insights into the top 
predictors for MetS in the male and female subgroups. These analyses 
identified the 10 most influential features for each subgroup, providing 
tailored insights into risk patterns.

FIGURE 1

Process of data collection and machine learning. MetS, metabolic syndrome.
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2.5 Statistical analysis

Continuous variables are presented as means and standard 
deviations; categorical variables are shown as frequencies and 
percentages. Group comparisons between individuals with and 
without MetS were conducted using independent t-tests for 
continuous data and chi-square tests for categorical data. A p-value 
<0.05 indicated statistical significance.

3 Results

3.1 Cohort characteristics

The study included 179,620 active-duty Air Force personnel, of 
whom 83.5% were men. Table 1 summarizes the cohort characteristics. 
A total of 25,007 individuals (13.9%) met the criteria for MetS, 
whereas 154,613 (86.1%) did not. Individuals in the MetS group were 
significantly older than those in the non-MetS group (mean age: 
34.36 ± 5.94 vs. 29.88 ± 6.79 years; p < 0.001). The proportion of men 
was also greater in the MetS group than in the non-MetS group (95.3% 
vs. 81.5%; p < 0.001). Mental health scores, excluding those for suicide 
attempts, were significantly higher in the MetS group. In addition, all 
biochemical measurements were significantly greater in the MetS 
group than in the non-MetS group.

The chi-square test revealed sex-specific patterns in the prevalence 
of MetS and its component abnormalities (Table 2). Among men, the 
most common abnormality was elevated blood pressure (32.9%), 
followed by increased waist circumference (28.4%), elevated 
triglycerides (21.3%), hyperglycemia (19.0%), and reduced HDL-C 
(17.6%). In women, increased waist circumference was most prevalent 
(19.9%), followed by reduced HDL-C (17.9%), elevated blood pressure 
(8.9%), hyperglycemia (7.0%), and elevated triglycerides (5.0%).

When examining the prevalence of MetS within each abnormality, 
men with increased waist circumference (80.5%), elevated blood 
pressure (76.0%), or elevated triglycerides (74.3%) were most likely to 
meet MetS criteria, followed by reduced HDL-C (58.4%) and 
hyperglycemia (53.6%). In women, increased waist circumference 
(90.4%) and reduced HDL-C (83.2%) were the strongest correlates of 
MetS, followed by elevated blood pressure (54.9%), elevated 
triglycerides (53.1%), and hyperglycemia (50.7%).

Overall, 17.6% of men and 17.9% of women presented with reduced 
HDL-C (p = 0.284), indicating no significant sex difference in overall 
prevalence. However, when stratified by MetS status, reduced HDL-C 
was observed in 58.4% of men with MetS versus 9.9% without MetS, 
and in 83.2% of women with MetS versus 15.2% without MetS. These 
findings suggest that while the overall prevalence of reduced HDL-C 
was comparable between sexes, within the MetS subgroup, women were 
disproportionately more likely than men to exhibit reduced HDL-C.

3.2 Model performance

The six machine learning models demonstrated accuracies 
ranging from 0.80 to 0.89. Among them, the RF, LR, SVM, and NN 
models achieved the highest overall accuracy (0.89). The NN model 
had the highest F1 score (0.51), indicating balanced performance in 
precision and recall. The SVM model had the highest precision (0.73), 

followed by RF (0.68), LR (0.67), NN (0.65), KNN (0.57), and NB 
(0.37) models. The model recall values ranged from 0.31 to 0.56, and 
the specificity values ranged from 0.84 to 0.98 (Table 3).

For predicting MetS events, the LR, RF, and NN models yielded 
the highest AUC values (all rounded to 0.89), followed by SVM (0.84), 
NB (0.81), and KNN (0.80; Figure 2). Pairwise comparisons using 
DeLong’s test indicated that LR achieved the highest AUC (0.894), 
significantly exceeding RF (0.890; ΔAUC = 0.004; p_FDR < 0.001) 
and NN (0.873; ΔAUC = 0.021; p_FDR < 0.001; Table 4). RF also 
significantly outperformed NN (ΔAUC = 0.017; p_FDR < 0.001). The 
overall performance ranking was LR > RF > SVM > NN, with all four 
significantly outperformed NN and NB (all p_FDR < 0.001). Although 
the absolute AUC differences among LR, RF, and NN were small 
(≤0.021), they remained statistically significant after multiple-
comparison adjustment.

3.3 Sex-specific MetS predictors

All six models passed the Hosmer–Lemeshow test, indicating 
good model fit. The top 10 predictive features for MetS identified by 
SHAP analysis are shown in Figure 3. Across the entire cohort, BMI, 
age, ALT level, hemoglobin, and uric acid were the five most strongly 
predictive features (Figures 3a,b). Features related to clinical, lifestyle, 
and mental health contributed minimally to the prediction. For men, 
BMI, age, ALT level, total cholesterol, and uric acid level were the most 
influential predictors (Figures  3c,d). For women, BMI, age, 
hemoglobin, ALT level, and hematocrit were the most predictive 
features (Figures 3e,f). Across both sexes, BMI, age, and ALT levels 
were consistently identified as the most influential predictors.

4 Discussion

Maintaining optimal health in military personnel is crucial as 
poor health can hinder their ability to fully dedicate themselves to 
national security (3). This study represents a novel attempt to explore 
sex-based differences in early MetS detection among Air Force 
personnel via machine learning models. We systematically developed 
prediction models by sequentially incorporating demographic, 
anthropometric, clinical, lifestyle, mental health, and biochemical 
features. Six machine learning algorithms were employed, and the 
models were tailored by sex. Model performance and feature 
importance were subsequently evaluated.

Among the models, the LR model exhibited the most robust 
performance in predicting MetS, achieving an accuracy and AUC of 
0.89. The RF model also performed well. The findings revealed that 
BMI, age, and ALT level were the three strongest predictors of MetS 
in Air Force personnel. For men, total cholesterol and uric acid were 
also key predictors, whereas hemoglobin and hematocrit were 
influential for women. These results emphasize the importance of 
tailoring early MetS risk detection models to account for 
sex-based differences.

Beyond model-derived predictors, our analysis of individual MetS 
components revealed a noteworthy sex-specific pattern in HDL-C 
abnormalities. Although the overall prevalence of reduced HDL-C 
was similar between men and women, within the MetS subgroup 
women were disproportionately more likely than men to exhibit 
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TABLE 1  Demographic, anthropometric, disease, lifestyle, mental health, and biochemical features of the study cohort (N = 179,620).

Variable Total Metabolic syndrome t/χ2 p value

Yes (n = 25,007) No (n = 154,613)

Mean (SD) 
or n (%)

Mean (SD) n (%) Mean (SD) n (%)

Demographic features

 � Age 30.51 (6.85) 34.36 (5.94) 29.88 (6.79) −108.40 <0.001

 � Sex 2947.08 <0.001

 �   Women 29,720 (16.5) 1,178 (4.7) 28,542 (18.5)

 �   Men 149,900 (83.5) 23,829 (95.3) 126,071 (81.5)

Anthropometric feature

 � Body mass index 24.87 (3.79) 29.14 (3.35) 24.18 (3.39) −216.78 <0.001

Clinical features

 � Chronic disease 2198.08 <0.001

 �   No 164,163 (91.4) 20,926 (83.7) 143,237 (92.6)

 �   Yes 15,457 (8.6) 4,081 (16.3) 11,376 (7.4)

 � Family history 1766.32 <0.001

 �   No 141,104 (78.6) 17,114 (68.4) 123,990 (80.2)

 �   Yes 38,516 (21.4) 7,893 (31.6) 30,623 (19.8)

Lifestyle features

 � Smoking 1743.10 <0.001

 �   No 138,496 (77.1) 16,708 (66.8) 121,788 (78.8)

 �   Yes 41,124 (22.9) 8,299 (33.2) 32,825 (21.2)

 � Betel nut chewing 1558.71 <0.001

 �   No 171,078 (95.2) 22,585 (90.3) 148,493 (96.0)

 �   Yes 8,542 (4.8) 2,422 (9.7) 6,120 (4.0)

 � Alcohol consumption 630.12 <0.001

 �   No 166,262 (92.6) 22,181 (88.7) 144,081 (93.2)

 �   Yes 13,358 (7.4) 2,826 (11.3) 10,532 (6.8)

 � Physical activity 274.18 <0.001

 �   No 7,573 (4.2) 950 (3.8) 6,623 (4.3)

 �   Occasionally 50,196 (27.9) 7,971 (31.9) 42,225 (27.3)

 �   1 to 2 times a week 71,180 (39.6) 9,813 (39.2) 61,367 (39.7)

 �   3 to 4 times a week 50,671 (28.2) 6,273 (25.1) 44,398 (28.7)

 � Rapid fatigue during 

exercise

2142.28 <0.001

 �   No 164,477 (91.6) 21,012 (84.0) 143,465 (92.8)

 �   Yes 15,143 (8.4) 3,995 (16.0) 11,148 (7.2)

 � Infection within 

1 month

3.24 0.072

 �   No 179,266 (99.8) 24,946 (99.8) 154,320 (99.8)

 �   Yes 354 (0.2) 61 (0.2) 293 (0.2)

 � Regular medication use 142.20 <0.001

 �   No 175,403 (97.7) 24,155 (96.6) 151,248 (97.8)

 �   Yes 4,217 (2.3) 852 (3.4) 3,365 (2.2)

Mental health features

(Continued)
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TABLE 1  (Continued)

Variable Total Metabolic syndrome t/χ2 p value

Yes (n = 25,007) No (n = 154,613)

Mean (SD) 
or n (%)

Mean (SD) n (%) Mean (SD) n (%)

 � Total BSRS score 0.94 (1.93) 1.16 (2.11) 0.91 (1.90) −17.81 <0.001

 � BSRS-1 Sleep score 0.27 (0.55) 0.35 (0.61) 0.26 (0.54) −20.45 <0.001

 � BSRS-2 Tension score 0.19 (0.45) 0.22 (0.48) 0.18 (0.44) −11.03 <0.001

 � BSRS-3 Anger score 0.20 (0.48) 0.26 (0.54) 0.19 (0.47) −17.83 <0.001

 � BSRS-4 Mood score 0.16 (0.43) 0.19 (0.47) 0.15 (0.42) −13.28 <0.001

 � BSRS-5 Inferiority 

score

0.12 (0.39) 0.15 (0.42) 0.12 (0.38) −9.31 <0.001

 � Suicide attempt score 0.02 (0.15) 0.02 (0.16) 0.02 (0.15) −3.73 <0.001

Biochemical features

 � Aspartate transaminase 

level

20.60 (12.92) 26.04 (16.23) 19.72 (12.07) −59.00 <0.001

 � Alanine transaminase 

level

24.77 (21.91) 41.49 (30.58) 22.07 (18.82) −97.50 <0.001

 � Blood urea nitrogen 

level

13.00 (3.10) 13.14 (3.28) 12.97 (3.06) −7.69 <0.001

 � Creatinine level 0.90 (0.20) 0.94 (0.30) 0.89 (0.18) −27.27 <0.001

 � Red blood cell count 5.15 (0.53) 5.35 (0.50) 5.12 (0.52) −66.36 <0.001

 � White blood cell count 6.67 (1.67) 7.51 (1.82) 6.53 (1.60) −79.81 <0.001

 � Hemoglobin level 15.00 (1.35) 15.55 (1.16) 14.91 (1.35) −77.80 <0.001

 � Hematocrit level 44.67 (3.55) 45.99 (3.08) 44.46 (3.57) −71.25 <0.001

 � Platelet count 261.24 (54.93) 271.87 (56.68) 259.52 (54.45) −32.13 <0.001

 � Total cholesterol level 179.33 (33.80) 193.83 (36.06) 176.99 (32.83) −69.34 <0.001

 � Uric acid level 6.24 (1.44) 7.13 (1.45) 6.10 (1.38) −104.49 <0.001

 � Low-density 

lipoprotein cholesterol 

level

111.57 (30.64) 122.97 (31.92) 109.73 (30.03) 61.39 <0.001

MetS components

 � Waist circumference 43082.98 <0.001

 �   Normal 131,192 (73.0) 4,751 (19.0) 126,441 (81.8)

 �   Abnormal 48,428 (27.0) 20,256 (81.0) 28,172 (18.2)

 � Triglyceride level 57528.45 <0.001

 �   Normal 146,281 (81.4) 6,684 (26.7) 139,597 (90.3)

 �   Abnormal 33,339 (18.6) 18,323 (73.3) 15,016 (9.7)

 � High-density 

lipoprotein cholesterol 

level

35089.92 <0.001

 �   Normal 147,856 (82.3) 10,099 (40.4) 137,757 (89.1)

 �   Abnormal 31,764 (17.7) 14,908 (59.6) 16,856 (10.9)

 � Blood pressure 30075.96 <0.001

 �   Normal 127,733 (71.1) 6,251 (25.0) 121,482 (78.6)

 �   Abnormal 51,887 (28.9) 18,756 (75.0) 33,131 (21.4)

 � Fasting plasma glucose 

level

27410.06 <0.001

(Continued)
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TABLE 1  (Continued)

Variable Total Metabolic syndrome t/χ2 p value

Yes (n = 25,007) No (n = 154,613)

Mean (SD) 
or n (%)

Mean (SD) n (%) Mean (SD) n (%)

 �   Normal 149,090 (83.0) 11,633 (46.5) 137,457 (88.9)

 �   Abnormal 30,530 (17.0) 13,374 (53.5) 17,156 (11.1)

 � Waist circumference 

(cm)

82.42 (10.44) 94.31 (8.24) 80.50 (9.44) −240.82 <0.001

 � Triglyceride level (mg/

dL)

108.13 (74.75) 205.95(107.13) 92.31 (53.27) −164.49 <0.001

 � High-density 

lipoprotein cholesterol 

level (mg/dL)

51.31 (11.87) 40.57 (8.11) 53.05 (11.46) 211.68 <0.001

 � Systolic blood pressure 120.77 (12.66) 132.37 (11.78) 118.90 (11.76) −167.82 <0.001

 � Diastolic blood 

pressure

73.46 (10.25) 82.47 (10.30) 72.00 (9.47) −150.80 <0.001

 � Fasting plasma glucose 93.32 (12.32) 102.84 (22.20) 91.78 (8.93) −77.77 <0.001

SD, standard deviation; BSRS, Brief Symptom Rating Scale.

TABLE 2  Sex-specific prevalence of metabolic syndrome by its component abnormality of the cohort study (N = 179,620).

Metabolic 
components 
abnormality

Men Women p

Total 
(N = 149,900)

n (%)

MetS 
(N = 23,829)

n (%)

Non-MetS 
(N = 126,071)

n (%)

Total 
(N = 29,720)

n (%)

MetS 
(N = 1,178)

n (%)

Non-MetS 
(N = 28,542)

n (%)

Increased waist 

circumference

42,509 (28.4) 19,191 (80.5) 23,318 (18.5) 5,919 (19.9) 1,065 (90.4) 4,854 (17.0) <0.001

p < 0.001 p < 0.001

Elevated 

triglycerides

31,854 (21.3) 17,698 (74.3) 14,156 (11.2) 1,485 (5.0) 625 (53.1) 860 (3.0) <0.001

p < 0.001 p < 0.001

Reduced HDL-C 26,444 (17.6) 13,928 (58.4) 12,516 (9.9) 5,320 (17.9) 980 (83.2) 4,340 (15.2) 0.284

p < 0.001 p < 0.001

Elevated blood 

pressure

49,246 (32.9) 18,109 (76.0) 31,137 (24.7) 2,641 (8.9) 647 (54.9) 1,994 (7.0) <0.001

p < 0.001 p < 0.001

Hyperglycemia 28,456 (19.0) 12,777 (53.6) 15,679 (12.4) 2,074 (7.0) 597 (50.7) 1,477 (5.2) <0.001

p < 0.001 p < 0.001

MetS, metabolic syndrome; HDL-C, high density lipoprotein cholesterol.

TABLE 3  Model performance in predicting MetS.

Model Accuracy F1 score Precision Recall Specificity AUC

K-nearest neighbor 0.87 0.41 0.57 0.32 0.96 0.80

Random forest 0.89 0.47 0.68 0.36 0.97 0.89

Logistic regression 0.89 0.49 0.67 0.38 0.97 0.89

Support vector 

machine

0.89 0.44 0.73 0.31 0.98 0.84

Neural network 0.89 0.51 0.65 0.43 0.96 0.89

Naïve Bayes 0.80 0.44 0.37 0.56 0.84 0.81

MetS, metabolic syndrome; AUC, area under the receiver operating characteristic curve.
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TABLE 4  Pairwise comparison of area under the receiver operating characteristic curve values among six machine learning models for predicting 
metabolic syndrome using DeLong’s test.

Model A Model B AUC A AUC B ΔAUC Z p_FDR_BH

Logistic Regression Naive Bayes 0.894 0.818 0.076 38.268 0

KNN Logistic Regression 0.818 0.894 −0.076 35.574 2.65E-276

Random Forest Naive Bayes 0.890 0.818 0.071 35.505 2.06E-275

KNN Random Forest 0.818 0.890 −0.072 34.004 7.27E-253

KNN SVM 0.818 0.882 −0.064 30.554 1.52E-204

SVM Naive Bayes 0.882 0.818 0.064 28.313 6.03E-176

KNN Neural Network 0.818 0.873 −0.055 24.271 8.50E-130

Naive Bayes Neural Network 0.818 0.873 −0.055 23.474 1.42E-121

Logistic Regression Neural Network 0.894 0.873 0.021 16.416 2.44E-60

Random Forest Neural Network 0.890 0.873 0.017 13.053 9.11E-39

Logistic Regression SVM 0.894 0.882 0.012 11.970 6.99E-33

SVM Neural Network 0.882 0.873 0.009 8.694 4.38E-18

Random Forest SVM 0.890 0.882 0.007 7.515 6.58E-14

Random Forest Logistic Regression 0.890 0.894 −0.004 4.890 1.08E-06

KNN Naive Bayes 0.818 0.818 0.0002 0.059 0.953

KNN, k-nearest neighbors; SVM, support vector machine; AUC, area under the receiver operating characteristic curve; ΔAUC, difference in AUC between models; Z, test statistic; p_FDR_
BH, p-value adjusted for multiple comparisons using the Benjamini–Hochberg false discovery rate method.

reduced HDL-C. This observation aligns with findings from 
Ramezankhani et al., who reported that HDL-C decline was more 
strongly associated with MetS progression in women than in men 

(27). While HDL-C was not included as a predictor variable in our 
models due to its role in defining the MetS outcome, the sex-specific 
distribution observed in our study underscores the importance of 

FIGURE 2

Receiver operating characteristic (ROC) curves of six machine learning models for predicting metabolic syndrome, with Logistic Regression achieving 
the highest AUC (0.894), followed by Random Forest, SVM, and Neural Network.
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developing tailored prediction models that reflect distinct risk profiles 
in men and women.

Elevated ALT levels were consistently identified as a significant 
predictor of MetS in both sexes. ALT is a specific marker of liver 
function, as it is predominantly localized in hepatocytes and is 
released into the bloodstream following liver cell damage (28). Its 
elevation is strongly linked to fatty liver disease, a condition that leads 
to lipid accumulation in the liver and other organs, ultimately 
promoting insulin resistance—a key factor in the development and 
progression of MetS (29). In contrast, AST reflects systemic enzymatic 
activity, as it is found in multiple tissues, including the heart, brain, 
and skeletal muscles, making it less specific to liver function. The 

liver-specific role of ALT in MetS development explains its stronger 
association with MetS than that of AST. Our findings align with those 
of previous studies conducted among military personnel, which 
reported the significance of ALT in MetS prediction (30). Additionally, 
elevated ALT levels have been associated with occupational stress and 
fatigue, which are factors prevalent among military personnel (31).

In our study, biochemical parameters exhibited greater specificity 
for MetS prediction than did disease-related and lifestyle factors. This 
may be  attributed to the gradual emergence of biochemical 
abnormalities during the pathophysiological progression of 
MetS. Prioritizing these biochemical markers in screening processes 
can enhance early detection and improve intervention strategies for 

FIGURE 3 (Continued)
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FIGURE 3 (Continued)

MetS. In contrast, disease-related and lifestyle factors, such as smoking 
and alcohol consumption, are well-established risks that indirectly 
contribute to biochemical changes leading to MetS (32). This 
highlights the need for an integrated approach that combines 
biochemical monitoring with lifestyle interventions to provide 
comprehensive strategies for preventing and managing MetS.

Interestingly, mental health indicators were not identified as key 
predictors of MetS in this cohort. One possible explanation is the 
unique resilience and coping mechanisms instilled by military training, 
which may mitigate the impact of psychological stress on metabolic 
health (33, 34). The strong emphasis on discipline, physical fitness, and 

mental toughness in military culture likely contributes to this resilience 
(35). However, two alternative explanations should also be considered. 
First, military recruitment and retention policies generally exclude 
individuals with severe mental health conditions, leading to a more 
homogeneous cohort with less variability in psychological indicators. 
Secondly, reliance on self-reported measures of psychological distress 
may limit the ability to fully capture real-world mental health 
conditions. In particular, social desirability bias may have led 
participants to underreport BSRS-5 symptoms, potentially attenuating 
the observed associations with MetS and highlighting the need for 
further research and targeted intervention strategies.
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This study has several limitations. First, the lack of genetic and 
dietary data limits the comprehensiveness of prediction models. The 
incorporation of such data in future studies may increase model 
accuracy. Second, because the study was conducted on Air Force 
personnel, the generalizability of the findings to other populations 
remains uncertain. Finally, feature importance was analyzed via cross-
sectional data, which hindered the investigation of causal relationships 
between the features and MetS. Large-scale longitudinal studies must 
be conducted in the future.

5 Conclusion

We developed sex-specific MetS prediction models for military 
personnel that incorporate demographic, anthropometric, clinical, 
lifestyle, mental, and biochemical features. The LR model achieved the 
highest accuracy and AUC for MetS prediction, followed closely by 
the RF model. BMI, age, and ALT level emerged as the most important 
predictors of MetS in both sexes. For men, total cholesterol and uric 
acid were also significant, whereas hemoglobin and hematocrit were 

FIGURE 3

(a) Feature importance in the overall model. (b) Shapley Additive exPlanations (SHAP) on the overall model output. (c) Feature importance in the model 
for men. (d) SHAP on model output for men. (e) Feature importance in the model for women. (f) SHAP on model output for women.
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influential for women. These findings highlight the importance of 
sex-based differences in early MetS risk detection and the utility of 
early prediction models in routine health screenings.

Based on these results, population-level interventions should 
emphasize structured weight management, education on liver health 
(e.g., reducing alcohol consumption and unhealthy diets), and 
age-specific health screenings for all personnel. For men, targeted 
strategies should include dietary modifications to lower total 
cholesterol and uric acid levels, combined with regular monitoring to 
enable early management of these risks. For women, interventions 
should prioritize nutritional support to maintain adequate hemoglobin 
and hematocrit levels, along with routine screening to detect and 
address underlying causes of deficiencies. Tailoring preventive 
strategies to sex-specific risk profiles may enhance early detection and 
optimize the management of MetS in military populations.
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