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Metabolic syndrome is a critical predictor of future cardiometabolic disease and
an emerging public health concern, particularly in high-demand populations
such as military personnel. This study aimed to develop and evaluate sex-
specific machine learning models for the early detection of metabolic syndrome
using annual health check data. We analyzed records from 179,620 Taiwanese
Air Force personnel between 2014 and 2022, incorporating demographic,
anthropometric, clinical, lifestyle, mental health, and biochemical variables.
Six machine learning algorithms—including logistic regression, random
forest, K-nearest neighbor, support vector machine, neural network, and
naive Bayes—were trained separately for men and women. Among these
models, logistic regression outperformed the others, achieving an accuracy
and area under the curve (AUC) of 0.89. Body mass index, age, and alanine
aminotransferase levels were consistent predictors across sexes. For men,
total cholesterol and uric acid contributed significantly, while hemoglobin and
hematocrit were more predictive in women. These findings demonstrate that
sex-specific predictive models can support early identification of individuals
at high risk for metabolic syndrome, enabling targeted prevention strategies
and strengthening population health efforts in military populations and other
young to middle-aged adult groups.

KEYWORDS

metabolic syndrome, machine learning, predictive model, sex differences, military
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1 Introduction

Metabolic syndrome (MetS) is a cluster of interrelated conditions including obesity,
elevated blood glucose, dyslipidemia, and hypertension. These conditions frequently co-occur
in individuals at increased risk of cardiovascular disease and type 2 diabetes and are strong
predictors of morbidity and mortality (1). As of 2018, the global prevalence of MetS was
estimated at 25% and has since continued to rise, making it a growing public health concern
(2). Among Air Force personnel, high stress levels increase susceptibility to metabolic
disorders (3), underscoring the need for early risk detection and targeted prevention strategies
in this population.

Numerous factors contribute to MetS, including age, sex (3, 4), chronic disease
history (5), family history (5), and behaviors such as smoking (6), alcohol consumption
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(7), betel nut use (5), and physical inactivity (8). Betel nut chewing
is particularly relevant in Asian populations, where its high
prevalence and established associations with central obesity,
dyslipidemia, and impaired glucose regulation make it a culturally
specific conditioning factor in the development of MetS (9).
Although body mass index (BMI) is frequently used in population
screening to identify individuals at risk (10), it is not itself a causal
determinant of MetS. Instead, the pathophysiological link between
MetS and cardiometabolic disease arises from the quantity,
distribution, and functionality of adipose tissue, with visceral fat
and dysfunctional adipose compartments playing a more critical
role than overall body weight (11). This distinction underscores
the need to interpret BMI cautiously and to consider more direct
indicators of body fat and adiposity function in risk assessments.
Mental health status (12) and biochemical indicators—such as
white blood cell count, hemoglobin, total cholesterol, alanine
aminotransferase (ALT), and uric acid level (13, 14)—also show
strong associations with MetS risk. While many predictive models
have been developed, most rely on traditional statistical methods
such as logistic regression and may not fully capture complex
interactions among variables.

Machine learning offers a data-driven alternative capable of
analyzing high-dimensional health data and identifying nonlinear
patterns (15). It has shown promise in disease prediction across
various health domains. This study focuses on six widely used machine
learning algorithms: logistic regression (LR), random forest (RF),
K-nearest neighbor (KNN), support vector machine (SVM), neural
network (NN), and naive Bayes (NB) (16, 17). Each algorithm varies
in structure and learning mechanism, providing different strengths in
predictive modeling (18-20).

Despite increasing interest in machine learning for health
prediction (21), its application to MetS risk detection in military
populations remains underexplored. This study aims to evaluate the
predictive accuracy of multiple machine learning models for MetS
using annual health check data from Taiwanese Air Force personnel.
We further examine how sex-specific models may enhance prediction
by identifying distinct risk profiles in men and women. Our goal is to
inform early detection and personalized prevention strategies,
contributing to improved metabolic health and operational readiness
in high-demand populations.

2 Materials and methods
2.1 Study design and cohort

This population-based study used data from the Taiwanese
Military Health Management Information System, which collects
annual worksite health examination data from active-duty
personnel. We included Air Force members aged 18 to 58 years
who underwent health screenings between 2014 and 2022. Data
included demographic characteristics, anthropometric measures,
medical history, lifestyle behaviors, mental health indicators, and
biochemical parameters. All procedures followed the ethical
standards of the 1975 Declaration of Helsinki and were approved
by the Institutional Review Board of Tri-Service General Hospital,
Taiwan (approval number: A202305142).
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2.2 Measures

We initially examined 36 features potentially associated with MetS
(22), grouped into three categories: (1) demographic and
anthropometric; (2) clinical, lifestyle, and mental health; and (3)
biochemical.

2.2.1 Step 1: demographic and anthropometric
features

Age, sex, waist circumference, and BMI were included. BMI was
calculated as weight (kg) divided by height squared (m?).

2.2.2 Step 2: clinical, lifestyle, and mental health
features

Clinical features included history of chronic disease, family history,
and blood pressure (systolic and diastolic). Lifestyle features included
smoking, betel nut use, alcohol consumption, physical activity, rapid
fatigue during exercise, infection within 1 month, and regular
medication use. The mental health features—insomnia, depression,
hostility, anxiety, interpersonal sensitivity, and suicidal ideation—were
assessed using the Brief Symptom Rating Scale-5 (BSRS-5), a validated
five-item scale scored on a 5-point Likert scale (0-4) (23, 24). Higher
scores indicated poorer psychological well-being. The Cronbach’s
value for the BSRS-5 ranges from 0.77 to 0.90 (23).

2.2.3 Step 3: biochemical features

Biochemical features included liver function markers—aspartate
aminotransferase (AST) and alanine aminotransferase (ALT); renal
function markers—blood urea nitrogen (BUN) and creatinine;
hematological parameters—red blood cell (RBC) count, white blood
cell (WBC) count, hemoglobin, hematocrit, and platelet count; and
cardiovascular indicators—total cholesterol (TC), uric acid (UA),
triglycerides, high-density lipoprotein cholesterol level (HDL-C),
low-density lipoprotein cholesterol (LDL-C), and fasting plasma
glucose. The Air Force personnel fasted overnight before venous blood
collection. Samples were processed using a clinical chemistry analyzer
(ADVIA1800, Siemens, United States).

2.3 Study outcomes

The study outcome was the occurrence of MetS during a 9-year
surveillance period. MetS diagnosis followed the modified National
Cholesterol Education Program Adult Treatment Panel III criteria,
with modifications from the International Diabetes Federation, which
accounts for waist circumference norms in the Asian population (25).
Individuals meeting three or more of the following criteria were
diagnosed with MetS (4): triglycerides >150 mg/dL, fasting plasma
glucose >100 mg/dL, HDL-C < 40 mg/dL (men) or <50 mg/dL
(women), systolic blood pressure >130 mmHg or diastolic blood
pressure >85 mmHg, and waist circumference >90 cm (men) or
>80 cm (women).

Because triglycerides, fasting plasma glucose, HDL-C, blood
pressure, and waist circumference were used to define the MetS
outcome, these variables were not included as predictors in the
machine learning models to avoid circularity and redundancy. In
addition, the BSRS total score overlapped with its five individual
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items, which were retained to provide more granular information.
Therefore, seven features were excluded, and the remaining 29 features
were retained for model development using the sequential three-step
process described above (Figure 1).

2.4 Machine learning

A total of 29 key features of MetS were included in the models in
three sequential steps (Figure 1). The contribution of each feature to
model performance was evaluated. The dataset was divided into MetS
and non-MetS groups at an 80:20 ratio, yielding training and test
datasets of 143,696 and 35,924 Air Force personnel, respectively. To
address class imbalance, the synthetic minority oversampling
technique (SMOTE) was applied exclusively to the training dataset
prior to model development, while the test dataset was left unchanged
to ensure unbiased evaluation (26). For comparison, we also assessed
two other approaches, adaptive synthetic sampling (ADASYN) and
class weighting, both of which produced area under the receiver
operating characteristic curve (AUC) values similar to those obtained
with SMOTE (see Supplementary Table SI for detailed results).
Because SMOTE is well validated and widely applied in biomedical
prediction research, it was selected as the primary method for
handling class imbalance in this study.

Data preprocessing included standardization to ensure
compatibility across models. Six machine learning algorithms—KNN,

RE LR, SVM, NN, and NB—were implemented via Python (version

10.3389/fpubh.2025.1625461

3.8) with libraries including scikit-learn, imbalanced-learn, and SHapley
Additive exPlanations (SHAP). Each model was initially trained with
default hyperparameters, followed by optimization through grid search.

Hyperparameter optimization was conducted using grid search
with 5-fold cross-validation for the RF, SVM, and NN models, whereas
KNN, LR, and NB were implemented with standard or default
configurations. For RE, the grid included variations in the number of
trees, maximum depth, and minimum split size; for SVM, the penalty
parameter (C) and kernel coefficient (gamma) were tuned with the
RBF kernel; and for NN, hidden layer sizes, regularization (alpha), and
learning rate were explored. The detailed parameter ranges for all
models are provided in Supplementary Table S2.

Model performance was evaluated via multiple metrics, including
accuracy, F1 score, precision, recall, specificity, and area under the
receiver operating characteristic curve (AUC). Accuracy was calculated
via the following equation: true positives (TP) + true negatives (TN) /
(TP + false negatives [FN] + false positives [FP] + TN) = (TP + TN) /
total sample count. The F1 score is the harmonic mean of precision and
sensitivity. The precision was calculated as follows: TP / (TP + FP).
Recall was calculated as follows: TP / (TP + FN). The specificity was
calculated as follows: TN / (FP + TN).

The discriminatory ability of the models was visualized via
receiver operating characteristic (ROC) curves. Feature importance
was assessed via SHAP values, which provided insights into the top
predictors for MetS in the male and female subgroups. These analyses
identified the 10 most influential features for each subgroup, providing
tailored insights into risk patterns.

Step 1
Demographic and
anthropometric features

Step 2

\ 4

Clinical, lifestyle, and
mental health features

Step 3
Biochemical features

Individuals
with MetS
(n=25,007)
Air Force
personnel
(n=179,620)
Individuals
without MetS
(n=154,613)

FIGURE 1

Process of data collection and machine learning. MetS, metabolic syndrome.

Training dataset
(N =143,696)
Individuals with MetS (n =
20,006)
Individuals without MetS (n =
123,690)

Test dataset

(N =35,924)
Individuals with MetS (r» = 5,001)
Individuals without MetS (n =
30,923)
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2.5 Statistical analysis

Continuous variables are presented as means and standard
deviations; categorical variables are shown as frequencies and
percentages. Group comparisons between individuals with and
without MetS were conducted using independent f-tests for
continuous data and chi-square tests for categorical data. A p-value
<0.05 indicated statistical significance.

3 Results
3.1 Cohort characteristics

The study included 179,620 active-duty Air Force personnel, of
whom 83.5% were men. Table | summarizes the cohort characteristics.
A total of 25,007 individuals (13.9%) met the criteria for MetS,
whereas 154,613 (86.1%) did not. Individuals in the MetS group were
significantly older than those in the non-MetS group (mean age:
34.36 + 5.94 vs. 29.88 £ 6.79 years; p < 0.001). The proportion of men
was also greater in the MetS group than in the non-MetS group (95.3%
vs. 81.5%; p < 0.001). Mental health scores, excluding those for suicide
attempts, were significantly higher in the MetS group. In addition, all
biochemical measurements were significantly greater in the MetS
group than in the non-MetS group.

The chi-square test revealed sex-specific patterns in the prevalence
of MetS and its component abnormalities (Table 2). Among men, the
most common abnormality was elevated blood pressure (32.9%),
followed by increased waist circumference (28.4%), elevated
triglycerides (21.3%), hyperglycemia (19.0%), and reduced HDL-C
(17.6%). In women, increased waist circumference was most prevalent
(19.9%), followed by reduced HDL-C (17.9%), elevated blood pressure
(8.9%), hyperglycemia (7.0%), and elevated triglycerides (5.0%).

When examining the prevalence of MetS within each abnormality,
men with increased waist circumference (80.5%), elevated blood
pressure (76.0%), or elevated triglycerides (74.3%) were most likely to
meet MetS criteria, followed by reduced HDL-C (58.4%) and
hyperglycemia (53.6%). In women, increased waist circumference
(90.4%) and reduced HDL-C (83.2%) were the strongest correlates of
MetS, followed by elevated blood pressure (54.9%), elevated
triglycerides (53.1%), and hyperglycemia (50.7%).

Overall, 17.6% of men and 17.9% of women presented with reduced
HDL-C (p = 0.284), indicating no significant sex difference in overall
prevalence. However, when stratified by MetS status, reduced HDL-C
was observed in 58.4% of men with MetS versus 9.9% without MetS,
and in 83.2% of women with MetS versus 15.2% without MetS. These
findings suggest that while the overall prevalence of reduced HDL-C
was comparable between sexes, within the MetS subgroup, women were
disproportionately more likely than men to exhibit reduced HDL-C.

3.2 Model performance

The six machine learning models demonstrated accuracies
ranging from 0.80 to 0.89. Among them, the RE, LR, SVM, and NN
models achieved the highest overall accuracy (0.89). The NN model
had the highest F1 score (0.51), indicating balanced performance in
precision and recall. The SVM model had the highest precision (0.73),
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followed by RF (0.68), LR (0.67), NN (0.65), KNN (0.57), and NB
(0.37) models. The model recall values ranged from 0.31 to 0.56, and
the specificity values ranged from 0.84 to 0.98 (Table 3).

For predicting MetS events, the LR, RF, and NN models yielded
the highest AUC values (all rounded to 0.89), followed by SVM (0.84),
NB (0.81), and KNN (0.80; Figure 2). Pairwise comparisons using
DeLongss test indicated that LR achieved the highest AUC (0.894),
significantly exceeding RF (0.890; AAUC = 0.004; p_FDR < 0.001)
and NN (0.873; AAUC = 0.021; p_FDR < 0.001; Table 4). RF also
significantly outperformed NN (AAUC = 0.017; p_FDR < 0.001). The
overall performance ranking was LR > RF > SVM > NN, with all four
significantly outperformed NN and NB (all p_FDR < 0.001). Although
the absolute AUC differences among LR, RE, and NN were small
(<0.021), they remained statistically significant after multiple-
comparison adjustment.

3.3 Sex-specific MetS predictors

All six models passed the Hosmer-Lemeshow test, indicating
good model fit. The top 10 predictive features for MetS identified by
SHAP analysis are shown in Figure 3. Across the entire cohort, BMI,
age, ALT level, hemoglobin, and uric acid were the five most strongly
predictive features (Figures 3a,b). Features related to clinical, lifestyle,
and mental health contributed minimally to the prediction. For men,
BMI, age, ALT level, total cholesterol, and uric acid level were the most
influential predictors (Figures 3c,d). For women, BMI, age,
hemoglobin, ALT level, and hematocrit were the most predictive
features (Figures 3e,f). Across both sexes, BMI, age, and ALT levels
were consistently identified as the most influential predictors.

4 Discussion

Maintaining optimal health in military personnel is crucial as
poor health can hinder their ability to fully dedicate themselves to
national security (3). This study represents a novel attempt to explore
sex-based differences in early MetS detection among Air Force
personnel via machine learning models. We systematically developed
prediction models by sequentially incorporating demographic,
anthropometric, clinical, lifestyle, mental health, and biochemical
features. Six machine learning algorithms were employed, and the
models were tailored by sex. Model performance and feature
importance were subsequently evaluated.

Among the models, the LR model exhibited the most robust
performance in predicting MetS, achieving an accuracy and AUC of
0.89. The RF model also performed well. The findings revealed that
BMI, age, and ALT level were the three strongest predictors of MetS
in Air Force personnel. For men, total cholesterol and uric acid were
also key predictors, whereas hemoglobin and hematocrit were
influential for women. These results emphasize the importance of
tailoring early MetS risk detection models to account for
sex-based differences.

Beyond model-derived predictors, our analysis of individual MetS
components revealed a noteworthy sex-specific pattern in HDL-C
abnormalities. Although the overall prevalence of reduced HDL-C
was similar between men and women, within the MetS subgroup
women were disproportionately more likely than men to exhibit
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TABLE 1 Demographic, anthropometric, disease, lifestyle, mental health, and biochemical features of the study cohort (N = 179,620).

Variable Total Metabolic syndrome
Yes (n = 25,007) No (n = 154,613)
Mean (SD) Mean (SD) n (%) Mean (SD) n (%)
or n (%)
Demographic features
Age 30.51 (6.85) 34.36 (5.94) 29.88 (6.79) —108.40 <0.001
Sex 2947.08 <0.001
Women 29,720 (16.5) 1,178 (4.7) 28,542 (18.5)
Men 149,900 (83.5) 23,829 (95.3) 126,071 (81.5)
Anthropometric feature
Body mass index 24.87 (3.79) 29.14 (3.35) 24.18 (3.39) —216.78 <0.001
Clinical features
Chronic disease 2198.08 <0.001
No 164,163 (91.4) 20,926 (83.7) 143,237 (92.6)
Yes 15,457 (8.6) 4,081 (16.3) 11,376 (7.4)
Family history 1766.32 <0.001
No 141,104 (78.6) 17,114 (68.4) 123,990 (80.2)
Yes 38,516 (21.4) 7,893 (31.6) 30,623 (19.8)
Lifestyle features
Smoking 1743.10 <0.001
No 138,496 (77.1) 16,708 (66.8) 121,788 (78.8)
Yes 41,124 (22.9) 8,299 (33.2) 32,825 (21.2)
Betel nut chewing 1558.71 <0.001
No 171,078 (95.2) 22,585 (90.3) 148,493 (96.0)
Yes 8,542 (4.8) 2,422 (9.7) 6,120 (4.0)
Alcohol consumption 630.12 <0.001
No 166,262 (92.6) 22,181 (88.7) 144,081 (93.2)
Yes 13,358 (7.4) 2,826 (11.3) 10,532 (6.8)
Physical activity 274.18 <0.001
No 7,573 (4.2) 950 (3.8) 6,623 (4.3)
Occasionally 50,196 (27.9) 7,971 (31.9) 42,225 (27.3)
1 to 2 times a week 71,180 (39.6) 9,813 (39.2) 61,367 (39.7)
3 to 4 times a week 50,671 (28.2) 6,273 (25.1) 44,398 (28.7)
Rapid fatigue during 2142.28 <0.001
exercise
No 164,477 (91.6) 21,012 (84.0) 143,465 (92.8)
Yes 15,143 (8.4) 3,995 (16.0) 11,148 (7.2)
Infection within 3.24 0.072
1 month
No 179,266 (99.8) 24,946 (99.8) 154,320 (99.8)
Yes 354 (0.2) 61(0.2) 293 (0.2)
Regular medication use 142.20 <0.001
No 175,403 (97.7) 24,155 (96.6) 151,248 (97.8)
Yes 4,217 (2.3) 852 (3.4) 3,365 (2.2)
Mental health features
(Continued)
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TABLE 1 (Continued)

Variable

Total

10.3389/fpubh.2025.1625461

Metabolic syndrome

Yes (n = 25,007) No (n = 154,613)

Mean (SD) Mean (SD) n (%) Mean (SD) n (%)
or n (%)
Total BSRS score 0.94 (1.93) 1.16 (2.11) 0.91 (1.90) —17.81 <0.001
BSRS-1 Sleep score 0.27 (0.55) 0.35 (0.61) 0.26 (0.54) —20.45 <0.001
BSRS-2 Tension score 0.19 (0.45) 0.22 (0.48) 0.18 (0.44) —11.03 <0.001
BSRS-3 Anger score 0.20 (0.48) 0.26 (0.54) 0.19 (0.47) —17.83 <0.001
BSRS-4 Mood score 0.16 (0.43) 0.19 (0.47) 0.15 (0.42) —13.28 <0.001
BSRS-5 Inferiority 0.12 (0.39) 0.15 (0.42) 012 (0.38) -931 <0.001
score
Suicide attempt score 0.02 (0.15) 0.02 (0.16) 0.02 (0.15) —3.73 <0.001
Biochemical features
Aspartate transaminase 20.60 (12.92) 26.04 (16.23) 19.72 (12.07) —59.00 <0.001
level
Alanine transaminase 24.77 (21.91) 41.49 (30.58) 22.07 (18.82) —-97.50 <0.001
level
Blood urea nitrogen 13.00 (3.10) 13.14 (3.28) 12.97 (3.06) —7.69 <0.001
level
Creatinine level 0.90 (0.20) 0.94 (0.30) 0.89 (0.18) —27.27 <0.001
Red blood cell count 5.15(0.53) 5.35 (0.50) 5.12 (0.52) —66.36 <0.001
White blood cell count 6.67 (1.67) 7.51 (1.82) 6.53 (1.60) —79.81 <0.001
Hemoglobin level 15.00 (1.35) 15.55 (1.16) 14.91 (1.35) —77.80 <0.001
Hematocrit level 44,67 (3.55) 45.99 (3.08) 44.46 (3.57) —71.25 <0.001
Platelet count 261.24 (54.93) 271.87 (56.68) 259.52 (54.45) —32.13 <0.001
Total cholesterol level 179.33 (33.80) 193.83 (36.06) 176.99 (32.83) —69.34 <0.001
Uric acid level 6.24 (1.44) 7.13 (1.45) 6.10 (1.38) —104.49 <0.001
Low-density 111.57 (30.64) 122.97 (31.92) 109.73 (30.03) 61.39 <0.001
lipoprotein cholesterol
level
MetS components

Waist circumference 43082.98 <0.001

Normal 131,192 (73.0) 4,751 (19.0) 126,441 (81.8)

Abnormal 48,428 (27.0) 20,256 (81.0) 28,172 (18.2)
Triglyceride level 57528.45 <0.001

Normal 146,281 (81.4) 6,684 (26.7) 139,597 (90.3)

Abnormal 33,339 (18.6) 18,323 (73.3) 15,016 (9.7)
High-density 35089.92 <0.001
lipoprotein cholesterol
level

Normal 147,856 (82.3) 10,099 (40.4) 137,757 (89.1)

Abnormal 31,764 (17.7) 14,908 (59.6) 16,856 (10.9)
Blood pressure 30075.96 <0.001

Normal 127,733 (71.1) 6,251 (25.0) 121,482 (78.6)

Abnormal 51,887 (28.9) 18,756 (75.0) 33,131 (21.4)
Fasting plasma glucose 27410.06 <0.001
level

(Continued)
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TABLE 1 (Continued)

Variable Total Metabolic syndrome
Yes (n = 25,007) No (n = 154,613)
Mean (SD) Mean (SD) n (%) Mean (SD) VA
or n (%)

Normal 149,090 (83.0) 11,633 (46.5) 137,457 (88.9)

Abnormal 30,530 (17.0) 13,374 (53.5) 17,156 (11.1)
Waist circumference 82.42 (10.44) 94.31 (8.24) 80.50 (9.44) —240.82 <0.001
(cm)
Triglyceride level (mg/ 108.13 (74.75) 205.95(107.13) 92.31 (53.27) —164.49 <0.001
dL)
High-density 51.31 (11.87) 40.57 (8.11) 53.05 (11.46) 211.68 <0.001
lipoprotein cholesterol
level (mg/dL)
Systolic blood pressure 120.77 (12.66) 132.37 (11.78) 118.90 (11.76) —167.82 <0.001
Diastolic blood 73.46 (10.25) 82.47 (10.30) 72.00 (9.47) —150.80 <0.001
pressure
Fasting plasma glucose 93.32 (12.32) 102.84 (22.20) 91.78 (8.93) -77.77 <0.001

SD, standard deviation; BSRS, Brief Symptom Rating Scale.

TABLE 2 Sex-specific prevalence of metabolic syndrome by its component abnormality of the cohort study (N = 179,620).

Metabolic Men Women
SR Total MetS Total Mets
(N=149,900) (N=23829) (N=126,071) (N=29720) (N=1178) (N =28,542)
n (%) n (%) n (%) n (%) n (%) n (%)
Increased waist 42,509 (28.4) 19,191 (80.5) 23,318 (18.5) 5,919 (19.9) 1,065 (90.4) 4,854 (17.0) <0.001
circumference p<0.001 p<0.001
Elevated 31,854 (21.3) ‘ 17,698 (74.3) ‘ 14,156 (11.2) 1,485 (5.0) ‘ 625 (53.1) ‘ 860 (3.0) <0.001
triglycerides p<0.001 p <0.001
Reduced HDL-C 26,444 (17.6) 13,928 (58.4) 12,516 (9.9) 5,320 (17.9) 980 (83.2) 4,340 (15.2) 0.284
p<0.001 p<0.001
Elevated blood 49,246 (32.9) ‘ 18,109 (76.0) ‘ 31,137 (24.7) 2,641 (8.9) ‘ 647 (54.9) ‘ 1,994 (7.0) <0.001
pressure P <0.001 P <0.001
Hyperglycemia 28,456 (19.0) ‘ 12,777 (53.6) ‘ 15,679 (12.4) 2,074 (7.0) ‘ 597 (50.7) ‘ 1,477 (5.2) <0.001
p<0.001 p<0.001
MetS, metabolic syndrome; HDL-C, high density lipoprotein cholesterol.
TABLE 3 Model performance in predicting MetS.
Model Accuracy F1 score Precision Recall Specificity AUC
K-nearest neighbor 0.87 0.41 0.57 0.32 0.96 0.80
Random forest 0.89 0.47 0.68 0.36 0.97 0.89
Logistic regression 0.89 0.49 0.67 0.38 0.97 0.89
Support vector 0.89 0.44 0.73 0.31 0.98 0.84
machine
Neural network 0.89 0.51 0.65 0.43 0.96 0.89
Naive Bayes 0.80 0.44 0.37 0.56 0.84 0.81

MetS, metabolic syndrome; AUC, area under the receiver operating characteristic curve.
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FIGURE 2
Receiver operating characteristic (ROC) curves of six machine learning models for predicting metabolic syndrome, with Logistic Regression achieving
the highest AUC (0.894), followed by Random Forest, SVM, and Neural Network.

TABLE 4 Pairwise comparison of area under the receiver operating characteristic curve values among six machine learning models for predicting
metabolic syndrome using DelLong’s test.

Model A Model B AUCA AUC B AAUC z p_FDR_BH
Logistic Regression Naive Bayes 0.894 0.818 0.076 38.268 0
KNN Logistic Regression 0.818 0.894 -0.076 35.574 2.65E-276
Random Forest Naive Bayes 0.890 0.818 0.071 35.505 2.06E-275
KNN Random Forest 0.818 0.890 —-0.072 34.004 7.27E-253
KNN SVM 0.818 0.882 —0.064 30.554 1.52E-204
SVM Naive Bayes 0.882 0.818 0.064 28313 6.03E-176
KNN Neural Network 0.818 0.873 —0.055 24271 8.50E-130
Naive Bayes Neural Network 0.818 0.873 —0.055 23.474 1.42E-121
Logistic Regression Neural Network 0.894 0.873 0.021 16.416 2.44E-60
Random Forest Neural Network 0.890 0.873 0.017 13.053 9.11E-39
Logistic Regression SVM 0.894 0.882 0.012 11.970 6.99E-33
SVM Neural Network 0.882 0.873 0.009 8.694 4.38E-18
Random Forest SVM 0.890 0.882 0.007 7.515 6.58E-14
Random Forest Logistic Regression 0.890 0.894 —0.004 4.890 1.08E-06
KNN Naive Bayes 0.818 0.818 0.0002 0.059 0.953

KNN, k-nearest neighbors; SVM, support vector machine; AUC, area under the receiver operating characteristic curve; AAUC, difference in AUC between models; Z, test statistic; p_FDR_
BH, p-value adjusted for multiple comparisons using the Benjamini-Hochberg false discovery rate method.

reduced HDL-C. This observation aligns with findings from  (27). While HDL-C was not included as a predictor variable in our
Ramezankhani et al., who reported that HDL-C decline was more ~ models due to its role in defining the MetS outcome, the sex-specific
strongly associated with MetS progression in women than in men  distribution observed in our study underscores the importance of
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developing tailored prediction models that reflect distinct risk profiles
in men and women.

Elevated ALT levels were consistently identified as a significant
predictor of MetS in both sexes. ALT is a specific marker of liver
function, as it is predominantly localized in hepatocytes and is
released into the bloodstream following liver cell damage (28). Its
elevation is strongly linked to fatty liver disease, a condition that leads
to lipid accumulation in the liver and other organs, ultimately
promoting insulin resistance—a key factor in the development and
progression of MetS (29). In contrast, AST reflects systemic enzymatic
activity, as it is found in multiple tissues, including the heart, brain,
and skeletal muscles, making it less specific to liver function. The

Frontiers in Public Health 09

liver-specific role of ALT in MetS development explains its stronger
association with MetS than that of AST. Our findings align with those
of previous studies conducted among military personnel, which
reported the significance of ALT in MetS prediction (30). Additionally,
elevated ALT levels have been associated with occupational stress and
fatigue, which are factors prevalent among military personnel (31).
In our study, biochemical parameters exhibited greater specificity
for MetS prediction than did disease-related and lifestyle factors. This
may be attributed to the gradual emergence of biochemical
abnormalities during the pathophysiological progression of
MetS. Prioritizing these biochemical markers in screening processes
can enhance early detection and improve intervention strategies for
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MetS. In contrast, disease-related and lifestyle factors, such as smoking
and alcohol consumption, are well-established risks that indirectly
contribute to biochemical changes leading to MetS (32). This
highlights the need for an integrated approach that combines
biochemical monitoring with lifestyle interventions to provide
comprehensive strategies for preventing and managing MetS.
Interestingly, mental health indicators were not identified as key
predictors of MetS in this cohort. One possible explanation is the
unique resilience and coping mechanisms instilled by military training,
which may mitigate the impact of psychological stress on metabolic
health (33, 34). The strong emphasis on discipline, physical fitness, and

Frontiers in Public Health

mental toughness in military culture likely contributes to this resilience
(35). However, two alternative explanations should also be considered.
First, military recruitment and retention policies generally exclude
individuals with severe mental health conditions, leading to a more
homogeneous cohort with less variability in psychological indicators.
Secondly, reliance on self-reported measures of psychological distress
may limit the ability to fully capture real-world mental health
conditions. In particular, social desirability bias may have led
participants to underreport BSRS-5 symptoms, potentially attenuating
the observed associations with MetS and highlighting the need for
further research and targeted intervention strategies.
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(a) Feature importance in the overall model. (b) Shapley Additive exPlanations (SHAP) on the overall model output. (c) Feature importance in the model
for men. (d) SHAP on model output for men. (e) Feature importance in the model for women. (f) SHAP on model output for women.

This study has several limitations. First, the lack of genetic and
dietary data limits the comprehensiveness of prediction models. The
incorporation of such data in future studies may increase model
accuracy. Second, because the study was conducted on Air Force
personnel, the generalizability of the findings to other populations
remains uncertain. Finally, feature importance was analyzed via cross-
sectional data, which hindered the investigation of causal relationships
between the features and MetS. Large-scale longitudinal studies must
be conducted in the future.
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5 Conclusion

We developed sex-specific MetS prediction models for military
personnel that incorporate demographic, anthropometric, clinical,
lifestyle, mental, and biochemical features. The LR model achieved the
highest accuracy and AUC for MetS prediction, followed closely by
the RF model. BMI, age, and ALT level emerged as the most important
predictors of MetS in both sexes. For men, total cholesterol and uric
acid were also significant, whereas hemoglobin and hematocrit were
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influential for women. These findings highlight the importance of
sex-based differences in early MetS risk detection and the utility of
early prediction models in routine health screenings.

Based on these results, population-level interventions should
emphasize structured weight management, education on liver health
(e.g., reducing alcohol consumption and unhealthy diets), and
age-specific health screenings for all personnel. For men, targeted
strategies should include dietary modifications to lower total
cholesterol and uric acid levels, combined with regular monitoring to
enable early management of these risks. For women, interventions
should prioritize nutritional support to maintain adequate hemoglobin
and hematocrit levels, along with routine screening to detect and
address underlying causes of deficiencies. Tailoring preventive
strategies to sex-specific risk profiles may enhance early detection and
optimize the management of MetS in military populations.
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