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Background: Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate 
(PFOS) are among numerous chemicals in the Per- and polyfluoroalkylated 
substances (PFAS) group, which are commonly present in various consumer 
and industrial products. These chemicals are recognized for their persistency, 
the ability to accumulate in biological systems and their documented adverse 
effects on human health. Previous research, which has primarily centered on 
global methylation patterns, has suggested that some effects of PFAS on human 
health may be linked to modifications in DNA methylation (DNAm). The aim of 
our study was to assess the relationship between the serum levels of PFOS and 
PFOA and CpG site-specific methylation of DNA from peripheral blood.

Methods: We used a case–control study on breast cancer nested within the E3N 
cohort, a prospective study of French women, in which we measured DNAm 
at more than 850,000 CpG sites with the Illumina Infinium MethylationEPIC 
BeadChip for 166 case–control pairs. Serum levels of PFOS and PFOA were 
measured by liquid chromatography coupled to tandem mass spectrometry.

Results: We found 64 CpG sites with significant hypomethylation or 
hypermethylation associated with increased levels of PFOA or PFOS (p-
valueBonferroni < 0.05). The strongest association was found between PFOA 
serum levels and decreased DNAm at cg06874740 (p-valueBonferroni = 2.2×10−5) 
and between PFOS serum levels and decreased DNAm at cg02793158 (p-
valueBonferroni = 9.3×10−5). Gene-set enrichment analyses using all CpG sites 
associated with PFOA or PFOS with an unadjusted p-value <0.01, identified 20 
KEGG pathways for each of these compounds.

Conclusion: PFAS exposure may be  linked to substantial and widespread 
changes in the methylome that may be involved in the consequences on health 
of these pollutants. Our findings indicate that the biological and health effects 
of PFOA and PFOS may be more intricate and varied than previously thought, 
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reinforcing the need for policies aimed at regulating this class of endocrine-
disrupting chemicals.
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endocrine disrupting chemicals, environmental exposure, DNA methylation, PFOA, 
PFOS

1 Background

Per- and polyfluoroalkylated substances (PFAS) represent an 
extensive array of chemical compounds, encompassing over 4,000 
different congeners (1). These compounds exhibit various physical and 
chemical properties such as impermeability to grease, water and oil 
and resistance to heat. Because of these distinct properties, PFAS find 
extensive applications in various products, including in stain- and 
water-repellent textiles, carpets, cleaning products, paints and fire-
fighting foams. Also, limited use in cookware and food packaging and 
processing had been authorized (U. S Food and Drug Administration).

Among all PFAS, perfluorooctanoic acid (PFOA) and 
perfluorooctanesulfonate (PFOS) have historically been the most 
commonly employed compounds. However, they are now prohibited 
and are undergoing close scrutiny and research regarding their 
impacts on human health and the environment. Both chemicals are 
sources of particular concern due to their ability to be transported 
over long distances, their persistence in the environment, and their 
capacity to accumulate gradually in living organisms (51). For these 
characteristics they are classified as persistent organic 
pollutants (POPs).

Exposure to these contaminants can occur through multiple 
pathways, and their lingering presence in the environment has 
resulted in escalating levels of environmental contamination arising 
from past and ongoing usage.

The growing concerns surrounding PFOA and PFOS exposure 
and their impact on human health have been underscored in a review 
conducted by Fenton et al. (2). Numerous studies have brought to light 
the fact that PFOA and PFOS can function as endocrine disruptors 
affecting immune function (3–5) and thyroid function (6), as well as 
reproductive and developmental outcomes (7–9). Furthermore, earlier 
research has identified an association between exposure to PFOS and 
PFOA and various health conditions, including liver and kidney 
diseases, and different types of cancers (2, 10, 11). For breast cancer 
(BC) in particular, a case–control study conducted among the Inuit 
population in Greenland found that elevated serum levels of PFOA 
and PFOS were linked to an increased risk of the disease (50); similar 
results were also observed in a case–control study nested within the 
French E3N cohort (12).

The precise mechanisms by which these substances operate are 
not yet fully comprehended. Nonetheless, there is a hypothesis that 
PFOA and PFOS may induce changes in DNA methylation (DNAm), 
a biochemical process involving the addition of a methyl (-CH3) group 
to the fifth carbon position of a DNA base, typically a cytosine base 
within a CpG dinucleotide. DNAm serves as a crucial epigenetic 
mechanism for regulating gene expression, and any alterations in this 
process could contribute to the development of various health 
conditions and diseases (47).

Studies conducted in-vitro, animal experiments, and human 
studies have identified several categories of environmental chemicals 

that may modify epigenetic marks such as DNAm. Such 
modifications have therefore been proposed as molecular markers 
of exposure to chemical and environmental agents (13). However, 
there is very limited research on the associations between exposure 
to PFOA and PFOS and DNAm at the level of single CpG sites in 
adults. Previous studies have examined associations between other 
PFAS compounds and DNAm among newborns or children (14), or 
global methylation marks such as LINE-1 and Alu elements (49). An 
exploratory study in 98 patients investigated the associations 
between plasma PFOA or PFOS and leukocyte DNAm and the 
mediating effect of DNAm on the PFOA/PFOS-blood lipid 
association. They found leukocyte DNAm alterations for 63 and 87 
CpG sites as well as for 8 and 11 differentially methylated regions 
(DMRs) in relation to PFOA and PFOS serum levels, 
respectively (15).

We employed an approach similar to our prior research on 
brominated flame retardants (16) to investigate the association 
between serum levels of PFOA and PFOS and DNAm at individual 
CpG sites. We used DNA obtained from peripheral blood samples of 
a breast cancer case–control study nested in the E3N cohort. For this 
purpose, we  conducted two epigenome-wide association studies 
(EWAS) to evaluate the association with PFOA and PFOS. Our 
underlying hypothesis is that alterations in DNAm can be used as 
indicators of exposure to PFAS.

2 Materials and methods

The aim of our study was to assess the relationship between the 
serum levels of PFOS and PFOA and CpG site-specific methylation of 
DNA from peripheral blood.

2.1 Population of interest

The Etude Epidémiologique auprès de femmes de l’Education 
Nationale (E3N) is a prospective cohort study that involves 98,995 
French women born between 1925 and 1950, who at inclusion in 1990 
were employed in the national education system and affiliated to the 
national health insurance MGEN (Mutuelle Générale de l’Education 
Nationale). Participation in this cohort study required women to 
return an initial self-administered questionnaire and provide explicit, 
informed and written consent. Subsequently, follow-up questionnaires 
were sent to participants every 2–3 years. These follow-up 
questionnaires gathered information about various aspects including 
lifestyle, dietary habits, medical history, and the use of medications 
and other treatments. A more comprehensive and detailed description 
of the E3N cohort can be found in two earlier publications (17, 18). 
This study obtained ethical approval from the French CNIL 
(Commission Nationale Informatique et Libertés).
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We conducted a case–control study that comprised 166 BC cases 
and 166 controls nested within the E3N cohort. The female 
participants included in the case–control study were in the age-range 
of 47 to 72 years when their blood samples were collected, which took 
place from 1995 to 1998. The blood samples were divided into separate 
aliquots of buffy coat, plasma, serum and erythrocytes. For this study, 
cases and controls were individually matched based on factors such as 
age (within a 3-year range), body mass index (BMI), menopausal 
status, and the region of residence (specifically, the French 
departments) at the time of blood collection.

2.2 Measurement of PFAS circulating levels

Circulating levels of PFOA and PFOS were assessed by measuring 
them in serum samples through liquid chromatography coupled to 
tandem mass spectrometry (LC–MS/MS). To briefly describe the 
method that was previously detailed elsewhere (12), quantification 
was achieved according to the isotopic dilution method employing 
13C labeled analogous as internal standards. The lipid content was 
determined with enzymatic kits provided by Biolabo (Maizy, France) 
independently for phospholipids (PL), triglycerides (TG), total 
cholesterol (TC) and free cholesterol (FC). The total serum lipids 
(TSL) were estimated using the formula proposed by Akins and 
colleagues: TSL = 1.677*(TC − FC) + FC + TG + PL (19).

The entire protocol adhered to well-established and accredited 
procedures, as outlined in the 2002/657/CE decision and compliant 
with the ISO 17025 standard. The quantification of PFOA and PFOS 
levels was conducted in nanograms per milliliter (ng/mL).

2.3 DNA methylation measurement and 
data pre-processing

The Infinium MethylationEPIC array, capable of quantifying 
DNAm in over 850,000 CpG sites, was employed to analyze DNA 
extracted from the archived buffy coats in a group of 197 BC case–
control pairs.

The whole process, including DNA extraction, bisulfite 
conversion, quality control assessments, methylation assays, and data 
preprocessing was carried out at the Italian Institute of Genomic 
Medicine (IIGM) in Turin, Italy. They followed established procedures 
and methods previously developed by IIGM for prior studies on DNA 
methylation (20, 21). In addition, patients with low bisulfite conversion 
intensity, those with more than 5% missing values and the remaining 
unmatching pairs were removed.

After pre-processing, the final dataset consisted of 166 case–
control pairs, and it included methylation data on 805,837 CpG sites. 
To conduct the association studies, M-values were utilized. For each 
CpG site, the M-value was determined as the log2 ratio of the 
intensities of the methylated probe to the unmethylated probe.

2.4 Cellular heterogeneity

Cellular composition is known to differ among individuals and 
since methylation levels at specific CpG sites vary with the type of cell, 
it is necessary to adjust for the proportion of cell types. Following the 

approach introduced by Houseman et  al. (22), we  utilized the 
methylation data to estimate the proportions of various cell types in 
each blood sample. These cell types included B cells, CD4 + T cells, 
CD8 + T cells, granulocytes, monocytes and natural killer cells.

2.5 Main statistical analyses

We examined whether DNAm were associated with the serum 
levels of PFOA and PFOS using linear mixed-effects models with the 
DNAm levels of individual CpG sites serving as the response variable. 
The circulating levels of PFOA (PFOS, respectively) were categorized 
according to the quartiles in the control group and the standardized 
median level within quartiles was considered as a pseudocontinuous 
fixed-effect. Additionally, we included array-related factors (plate and 
chips) as random effects to account for the variability in methylation 
due to technical sources. Furthermore, we adjusted our models for 
several covariates, which encompassed BC case–control status, age at 
blood collection (categorized as below or equal to the median value of 
56.1 years or above the median value), parity and total breastfeeding 
duration (categorized as no children and no breastfeeding, at least 1 
child and ≤6 months breastfeeding, at least 1 child and >6 months 
breastfeeding), BMI (categorized as below or equal 25 kg/ 2m  or above 
25 kg/ 2m ), proportions of different cell types, and lipids levels, defined 
in ng/mL and categorized based on the median value (≤6.46 
and >6.46).

To account for the original case–control study design from which 
the data have been generated, we  introduced weighting to the 
observations. This weighting was based on the prevalence of breast 
cancer in France, ensuring that the weighted data reflects the 
proportion of cases in the general population in line with an approach 
outlined by van der Laan (23). We performed our modeling using the 
nlme package in R. To address the issue of multiple testing 
we employed two methods. Firstly, we controlled the Family Wise 
Error Rate (FWER) by using Bonferroni adjusted p-values. Secondly, 
we controlled the False Discovery Rate (FDR) by calculating q-values 
with the qvalue R package (24). We considered all tests with FDR 
qvalues less than 0.05 to be statistically significant.

2.6 Sensitivity analysis

As sensitivity analyses we  ran our models exclusively on the 
control group focusing only on women that have not been diagnosed 
with BC at the date of diagnosis of the matched case rather than using 
both cases and controls as described above.

2.7 Pathway analysis

After examining the relationship between PFOA and PFOS 
serum levels and DNAm, we carried out gene set analyses on the 
differentially methylated CpG sites. This analysis was performed 
using the GOmeth function from the missMethyl package (25). 
We focused on CpG sites that met the threshold for FDR-adjusted 
p-value of less than 0.05 in the association study. Each CpG site was 
mapped to genes using the IlluminaHumanMethylationEPICanno.
ilm10b4.hg19 annotation package. A gene was considered 
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differentially methylated if at least one CpG site within that gene 
exhibited significant differential methylation. The GOmeth method 
performs enrichment analysis of gene sets while correcting for two 
biases in methylation array data: “probe-number” (the number of 
CpG sites per gene present on the array) and “multi-gene” (CpGs 
associated with multiple genes) (25). For our analyses, we utilized 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) collection 
pathways. A pathway was considered significantly enriched when 
genes within it were differentially methylated. As sensitivity 
analyses, we  took the wider set of CpG sites associated with 
exposure to PFAS with unadjusted p-value <0.01. Pathway analyses 
were performed using R software version 4.1.2.

3 Results

The characteristics of the 332 women included in the study are 
presented in Table 1. The median age of the study participants at 
inclusion was 56.1 years, with one in four falling into the overweight 
or obese category. Approximately 39% of the women had never given 
birth or breastfed, while 40% had at least one child and breastfed for 
less than 6 months. The remaining 20% had a history of breastfeeding 
for more than 6 months.

Among the studied congeners, PFOS was the primary one, with a 
median serum concentration of 17.4  ng/mL. However, there was a 
substantial range in PFOS levels among women spanning from 5.84 ng/
mL to 85.26 ng/mL, as detailed in Table 1. In the case of PFOA, the 
median concentration was 6.6 ng/mL, with a range of 1.29 ng/mL to 
21.39 ng/mL. It is worth noting that there was a moderate correlation 
between the concentration levels of PFOS and PFOA (47%).

We identified 28 and 36 CpG sites, respectively, associated with 
serum levels of PFOA and PFOS at a genome-wide level of significance 
(Bonferroni adjusted p-value <5%), see Figure 1.

For each congener, the top CpG sites and their corresponding 
genes ranked according to their p-values are shown in 
Supplementary Tables S1, S2. In these tables, the estimates 
indicate the changes in DNAm associated with an increase of one 
unit of the pseudocontinuous PFOA (and PFOS, respectively) 
exposure variable. The top CpG position is cg06874740 located 

in RAI14 (p-value = 2.20 × 10−5) for PFOA-related analysis and 
cg02793158 located in LIMS2 (p-value = 9.31 × 10−5) for PFOS-
related analysis.

As shown in Figure  2, the estimates of the PFOA and PFOS 
coefficients in our main models fitted on BC cases and controls were 
consistent with the estimates in the models fitted on controls only.

Pathway enrichment analyses using PFOA or PFOS-associated 
CpG sites from the EWAS analysis (FDR < 0.05; PFOA n = 12,414 
located in 6,671 genes; PFOS n = 11,878 located in 6,298 genes) did 
not highlight any pathways in the KEGG collection. The sensitivity 
analyses using PFOA or PFOS-associated CpG sites with an 
unadjusted p-value <0.01 (PFOA n = 47,287 located in 14,928 genes; 
PFOS n = 46,116 located in 14,558 genes) identified 20 KEGG 
pathways for each compound (Figures 3A,B).

As shown in Table  2A, the results suggest that serum 
concentrations of PFOA may be associated with methylation changes 
in genes over-represented in pathways relative to the endocrine system 
(Thyroid hormone signaling pathway; Parathyroid hormone synthesis, 
secretion and action; Growth hormone synthesis, secretion and 
action; Melanogenesis; Aldosterone synthesis and secretion; Cortisol 
synthesis and secretion; Insulin signaling pathway), in signal 
transduction (Wnt signaling pathway; Calcium signaling pathway; 
Phospholipase D signaling pathway; Hedgehog signaling pathway), 
and in metabolic pathways.

As shown in Table  2B, the results suggest that serum 
concentrations of PFOS may be associated with methylation changes 
in genes mainly involved in signal transduction (Calcium signaling 
pathway; Phospholipase D signaling pathway; MAPK signaling 
pathway; Rap1 signaling pathway; Ras signaling pathway; Hippo 
signaling pathway), in endocrine system (Thyroid hormone signaling 
pathway; Oxytocin signaling pathway), in cancer pathways, and in 
metabolic pathways.

4 Discussion

As for other POPs, PFOS and PFOA exposure is a global concern. 
In this study, we aimed to investigate whether changes in blood DNA 
methylation levels could serve as indicators of exposure to PFOA and 
PFOS. We conducted our research on a sample of 332 French women 
participating in the prospective E3N cohort.

Consistent with findings from previous studies, we observed a 
significant moderate correlation between circulating levels of PFOA 
and PFOS (15, 26). Our analyses yielded evidence supporting an 
association between serum levels of PFOA and PFOS and DNAm. 
We  identified 64 CpG sites that displayed statistically significant 
associations between DNAm levels and the circulating levels of PFOA 
(28 CpGs sites including 10 positive and 18 negative associations) 
and PFOS (36 CpGs sites including 22 positive and 14 negative 
associations) after Bonferroni correction.

To further explore the biological relevance of these associations, 
we  highlight below some plausible mechanisms by which PFAS 
exposure may influence BC risk through DNA methylation changes. 
The CpG site cg06874740, located within the RAI14 gene, showed a 
negative association with PFOA exposure, suggesting hypomethylation 
with increasing exposure levels. Given than high expression of RAI14 
is positively correlated with the malignant progression of breast cancer 
and suggests a worse prognosis (27), this finding supports a potential 
epigenetic mechanism through which PFOA exposure could influence 
BC progression.

TABLE 1  Baseline characteristics of the studied population and 
distribution of PFOS and PFOA concentrations in serum (N = 332).

N = 332

Patients baseline characteristics

Age (years), median (IQR) 56.10 (9.42)

BMI (kg/ 2m ), mean (SD) 23.7 (3.39)

Parity, N (%)

Nulliparous and no breastfeeding 131 (39.5)

Parous with less than 6 months of lactation 134 (40.3)

Parous with more than 6 months of lactation 67 (20.2)

Total lipids, median (IQR) 6.46. (1.23)

Distribution of PFOS and PFOA concentrations in serum

PFOA (ng/g of mL)

median (IQR) 6.6 (3.73)

mean (min, max) 7.3 (1.29, 21.39)

PFOS (ng/g of mL)

median (IQR) 17.39 (8.48)

mean (min, max) 19.04 (5.84, 85.26)
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FIGURE 1

Manhattan plot of the 805,837 CpG sites in our EWAS analysis of PFAS congeners and DNA methylation. The y-axis is the −log10 p-value of the tests of 
associations between DNA methylation and circulating levels of PFAS. The black (resp. blue) line corresponds to a FDR (resp. FWER) threshold of 5%. 
Green and red colors represent the top 1,000, respectively, hyper- and hypo-methylated CpGs.

FIGURE 2

Comparison between the estimates of the PFOA coefficients (left) and the PFOS coefficients (right) in the linear mixed-effects models explaining 
DNAm levels of individual CpGs in the main analysis (x-axis) and the sensitivity analysis (y-axis). The main analysis includes both cases and controls, and 
the sensitivity analysis includes controls only. Each dot corresponds to a CpG site.
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The CpG cg25202370, located within the HIVEP3 gene, was also 
significantly hypomethylated with increasing PFOA levels. 
Hypomethylation at this site may lead to increased HIVEP3 

expression, potentially enhancing NF-κB pathway activity, which is 
frequently dysregulated in cancer (28). Regarding PFOS, the site 
cg02793158, located within LIMS2, was significantly hypomethylated. 

FIGURE 3

Bar charts for KEGG enrichment analysis of differentially methylated CpG sites associated with (A) PFOA and (B) PFOS at threshold unadjusted p-value <0.01 
in the epigenome-wide association analyses. Pathways were considered significant when the FDR < 0.05. The terms of the KEGG pathways are depicted on 
the y-axis. On the top figure, the x-axis is the -log10 FDR of the tests of the gene set enrichment in each pathway. On the bottom figure, the x-axis is the ratio 
between the number of differentially methylated genes and the number of genes in the KEGG term. The different colors represent the −log10 FDR.
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TABLE 2  KEGG enrichment analysis of differentially methylated CpG sites associated with (A) PFOA and (B) PFOS at threshold unadjusted p-value <0.01 in the epigenome-wide association analyses.

(A) PFOA

Classification of the KEGG pathway 
maps

Description Number of genes in 
the KEGG term

Number of genes that are 
differentially methylated

p-value FDR

Organismal Systems > Aging Longevity regulating pathway 89 78 1.85 × 10-04 3.66 × 10-02

Cellular Processes > Cellular community - eukaryotes Focal adhesion 200 166 3.29 × 10-04 3.66 × 10-02

Organismal Systems > Endocrine system Melanogenesis 101 86 4.27 × 10-04 3.66 × 10-02

Cellular Processes > Transport and catabolism Lysosome 132 108 5.90 × 10-04 3.66 × 10-02

Organismal Systems > Endocrine system Aldosterone synthesis and secretion 98 84 6.94 × 10-04 3.66 × 10-02

Metabolism > Global and overview maps Metabolic pathways 1,518 1,076 7.07 × 10-04 3.66 × 10-02

Organismal Systems > Aging Longevity regulating pathway - multiple species 62 55 7.39 × 10-04 3.66 × 10-02

Organismal Systems > Nervous system Long-term potentiation 67 59 1.04 × 10-03 4.48 × 10-02

Organismal Systems > Endocrine system Thyroid hormone signaling pathway 121 102 1.20 × 10-03 4.48 × 10-02

Environmental Information Processing > Signal 

transduction

Phospholipase D signaling pathway
147 122 1.55 × 10-03 4.48 × 10-02

Organismal Systems > Endocrine system Insulin signaling pathway 137 112 1.60 × 10-03 4.48 × 10-02

Organismal Systems > Endocrine system Cortisol synthesis and secretion 65 57 1.67 × 10-03 4.48 × 10-02

Organismal Systems > Nervous system Dopaminergic synapse 131 108 1.87 × 10-03 4.48 × 10-02

Cellular Processes > Cell motility Regulation of actin cytoskeleton 217 173 1.97 × 10-03 4.48 × 10-02

Environmental Information Processing > Signal 

transduction

Calcium signaling pathway
238 189 2.00 × 10-03 4.48 × 10-02

Organismal Systems > Sensory system Inflammatory mediator regulation of TRP channels 98 83 2.19 × 10-03 4.48 × 10-02

Organismal Systems > Endocrine system Growth hormone synthesis, secretion and action 119 99 2.30 × 10-03 4.48 × 10-02

Environmental Information Processing > Signal 

transduction

Wnt signaling pathway
169 137 2.32 × 10-03 4.48 × 10-02

Organismal Systems > Endocrine system Parathyroid hormone synthesis, secretion and 

action
106 89 2.73 × 10-03 4.97 × 10-02

Environmental Information Processing > Signal 

transduction

Hedgehog signaling pathway
56 50 2.86 × 10-03 4.97 × 10-02

(Continued)
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TABLE 2  (Continued)

(B) PFOS

Classification of the KEGG pathway 
maps

KEGG pathway Number of genes in 
the KEGG term

Number of genes that are 
differentially methylated

p-value FDR

Cellular Processes > Cellular community - eukaryotes Focal adhesion 200 172 5.12 × 10-07 1.78 × 10-04

Environmental Information Processing > Signal 

transduction

Calcium signaling pathway
238 195 1.09 × 10-05 1.89 × 10-03

Environmental Information Processing > Signal 

transduction

Rap1 signaling pathway
210 174 1.76 × 10-05 2.03 × 10-03

Organismal Systems > Development and regeneration Axon guidance 181 152 1.02 × 10-04 8.88 × 10-03

Cellular Processes > Cell motility Regulation of actin cytoskeleton 217 175 1.77 × 10-04 1.23 × 10-02

Organismal Systems > Endocrine system Oxytocin signaling pathway 154 127 4.21 × 10-04 2.44 × 10-02

Environmental Information Processing > Signaling 

molecules and interaction

ECM-receptor interaction
88 76 5.89 × 10-04 2.92 × 10-02

Environmental Information Processing > Signal 

transduction

MAPK signaling pathway
294 230 8.28 × 10-04 3.59 × 10-02

Environmental Information Processing > Signal 

transduction

Phospholipase D signaling pathway
147 121 1.24 × 10-03 4.11 × 10-02

Human Diseases > Cardiovascular disease Arrhythmogenic right ventricular 

cardiomyopathy
77 67 1.31 × 10-03 4.11 × 10-02

Human Diseases > Cancer: overview Pathways in cancer 528 393 1.33 × 10-03 4.11 × 10-02

Metabolism > Global and overview maps Metabolic pathways 1,518 1,050 1.82 × 10--03 4.11 × 10-02

Environmental Information Processing > Signal 

transduction

Hippo signaling pathway
157 127 1.92 × 10-03 4.11 × 10-02

Human Diseases > Substance dependence Morphine addiction 91 77 1.96 × 10-03 4.11 × 10-02

Environmental Information Processing > Signal 

transduction

Ras signaling pathway
234 182 2.00 × 10-03 4.11 × 10-02

Human Diseases > Infectious disease: viral Human papillomavirus infection 329 250 2.04 × 10-03 4.11 × 10-02

Environmental Information Processing > Signaling 

molecules and interaction

Neuroactive ligand-receptor interaction
358 254 2.04 × 10-03 4.11 × 10-02

Environmental Information Processing > Signaling 

molecules and interaction

Cell adhesion molecules
152 121 2.13 × 10-03 4.11 × 10-02

Organismal Systems > Endocrine system Thyroid hormone signaling pathway 121 100 2.27 × 10-03 4.11 × 10-02

Organismal Systems > Nervous system Glutamatergic synapse 114 95 2.37 × 10-03 4.11 × 10-02

Pathways were considered significant when the FDR < 0.05.

https://doi.org/10.3389/fpubh.2025.1621495
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Omichessan et al.� 10.3389/fpubh.2025.1621495

Frontiers in Public Health 09 frontiersin.org

Since LIMS2 encodes a protein involved in cell adhesion and 
cytoskeletal pathways, this hypomethylation may potentially increase 
cell motility and invasion  - key hallmarks of cancer metastasis. 
Although its role in BC is not well characterized, the function of 
LIMS2 suggests its dysregulation could contribute to tumor 
progression. The CpG site cg15507385, located within the CDK14 
gene, showed significant hypermethylation with higher PFOS 
exposure. Given CDK14 is expressed in the mammary basal layer and 
is elevated in triple-negative breast cancer (29), it may contribute to 
tumor aggressiveness.

PFAS are known to act as endocrine disrupting chemicals, thus 
it is consistent that DNAm alterations associated with circulating 
levels of PFOA and PFOS are involved in the endocrine system. It 
has been shown that PFOS has the ability to act as an endocrine 
disruptor both in vitro and in vivo by disrupting the function of 
nuclear hormone receptors and altering the expression of 
endocrine-related genes in animal models (30). However, there are 
potentially many unknown mechanisms linking PFAS to health, 
and the high production volume of many unregulated PFAS 
highlights the need for new policies.

Some studies also investigated the genome-wide changes in 
DNAm caused by PFAS exposure in adults. Only four CpG 
positions reported in a recent study conducted among women 
achieved an association in our study (adjusted FDR < 0.05). Xu 
et al. (31) reported that cg23351738, cg27021181, cg07826657 
and cg26071661, respectively annotated to SNORA38, NET1, 
MAPKAP1 and CARF genes, were found differentially methylated. 
In our study, the first three were associated with PFOA exposure 
while the latter was associated with PFOS at FDR significance 
level. Only findings regarding cg23351738 and cg07826657 were 
consistent in terms of the direction of association. Most of these 
genes are protein coding genes and NET1 has been associated 
with BC (genescards).

Associations reported in our study may not be  replicated in 
previous studies, which may be related to the different designs and 
population. The specific present study design and populations prevent 
direct comparisons with previous studies that may explain little 
consistency. Regarding PFOA and PFOS concentrations, higher levels 
were found in our population (median values of 6.6 and 17.4 ng/mL 
respectively) compared to the similar study from Xu and colleagues 
(0.85 and 2.29 ng/mL respectively) (15) or data related to French 
Esteban study (2014–2016), 2.12 and 4.23, respectively, (52)

DNA methylation is an important mechanism through which 
environmental factors can impact an individual’s risk of disease, given 
its role in regulating gene expression (15). In our current study, 
we evaluated the possible involvement of PFOA and PFOS in various 
pathways. We  accomplished this by conducting gene enrichment 
analyses of CpG sites associated with exposure to these substances.

While no KEGG pathway reached statistical significance based on 
CpGs passing an FDR cutoff of 0.05, an exploratory enrichment 
analysis was carried out using a more permissive threshold 
(unadjusted p-value <0.01) to highlight candidate pathways for 
hypothesis generation. The findings suggest that the serum 
concentrations of PFOA and PFOS may be linked to alterations in 
DNA methylation in genes mainly associated with the endocrine 
system, with signaling molecules and interactions, and signal 
transduction pathways. Interestingly, Miura et al. (32) have identified 
some of the pathways highlighted in our analysis for PFOS. These 

pathways include focal adhesion, axon guidance, oxytocin signaling 
pathway, ECM-receptor interaction, cell adhesion molecules, and the 
MAPK signaling pathway. It is worth noting that the MAPK signaling 
pathway plays a key role in cell proliferation, differentiation and 
migration. Alterations in this signaling cascade have been associated 
with tumorigenesis (48). Furthermore, Goodrich et  al. (33) have 
reported an enrichment among the top differentially methylated genes 
for PFOS in Hippo signaling pathway and morphine addiction. 
Regarding pathway analyses for PFOA, Mirua et al. (32) also identified 
enrichment in lysosome and Wnt signaling pathway; and Cheng et al. 
(15) highlighted enrichment in dopaminergic synapse and thyroid 
hormone signaling pathway.

In a previous paper, we  studied the association between 
Polybrominated Diphenyl Ethers (PBDEs) and Polybrominated 
Biphenyls (PBBs), as well suspected to act as Endocrine disrupting 
chemicals and classified as POPs, and DNAm using data from the 
same case–control study nested in the E3N cohort. Similarly, to 
current findings, we  identified multiple (positive and negative) 
associations between PBDEs and PBBs and DNAm as well as potential 
alterations in hypoxia, glycolysis and adipogenesis.

Our study has multiple strengths including the discovery of 
DNAm positions associated with PFOA and PFOS exposure, 
providing new evidence for the elucidation of PFAS-induced DNA 
methylation changes in humans. To our knowledge, this is one of the 
first EWAS of PFOS and PFOA involving DNAm from circulating 
blood in adult women. To date, previous studies mostly focused on (1) 
other endocrine disrupting chemicals such as phthalates (34) or 
bisphenols (35, 36), (2) repetitive genomic elements that were used as 
markers of global methylation (i.e., Alu and LINE-1) or used cell lines, 
animal models and (3) newborn (37) or children cohorts (14, 38). In 
addition, our study measured DNAm in a more detailed manner with 
the use of the most recent microarray, the Illumina MethylationEPIC 
BeadChip with coverage of almost 1 million CpGs. This represents a 
coverage that is 6 times greater than the coverage of studies that used 
Alu and LINE-1 elements.

Additionally, our cohort study possesses a unique profile, 
representing women born between 1925 and 1950. As a result, it 
reflects historical and cumulative exposure to POPs during a period 
when production and release of these substances were at their peak.

However, our study has several notable limitations. First, it is 
cross-sectional in nature, meaning that measures in blood (i.e., PFOA 
and PFOS serum concentrations and DNA methylation) were all made 
from the same blood samples. Second, the sample size was relatively 
limited making the statistical power adequate only for moderate to 
strong associations. Furthermore, we cannot rule out that PFAS might 
influence DNA methylation in other target organs that were not 
accessible for this study. Given that individuals are often exposed to 
multiple chemicals simultaneously, some of which may share common 
sources of exposure (e.g., specific foods), it is possible that various 
other POPs may contribute to the observed results. Moreover, our 
study includes only women, aged between 47 and 72; therefore, it is 
not possible to conclude that our results can be extended to men, other 
age groups or non-European populations. This is a major limitation, 
considering that age (39), gender (40) and population differences 
(41–43) in DNA methylation have been documented in previous 
research. Another important consideration is that DNA methylation 
is tissue-specific. In our study, methylation was measured in peripheral 
blood leukocytes, which are frequently used as surrogate tissues in 

https://doi.org/10.3389/fpubh.2025.1621495
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Omichessan et al.� 10.3389/fpubh.2025.1621495

Frontiers in Public Health 10 frontiersin.org

epigenetic epidemiology. However, methylation signatures can differ 
across tissue types, raising uncertainty about how accurately blood-
based methylation reflects epigenetic alterations in other organs more 
directly involved in PFAS toxicity. For instance, studies have 
documented some discordance in methylation profiles between blood 
and internal tissues (44, 45), suggesting that the observed associations 
in blood may not be fully representative of effects in target organs. 
Given the known tissue-specific toxicokinetics of PFAS, particularly 
their bioaccumulation and effects in endocrine organs; it is important 
to interpret our findings with caution when extrapolating to potential 
health outcomes mediated through these tissues. Finally, 
we  acknowledge that our study is observational, and thus, future 
mechanistic studies, such as those based on in vitro exposure models, 
are warranted to further validate our findings.

5 Conclusion

Our study has provided some initial evidence of an association 
between PFAS exposure and moderate to strong alterations in 
individual CpG sites in DNA from peripheral blood. Research on the 
impact of exposure to PFAS on epigenetic mechanisms is still 
relatively limited in human populations. While there is substantial 
evidence regarding the toxicity and health effects of PFOA and PFOS, 
the evidence linking the exposure to these substances and DNA 
methylation has remained somewhat scarce. In perspective, it would 
be interesting to replicate our study with other populations to assess 
the generalizability of our findings. Additionally, an interesting 
perspective for future studies is the development and application of 
models for mixtures of substances, such as the BKMR (46), to model 
and evaluate the complex relationships between methylation levels 
and a variety of compounds, including PFAS substances and other 
persistent organic pollutants.

In conclusion, the results from our study suggest that the health 
effects of PFOA and PFOS might be more intricate and diverse than 
initially anticipated. These findings lend support to policies and 
regulations aimed at controlling this class of endocrine disrupting 
chemicals. Moreover, future studies incorporating tissue-specific 
methylation analyses or multi-tissue comparisons are necessary to 
fully understand the systemic and organ-specific impact of 
PFAS exposure.
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http://www.santepubliquefrance.fr

https://doi.org/10.3389/fpubh.2025.1621495
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1080/15592294.2016.1182272
https://doi.org/10.1016/j.ecoenv.2016.04.012
https://doi.org/10.1016/j.envres.2020.110668
https://doi.org/10.1002/em.21845
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.1186/s12864-015-2034-y
https://doi.org/10.1186/s13148-022-01351-2
https://doi.org/10.1186/gb-2012-13-2-r8
https://doi.org/10.7554/eLife.20532
https://doi.org/10.1038/s41398-019-0376-y
https://doi.org/10.1186/1756-8935-6-26
https://doi.org/10.1093/biostatistics/kxu058
https://doi.org/10.1161/CIRCULATIONAHA.110.956839
https://doi.org/10.1161/CIRCULATIONAHA.110.956839
https://doi.org/10.1002/jcp.28334
https://doi.org/10.1002/jcp.28334
https://doi.org/10.1016/j.envint.2013.10.018
https://doi.org/10.1186/s12940-017-0269-6
https://doi.org/10.1016/j.envpol.2016.01.090
http://www.santepubliquefrance.fr

	Serum levels of per- and polyfluoroalkylated substances and methylation of DNA from peripheral blood
	1 Background
	2 Materials and methods
	2.1 Population of interest
	2.2 Measurement of PFAS circulating levels
	2.3 DNA methylation measurement and data pre-processing
	2.4 Cellular heterogeneity
	2.5 Main statistical analyses
	2.6 Sensitivity analysis
	2.7 Pathway analysis

	3 Results
	4 Discussion
	5 Conclusion

	References

