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Introduction: Dengue virus (DENV) remains a major and recurrent public health 
challenge in Brazil. In 2024, the country experienced its largest recorded epidemic, 
with more than six million probable cases and substantial pressure on hospital 
systems. The epidemic’s highly heterogeneous burden highlights the need for 
municipal-scale geospatial analyses to identify actionable hotspots for targeted 
interventions.
Methods: We conducted a nationwide clustering analysis using dengue case 
notifications and hospitalizations from the national SINAN surveillance system, 
with denominator populations from the Brazilian Institute of Geography and 
Statistics (IBGE). We calculated standardized case and hospitalization rates 
per 100,000 population for all municipalities. A multivariate density-based 
spatial clustering algorithm (DBSCAN) integrated municipality centroids with 
epidemiologic burden. Parameters (eps, minPts) were selected using k-distance 
inspection and sensitivity analyses. Temporal stability was assessed through 
monthly DBSCAN runs using a common parameter set, and climatic associations 
were evaluated by pairing dengue indicators with CHIRPS precipitation at 0–3 
monthly lags.
Results: DBSCAN identified 25 high-burden municipal clusters, with 5,111 
municipalities (92.6%) clustered and 408 (7.4%) were classified as noise. 
Several clusters exhibited average case rates exceeding 20,000 per 100,000 
population, particularly in Minas Gerais, Paraná, and Bahia. Some high-
incidence municipalities remained geographically isolated and unclustered. 
Hospitalization-only clustering produced similar geographic patterns. Monthly 
analyses revealed persistent high-burden clusters, and precipitation was 
positively associated with incidence at an approximately two-month lag.
Discussion: This study demonstrates that integrating spatial, temporal, and 
climatic dimensions into a DBSCAN framework provides a reproducible method 
for delineating dengue hotspots at the municipal scale. By distinguising high-
intensity clusters from low-burden areas, the approach offers and operationally 
relevant tool for guiding vector control and outbreak response during dengue 
epidemics in Brazil.

KEYWORDS

dengue, spatial epidemiology, DBSCAN, clustering, Brazil, hospitalization, rainfall, 
public health surveillance

OPEN ACCESS

EDITED BY

Luciano P. G. Cavalcanti,  
Federal University of Ceará, Brazil

REVIEWED BY

Yuemei Dong,  
Johns Hopkins University, United States
Roberto Primi,  
University of Pavia, Italy

*CORRESPONDENCE

Brena F. Sena  
 brena.figueiredo@ufpe.br

RECEIVED 30 April 2025
ACCEPTED 16 September 2025
PUBLISHED 27 October 2025

CITATION

Sena BF, Herrera BB, Martins DBG and Lima 
Filho JL (2025) Geospatial clustering reveals 
dengue hotspots across Brazilian 
municipalities, 2024.
Front. Public Health 13:1620914.
doi: 10.3389/fpubh.2025.1620914

COPYRIGHT

© 2025 Sena, Herrera, Martins and Lima Filho. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  27 October 2025
DOI  10.3389/fpubh.2025.1620914

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2025.1620914&domain=pdf&date_stamp=2025-10-27
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1620914/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1620914/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1620914/full
mailto:brena.figueiredo@ufpe.br
https://doi.org/10.3389/fpubh.2025.1620914
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2025.1620914


Sena et al.� 10.3389/fpubh.2025.1620914

Frontiers in Public Health 02 frontiersin.org

Introduction

Dengue virus (DENV) remains one of the most pressing vector-
borne public health threats in Brazil, causing recurrent epidemics that 
vary widely in magnitude and geography. Four antigenically distinct 
serotypes (DENV-1-4) co-circulate in Brazil with regional and 
temporal variation. Primary infection typically confers lifelong 
immunity to the infecting serotype but transient cross-protection to 
others; subsequent heterotypic infections elevate the risk of severe 
outcomes via antibody-dependent enhancement (1–3). The 2024 
season marked Brazil’s largest recorded dengue epidemic, with more 
than six million probable cases and tens of thousands of 
hospitalizations, imposing substantial strain on health systems (4). 
Because epidemic intensity varies over short distances, national and 
even state summaries can obscure actionable hotspots relevant to 
vector control, clinical surge planning, and targeted communication.

During epidemic peaks, routine laboratory confirmation is 
limited and most SINAN notifications rely on clinical-epidemiologic 
criteria (5). In this operational reality, geospatial methods that use 
syndromic notifications and hospitalizations can identify places where 
transmission is unusually intense or persistent even when virologic 
typing is incomplete. Spatial epidemiology offers multiple approaches, 
but several common methods require strong assumptions: k-means 
demands a pre-specified number of clusters and favors spherical 
geometries, and scan statistics impose moving windows that may not 

align with municipal boundaries. Density-Based Clustering of 
Applications with Noise (DBSCAN) is attractive because it does not 
require pre-specifying the number of clusters, can recover irregular 
shapes, and explicitly labels “noise,” separating isolated outliers from 
coherent high-density zones (6, 7). Although DBSCAN has seen 
growing use in infectious-disease surveillance internationally (8, 9), 
national-scale applications at Brazil’s municipal resolution remain 
limited. We implement DBSCAN on a joint feature space combining 
municipal centroids with standardized case and hospitalization rates.

Here we present a national application of multivariate DBSCAN 
framework that integrates municipal geography (centroids) with 
standardized epidemiologic burden (case and hospitalization rate per 
100,000) to delineate dengue hotspots in 2024. We selected parameters 
(eps, minPts) using k-distance diagnostics and sensitivity checks 
(Supplementary Figure S1; Supplementary Table S1). Because response 
planning requires both spatial and temporal perspectives, we reran 
DBSCAN monthly using a common parameter set to assess persistence, 
the extent to which municipalities and populations remain in clusters 
across consecutive months (Supplementary Figure S2; 
Supplementary Table S4). Given the established linkage between 
rainfall and Aedes aegypti dynamics, we  paired municipal dengue 
indicators with CHIRPS precipitation at 0–3 lags to characterize 
short-lag climate associations and operational lead time (27, 28).

We address three practical questions: (i) Where are the municipal 
clusters of greatest burden when geography and epidemiology jointly 

FIGURE 1

National map of dengue case rates and DBSCAN multivariate clusters (Annual, 2024).
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determine membership? (ii) How stable are these patterns over the 
epidemic year? (iii) How do short-lag rainfall patterns relate to the 
observed spatial structure? To aid interpretation, we treat “Cluster 1” 
as a low-burden background, focus on higher-intensity clusters (ID 
>1), and preserve isolated high-incidence municipalities labeled as 
noise (ID = 0). The resulting products include a national map of 
multivariate clusters (Figure 1); cluster-level summaries (Tables 1, 2; 
Figure  2); zoomed composite for exemplar high-burden areas 
(Figure 3); an outlier panel that preserves isolated hotspots (Figure 4); 
a climate-aligned national panel (Figure  5); and diagnostics and 
robustness checks (Supplementary Figures S1–S4; 
Supplementary Tables S1–S5).

Methods

Data sources and outcome measures

We conducted a nationwide analysis of dengue case notifications 
and hospitalizations reported in 2024, using the publicly available 
SINAN (Sistema de Informação de Agravos de Notificação) database 
maintained by Brazil’s Ministry of Health (5). Population estimates for 

all 5,570 municipalities were obtained from the Brazilian Institute of 
Geography and Statistics (IBGE) (25) to calculate standardized 
burden measures. Two primary outcomes were defined for each 
municipality: (i) dengue case notifications per 100,000 population and 
(ii) dengue-related hospitalizations per 100,000 population. 
Municipalities with missing population or outcome data 
were excluded.

Climate data integration

To ensure uniform national coverage, monthly total 
precipitation for 2024 was obtained from CHIRPS (Climate Hazard 
Group InfraRed Precipitation with Station data; ~5 km spatial 
resolution) (37, 38). Preliminary checks with station data from 
INMET (26) confirmed consistency but were not used in final 
analyses. For each municipality, precipitation was computed by 
averaging all CHIRPS grid cells intersecting its polygon. 
We constructed monthly lags of 0–3 months to evaluate rainfall-
dengue associations at macroregional scale and to visualize national 
seasonality alongside national dengue totals (Figure 5). Local station 
data explored in preliminary work were not required for the final 

TABLE 1  Summary of DBSCAN-identified clusters.

Cluster No. of municipalities Total cases Total hospitalizations Avg. cases 
per 100 k

Avg. hospitalizations 
Per 100 k

8 4 5,450 17 24,444 76.6

13 5 8,996 117 22,450 284.2

4 7 27,584 269 20,666 212.3

5 7 12,726 18 20,555 27.0

16 8 19,103 220 20,042 240.4

6 5 16,625 58 19,085 54.0

7 3 4,954 98 17,924 361.1

14 12 20,869 102 17,377 93.8

11 3 6,563 41 17,261 111.4

17 3 55,144 286 14,577 47.0

9 3 6,660 168 13,421 337.6

18 4 3,544 3 12,571 4.4

15 3 1,373 89 9,441 616.5

10 8 92,927 5,086 6,555 384.9

22 5 8,054 638 5,428 409.4

24 3 1,505 75 5,173 256.0

25 3 2,339 177 4,785 348.6

12 6 17,345 1,447 4,670 425.7

19 3 949 84 4,159 370.9

21 3 835 39 3,517 150.1

23 3 958 208 3,183 604.8

3 3 1,045 43 3,002 117.0

20 3 2,088 301 2,127 347.5

1 4,984 4,530,651 110,091 2,085 37.7

2 15 624 28 118 4.3
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analyses presented here; we  retained CHIRPS to maintain 
consistency and coverage.

Spatial clustering analysis

We applied DBSCAN (Density-Based Spatial Clustering of 
Applications with Noise) to identify spatially contiguous clusters of 
elevated burden without imposing assumptions about cluster number 
or geometry (6, 7).

Inputs included municipal centroid coordinates (latitude, 
longitude) and standardized burden measures (z-scores of case and 
hospitalization rates). We examined k-distance plots to inform the 
neighborhood radius (eps) and minPts values (Supplementary Figure S1; 

Supplementary Table S1). For each cluster, we computed the number 
of municipalities, total cases and hospitalizations, and mean burden 
levels (Table 1).

Temporal clustering and persistence

To assess temporal stability, we  ran DBSCAN on monthly 
municipal data using the same parameter values. For each  
month, we summarized the number of clusters, the proportion of 
municipalities assigned to any cluster, and the share of the 
national population located in municipalities classified as cluster 
members. We  identified municipalities that were cluster  
members for ≥3 consecutive months and calculated  

TABLE 2  Municipality composition of high-burden clusters.

Cluster No. of 
municipalities

Municipalities

8 4 Catas Altas (MG), Jequitibá (MG), Pequi (MG), São Francisco De Paula (MG)

13 5 Arapuã (PR), Ariranha Do Ivaí (PR), Corbélia (PR), Janiópolis (PR), Primeiro De Maio (PR)

4 7 Boa Esperança (MG), Carmo Da Mata (MG), Córrego Fundo (MG), Guaxupé (MG), Madre De Deus De Minas (MG), Presidente 

Juscelino (MG), São Gonçalo Do Rio Abaixo (MG)

5 7 Conceição Do Rio Verde (MG), Cristais (MG), Florestal (MG), Itatiaiuçu (MG), Itutinga (MG), Santana Dos Montes (MG), São 

Vicente De Minas (MG)

16 8 Lindoeste (PR), Moreira Sales (PR), Quedas Do Iguaçu (PR), Santo Antônio Do Sudoeste (PR), Sulina (PR), São Jorge D’Oeste 

(PR), Tuneiras Do Oeste (PR), Vista Gaúcha (RS)

6 5 Dores De Campos (MG), Ouro Branco (MG), Piracema (MG), Rio Manso (MG), Serro (MG)

7 3 Crucilândia (MG), Cássia (MG), Japaraíba (MG)

14 12 Boa Esperança Do Iguaçu (PR), Braganey (PR), Cafelândia (PR), Crissiumal (RS), Derrubadas (RS), Goioerê (PR), Juranda (PR), 

Nova Cantu (PR), Redentora (RS), São João (PR), Tupãssi (PR), Vicente Dutra (RS)

11 3 Analândia (SP), Santo Antônio De Posse (SP), Torrinha (SP)

17 3 Balneário Barra Do Sul (SC), Indaial (SC), Itajaí (SC)

9 3 Ipeúna (SP), Monte Santo De Minas (MG), Tambaú (SP)

18 4 Barra Do Guarita (RS), Bela Vista Da Caroba (PR), Itapiranga (SC), Nova Erechim (SC)

15 3 Kaloré (PR), Nova Santa Bárbara (PR), Rosário Do Ivaí (PR)

10 8 Boracéia (SP), Colina (SP), Ribeirão Preto (SP), Santa Rosa Da Serra (MG), São José Do Rio Preto (SP), São João Batista Do Glória 

(MG), Tabapuã (SP), Viradouro (SP)

22 5 Americano Do Brasil (GO), Caldas Novas (GO), Petrolina De Goiás (GO), Pirenópolis (GO), Água Limpa (GO)

24 3 Campos Belos (GO), Divinópolis De Goiás (GO), Guarani De Goiás (GO)

25 3 Chapadão Do Sul (MS), Ivolândia (GO), Montividiu (GO)

12 6 Capitão Leônidas Marques (PR), Foz Do Iguaçu (PR), Horizontina (RS), Jesuítas (PR), Presidente Castelo Branco (PR), Ângulo 

(PR)

19 3 Constantina (RS), Planalto (RS), Porto Vera Cruz (RS)

21 3 Cláudia (MT), Nova Guarita (MT), Terra Nova Do Norte (MT)

23 3 Formoso (GO), Itapaci (GO), Palmeirópolis (TO)

3 3 Chorrochó (BA), Macururé (BA), Porteiras (CE)

20 3 Campo Verde (MT), Jaciara (MT), Juscimeira (MT)

1 4,984 N/A

2 15 Alto Alegre (RR), Amajari (RR), Boa Vista (RR), Bonfim (RR), Cantá (RR), Caracaraí (RR), Caroebe (RR), Iracema (RR), Mucajaí 

(RR), Normandia (RR), Pacaraima (RR), Rorainópolis (RR), São João Da Baliza (RR), São Luiz (RR), Uiramutã (RR)
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the size of this persistent cluster population 
(Supplementary Table S4). Monthly maps depict cluster 
membership as magenta points over a national basemap 
(Supplementary Figure S2).

Spatial autocorrelation

We computed Global Moran’s I for municipality case rates using 
queen contiguity and a row-standardized spatial weight matrix (spdep). 
We  reported Moran’s I, its standard deviate, and p-value under 
randomization (Supplementary Table S2), with a Moran scatterplot 
provided for illustration (Supplementary Figure S3).

Socioeconomic comparisons

To explore socioeconomic context, we paired DBSCAN cluster status 
with 2020 municipal GDP per capita from IBGE (14). We compared 
distributions between clustered and non-clustered municipalities and fit 
a logistic regression with cluster membership as the dependent variable 
and GDP per capita as the independent variable, recognizing that this 
cross-sectional approach captures association rather than causation.

Statistical environment and visualization

All analyses were conducted in R (version 2024.12.1+563) 
using sf, geobr, dbscan, spdep, dplyr, tidyr, ggplot2, and related 
packages. Figures  1–5 compose the main results; 
Supplementary Figures S1–S4 and Supplementary Tables S1–S5 
contain diagnostics, sensitivity analyses, and supporting materials.

Results

Using a multivariate DBSCAN with eps = 0.3 and minPts = 3, 
we  identified 25 geographically coherent clusters along with a large 
low-burden background (Cluster 1) and a small northern regional cluster 
(Cluster 2). In total, 5,111 municipalities (92.6%) were assigned to a 
cluster and 408 (7.4%) labeled as noise. Global Moran’s I for municipal 
case rates was strongly positive (I = 0.598; z = 72.8; p < 0.001), confirming 
non-random spatial autocorrelation consistent with the clustering 
patterns (Supplementary Table S2; Supplementary Figure S3).

High-burden clusters were geographically concentrated and often 
compact. Minas Gerais contained several of the most intense clusters, 
including a four-municipality cluster (Cluster 8: Jequitibá, Pequi, São 
Francisco de Paula, and Catas Altas) with average case rates of 24,000 

FIGURE 2

Cluster-wise averages (cases and hospitalizations per 100 k) (2024).
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per 100,000 and hospitalization rates of 76.6 per 100,000. Similarly, 
in Paraná, Cluster 13 (Arapuã, Ariranha do Ivaí, Corbélia, Janiópolis, 
and Primeiro de Maio) presented average hospitalization burdens of 
284.2 per 100,000, while other southern clusters (e.g., Cluster 15) 
reached hospitalization burdens above 600 per 100,000. Cluster 4, 
concentrated in southern Minas Gerais and containing municipalities 
such as Guaxupé and São Gonçalo do Rio Abaixo, also demonstrated 
high overall burden (Table 3). These clusters are visualized at the 
national scale (Figure 1), with zoomed-in composite maps (Figure 3) 
and full municipal composition listed in Table 2, 3.

Despite the strong spatial signal, a subset of municipalities with 
extreme case rates remained unclustered because no similar-burden 
neighbors existed within the DBSCAN neighborhood radius. For 
example, Iguatu and Boa Vista da Aparecida in Paraná, and Paiva and 
Monjolos in Minas Gerais each exceeded 30,000 cases per 100,000 but 
were algorithmically excluded as noise (Supplementary Table S3). In 
total, 50 municipalities surpassed 22,000 cases per 100,000, many of 
which appear in the ranked bar plot of the top  50 municipalities 
(Figure 4B; Table 3). Presenting these outliers separately ensures that 
single-municipality hotspots are not eclipsed by density-based methods.

Monthly DBSCAN runs revealed stability in the overall 
footprint of clustering across the year. The majority of municipalities 

were consistently assigned to clusters, and large proportions of the 
national population resided in municipalities persisting in clusters 
for ≥3 consecutive months (Supplementary Table S4). Small-
multiple maps (Supplementary Figure S2) highlight waxing and 
waning seasonal dynamics, yet the reappearance of the same macro-
areas across months suggests structural vulnerability layered on 
seasonal forcing.

At national scale, monthly total dengue cases rose sharply early in 
2024, aligning the seasonal maximum of CHIRPS precipitation (Figure 5) 
(37, 38). Macroregional correlation analyses confirmed positive rainfall-
dengue associations, with Spearman coefficients strenthening from lag 0 
to lag 2-3 months (Supplementary Table S5), consistent with prior studies 
(29–31). The strongest associations were observed in the Southeast and 
Central-West, while the South displayed positive but more modest 
correlations, patterns consistent with Aedes aegypti biology (10–13). A 
case study from Jequitibá (Minas Gerais, Cluster 8) reinforced this 
relationship where case surges in February–March closely followed local 
peak precipitation, and mean annual temperatures remained within the 
optimal range for vectorial capacity (23–26 °C).

Socioeconomic comparisons revealed that clustered municipalities 
had lower GDP per capita than non-clustered ones. Among the 5,519 
municipalities, those in clusters had a lower average (26,891 BRL) and 

FIGURE 3

Composite zoom of selected high-burden dengue clusters. Clusters were identified using DBSCAN spatial clustering based on the geographic 
coordinates (centroids) of Brazilian municipalities. To prioritize areas of highest public health relevance, only spatial clusters with elevated average 
dengue case rates and hospitalization rates per 100,000 population were included. Each panel represents a distinct high-burden cluster. Municipalities 
within the cluster are shown as pink circles, scaled by dengue case rate. The three municipalities with the highest per capita case rates in each cluster 
are labeled. State boundaries are overlaid for geographic reference. Source: SINAN/DATASUS (2024); Shapefiles from IBGE via the geobr R package.

https://doi.org/10.3389/fpubh.2025.1620914
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Sena et al.� 10.3389/fpubh.2025.1620914

Frontiers in Public Health 07 frontiersin.org

median (19,367 BRL) GDP per capita compared to non-clustered 
municipalities (33,743 BRL and 28,687 BRL, respectively). Logistic 
regression confirmed a modest but statistically significant inverse 
association between GDP per capita and the likelihood of cluster 
membership (OR ≈ 0.999994, p < 0.001). While the effect size is small, 
the direction of association aligns with literature linking poverty, 
inadequate water infrastructure, and limited health system access to 
arboviral vulnerability (15–18).

Discussion

We present a national application of multivariate DBSCAN that 
integrates municipal geography with epidemiological burden to 
delineate dengue hotspots in Brazil’s record 2024 epidemic year. This 
approach offers three operational benefits. First, it identifies compact 
municipal clusters of exceptionally high cases and hospitalization 

FIGURE 4

Outlier municipalities with extreme dengue burden and the top 50 municipalities by case rate (2024). Geographically isolated municipalities with 
>30,000 dengue cases per 100,000 that DBSCAN labeled as noise are shown explicitly; these outliers remain epidemiologically important despite 
algorithmic exclusion in clustering. Top municipalities by annual case rate (2024), ranked; full list in Supplementary Table S3.
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rates, which represent natural focal areas for targeted vector control 
and surge capacity planning. Second, it preserves algorithmic “noise,” 
ensuring that municipalities with extreme but isolated burdens, often 
overlooked in density-based clustering, remain visible and actionable. 
Third, monthly repetitions of the analysis reveal temporal stability, 
highlighting persistent hot zones where interventions should 
be  sustained across consecutive months. The month-to-month 
persistence of the same municipal hotspots, despite seasonal waxing 
and waning, signals structural vulnerability, arguing for sustained, 
area-based vector control and pre-positioned clinical surge capacity 
rather than episodic, reactive campaigns.

The clustering patterns we identified, particularly in Minas Gerais, 
Paraná, and Bahia, are parts of the South and Central-West, mirror 
the strong autocorrelation measured Moran’s I and are consistent with 
known ecological and infrastructural dengue drivers (4, 10, 15, 16, 
19). The rainfall-dengue correlations reinforce the established 

expectation of positive associations at one- to three-month lags, 
consistent with Aedes aegypti life cycles and with previous findings in 
Brazil and elsewhere (27, 28). Case studies like Jequitibá highlight the 
close coupling of rainfall and dengue incidence at the municipal level, 
underlining the importance of integrating environmental data into 
early warning systems.

Methodologically, DBSCAN demonstrated several strengths 
compared to traditional approaches. Unlike k-means or hierarchical 
clustering, DBSCAN does not assume spherical clusters or pre-specify 
cluster number, enabling detection of irregularly shaped and context-
specific hotspots (6, 7). Its explicit handling of “noise” is particularly 
valuable in national applications, where isolated municipalities may 
experience extreme outbreaks despite lacking nearby peers.

Our sensitivity analyses confirmed overall cluster geography was 
robust across parameter ranges (Supplementary Table S1). However, 
DBSCAN’s reliance on density continuity limits its ability to capture 

FIGURE 5

National monthly precipitation (CHIRPS) with dengue totals and at Jequitibá, Minas Gerais (2024).
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TABLE 3  Top 50 municipalities by dengue case rate.

Municipality code Municipality Total cases Population size Cases per 100 k Hospitalizations Hospitalizations 
per 100 k

Multivariate 
cluster

4110052 Iguatu (PR) 805 2,162 37,234 11 508.8 0

4103057 Boa Vista Da Aparecida 

(PR)

2,822 8,034 35,126 108 1,344.3 0

3146602 Paiva (MG) 468 1,498 31,246 0 0.0 0

3125507 São Gonçalo Do Rio Preto 

(MG)

964 3,098 31,117 1 32.3 0

3142502 Monjolos (MG) 681 2,196 31,011 8 364.3 0

4101002 Ampére (PR) 6,192 20,199 30,655 56 277.2 0

4113734 Luiziana (PR) 2,050 6,696 30,615 6 89.6 0

4115101 Mariluz (PR) 2,998 9,934 30,179 76 765.0 0

3113503 Carbonita (MG) 2,574 8,633 29,816 18 208.5 0

3111903 Cana Verde (MG) 1,592 5,356 29,724 1 18.7 0

4321402 Tenente Portela (RS) 4,363 14,811 29,458 171 1,154.5 0

4120358 Pranchita (PR) 1,703 5,833 29,196 17 291.4 0

4123824 Santa Lúcia (PR) 1,063 3,657 29,068 8 218.8 0

3141900 Minduri (MG) 1,103 3,815 28,912 3 78.6 0

3118304 Conselheiro Lafaiete (MG) 39,395 137,980 28,551 539 390.6 0

3168804 Tiradentes (MG) 2,275 8,008 28,409 8 99.9 0

3103801 Arapuá (MG) 743 2,674 27,786 12 448.8 0

4126678 Tamarana (PR) 2,948 10,645 27,694 57 535.5 0

4110805 Iretama (PR) 2,957 10,843 27,271 52 479.6 0

4106571 Cruzeiro Do Iguaçu (PR) 1,136 4,171 27,236 13 311.7 0

4120655 Quarto Centenário (PR) 1,069 4,170 25,636 14 335.7 0

3120839 Cuparaque (MG) 1,020 3,994 25,538 6 150.2 0

5207105 Diorama (GO) 516 2,023 25,507 57 2,817.6 0

3114303 Carmo Do Paranaíba (MG) 7,572 29,899 25,325 373 1,247.5 0

4121109 Quinta Do Sol (PR) 1,279 5,060 25,277 84 1,660.1 0

4116604 Nova América da Colina 

(PR)

833 3,299 25,250 2 60.6 0

3115359 Catas Altas (MG) 1,424 5,668 25,124 2 35.3 8

(Continued)
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TABLE 3  (Continued)

Municipality code Municipality Total cases Population size Cases per 100 k Hospitalizations Hospitalizations 
per 100 k

Multivariate 
cluster

4113403 Leópolis (PR) 939 3,751 25,033 7 186.6 0

4116950 Nova Esperança Do 

Sudoeste (PR)

1,430 5,744 24,896 29 504.9 0

3109006 Brumadinho (MG) 10,119 40,777 24,816 160 392.4 0

4302378 Bom Progresso (RS) 528 2,134 24,742 0 0.0 0

3135704 Jequitibá (MG) 1,501 6,098 24,615 5 82.0 8

3131703 Itabira (MG) 28,964 117,747 24,599 738 626.8 0

3149606 Pequi (MG) 1,042 4,258 24,472 4 93.9 8

4127858 Três Barras Do Paraná 

(PR)

2,710 11,197 24,203 7 62.5 0

4119004 Pérola D’Oeste (PR) 1,501 6,235 24,074 39 625.5 0

3161205 São Francisco De Paula 

(MG)

1,483 6,293 23,566 6 95.3 8

3170701 Varginha (MG) 33,486 142,802 23,449 517 362.0 0

3149200 Pedrinópolis (MG) 798 3,404 23,443 1 29.4 0

4305207 Cerro Largo (RS) 3,254 14,009 23,228 248 1,770.3 0

4124020 Santa Tereza Do Oeste 

(PR)

3,193 13,749 23,224 20 145.5 0

4112207 Janiópolis (PR) 1,354 5,835 23,205 17 291.3 13

4315057 Porto Mauá (RS) 502 2,176 23,070 16 735.3 0

3168309 Taquaraçu De Minas (MG) 1,001 4,368 22,917 13 297.6 0

4122503 Roncador (PR) 2,592 11,371 22,795 3 26.4 0

4109609 Guaratuba (PR) 10,074 44,323 22,729 15 33.8 0

4312302 Miraguaí (RS) 1,024 4,506 22,725 7 155.3 0

4106308 Corbélia (PR) 4,055 17,862 22,702 55 307.9 13

4120507 Primeiro De Maio (PR) 2,287 10,121 22,597 29 286.5 13

3150505 Pimenta (MG) 1,977 8,794 22,481 30 341.1 0
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isolated hotspots, underscoring the need for complementary 
approaches such as Getis-Ord Gi* or Kulldorff ’s scan statistics to 
ensure comprehensive hotspot detection.

Importantly, incorporating hospitalization rates into the clustering 
process allowed us to capture both transmission intensity and disease 
severity. Clusters in Paraná and southern Brazil reached hospitalization 
rates exceeding 200–600 per 100,000, highlighting areas of potential 
health system overload. These findings resonate with reports of higher 
severity among older populations and those with comorbidities, 
particularly during the southern epidemic wave (3, 4).

We acknowledge that case notifications in SINAN, particularly 
during epidemic peaks, are not often accompanied by systematic 
laboratory confirmation. Nonetheless, these clinically reported cases 
represent the operational data stream available for epidemic 
management in Brazil and are the same signals upon which national 
response planning relies. By demonstrating that robust spatial clusters 
emerge even under these constraints, our analysis underscores the 
utility of geospatial clustering as a pragmatic surveillance tool that 
complements but does not replace virologic confirmation. Moreover, 
the congruence of our results with known ecological drivers and 
hospitalization patterns affirms that signal-to-noise-ratios in the 
surveillance system are sufficient to identify meaningful hotspots.

The socioeconomic analyses further underscore the role of 
structural vulnerability in shaping dengue risk. Clustered 
municipalities tended to be  less economically advantaged, with 
lower GDP per capita. While the observed effect sizes were modest, 
this directionality aligns with evidence that poverty, water storage 
practices, sanitation gaps, and housing conditions amplify arboviral 
exposure (15–18, 23). Future studies should integrate richer 
structural indicators, such as sanitation coverage, water 
intermittency, urban density, and health systems access, to evaluate 
multivariable predictors of cluster membership and persistence.

From a policy perspective, our findings emphasize that 
dengue control in Brazil cannot rely on aggregate national 
metrics alone. The identification of small, localized but high-
burden clusters highlight the need for municipal and regional-
level targeting of vector control, diagnostic distribution, and 
hospital surge planning. Moreover, the observed rainfall-dengue 
lagged correlations support the integration of climate data into 
predictive modeling and early warning systems, an especially 
urgent need as climate variability increases (20–22, 24).

Finally, DBSCAN remains underutilized in Latin American 
public health surveillance despite its adaptability, scalability, and 
compatibility with open-source workflows. Prior studies in 
Southeast Asia and the Caribbean have applied DBSCAN 
successfully to arboviral clustering (8, 9), but national applications 
in Brazil remain rare. Our analysis demonstrates its feasibility and 
value at the municipal scale, offering a flexible geospatial tool that 
can complement existing surveillance systems.

Looking forward, DBSCAN-based clustering, paired with Earth 
observation, climate predictors, and sociodemographic indicators, can 
underpin predictive analytics and decentralized epidemic intelligence, 
improving equity through more precise, and timely interventions.

Limitations

Several limitations should be  noted. First, although DBSCAN 
effectively delineates coherent high-burden clusters, its reliance on local 

density continuity inevitably excludes single municipalities with 
exceptionally high rates when they lack comparable neighbors. 
We  partially mitigate this limitation by preserving these outliers in 
separate panels, but complementary methods such as Kulldorff’s spatial 
scan or Getis-Ord Gi* could further capture such isolated hotspots. 
Second, our reliance on monthly CHIRPS precipitation (37, 38) improves 
upon single-station data by providing uniform national coverage, but may 
still may obscure localized microclimatic variability (28) compared with 
INMET station data (26). Third, the use of routine surveillance data, often 
unconfirmed by laboratory diagnostics, introduces potential for 
misclassification; however, this reflects the operational reality of epidemic 
response and underscores the importance of methods that can extract 
robust signals from imperfect data. Finally, GDP per capita is a crude 
proxy of socioeconomic vulnerability and should be complemented in 
future work with more granular indicators of water, sanitation, housing, 
and health system capacity. Despite these limitations, the methodological 
transparency, reproducibility, and national coverage of our analysis 
position DBSCAN clustering as a valuable addition to the toolkit for 
epidemic intelligence in Brazil.

Conclusion

In Brazil’s unprecedented 2024 dengue year, multivariate DBSCAN 
uncovered compact municipal clusters of high burden and preserved 
isolated outliers that demand targeted action. Monthly clustering showed 
persistence of risk in the same macro-areas across seasons, while rainfall 
correlations at short lags confirmed expected climate-epidemic coupling. 
The method is transparent, scalable, and immediately useful for 
prioritizing vector control, diagnostics, and hospital surge planning at 
municipal scale. As Brazil advances decentralized surveillance and 
climate-aware preparedness, density-based geospatial clustering can help 
bridge the gap between national statistics and neighborhood-level action.
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