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Introduction: Dengue virus (DENV) remains a major and recurrent public health
challenge in Brazil. In 2024, the country experienced its largest recorded epidemic,
with more than six million probable cases and substantial pressure on hospital
systems. The epidemic’s highly heterogeneous burden highlights the need for
municipal-scale geospatial analyses to identify actionable hotspots for targeted
interventions.

Methods: We conducted a nationwide clustering analysis using dengue case
notifications and hospitalizations from the national SINAN surveillance system,
with denominator populations from the Brazilian Institute of Geography and
Statistics (IBGE). We calculated standardized case and hospitalization rates
per 100,000 population for all municipalities. A multivariate density-based
spatial clustering algorithm (DBSCAN) integrated municipality centroids with
epidemiologic burden. Parameters (eps, minPts) were selected using k-distance
inspection and sensitivity analyses. Temporal stability was assessed through
monthly DBSCAN runs using a common parameter set, and climatic associations
were evaluated by pairing dengue indicators with CHIRPS precipitation at 0-3
monthly lags.

Results: DBSCAN identified 25 high-burden municipal clusters, with 5,111
municipalities (92.6%) clustered and 408 (74%) were classified as noise.
Several clusters exhibited average case rates exceeding 20,000 per 100,000
population, particularly in Minas Gerais, Parana, and Bahia. Some high-
incidence municipalities remained geographically isolated and unclustered.
Hospitalization-only clustering produced similar geographic patterns. Monthly
analyses revealed persistent high-burden clusters, and precipitation was
positively associated with incidence at an approximately two-month lag.
Discussion: This study demonstrates that integrating spatial, temporal, and
climatic dimensions into a DBSCAN framework provides a reproducible method
for delineating dengue hotspots at the municipal scale. By distinguising high-
intensity clusters from low-burden areas, the approach offers and operationally
relevant tool for guiding vector control and outbreak response during dengue
epidemics in Brazil.
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Introduction

Dengue virus (DENV) remains one of the most pressing vector-
borne public health threats in Brazil, causing recurrent epidemics that
vary widely in magnitude and geography. Four antigenically distinct
serotypes (DENV-1-4) co-circulate in Brazil with regional and
temporal variation. Primary infection typically confers lifelong
immunity to the infecting serotype but transient cross-protection to
others; subsequent heterotypic infections elevate the risk of severe
outcomes via antibody-dependent enhancement (1-3). The 2024
season marked Brazil’s largest recorded dengue epidemic, with more
than six million probable cases and tens of thousands of
hospitalizations, imposing substantial strain on health systems (4).
Because epidemic intensity varies over short distances, national and
even state summaries can obscure actionable hotspots relevant to
vector control, clinical surge planning, and targeted communication.

During epidemic peaks, routine laboratory confirmation is
limited and most SINAN notifications rely on clinical-epidemiologic
criteria (5). In this operational reality, geospatial methods that use
syndromic notifications and hospitalizations can identify places where
transmission is unusually intense or persistent even when virologic
typing is incomplete. Spatial epidemiology offers multiple approaches,
but several common methods require strong assumptions: k-means
demands a pre-specified number of clusters and favors spherical
geometries, and scan statistics impose moving windows that may not

10.3389/fpubh.2025.1620914

align with municipal boundaries. Density-Based Clustering of
Applications with Noise (DBSCAN) is attractive because it does not
require pre-specifying the number of clusters, can recover irregular
shapes, and explicitly labels “noise,” separating isolated outliers from
coherent high-density zones (6, 7). Although DBSCAN has seen
growing use in infectious-disease surveillance internationally (8, 9),
national-scale applications at Brazil's municipal resolution remain
limited. We implement DBSCAN on a joint feature space combining
municipal centroids with standardized case and hospitalization rates.

Here we present a national application of multivariate DBSCAN
framework that integrates municipal geography (centroids) with
standardized epidemiologic burden (case and hospitalization rate per
100,000) to delineate dengue hotspots in 2024. We selected parameters
(eps, minPts) using k-distance diagnostics and sensitivity checks
(Supplementary Figure S1; Supplementary Table S1). Because response
planning requires both spatial and temporal perspectives, we reran
DBSCAN monthly using a common parameter set to assess persistence,
the extent to which municipalities and populations remain in clusters
months S2;
Supplementary Table S4). Given the established linkage between
rainfall and Aedes aegypti dynamics, we paired municipal dengue
indicators with CHIRPS precipitation at 0-3 lags to characterize

across  consecutive (Supplementary ~ Figure

short-lag climate associations and operational lead time (27, 28).
We address three practical questions: (i) Where are the municipal
clusters of greatest burden when geography and epidemiology jointly
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FIGURE 1

National map of dengue case rates and DBSCAN multivariate clusters (Annual, 2024).
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TABLE 1 Summary of DBSCAN-identified clusters.

10.3389/fpubh.2025.1620914

Cluster No. of municipalities  Total cases Total hospitalizations Avg. cases Avg. hospitalizations
per 100 k Per 100 k

8 4 5,450 17 24,444 76.6
13 5 8,996 117 22,450 284.2
4 7 27,584 269 20,666 2123
5 7 12,726 18 20,555 27.0
16 8 19,103 220 20,042 240.4
6 5 16,625 58 19,085 54.0
7 3 4,954 98 17,924 361.1
14 12 20,869 102 17,377 93.8
11 3 6,563 41 17,261 1114
17 3 55,144 286 14,577 47.0
9 3 6,660 168 13,421 337.6
18 4 3,544 3 12,571 44
15 3 1,373 89 9,441 616.5
10 8 92,927 5,086 6,555 384.9
22 5 8,054 638 5,428 409.4
24 3 1,505 75 5,173 256.0
25 3 2,339 177 4,785 348.6
12 6 17,345 1,447 4,670 4257
19 3 949 84 4,159 370.9
21 3 835 39 3,517 150.1
23 3 958 208 3,183 604.8
3 3 1,045 43 3,002 117.0
20 3 2,088 301 2,127 347.5
1 4,984 4,530,651 110,091 2,085 37.7
2 15 624 28 118 43

determine membership? (ii) How stable are these patterns over the
epidemic year? (iii) How do short-lag rainfall patterns relate to the
observed spatial structure? To aid interpretation, we treat “Cluster 1”
as a low-burden background, focus on higher-intensity clusters (ID
>1), and preserve isolated high-incidence municipalities labeled as
noise (ID = 0). The resulting products include a national map of
multivariate clusters (Figure 1); cluster-level summaries (Tables 1, 2;
Figure 2); zoomed composite for exemplar high-burden areas
(Figure 3); an outlier panel that preserves isolated hotspots (Figure 4);
a climate-aligned national panel (Figure 5); and diagnostics and
checks S1-S4;
Supplementary Tables S1-S5).

robustness (Supplementary Figures

Methods
Data sources and outcome measures

We conducted a nationwide analysis of dengue case notifications
and hospitalizations reported in 2024, using the publicly available

SINAN (Sistema de Informagdo de Agravos de Notificagdo) database
maintained by Brazil's Ministry of Health (5). Population estimates for
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all 5,570 municipalities were obtained from the Brazilian Institute of
Geography and Statistics (IBGE) (25) to calculate standardized
burden measures. Two primary outcomes were defined for each
municipality: (i) dengue case notifications per 100,000 population and
(ii) dengue-related hospitalizations per 100,000 population.
Municipalities with missing population or outcome data

were excluded.

Climate data integration

To ensure uniform national coverage, monthly total
precipitation for 2024 was obtained from CHIRPS (Climate Hazard
Group InfraRed Precipitation with Station data; ~5 km spatial
resolution) (37, 38). Preliminary checks with station data from
INMET (26) confirmed consistency but were not used in final
analyses. For each municipality, precipitation was computed by
averaging all CHIRPS grid cells intersecting its polygon.
We constructed monthly lags of 0-3 months to evaluate rainfall-
dengue associations at macroregional scale and to visualize national
seasonality alongside national dengue totals (Figure 5). Local station
data explored in preliminary work were not required for the final

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1620914
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Sena et al.

TABLE 2 Municipality composition of high-burden clusters.

10.3389/fpubh.2025.1620914

Cluster No. of Municipalities
municipalities

8 4 Catas Altas (MG), Jequitibda (MG), Pequi (MG), Sao Francisco De Paula (MG)

13 5 Arapuad (PR), Ariranha Do Ivai (PR), Corbélia (PR), Janiépolis (PR), Primeiro De Maio (PR)

4 7 Boa Esperanga (MG), Carmo Da Mata (MG), Cérrego Fundo (MG), Guaxupé (MG), Madre De Deus De Minas (MG), Presidente
Juscelino (MG), Sdo Gongalo Do Rio Abaixo (MG)

5 7 Conceigao Do Rio Verde (MG), Cristais (MG), Florestal (MG), Itatiaiugu (MG), Itutinga (MG), Santana Dos Montes (MG), Sao
Vicente De Minas (MG)

16 8 Lindoeste (PR), Moreira Sales (PR), Quedas Do Iguagu (PR), Santo Anténio Do Sudoeste (PR), Sulina (PR), Sdo Jorge D’Oeste
(PR), Tuneiras Do Oeste (PR), Vista Gatcha (RS)

6 5 Dores De Campos (MG), Ouro Branco (MG), Piracema (MG), Rio Manso (MG), Serro (MG)

7 3 Crucilandia (MG), Céssia (MG), Japaraiba (MG)

14 12 Boa Esperanga Do Iguagu (PR), Braganey (PR), Cafelandia (PR), Crissiumal (RS), Derrubadas (RS), Goioeré (PR), Juranda (PR),
Nova Cantu (PR), Redentora (RS), Sio Jodo (PR), Tupassi (PR), Vicente Dutra (RS)

11 3 Analandia (SP), Santo Anténio De Posse (SP), Torrinha (SP)

17 3 Balneario Barra Do Sul (SC), Indaial (SC), Itajai (SC)

9 3 Ipetina (SP), Monte Santo De Minas (MG), Tambau (SP)

18 4 Barra Do Guarita (RS), Bela Vista Da Caroba (PR), Itapiranga (SC), Nova Erechim (SC)

15 3 Kaloré (PR), Nova Santa Bérbara (PR), Rosério Do Ivai (PR)

10 8 Boracéia (SP), Colina (SP), Ribeirdo Preto (SP), Santa Rosa Da Serra (MG), Sdo José Do Rio Preto (SP), Sao Jodo Batista Do Gloria
(MG), Tabapua (SP), Viradouro (SP)

22 5 Americano Do Brasil (GO), Caldas Novas (GO), Petrolina De Goids (GO), Pirendpolis (GO), Agua Limpa (GO)

24 3 Campos Belos (GO), Divin6polis De Goias (GO), Guarani De Goids (GO)

25 3 Chapadao Do Sul (MS), Ivolandia (GO), Montividiu (GO)

12 6 Capitdo Lednidas Marques (PR), Foz Do Iguagu (PR), Horizontina (RS), Jesuitas (PR), Presidente Castelo Branco (PR), Angulo
(PR)

19 3 Constantina (RS), Planalto (RS), Porto Vera Cruz (RS)

21 3 Claudia (MT), Nova Guarita (MT), Terra Nova Do Norte (MT)

23 3 Formoso (GO), Itapaci (GO), Palmeirépolis (TO)

3 3 Chorroché (BA), Macururé (BA), Porteiras (CE)

20 3 Campo Verde (MT), Jaciara (MT), Juscimeira (MT)

1 4,984 N/A

2 15 Alto Alegre (RR), Amajari (RR), Boa Vista (RR), Bonfim (RR), Cantd (RR), Caracarai (RR), Caroebe (RR), Iracema (RR), Mucajai
(RR), Normandia (RR), Pacaraima (RR), Rorainépolis (RR), Sao Jodo Da Baliza (RR), Sao Luiz (RR), Uiramuta (RR)

analyses presented here; we retained CHIRPS to maintain
consistency and coverage.

Spatial clustering analysis

We applied DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) to identify spatially contiguous clusters of
elevated burden without imposing assumptions about cluster number
or geometry (6, 7).

Inputs included municipal centroid coordinates (latitude,
longitude) and standardized burden measures (z-scores of case and
hospitalization rates). We examined k-distance plots to inform the
neighborhood radius (eps) and minPts values (Supplementary Figure S1;
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Supplementary Table S1). For each cluster, we computed the number
of municipalities, total cases and hospitalizations, and mean burden
levels (Table 1).

Temporal clustering and persistence

To assess temporal stability, we ran DBSCAN on monthly
municipal data using the same parameter values. For each
month, we summarized the number of clusters, the proportion of
municipalities assigned to any cluster, and the share of the
national population located in municipalities classified as cluster
members. We identified municipalities that were cluster
months and calculated

members for >3 consecutive
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FIGURE 2
Cluster-wise averages (cases and hospitalizations per 100 k) (2024).
the size of this persistent cluster population Statistical environment and visualization

(Supplementary Table S4). Monthly maps depict cluster
membership as magenta points over a national basemap
(Supplementary Figure S2).

Spatial autocorrelation

We computed Global Moran’s I for municipality case rates using
queen contiguity and a row-standardized spatial weight matrix (spdep).
We reported Moran’s I, its standard deviate, and p-value under
randomization (Supplementary Table S2), with a Moran scatterplot
provided for illustration (Supplementary Figure S3).

Socioeconomic comparisons

To explore socioeconomic context, we paired DBSCAN cluster status
with 2020 municipal GDP per capita from IBGE (14). We compared
distributions between clustered and non-clustered municipalities and fit
a logistic regression with cluster membership as the dependent variable
and GDP per capita as the independent variable, recognizing that this
cross-sectional approach captures association rather than causation.

Frontiers in Public Health

All analyses were conducted in R (version 2024.12.1+563)
using sf, geobr, dbscan, spdep, dplyr, tidyr, ggplot2, and related
1-5 the
Supplementary Figures S1-S4 and Supplementary Tables S1-S5

packages.  Figures compose main  results;

contain diagnostics, sensitivity analyses, and supporting materials.

Results

Using a multivariate DBSCAN with eps=0.3 and minPts =3,
we identified 25 geographically coherent clusters along with a large
low-burden background (Cluster 1) and a small northern regional cluster
(Cluster 2). In total, 5,111 municipalities (92.6%) were assigned to a
cluster and 408 (7.4%) labeled as noise. Global Morans I for municipal
case rates was strongly positive (I = 0.598;z = 72.8; p < 0.001), confirming
non-random spatial autocorrelation consistent with the clustering
patterns (Supplementary Table S2; Supplementary Figure S3).

High-burden clusters were geographically concentrated and often
compact. Minas Gerais contained several of the most intense clusters,
including a four-municipality cluster (Cluster 8: Jequitiba, Pequi, Sdo
Francisco de Paula, and Catas Altas) with average case rates of 24,000
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are labeled. State boundaries are overlaid for geographic reference. Source: SINAN/DATASUS (2024); Shapefiles from IBGE via the geobr R package.
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per 100,000 and hospitalization rates of 76.6 per 100,000. Similarly,
in Parand, Cluster 13 (Arapud, Ariranha do Ivai, Corbélia, Janiopolis,
and Primeiro de Maio) presented average hospitalization burdens of
284.2 per 100,000, while other southern clusters (e.g., Cluster 15)
reached hospitalization burdens above 600 per 100,000. Cluster 4,
concentrated in southern Minas Gerais and containing municipalities
such as Guaxupé and Sao Gongalo do Rio Abaixo, also demonstrated
high overall burden (Table 3). These clusters are visualized at the
national scale (Figure 1), with zoomed-in composite maps (Figure 3)
and full municipal composition listed in Table 2, 3.

Despite the strong spatial signal, a subset of municipalities with
extreme case rates remained unclustered because no similar-burden
neighbors existed within the DBSCAN neighborhood radius. For
example, Iguatu and Boa Vista da Aparecida in Parand, and Paiva and
Monjolos in Minas Gerais each exceeded 30,000 cases per 100,000 but
were algorithmically excluded as noise (Supplementary Table S3). In
total, 50 municipalities surpassed 22,000 cases per 100,000, many of
which appear in the ranked bar plot of the top 50 municipalities
(Figure 4B; Table 3). Presenting these outliers separately ensures that
single-municipality hotspots are not eclipsed by density-based methods.

Monthly DBSCAN runs revealed stability in the overall
footprint of clustering across the year. The majority of municipalities

Frontiers in Public Health

were consistently assigned to clusters, and large proportions of the
national population resided in municipalities persisting in clusters
for >3 consecutive months (Supplementary Table S4). Small-
multiple maps (Supplementary Figure S2) highlight waxing and
waning seasonal dynamics, yet the reappearance of the same macro-
areas across months suggests structural vulnerability layered on
seasonal forcing.

At national scale, monthly total dengue cases rose sharply early in
2024, aligning the seasonal maximum of CHIRPS precipitation (Figure 5)
(37, 38). Macroregional correlation analyses confirmed positive rainfall-
dengue associations, with Spearman coefficients strenthening from lag 0
tolag 2-3 months (Supplementary Table S5), consistent with prior studies
(29-31). The strongest associations were observed in the Southeast and
Central-West, while the South displayed positive but more modest
correlations, patterns consistent with Aedes aegypti biology (10-13). A
case study from Jequitiba (Minas Gerais, Cluster 8) reinforced this
relationship where case surges in February-March closely followed local
peak precipitation, and mean annual temperatures remained within the
optimal range for vectorial capacity (23-26 °C).

Socioeconomic comparisons revealed that clustered municipalities
had lower GDP per capita than non-clustered ones. Among the 5,519
municipalities, those in clusters had a lower average (26,891 BRL) and
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>30,000 dengue cases per 100,000 that DBSCAN labeled as noise are shown explicitly; these outliers remain epidemiologically important despite
algorithmic exclusion in clustering. Top municipalities by annual case rate (2024), ranked; full list in Supplementary Table S3.
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median (19,367 BRL) GDP per capita compared to non-clustered
municipalities (33,743 BRL and 28,687 BRL, respectively). Logistic
regression confirmed a modest but statistically significant inverse
association between GDP per capita and the likelihood of cluster
membership (OR & 0.999994, p < 0.001). While the effect size is small,
the direction of association aligns with literature linking poverty,
inadequate water infrastructure, and limited health system access to
arboviral vulnerability (15-18).
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Discussion

We present a national application of multivariate DBSCAN that
integrates municipal geography with epidemiological burden to
delineate dengue hotspots in Brazil's record 2024 epidemic year. This
approach offers three operational benefits. First, it identifies compact
municipal clusters of exceptionally high cases and hospitalization
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FIGURE 5
National monthly precipitation (CHIRPS) with dengue totals and at Jequitiba, Minas Gerais (2024).
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rates, which represent natural focal areas for targeted vector control
and surge capacity planning. Second, it preserves algorithmic “noise,”
ensuring that municipalities with extreme but isolated burdens, often
overlooked in density-based clustering, remain visible and actionable.
Third, monthly repetitions of the analysis reveal temporal stability,
highlighting persistent hot zones where interventions should
be sustained across consecutive months. The month-to-month
persistence of the same municipal hotspots, despite seasonal waxing
and waning, signals structural vulnerability, arguing for sustained,
area-based vector control and pre-positioned clinical surge capacity
rather than episodic, reactive campaigns.

The clustering patterns we identified, particularly in Minas Gerais,
Parand, and Bahia, are parts of the South and Central-West, mirror
the strong autocorrelation measured Moran’s I and are consistent with
known ecological and infrastructural dengue drivers (4, 10, 15, 16,
19). The rainfall-dengue correlations reinforce the established

Frontiers in Public Health

expectation of positive associations at one- to three-month lags,
consistent with Aedes aegypti life cycles and with previous findings in
Brazil and elsewhere (27, 28). Case studies like Jequitiba highlight the
close coupling of rainfall and dengue incidence at the municipal level,
underlining the importance of integrating environmental data into
early warning systems.

Methodologically, DBSCAN demonstrated several strengths
compared to traditional approaches. Unlike k-means or hierarchical
clustering, DBSCAN does not assume spherical clusters or pre-specify
cluster number, enabling detection of irregularly shaped and context-
specific hotspots (6, 7). Its explicit handling of “noise” is particularly
valuable in national applications, where isolated municipalities may
experience extreme outbreaks despite lacking nearby peers.

Our sensitivity analyses confirmed overall cluster geography was
robust across parameter ranges (Supplementary Table S1). However,
DBSCAN's reliance on density continuity limits its ability to capture
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TABLE 3 Top 50 municipalities by dengue case rate.

Municipality code  Municipality Total cases Population size Cases per 100 k Hospitalizations Hospitalizations Multivariate
per 100 k cluster
4110052 Iguatu (PR) 805 2,162 37,234 11 508.8 0
4103057 Boa Vista Da Aparecida 2,822 8,034 35,126 108 1,344.3 0
(PR)
3146602 Paiva (MG) 468 1,498 31,246 0 0.0 0
3125507 Sao Gongalo Do Rio Preto 964 3,098 31,117 1 323 0
(MG)
3142502 Monjolos (MG) 681 2,196 31,011 8 364.3 0
4101002 Ampére (PR) 6,192 20,199 30,655 56 277.2 0
4113734 Luiziana (PR) 2,050 6,696 30,615 6 89.6 0
4115101 Mariluz (PR) 2,998 9,934 30,179 76 765.0 0
3113503 Carbonita (MG) 2,574 8,633 29,816 18 208.5 0
3111903 Cana Verde (MG) 1,592 5,356 29,724 1 18.7 0
4321402 Tenente Portela (RS) 4363 14,811 29,458 171 1,154.5 0
4120358 Pranchita (PR) 1,703 5,833 29,196 17 291.4 0
4123824 Santa Licia (PR) 1,063 3,657 29,068 8 218.8 0
3141900 Minduri (MG) 1,103 3,815 28,912 3 78.6 0
3118304 Conselheiro Lafaiete (MG) 39,395 137,980 28,551 539 390.6 0
3168804 Tiradentes (MG) 2,275 8,008 28,409 8 99.9 0
3103801 Arapud (MG) 743 2,674 27,786 12 4488 0
4126678 Tamarana (PR) 2,948 10,645 27,694 57 535.5 0
4110805 Iretama (PR) 2,957 10,843 27,271 52 479.6 0
4106571 Cruzeiro Do Iguagu (PR) 1,136 4,171 27,236 13 311.7 0
4120655 Quarto Centenério (PR) 1,069 4,170 25,636 14 3357 0
3120839 Cuparaque (MG) 1,020 3,994 25,538 6 150.2 0
5207105 Diorama (GO) 516 2,023 25,507 57 2,817.6 0
3114303 Carmo Do Paranaiba (MG) 7,572 29,899 25,325 373 1,247.5 0
4121109 Quinta Do Sol (PR) 1,279 5,060 25,277 84 1,660.1 0
4116604 Nova América da Colina 833 3,299 25,250 2 60.6 0
(PR)
3115359 Catas Altas (MG) 1,424 5,668 25,124 2 353 8

(Continued)
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TABLE 3 (Continued)

Municipality code  Municipality Total cases Population size Cases per 100 k Hospitalizations Hospitalizations Multivariate
per 100 k cluster
4113403 Le6polis (PR) 939 3,751 25,033 7 186.6 0
4116950 Nova Esperanga Do 1,430 5,744 24,896 29 504.9 0
Sudoeste (PR)
3109006 Brumadinho (MG) 10,119 40,777 24,816 160 392.4 0
4302378 Bom Progresso (RS) 528 2,134 24,742 0 0.0 0
3135704 Jequitiba (MG) 1,501 6,098 24,615 5 82.0 8
3131703 Ttabira (MG) 28,964 117,747 24,599 738 626.8 0
3149606 Pequi (MG) 1,042 4,258 24,472 4 93.9 8
4127858 Trés Barras Do Parand 2,710 11,197 24,203 7 62.5 0
(PR)
4119004 Pérola D'Oeste (PR) 1,501 6,235 24,074 39 625.5 0
3161205 Sdo Francisco De Paula 1,483 6,293 23,566 6 95.3 8
(MG)
3170701 Varginha (MG) 33,486 142,802 23,449 517 362.0 0
3149200 Pedrinépolis (MG) 798 3,404 23,443 1 29.4 0
4305207 Cerro Largo (RS) 3,254 14,009 23,228 248 1,770.3 0
4124020 Santa Tereza Do Oeste 3,193 13,749 23,224 20 145.5 0
(PR)
4112207 Janiopolis (PR) 1,354 5,835 23,205 17 291.3 13
4315057 Porto Maud (RS) 502 2,176 23,070 16 735.3 0
3168309 Taquaragu De Minas (MG) 1,001 4,368 22,917 13 297.6 0
4122503 Roncador (PR) 2,592 11,371 22,795 3 264 0
4109609 Guaratuba (PR) 10,074 44,323 22,729 15 33.8 0
4312302 Miraguai (RS) 1,024 4,506 22,725 7 155.3 0
4106308 Corbélia (PR) 4,055 17,862 22,702 55 307.9 13
4120507 Primeiro De Maio (PR) 2,287 10,121 22,597 29 286.5 13
3150505 Pimenta (MG) 1,977 8,794 22,481 30 341.1 0
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isolated hotspots, underscoring the need for complementary
approaches such as Getis-Ord Gi* or Kulldorft’s scan statistics to
ensure comprehensive hotspot detection.

Importantly, incorporating hospitalization rates into the clustering
process allowed us to capture both transmission intensity and disease
severity. Clusters in Parana and southern Brazil reached hospitalization
rates exceeding 200-600 per 100,000, highlighting areas of potential
health system overload. These findings resonate with reports of higher
severity among older populations and those with comorbidities,
particularly during the southern epidemic wave (3, 4).

We acknowledge that case notifications in SINAN, particularly
during epidemic peaks, are not often accompanied by systematic
laboratory confirmation. Nonetheless, these clinically reported cases
represent the operational data stream available for epidemic
management in Brazil and are the same signals upon which national
response planning relies. By demonstrating that robust spatial clusters
emerge even under these constraints, our analysis underscores the
utility of geospatial clustering as a pragmatic surveillance tool that
complements but does not replace virologic confirmation. Moreover,
the congruence of our results with known ecological drivers and
hospitalization patterns affirms that signal-to-noise-ratios in the
surveillance system are sufficient to identify meaningful hotspots.

The socioeconomic analyses further underscore the role of
structural vulnerability in shaping dengue risk. Clustered
municipalities tended to be less economically advantaged, with
lower GDP per capita. While the observed effect sizes were modest,
this directionality aligns with evidence that poverty, water storage
practices, sanitation gaps, and housing conditions amplify arboviral
exposure (15-18, 23). Future studies should integrate richer
structural indicators, such as sanitation coverage, water
intermittency, urban density, and health systems access, to evaluate
multivariable predictors of cluster membership and persistence.

From a policy perspective, our findings emphasize that
dengue control in Brazil cannot rely on aggregate national
metrics alone. The identification of small, localized but high-
burden clusters highlight the need for municipal and regional-
level targeting of vector control, diagnostic distribution, and
hospital surge planning. Moreover, the observed rainfall-dengue
lagged correlations support the integration of climate data into
predictive modeling and early warning systems, an especially
urgent need as climate variability increases (20-22, 24).

Finally, DBSCAN remains underutilized in Latin American
public health surveillance despite its adaptability, scalability, and
compatibility with open-source workflows. Prior studies in
Southeast Asia and the Caribbean have applied DBSCAN
successfully to arboviral clustering (8, 9), but national applications
in Brazil remain rare. Our analysis demonstrates its feasibility and
value at the municipal scale, offering a flexible geospatial tool that
can complement existing surveillance systems.

Looking forward, DBSCAN-based clustering, paired with Earth
observation, climate predictors, and sociodemographic indicators, can
underpin predictive analytics and decentralized epidemic intelligence,
improving equity through more precise, and timely interventions.

Limitations

Several limitations should be noted. First, although DBSCAN
effectively delineates coherent high-burden clusters, its reliance on local
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density continuity inevitably excludes single municipalities with
exceptionally high rates when they lack comparable neighbors.
We partially mitigate this limitation by preserving these outliers in
separate panels, but complementary methods such as Kulldorff’s spatial
scan or Getis-Ord Gi* could further capture such isolated hotspots.
Second, our reliance on monthly CHIRPS precipitation (37, 38) improves
upon single-station data by providing uniform national coverage, but may
still may obscure localized microclimatic variability (28) compared with
INMET station data (26). Third, the use of routine surveillance data, often
unconfirmed by laboratory diagnostics, introduces potential for
misclassification; however, this reflects the operational reality of epidemic
response and underscores the importance of methods that can extract
robust signals from imperfect data. Finally, GDP per capita is a crude
proxy of socioeconomic vulnerability and should be complemented in
future work with more granular indicators of water, sanitation, housing,
and health system capacity. Despite these limitations, the methodological
transparency, reproducibility, and national coverage of our analysis
position DBSCAN clustering as a valuable addition to the toolkit for
epidemic intelligence in Brazil.

Conclusion

In Brazil's unprecedented 2024 dengue year, multivariate DBSCAN
uncovered compact municipal clusters of high burden and preserved
isolated outliers that demand targeted action. Monthly clustering showed
persistence of risk in the same macro-areas across seasons, while rainfall
correlations at short lags confirmed expected climate-epidemic coupling.
The method is transparent, scalable, and immediately useful for
prioritizing vector control, diagnostics, and hospital surge planning at
municipal scale. As Brazil advances decentralized surveillance and
climate-aware preparedness, density-based geospatial clustering can help
bridge the gap between national statistics and neighborhood-level action.
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